Efficiently Updating ECG-Based Biometric Authentication Based on Incremental Learning

Recently, the interest in biometric authentication based on electrocardiograms (ECGs) has increased. Nevertheless, the ECG signal of a person may vary according to factors such as the emotional or physical state, thus hindering authentication. We propose an adaptive ECG-based authentication method t...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 21; no. 5; p. 1568
Main Authors Kim, Junmo, Yang, Geunbo, Kim, Juhyeong, Lee, Seungmin, Kim, Ko Keun, Park, Cheolsoo
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 24.02.2021
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Recently, the interest in biometric authentication based on electrocardiograms (ECGs) has increased. Nevertheless, the ECG signal of a person may vary according to factors such as the emotional or physical state, thus hindering authentication. We propose an adaptive ECG-based authentication method that performs incremental learning to identify ECG signals from a subject under a variety of measurement conditions. An incremental support vector machine (SVM) is adopted for authentication implementing incremental learning. We collected ECG signals from 11 subjects during 10 min over six days and used the data from days 1 to 5 for incremental learning, and those from day 6 for testing. The authentication results show that the proposed system consistently reduces the false acceptance rate from 6.49% to 4.39% and increases the true acceptance rate from 61.32% to 87.61% per single ECG wave after incremental learning using data from the five days. In addition, the authentication results tested using data obtained a day after the latest training show the false acceptance rate being within reliable range (3.5–5.33%) and improvement of the true acceptance rate (70.05–87.61%) over five days.
AbstractList Recently, the interest in biometric authentication based on electrocardiograms (ECGs) has increased. Nevertheless, the ECG signal of a person may vary according to factors such as the emotional or physical state, thus hindering authentication. We propose an adaptive ECG-based authentication method that performs incremental learning to identify ECG signals from a subject under a variety of measurement conditions. An incremental support vector machine (SVM) is adopted for authentication implementing incremental learning. We collected ECG signals from 11 subjects during 10 min over six days and used the data from days 1 to 5 for incremental learning, and those from day 6 for testing. The authentication results show that the proposed system consistently reduces the false acceptance rate from 6.49% to 4.39% and increases the true acceptance rate from 61.32% to 87.61% per single ECG wave after incremental learning using data from the five days. In addition, the authentication results tested using data obtained a day after the latest training show the false acceptance rate being within reliable range (3.5–5.33%) and improvement of the true acceptance rate (70.05–87.61%) over five days.
Recently, the interest in biometric authentication based on electrocardiograms (ECGs) has increased. Nevertheless, the ECG signal of a person may vary according to factors such as the emotional or physical state, thus hindering authentication. We propose an adaptive ECG-based authentication method that performs incremental learning to identify ECG signals from a subject under a variety of measurement conditions. An incremental support vector machine (SVM) is adopted for authentication implementing incremental learning. We collected ECG signals from 11 subjects during 10 min over six days and used the data from days 1 to 5 for incremental learning, and those from day 6 for testing. The authentication results show that the proposed system consistently reduces the false acceptance rate from 6.49% to 4.39% and increases the true acceptance rate from 61.32% to 87.61% per single ECG wave after incremental learning using data from the five days. In addition, the authentication results tested using data obtained a day after the latest training show the false acceptance rate being within reliable range (3.5-5.33%) and improvement of the true acceptance rate (70.05-87.61%) over five days.Recently, the interest in biometric authentication based on electrocardiograms (ECGs) has increased. Nevertheless, the ECG signal of a person may vary according to factors such as the emotional or physical state, thus hindering authentication. We propose an adaptive ECG-based authentication method that performs incremental learning to identify ECG signals from a subject under a variety of measurement conditions. An incremental support vector machine (SVM) is adopted for authentication implementing incremental learning. We collected ECG signals from 11 subjects during 10 min over six days and used the data from days 1 to 5 for incremental learning, and those from day 6 for testing. The authentication results show that the proposed system consistently reduces the false acceptance rate from 6.49% to 4.39% and increases the true acceptance rate from 61.32% to 87.61% per single ECG wave after incremental learning using data from the five days. In addition, the authentication results tested using data obtained a day after the latest training show the false acceptance rate being within reliable range (3.5-5.33%) and improvement of the true acceptance rate (70.05-87.61%) over five days.
Author Yang, Geunbo
Lee, Seungmin
Kim, Ko Keun
Kim, Junmo
Park, Cheolsoo
Kim, Juhyeong
AuthorAffiliation 3 AI Lab, LG Electronics, Seoul 06763, Korea
1 Department of Computer Engineering, Kwangwoon University, Seoul 01897, Korea; wnsah1008@kw.ac.kr (J.K.); 2016722051@kw.ac.kr (G.Y.); kjoohyu@kw.ac.kr (J.K.)
2 School of Electrical Engineering, College of Creative Engineering, Kookmin University, Seoul 02707, Korea; smlee27@kookmin.ac.kr
AuthorAffiliation_xml – name: 3 AI Lab, LG Electronics, Seoul 06763, Korea
– name: 2 School of Electrical Engineering, College of Creative Engineering, Kookmin University, Seoul 02707, Korea; smlee27@kookmin.ac.kr
– name: 1 Department of Computer Engineering, Kwangwoon University, Seoul 01897, Korea; wnsah1008@kw.ac.kr (J.K.); 2016722051@kw.ac.kr (G.Y.); kjoohyu@kw.ac.kr (J.K.)
Author_xml – sequence: 1
  givenname: Junmo
  orcidid: 0000-0002-2238-3255
  surname: Kim
  fullname: Kim, Junmo
– sequence: 2
  givenname: Geunbo
  orcidid: 0000-0003-0726-1628
  surname: Yang
  fullname: Yang, Geunbo
– sequence: 3
  givenname: Juhyeong
  surname: Kim
  fullname: Kim, Juhyeong
– sequence: 4
  givenname: Seungmin
  surname: Lee
  fullname: Lee, Seungmin
– sequence: 5
  givenname: Ko Keun
  orcidid: 0000-0001-7511-4326
  surname: Kim
  fullname: Kim, Ko Keun
– sequence: 6
  givenname: Cheolsoo
  orcidid: 0000-0001-8042-007X
  surname: Park
  fullname: Park, Cheolsoo
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33668148$$D View this record in MEDLINE/PubMed
BookMark eNptkktrGzEQgEVJaR7toX-gLPTSHLbRe7WXQmLc1GDopT6LsaR1ZHYlV9oN5N9XsROThIJAQvPpY0Yz5-gkxOAQ-kzwd8ZafJUpwYIIqd6hM8IprxWl-OTF-RSd57zFmDLG1Ad0ypiUinB1hlbzrvPGuzD2D9VqZ2H0YVPNZ7f1DWRnqxsfBzcmb6rrabwrmDcFiaE6hMthEUxyQ4lAXy0dpFAEH9H7DvrsPj3tF2j1c_5n9qte_r5dzK6XteGyHesGqMDAGW2bVraMOKlAUGNpa6FpKDeKGbBKCeVIR3AnJaPSYrlWnRJWWXaBFgevjbDVu-QHSA86gtf7i5g2GlJJuXfaEeUoCOKYBA4Kr6kU1LK1MoZ1FHBx_Ti4dtN6cNaUihL0r6SvI8Hf6U28100rZEPaIvj2JEjx7-TyqAefjet7CC5OWVPeqv2SBf36Bt3GKYXyVY8Ux03pmSrUl5cZHVN57l4BLg-ASTHn5LojQrB-nAx9nIzCXr1hjR_3rSzF-P4_L_4BE2C4iQ
CitedBy_id crossref_primary_10_3390_s22114201
crossref_primary_10_1016_j_icte_2023_04_003
crossref_primary_10_3390_s21216966
crossref_primary_10_3390_s22020689
crossref_primary_10_1007_s11042_023_16506_3
crossref_primary_10_1016_j_bbe_2022_08_004
crossref_primary_10_3390_s23031230
crossref_primary_10_1016_j_jik_2023_100313
crossref_primary_10_1155_2022_7997509
Cites_doi 10.3390/s17102228
10.1109/IJCNN.2000.861459
10.5194/isprsarchives-XL-2-W3-281-2014
10.1109/19.930458
10.1109/TSMC.2018.2791511
10.1023/A:1022699900025
10.1109/ICCE46568.2020.9043116
10.1109/ACCESS.2018.2889996
10.1613/jair.953
10.1109/TIM.2007.909996
10.1109/ICPR.2016.7900101
10.1016/S0167-4048(02)00304-8
10.1007/s13534-020-00146-9
10.1109/ACCESS.2016.2548519
10.1109/TBME.2016.2607020
10.1109/TIFS.2017.2784362
10.1007/s13534-019-00141-9
10.1109/MSECP.2003.1193209
10.1002/tee.21970
10.5573/IEIESPC.2019.8.1.001
10.1109/34.683777
10.1016/j.cose.2018.11.003
10.1145/2381934.2381947
10.1016/j.future.2019.06.008
10.1109/TBME.1985.325532
10.1109/I2MTC43012.2020.9128394
10.1109/TIFS.2012.2215324
10.1161/01.CIR.101.23.e215
10.1109/ACCESS.2019.2939947
10.1109/10.918594
10.1016/j.patrec.2019.11.005
10.1161/01.CIR.0000145144.56673.59
10.1109/TIP.2010.2048612
10.1016/j.cmpb.2013.11.017
10.1109/MUE.2008.67
10.1016/j.measurement.2018.05.033
10.1007/BF03253248
10.5220/0005160507650772
10.3390/s17020410
10.1109/72.788645
10.1109/5326.983933
10.1109/ACCESS.2018.2886573
10.1016/j.jelectrocard.2017.08.021
10.1016/j.patcog.2004.05.014
10.1109/ICDSP.2009.5201143
10.1109/TIM.2015.2503863
10.1007/978-3-540-89991-4_19
10.1109/CISTI.2014.6877089
10.1109/ACCT.2015.87
10.1109/BMEiCON.2017.8229170
10.1016/j.patrec.2018.03.028
10.1109/IWCMC.2017.7986553
10.1109/ACCESS.2018.2820684
10.1023/A:1025667309714
10.1109/2.820041
ContentType Journal Article
Copyright 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 by the authors. 2021
Copyright_xml – notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s21051568
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest One
ProQuest Central Korea
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest - Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
CrossRef
Publicly Available Content Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_e18e2a51e36a4a80b2652d3b8cc3f2a0
PMC7956719
33668148
10_3390_s21051568
Genre Journal Article
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ARAPS
CGR
CUY
CVF
ECM
EIF
HCIFZ
KB.
M7S
NPM
PDBOC
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c469t-7a250a4329796931e68a52cd29da7724c83cad8858e1f10f66326d06b8f85d8d3
IEDL.DBID 7X7
ISSN 1424-8220
IngestDate Wed Aug 27 01:18:11 EDT 2025
Thu Aug 21 18:16:11 EDT 2025
Tue Aug 05 09:44:27 EDT 2025
Fri Jul 25 19:59:54 EDT 2025
Wed Feb 19 02:29:40 EST 2025
Thu Apr 24 22:56:08 EDT 2025
Tue Jul 01 03:56:06 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords ECG
biometrics
incremental SVM
SVM
incremental learning
authentication
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c469t-7a250a4329796931e68a52cd29da7724c83cad8858e1f10f66326d06b8f85d8d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contributed equally to this work.
ORCID 0000-0001-8042-007X
0000-0003-0726-1628
0000-0002-2238-3255
0000-0001-7511-4326
OpenAccessLink https://www.proquest.com/docview/2494072208?pq-origsite=%requestingapplication%
PMID 33668148
PQID 2494072208
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_e18e2a51e36a4a80b2652d3b8cc3f2a0
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7956719
proquest_miscellaneous_2498498496
proquest_journals_2494072208
pubmed_primary_33668148
crossref_primary_10_3390_s21051568
crossref_citationtrail_10_3390_s21051568
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210224
PublicationDateYYYYMMDD 2021-02-24
PublicationDate_xml – month: 2
  year: 2021
  text: 20210224
  day: 24
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2021
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_50
Pontil (ref_58) 1998; 20
Drucker (ref_57) 1999; 10
Labati (ref_36) 2018; 126
Hammad (ref_17) 2018; 12
Choi (ref_37) 2016; 4
ref_13
Duc (ref_9) 2009; 4
ref_11
Luz (ref_51) 2018; 13
ref_55
Lynn (ref_52) 2019; 7
Chan (ref_34) 2008; 57
ref_16
Clarke (ref_53) 2002; 21
Drew (ref_66) 2004; 110
(ref_20) 2016; 65
Huang (ref_26) 2020; 10
Gepperth (ref_22) 2016; 1
Bousseljot (ref_31) 1995; 1
ref_60
Abdiansah (ref_75) 2015; 128
Pan (ref_65) 1985; 32
Fred (ref_32) 2014; 113
Dong (ref_61) 2005; 27
Hammad (ref_56) 2018; 7
Goldberger (ref_33) 2000; 101
ref_21
ref_64
ref_62
Krasteva (ref_45) 2017; 50
Hammad (ref_43) 2019; 101
Prabhakar (ref_4) 2003; 1
Li (ref_10) 2014; 14
ref_27
Chawla (ref_69) 2011; 16
Jang (ref_6) 2019; 8
Diehl (ref_29) 2003; 4
Hammad (ref_46) 2016; 13
ref_71
Odinaka (ref_19) 2012; 7
ref_70
Falcari (ref_25) 2020; 10
Kononenko (ref_72) 2003; 53
Xu (ref_23) 2019; 49
Frischholz (ref_1) 2000; 33
Rui (ref_73) 2019; 7
Utgoff (ref_24) 1989; 4
Cauwenberghs (ref_63) 2001; 13
Singh (ref_68) 2012; 3
ref_30
ref_74
Rezgui (ref_35) 2016; 11
ref_38
Karimian (ref_47) 2017; 64
Biel (ref_15) 2001; 50
Zhang (ref_8) 2012; 12
Hammad (ref_39) 2020; 10
Artan (ref_59) 2010; 19
Israel (ref_12) 2005; 38
ref_42
ref_41
Polikar (ref_28) 2001; 31
ref_40
Hammad (ref_54) 2019; 81
Hammad (ref_67) 2018; 125
ref_3
ref_2
Ross (ref_5) 2007; 62
Liu (ref_44) 2018; 6
Pathoumvanh (ref_49) 2014; 9
Hoekema (ref_14) 2001; 48
ref_48
Li (ref_18) 2020; 129
ref_7
References_xml – ident: ref_42
  doi: 10.3390/s17102228
– ident: ref_60
  doi: 10.1109/IJCNN.2000.861459
– volume: 3
  start-page: 39
  year: 2012
  ident: ref_68
  article-title: Evaluation of Electrocardiogram for Biometric Authentication
  publication-title: J. Inf. Secur.
– ident: ref_70
  doi: 10.5194/isprsarchives-XL-2-W3-281-2014
– volume: 50
  start-page: 808
  year: 2001
  ident: ref_15
  article-title: ECG analysis: A new approach in human identification
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/19.930458
– volume: 49
  start-page: 2230
  year: 2019
  ident: ref_23
  article-title: New Incremental Learning Algorithm with Support Vector Machines
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
  doi: 10.1109/TSMC.2018.2791511
– volume: 4
  start-page: 161
  year: 1989
  ident: ref_24
  article-title: Incremental induction of decision trees
  publication-title: Mach. Learn.
  doi: 10.1023/A:1022699900025
– ident: ref_2
  doi: 10.1109/ICCE46568.2020.9043116
– volume: 7
  start-page: 5994
  year: 2019
  ident: ref_73
  article-title: A Survey on Biometric Authentication: Toward Secure and Privacy-Preserving Identification
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2889996
– volume: 4
  start-page: 158
  year: 2009
  ident: ref_9
  article-title: Your face is not your password
  publication-title: Black Hat.
– volume: 1
  start-page: S317
  year: 1995
  ident: ref_31
  article-title: Nutzung der EKG- Signaldatenbank CARDIODAT der PTB über das Internet
  publication-title: Biomed. Tech.
– volume: 16
  start-page: 321
  year: 2011
  ident: ref_69
  article-title: SMOTE: Synthetic minority over-sampling technique
  publication-title: J. Artif. Intell. Res.
  doi: 10.1613/jair.953
– volume: 57
  start-page: 248
  year: 2008
  ident: ref_34
  article-title: Wavelet Distance Measure for Person Identification Using Electrocardiograms
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2007.909996
– ident: ref_74
  doi: 10.1109/ICPR.2016.7900101
– volume: 11
  start-page: S94
  year: 2016
  ident: ref_35
  article-title: ECG biometric recognition using SVM-based approach
  publication-title: IEE J. Trans. Electric. Electron. Eng.
– volume: 21
  start-page: 220
  year: 2002
  ident: ref_53
  article-title: Acceptance of subscriber authentication methods for mobile telephony devices
  publication-title: Comput. Secur.
  doi: 10.1016/S0167-4048(02)00304-8
– volume: 10
  start-page: 183
  year: 2020
  ident: ref_26
  article-title: Classification of atrial fibrillation and normal sinus rhythm based on convolutional neural network
  publication-title: Biomed. Eng. Lett.
  doi: 10.1007/s13534-020-00146-9
– volume: 4
  start-page: 1266
  year: 2016
  ident: ref_37
  article-title: Biometric authentication using noisy electrocardiograms acquired by mobile sensors
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2016.2548519
– ident: ref_71
– volume: 1
  start-page: 1
  year: 2016
  ident: ref_22
  article-title: Incremental learning algorithms and applications
  publication-title: Eur. Symp. Artif. Neural Netw.
– volume: 14
  start-page: 413
  year: 2014
  ident: ref_10
  article-title: Understanding OSN based facial disclosure against face authentication systems
  publication-title: Proc. AS ACCS
– volume: 64
  start-page: 1400
  year: 2017
  ident: ref_47
  article-title: Highly Reliable Key Generation from Electrocardiogram (ECG)
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2016.2607020
– volume: 13
  start-page: 409
  year: 2001
  ident: ref_63
  article-title: Incremental and decremental support vector machine learning
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 13
  start-page: 1258
  year: 2018
  ident: ref_51
  article-title: Learning deep off-the-person heart biometrics representations
  publication-title: IEEE Trans. Inf. Forensics Secur.
  doi: 10.1109/TIFS.2017.2784362
– volume: 10
  start-page: 275
  year: 2020
  ident: ref_25
  article-title: Evaluation of multi-class support-vector machines strategies and kernel adjustment levels in hand posture recognition by analyzing sEMG signals acquired from a wearable device
  publication-title: Biomed. Eng. Lett.
  doi: 10.1007/s13534-019-00141-9
– volume: 1
  start-page: 33
  year: 2003
  ident: ref_4
  article-title: Biometric recognition:Security and privacy concerns
  publication-title: IEEE Secur. Priv. Mag. Mar.
  doi: 10.1109/MSECP.2003.1193209
– volume: 9
  start-page: 294
  year: 2014
  ident: ref_49
  article-title: Robustness study of ECG biometric identification in heart rate variability conditions
  publication-title: IEEJ Trans. Electr. Electron. Eng.
  doi: 10.1002/tee.21970
– ident: ref_7
  doi: 10.5573/IEIESPC.2019.8.1.001
– ident: ref_27
– volume: 20
  start-page: 637
  year: 1998
  ident: ref_58
  article-title: Support vector machines for 3d object recognition
  publication-title: IEEE Trans Pattern Anal. Mach. Intell.
  doi: 10.1109/34.683777
– volume: 81
  start-page: 107
  year: 2019
  ident: ref_54
  article-title: Parallel score fusion of ECG and fingerprint for human authentication based on convolution neural network
  publication-title: Comput. Secur.
  doi: 10.1016/j.cose.2018.11.003
– volume: 12
  start-page: 57
  year: 2012
  ident: ref_8
  article-title: Fingerprint attack against touch enabled devices
  publication-title: Proc. SPSM
  doi: 10.1145/2381934.2381947
– ident: ref_41
– volume: 101
  start-page: 180
  year: 2019
  ident: ref_43
  article-title: A novel two-dimensional ECG feature extraction and classi_cation algorithm based on convolution neural network for human authentication
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2019.06.008
– volume: 32
  start-page: 230
  year: 1985
  ident: ref_65
  article-title: A real-time QRS detection algorithm
  publication-title: IEEE Trans. Biomed. Eng. Mar.
  doi: 10.1109/TBME.1985.325532
– ident: ref_62
– ident: ref_55
  doi: 10.1109/I2MTC43012.2020.9128394
– volume: 7
  start-page: 1812
  year: 2012
  ident: ref_19
  article-title: ECG Biometric Recognition: A Comparative Analysis
  publication-title: IEEE Trans. Inf. Forensics Secur.
  doi: 10.1109/TIFS.2012.2215324
– ident: ref_30
– volume: 12
  start-page: 1
  year: 2018
  ident: ref_17
  article-title: Cancelable biometric authentication system based on ECG
  publication-title: Multimed. Tools Appl.
– volume: 101
  start-page: e215
  year: 2000
  ident: ref_33
  article-title: Physiobank physiotoolkit and physionet: Components of a new research resource for complex physiologic signals
  publication-title: Circulation
  doi: 10.1161/01.CIR.101.23.e215
– volume: 7
  start-page: 145395
  year: 2019
  ident: ref_52
  article-title: A Deep Bidirectional GRU Network Model for Biometric Electrocardiogram Classification Based on Recurrent Neural Networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2939947
– ident: ref_3
– volume: 48
  start-page: 551
  year: 2001
  ident: ref_14
  article-title: Geometrical aspects of the interindividual variability of multilead ECG recordings
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/10.918594
– volume: 129
  start-page: 70
  year: 2020
  ident: ref_18
  article-title: Robust ECG biometrics using GNMF and sparse representation
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2019.11.005
– volume: 4
  start-page: 2685
  year: 2003
  ident: ref_29
  article-title: SVM incremental learning, adaptation and optimization
  publication-title: Proc. Int. Jt. Conf. Neural Netw.
– volume: 110
  start-page: 2721
  year: 2004
  ident: ref_66
  article-title: Practice standards for electrocardiographic monitoring in hospital settings: An American Heart Association scientific statement from the councils on cardiovascular nursing, clinical cardiology, and cardiovascular disease in the young: Endorsed by the international society of computerized electrocardiology and the American Association of Critical-Care Nurses
  publication-title: Circulation
  doi: 10.1161/01.CIR.0000145144.56673.59
– volume: 19
  start-page: 2444
  year: 2010
  ident: ref_59
  article-title: Prostate Cancer Localization With Multispectral MRI Using Cost-Sensitive Support Vector Machines and Conditional Random Fields
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2010.2048612
– volume: 113
  start-page: 503
  year: 2014
  ident: ref_32
  article-title: Check your biosignals here: A new dataset for off-the-person ECG biometrics
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2013.11.017
– ident: ref_40
  doi: 10.1109/MUE.2008.67
– volume: 125
  start-page: 634
  year: 2018
  ident: ref_67
  article-title: Detection of abnormal heart conditions based on characteristics of ECG signals
  publication-title: Measurement
  doi: 10.1016/j.measurement.2018.05.033
– volume: 62
  start-page: 11
  year: 2007
  ident: ref_5
  article-title: Human recognition using biometrics: An overview
  publication-title: Ann. Télécommun. Jan.
  doi: 10.1007/BF03253248
– ident: ref_16
  doi: 10.5220/0005160507650772
– ident: ref_48
  doi: 10.3390/s17020410
– volume: 10
  start-page: 1048
  year: 1999
  ident: ref_57
  article-title: Support vector machines for spam categorization
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.788645
– volume: 31
  start-page: 497
  year: 2001
  ident: ref_28
  article-title: Learn++: An incremental learning algorithm for supervised neural networks
  publication-title: IEEE Trans. Syst. Man Cybern. C.
  doi: 10.1109/5326.983933
– volume: 7
  start-page: 26527
  year: 2018
  ident: ref_56
  article-title: Multimodal biometric authentication systems using convolution neural network based on different level fusion of ECG and fingerprint
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2886573
– volume: 50
  start-page: 847
  year: 2017
  ident: ref_45
  article-title: Biometric verification by cross-correlation analysis of 12-lead ECG patterns: Ranking of the most reliable peripheral and chest leads
  publication-title: J. Electrocardiol.
  doi: 10.1016/j.jelectrocard.2017.08.021
– volume: 27
  start-page: 1088
  year: 2005
  ident: ref_61
  article-title: Fast SVM Training Algorithm with Decomposition on Very Large Data Sets
  publication-title: IEEE Trans. Pattern Anal.
– volume: 38
  start-page: 133
  year: 2005
  ident: ref_12
  article-title: ECG to identify individuals
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2004.05.014
– ident: ref_13
  doi: 10.1109/ICDSP.2009.5201143
– volume: 128
  start-page: 28
  year: 2015
  ident: ref_75
  article-title: Time complexity analysis of support vector machines (SVM) in LibSVM
  publication-title: Int. J. Comput. Appl.
– volume: 65
  start-page: 591
  year: 2016
  ident: ref_20
  article-title: ECG authentication for mobile devices
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2015.2503863
– volume: 10
  start-page: e12547
  year: 2020
  ident: ref_39
  article-title: ResNet-Attention model for human authentication using ECG signals
  publication-title: Expert Syst.
– ident: ref_11
  doi: 10.1007/978-3-540-89991-4_19
– ident: ref_38
  doi: 10.1109/CISTI.2014.6877089
– volume: 8
  start-page: 161
  year: 2019
  ident: ref_6
  article-title: An Ultrasonic Scanner to Probe 3-D Finger Skin Structures for Biometric Recognition
  publication-title: IEIE Trans.
– ident: ref_64
  doi: 10.1109/ACCT.2015.87
– ident: ref_21
  doi: 10.1109/BMEiCON.2017.8229170
– volume: 126
  start-page: 78
  year: 2018
  ident: ref_36
  article-title: Deep-ECG: Convolutional neural networks for ECG biometric recognition
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2018.03.028
– ident: ref_50
  doi: 10.1109/IWCMC.2017.7986553
– volume: 13
  start-page: 959
  year: 2016
  ident: ref_46
  article-title: A novel biometric based on ECG signals and images for human authentication
  publication-title: Int. Arab J. Inf. Technol.
– volume: 6
  start-page: 18251
  year: 2018
  ident: ref_44
  article-title: Amultiscale autoregressive model-based electrocardiogram identication method
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2018.2820684
– volume: 53
  start-page: 23
  year: 2003
  ident: ref_72
  article-title: Theoretical and empirical analysis of relieff and rrelieff
  publication-title: Mach. Learn.
  doi: 10.1023/A:1025667309714
– volume: 33
  start-page: 64
  year: 2000
  ident: ref_1
  article-title: BiolD: A multimodal biometric identification system
  publication-title: Computer
  doi: 10.1109/2.820041
SSID ssj0023338
Score 2.3994749
Snippet Recently, the interest in biometric authentication based on electrocardiograms (ECGs) has increased. Nevertheless, the ECG signal of a person may vary...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1568
SubjectTerms authentication
Biometric Identification
Biometrics
Distance learning
ECG
Electrocardiography
Humans
incremental learning
incremental SVM
Lagrange multiplier
Machine learning
Neural networks
Signal processing
Support Vector Machine
Support vector machines
SVM
Wavelet transforms
SummonAdditionalLinks – databaseName: DOAJ
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA-ykx7Eb6tTqnjwUrbm4zU9Otkcgp4ceCtpkqogneh28L_3JenKJgMvQg-leW3S91763i9NfiHkKq1SjXHHJFbRLOEAVaIslImxQpSqUsA9b8HDI4wn_P5ZPC9t9eXmhAV64KC4nk2lpUqkloHiSvZLCoIaVkqtWUWVR-sY8xZgqoFaDJFX4BFiCOp7XwhsMHA7PtWl6ONJ-tdllr8nSC5FnNEO2W5SxfgmNHGXbNh6j2wtEQjuk8nQM0Dg_e_f8eTDLVWoX-Lh7V0ywOhk4oFbXO84-GM3FOYmBoURujgU4wl-H8IIIdbUcK2-HJDJaPh0O06ajRISjeh2lmQKExnFGc2zHHKWWpBKUG1obhRmz1xLppWRUkiLtulXmGVQMH0oZSWFkYYdkk49re0xiauKKcgMiNLmvNQ81-7BOtdcARpRR-R6ocBCNyzibjOL9wLRhNN10eo6Ipet6EegzlgnNHBWaAUc27W_gD5QND5Q_OUDEekubFg0XfCrQFzpyN9oH-u4aIux87g_Iqq207mXkf6AiBwFk7ctYQxAIliMSLbiDCtNXS2p3149QXeGoDNL85P_eLdTskndNBq3ip53SWf2ObdnmAfNynPv8j8cCgfP
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB6VcoEDankGWhQQBy6BxI-Jc6gQW22pkMqJSL1Fju1skVbZst1K9N8zk2SjBq2QcojiSWzN2Jn5_PgG4EPWZI78jk-CFXmiEJvEBqwTH7SubWNRdbwFFz_wvFTfL_XlHmxzbA4KvNkJ7TifVLlefvrz--4LDfgTRpwE2T_fEGwht4zmATwkh5Tz-LxQ42KCkATDelKhqfjEFXWM_bvCzH93S95zP2cH8GSIG-OvvaEPYS-0T-HxPTbBZ1DOOzoIen95F5fXfG6hXcTz02_JjFyVj2d80p4J-WOeF-NdQv10XdwX0w39LPrpQqppIF5dPIfybP7z9DwZsiYkjqDuJsktRTVWSVHkBRYyC2isFs6LwlsKpZUz0llvjDaBDJU2FHII9CnWpjHaGy9fwH67asMriJtGWsw96joUqnaqcPxhVzhlkSzqIvi4VWDlBkpxzmyxrAhasK6rUdcRvB9Fr3sejV1CM7bCKMDU192D1XpRDSOpCpkJwuosSLTKmrQWqIWXtXFONsKmERxtbVhtu1NFIJOZ4ERKdbwbi2kk8fKIbcPqtpMx3YURvOxNPrZESkRDyDGCfNIZJk2dlrS_rjq27pwQaJ4Vr__frDfwSPBuGT4sr45gf7O-DccU7mzqt11n_gvfwABn
  priority: 102
  providerName: Scholars Portal
Title Efficiently Updating ECG-Based Biometric Authentication Based on Incremental Learning
URI https://www.ncbi.nlm.nih.gov/pubmed/33668148
https://www.proquest.com/docview/2494072208
https://www.proquest.com/docview/2498498496
https://pubmed.ncbi.nlm.nih.gov/PMC7956719
https://doaj.org/article/e18e2a51e36a4a80b2652d3b8cc3f2a0
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swED-29mV7GPueuy54Yw97EbX1ZflpLCVpGbSMsUDejCzJ6aA4WZM-9L_fney4ySgDI4wl20In6e53Ov0E8Dlvcod6x7NgecGk1g2zQdfMB6Vq21gtI2_BxaU-n8nvczXvHW7rPqxyOyfGidovHfnITxAmEJcXz8zX1R9Gp0bR6mp_hMZjOCTqMgrpKub3gEsg_urYhARC-5M1whtU38SquqODIlX_Q_blv2GSO3pn-hye9QZj-q2T8At4FNqX8HSHRvAVzCaRBwLfv75LZyvasNAu0snpGRujjvLpmLbYExN_Sg4xCg_q_HRpl403OEt0fkL8U8-4ungNs-nk1-k5649LYA4x7oYVFs0ZKwUvi1KXIg_aWMWd56W3aENLZ4Sz3hhlAkooa9DW4NpnujaNUd548QYO2mUb3kHaNMLqwmtVh1LWTpaOPuxKJ61GUboEvmwbsHI9lzgdaXFdIaagtq6Gtk7g01B01RFoPFRoTFIYChDndXywvFlU_RCqQm4CtyoPQltpTVZzrbgXtXFONNxmCRxvZVj1A3Fd3XebBD4O2TiEaF3EtmF5G8uYeOkE3nYiH2oihNYGIWMCxV5n2Kvqfk77-yrSdBcIPYu8PPp_td7DE05hMrRLXh7DwebmNnxAO2dTj2JnxtRMz0ZwOJ5c_vg5ij4DTC-k-QukegNN
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcoAeEM8SKBAQSFysJrbjOAeE2LJlSx-nrrS34NjOUqnKLt2tUP8Uv5GZvLqLKm6Vcohix3HsGc98fnwD8D4uY4t2xzFveMqkUiUzXhXM-SQpTGmUrHkLjk_UaCy_T5LJBvzpzsLQtspuTKwHajezNEe-izCBuLx4pD_PfzGKGkWrq10IjUYsDv3Vb4Rsi08HX7F_P3C-PzzdG7E2qgCzCAWXLDVo9Y0UPEszlYnYK20Sbh3PnEFXU1otrHFaJ9rjj0QlmmSuXKQKXerEaSew3DtwFw1vRBqVTq4BnkC817AXCZFFuwuEU-guEIvris2rQwPc5M_-uy1zxc7tP4QHrYMafmkk6hFs-OoxbK3QFj6B8bDmncD3z6_C8ZwOSFTTcLj3jQ3QJrpwQEf6ifk_pAk42o7UzAuGTTLe4KjUzEvil1qG1-lTGN9KQz6DzWpW-ecQlqUwKnUqKXwmCyszSwXbzEqjUHRsAB-7Bsxty11OITTOc8Qw1NZ539YBvOuzzhvCjpsyDagX-gzEsV0_mF1M81Zlcx9rz00Se6GMNDoquEq4E4W2VpTcRAHsdH2Yt4q_yK_FNIC3fTKqLK3DmMrPLus8ur5UANtNl_c1EUIpjRA1gHRNGNaqup5Snf2sacFThLppnL34f7XewL3R6fFRfnRwcvgS7nPaokMn9OUObC4vLv0r9LGWxetasEP4cdua9BcG5zpf
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiE4IN4ECgQEEpdoE7_iHBBi211aChUHVtpbcGxnW6nKLt2tUP8av46ZvLqLKm6VcohiJ3HsGc98zvgbgLdJmVi0Oy7yhqWRUKqMjFdF5LyUhSmNEjVvwbcjtT8RX6ZyugV_ur0wFFbZzYn1RO3mltbIBwgTiMuLxXpQtmER3_fGHxe_IsogRX9au3QajYgc-ovfCN-WHw72cKzfMTYe_djdj9oMA5FFWLiKUoMegBGcZWmmMp54pY1k1rHMGXQ7hdXcGqe11B4_Ki7RPDPlYlXoUkunHcfn3oCbKZcJ6Vg6vQR7HLFfw2TEeRYPlgit0HUgRtc1-1enCbjKt_03RHPN5o3vwd3WWQ0_NdJ1H7Z89QDurFEYPoTJqOagwPtPL8LJgjZLVLNwtPs5GqJ9dOGQtvdTFoCQFuMoNKlZIwybYjzBGapZo8Q3tWyvs0cwuZaOfAzb1bzyTyEsS25U6pQsfCYKKzJLD7aZFUahGNkA3ncdmNuWx5zSaZzmiGeor_O-rwN401ddNOQdV1Ua0ij0FYhvu74wP5vlrfrmPtGeGZl4rowwOi6YkszxQlvLS2biAHa6MczbSWCZX4psAK_7YlRf-idjKj8_r-vo-lABPGmGvG8J50pphKsBpBvCsNHUzZLq5LimCE8R9qZJ9uz_zXoFt1CH8q8HR4fP4TajaB3arC92YHt1du5foLu1Kl7Wch3Cz-tWpL-J0T6V
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficiently+Updating+ECG-Based+Biometric+Authentication+Based+on+Incremental+Learning&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.date=2021-02-24&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=21&rft.issue=5&rft.spage=1568&rft_id=info:doi/10.3390%2Fs21051568&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon