Efficiently Updating ECG-Based Biometric Authentication Based on Incremental Learning
Recently, the interest in biometric authentication based on electrocardiograms (ECGs) has increased. Nevertheless, the ECG signal of a person may vary according to factors such as the emotional or physical state, thus hindering authentication. We propose an adaptive ECG-based authentication method t...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 21; no. 5; p. 1568 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
24.02.2021
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Recently, the interest in biometric authentication based on electrocardiograms (ECGs) has increased. Nevertheless, the ECG signal of a person may vary according to factors such as the emotional or physical state, thus hindering authentication. We propose an adaptive ECG-based authentication method that performs incremental learning to identify ECG signals from a subject under a variety of measurement conditions. An incremental support vector machine (SVM) is adopted for authentication implementing incremental learning. We collected ECG signals from 11 subjects during 10 min over six days and used the data from days 1 to 5 for incremental learning, and those from day 6 for testing. The authentication results show that the proposed system consistently reduces the false acceptance rate from 6.49% to 4.39% and increases the true acceptance rate from 61.32% to 87.61% per single ECG wave after incremental learning using data from the five days. In addition, the authentication results tested using data obtained a day after the latest training show the false acceptance rate being within reliable range (3.5–5.33%) and improvement of the true acceptance rate (70.05–87.61%) over five days. |
---|---|
AbstractList | Recently, the interest in biometric authentication based on electrocardiograms (ECGs) has increased. Nevertheless, the ECG signal of a person may vary according to factors such as the emotional or physical state, thus hindering authentication. We propose an adaptive ECG-based authentication method that performs incremental learning to identify ECG signals from a subject under a variety of measurement conditions. An incremental support vector machine (SVM) is adopted for authentication implementing incremental learning. We collected ECG signals from 11 subjects during 10 min over six days and used the data from days 1 to 5 for incremental learning, and those from day 6 for testing. The authentication results show that the proposed system consistently reduces the false acceptance rate from 6.49% to 4.39% and increases the true acceptance rate from 61.32% to 87.61% per single ECG wave after incremental learning using data from the five days. In addition, the authentication results tested using data obtained a day after the latest training show the false acceptance rate being within reliable range (3.5–5.33%) and improvement of the true acceptance rate (70.05–87.61%) over five days. Recently, the interest in biometric authentication based on electrocardiograms (ECGs) has increased. Nevertheless, the ECG signal of a person may vary according to factors such as the emotional or physical state, thus hindering authentication. We propose an adaptive ECG-based authentication method that performs incremental learning to identify ECG signals from a subject under a variety of measurement conditions. An incremental support vector machine (SVM) is adopted for authentication implementing incremental learning. We collected ECG signals from 11 subjects during 10 min over six days and used the data from days 1 to 5 for incremental learning, and those from day 6 for testing. The authentication results show that the proposed system consistently reduces the false acceptance rate from 6.49% to 4.39% and increases the true acceptance rate from 61.32% to 87.61% per single ECG wave after incremental learning using data from the five days. In addition, the authentication results tested using data obtained a day after the latest training show the false acceptance rate being within reliable range (3.5-5.33%) and improvement of the true acceptance rate (70.05-87.61%) over five days.Recently, the interest in biometric authentication based on electrocardiograms (ECGs) has increased. Nevertheless, the ECG signal of a person may vary according to factors such as the emotional or physical state, thus hindering authentication. We propose an adaptive ECG-based authentication method that performs incremental learning to identify ECG signals from a subject under a variety of measurement conditions. An incremental support vector machine (SVM) is adopted for authentication implementing incremental learning. We collected ECG signals from 11 subjects during 10 min over six days and used the data from days 1 to 5 for incremental learning, and those from day 6 for testing. The authentication results show that the proposed system consistently reduces the false acceptance rate from 6.49% to 4.39% and increases the true acceptance rate from 61.32% to 87.61% per single ECG wave after incremental learning using data from the five days. In addition, the authentication results tested using data obtained a day after the latest training show the false acceptance rate being within reliable range (3.5-5.33%) and improvement of the true acceptance rate (70.05-87.61%) over five days. |
Author | Yang, Geunbo Lee, Seungmin Kim, Ko Keun Kim, Junmo Park, Cheolsoo Kim, Juhyeong |
AuthorAffiliation | 3 AI Lab, LG Electronics, Seoul 06763, Korea 1 Department of Computer Engineering, Kwangwoon University, Seoul 01897, Korea; wnsah1008@kw.ac.kr (J.K.); 2016722051@kw.ac.kr (G.Y.); kjoohyu@kw.ac.kr (J.K.) 2 School of Electrical Engineering, College of Creative Engineering, Kookmin University, Seoul 02707, Korea; smlee27@kookmin.ac.kr |
AuthorAffiliation_xml | – name: 3 AI Lab, LG Electronics, Seoul 06763, Korea – name: 2 School of Electrical Engineering, College of Creative Engineering, Kookmin University, Seoul 02707, Korea; smlee27@kookmin.ac.kr – name: 1 Department of Computer Engineering, Kwangwoon University, Seoul 01897, Korea; wnsah1008@kw.ac.kr (J.K.); 2016722051@kw.ac.kr (G.Y.); kjoohyu@kw.ac.kr (J.K.) |
Author_xml | – sequence: 1 givenname: Junmo orcidid: 0000-0002-2238-3255 surname: Kim fullname: Kim, Junmo – sequence: 2 givenname: Geunbo orcidid: 0000-0003-0726-1628 surname: Yang fullname: Yang, Geunbo – sequence: 3 givenname: Juhyeong surname: Kim fullname: Kim, Juhyeong – sequence: 4 givenname: Seungmin surname: Lee fullname: Lee, Seungmin – sequence: 5 givenname: Ko Keun orcidid: 0000-0001-7511-4326 surname: Kim fullname: Kim, Ko Keun – sequence: 6 givenname: Cheolsoo orcidid: 0000-0001-8042-007X surname: Park fullname: Park, Cheolsoo |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33668148$$D View this record in MEDLINE/PubMed |
BookMark | eNptkktrGzEQgEVJaR7toX-gLPTSHLbRe7WXQmLc1GDopT6LsaR1ZHYlV9oN5N9XsROThIJAQvPpY0Yz5-gkxOAQ-kzwd8ZafJUpwYIIqd6hM8IprxWl-OTF-RSd57zFmDLG1Ad0ypiUinB1hlbzrvPGuzD2D9VqZ2H0YVPNZ7f1DWRnqxsfBzcmb6rrabwrmDcFiaE6hMthEUxyQ4lAXy0dpFAEH9H7DvrsPj3tF2j1c_5n9qte_r5dzK6XteGyHesGqMDAGW2bVraMOKlAUGNpa6FpKDeKGbBKCeVIR3AnJaPSYrlWnRJWWXaBFgevjbDVu-QHSA86gtf7i5g2GlJJuXfaEeUoCOKYBA4Kr6kU1LK1MoZ1FHBx_Ti4dtN6cNaUihL0r6SvI8Hf6U28100rZEPaIvj2JEjx7-TyqAefjet7CC5OWVPeqv2SBf36Bt3GKYXyVY8Ux03pmSrUl5cZHVN57l4BLg-ASTHn5LojQrB-nAx9nIzCXr1hjR_3rSzF-P4_L_4BE2C4iQ |
CitedBy_id | crossref_primary_10_3390_s22114201 crossref_primary_10_1016_j_icte_2023_04_003 crossref_primary_10_3390_s21216966 crossref_primary_10_3390_s22020689 crossref_primary_10_1007_s11042_023_16506_3 crossref_primary_10_1016_j_bbe_2022_08_004 crossref_primary_10_3390_s23031230 crossref_primary_10_1016_j_jik_2023_100313 crossref_primary_10_1155_2022_7997509 |
Cites_doi | 10.3390/s17102228 10.1109/IJCNN.2000.861459 10.5194/isprsarchives-XL-2-W3-281-2014 10.1109/19.930458 10.1109/TSMC.2018.2791511 10.1023/A:1022699900025 10.1109/ICCE46568.2020.9043116 10.1109/ACCESS.2018.2889996 10.1613/jair.953 10.1109/TIM.2007.909996 10.1109/ICPR.2016.7900101 10.1016/S0167-4048(02)00304-8 10.1007/s13534-020-00146-9 10.1109/ACCESS.2016.2548519 10.1109/TBME.2016.2607020 10.1109/TIFS.2017.2784362 10.1007/s13534-019-00141-9 10.1109/MSECP.2003.1193209 10.1002/tee.21970 10.5573/IEIESPC.2019.8.1.001 10.1109/34.683777 10.1016/j.cose.2018.11.003 10.1145/2381934.2381947 10.1016/j.future.2019.06.008 10.1109/TBME.1985.325532 10.1109/I2MTC43012.2020.9128394 10.1109/TIFS.2012.2215324 10.1161/01.CIR.101.23.e215 10.1109/ACCESS.2019.2939947 10.1109/10.918594 10.1016/j.patrec.2019.11.005 10.1161/01.CIR.0000145144.56673.59 10.1109/TIP.2010.2048612 10.1016/j.cmpb.2013.11.017 10.1109/MUE.2008.67 10.1016/j.measurement.2018.05.033 10.1007/BF03253248 10.5220/0005160507650772 10.3390/s17020410 10.1109/72.788645 10.1109/5326.983933 10.1109/ACCESS.2018.2886573 10.1016/j.jelectrocard.2017.08.021 10.1016/j.patcog.2004.05.014 10.1109/ICDSP.2009.5201143 10.1109/TIM.2015.2503863 10.1007/978-3-540-89991-4_19 10.1109/CISTI.2014.6877089 10.1109/ACCT.2015.87 10.1109/BMEiCON.2017.8229170 10.1016/j.patrec.2018.03.028 10.1109/IWCMC.2017.7986553 10.1109/ACCESS.2018.2820684 10.1023/A:1025667309714 10.1109/2.820041 |
ContentType | Journal Article |
Copyright | 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 by the authors. 2021 |
Copyright_xml | – notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 by the authors. 2021 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/s21051568 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central ProQuest One ProQuest Central Korea Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic (New) ProQuest - Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_e18e2a51e36a4a80b2652d3b8cc3f2a0 PMC7956719 33668148 10_3390_s21051568 |
Genre | Journal Article |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. ABJCF ARAPS CGR CUY CVF ECM EIF HCIFZ KB. M7S NPM PDBOC 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c469t-7a250a4329796931e68a52cd29da7724c83cad8858e1f10f66326d06b8f85d8d3 |
IEDL.DBID | 7X7 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:18:11 EDT 2025 Thu Aug 21 18:16:11 EDT 2025 Tue Aug 05 09:44:27 EDT 2025 Fri Jul 25 19:59:54 EDT 2025 Wed Feb 19 02:29:40 EST 2025 Thu Apr 24 22:56:08 EDT 2025 Tue Jul 01 03:56:06 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | ECG biometrics incremental SVM SVM incremental learning authentication |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c469t-7a250a4329796931e68a52cd29da7724c83cad8858e1f10f66326d06b8f85d8d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 These authors contributed equally to this work. |
ORCID | 0000-0001-8042-007X 0000-0003-0726-1628 0000-0002-2238-3255 0000-0001-7511-4326 |
OpenAccessLink | https://www.proquest.com/docview/2494072208?pq-origsite=%requestingapplication% |
PMID | 33668148 |
PQID | 2494072208 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e18e2a51e36a4a80b2652d3b8cc3f2a0 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7956719 proquest_miscellaneous_2498498496 proquest_journals_2494072208 pubmed_primary_33668148 crossref_primary_10_3390_s21051568 crossref_citationtrail_10_3390_s21051568 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210224 |
PublicationDateYYYYMMDD | 2021-02-24 |
PublicationDate_xml | – month: 2 year: 2021 text: 20210224 day: 24 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2021 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | ref_50 Pontil (ref_58) 1998; 20 Drucker (ref_57) 1999; 10 Labati (ref_36) 2018; 126 Hammad (ref_17) 2018; 12 Choi (ref_37) 2016; 4 ref_13 Duc (ref_9) 2009; 4 ref_11 Luz (ref_51) 2018; 13 ref_55 Lynn (ref_52) 2019; 7 Chan (ref_34) 2008; 57 ref_16 Clarke (ref_53) 2002; 21 Drew (ref_66) 2004; 110 (ref_20) 2016; 65 Huang (ref_26) 2020; 10 Gepperth (ref_22) 2016; 1 Bousseljot (ref_31) 1995; 1 ref_60 Abdiansah (ref_75) 2015; 128 Pan (ref_65) 1985; 32 Fred (ref_32) 2014; 113 Dong (ref_61) 2005; 27 Hammad (ref_56) 2018; 7 Goldberger (ref_33) 2000; 101 ref_21 ref_64 ref_62 Krasteva (ref_45) 2017; 50 Hammad (ref_43) 2019; 101 Prabhakar (ref_4) 2003; 1 Li (ref_10) 2014; 14 ref_27 Chawla (ref_69) 2011; 16 Jang (ref_6) 2019; 8 Diehl (ref_29) 2003; 4 Hammad (ref_46) 2016; 13 ref_71 Odinaka (ref_19) 2012; 7 ref_70 Falcari (ref_25) 2020; 10 Kononenko (ref_72) 2003; 53 Xu (ref_23) 2019; 49 Frischholz (ref_1) 2000; 33 Rui (ref_73) 2019; 7 Utgoff (ref_24) 1989; 4 Cauwenberghs (ref_63) 2001; 13 Singh (ref_68) 2012; 3 ref_30 ref_74 Rezgui (ref_35) 2016; 11 ref_38 Karimian (ref_47) 2017; 64 Biel (ref_15) 2001; 50 Zhang (ref_8) 2012; 12 Hammad (ref_39) 2020; 10 Artan (ref_59) 2010; 19 Israel (ref_12) 2005; 38 ref_42 ref_41 Polikar (ref_28) 2001; 31 ref_40 Hammad (ref_54) 2019; 81 Hammad (ref_67) 2018; 125 ref_3 ref_2 Ross (ref_5) 2007; 62 Liu (ref_44) 2018; 6 Pathoumvanh (ref_49) 2014; 9 Hoekema (ref_14) 2001; 48 ref_48 Li (ref_18) 2020; 129 ref_7 |
References_xml | – ident: ref_42 doi: 10.3390/s17102228 – ident: ref_60 doi: 10.1109/IJCNN.2000.861459 – volume: 3 start-page: 39 year: 2012 ident: ref_68 article-title: Evaluation of Electrocardiogram for Biometric Authentication publication-title: J. Inf. Secur. – ident: ref_70 doi: 10.5194/isprsarchives-XL-2-W3-281-2014 – volume: 50 start-page: 808 year: 2001 ident: ref_15 article-title: ECG analysis: A new approach in human identification publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/19.930458 – volume: 49 start-page: 2230 year: 2019 ident: ref_23 article-title: New Incremental Learning Algorithm with Support Vector Machines publication-title: IEEE Trans. Syst. Man Cybern. Syst. doi: 10.1109/TSMC.2018.2791511 – volume: 4 start-page: 161 year: 1989 ident: ref_24 article-title: Incremental induction of decision trees publication-title: Mach. Learn. doi: 10.1023/A:1022699900025 – ident: ref_2 doi: 10.1109/ICCE46568.2020.9043116 – volume: 7 start-page: 5994 year: 2019 ident: ref_73 article-title: A Survey on Biometric Authentication: Toward Secure and Privacy-Preserving Identification publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2889996 – volume: 4 start-page: 158 year: 2009 ident: ref_9 article-title: Your face is not your password publication-title: Black Hat. – volume: 1 start-page: S317 year: 1995 ident: ref_31 article-title: Nutzung der EKG- Signaldatenbank CARDIODAT der PTB über das Internet publication-title: Biomed. Tech. – volume: 16 start-page: 321 year: 2011 ident: ref_69 article-title: SMOTE: Synthetic minority over-sampling technique publication-title: J. Artif. Intell. Res. doi: 10.1613/jair.953 – volume: 57 start-page: 248 year: 2008 ident: ref_34 article-title: Wavelet Distance Measure for Person Identification Using Electrocardiograms publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2007.909996 – ident: ref_74 doi: 10.1109/ICPR.2016.7900101 – volume: 11 start-page: S94 year: 2016 ident: ref_35 article-title: ECG biometric recognition using SVM-based approach publication-title: IEE J. Trans. Electric. Electron. Eng. – volume: 21 start-page: 220 year: 2002 ident: ref_53 article-title: Acceptance of subscriber authentication methods for mobile telephony devices publication-title: Comput. Secur. doi: 10.1016/S0167-4048(02)00304-8 – volume: 10 start-page: 183 year: 2020 ident: ref_26 article-title: Classification of atrial fibrillation and normal sinus rhythm based on convolutional neural network publication-title: Biomed. Eng. Lett. doi: 10.1007/s13534-020-00146-9 – volume: 4 start-page: 1266 year: 2016 ident: ref_37 article-title: Biometric authentication using noisy electrocardiograms acquired by mobile sensors publication-title: IEEE Access doi: 10.1109/ACCESS.2016.2548519 – ident: ref_71 – volume: 1 start-page: 1 year: 2016 ident: ref_22 article-title: Incremental learning algorithms and applications publication-title: Eur. Symp. Artif. Neural Netw. – volume: 14 start-page: 413 year: 2014 ident: ref_10 article-title: Understanding OSN based facial disclosure against face authentication systems publication-title: Proc. AS ACCS – volume: 64 start-page: 1400 year: 2017 ident: ref_47 article-title: Highly Reliable Key Generation from Electrocardiogram (ECG) publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2016.2607020 – volume: 13 start-page: 409 year: 2001 ident: ref_63 article-title: Incremental and decremental support vector machine learning publication-title: Adv. Neural Inf. Process. Syst. – volume: 13 start-page: 1258 year: 2018 ident: ref_51 article-title: Learning deep off-the-person heart biometrics representations publication-title: IEEE Trans. Inf. Forensics Secur. doi: 10.1109/TIFS.2017.2784362 – volume: 10 start-page: 275 year: 2020 ident: ref_25 article-title: Evaluation of multi-class support-vector machines strategies and kernel adjustment levels in hand posture recognition by analyzing sEMG signals acquired from a wearable device publication-title: Biomed. Eng. Lett. doi: 10.1007/s13534-019-00141-9 – volume: 1 start-page: 33 year: 2003 ident: ref_4 article-title: Biometric recognition:Security and privacy concerns publication-title: IEEE Secur. Priv. Mag. Mar. doi: 10.1109/MSECP.2003.1193209 – volume: 9 start-page: 294 year: 2014 ident: ref_49 article-title: Robustness study of ECG biometric identification in heart rate variability conditions publication-title: IEEJ Trans. Electr. Electron. Eng. doi: 10.1002/tee.21970 – ident: ref_7 doi: 10.5573/IEIESPC.2019.8.1.001 – ident: ref_27 – volume: 20 start-page: 637 year: 1998 ident: ref_58 article-title: Support vector machines for 3d object recognition publication-title: IEEE Trans Pattern Anal. Mach. Intell. doi: 10.1109/34.683777 – volume: 81 start-page: 107 year: 2019 ident: ref_54 article-title: Parallel score fusion of ECG and fingerprint for human authentication based on convolution neural network publication-title: Comput. Secur. doi: 10.1016/j.cose.2018.11.003 – volume: 12 start-page: 57 year: 2012 ident: ref_8 article-title: Fingerprint attack against touch enabled devices publication-title: Proc. SPSM doi: 10.1145/2381934.2381947 – ident: ref_41 – volume: 101 start-page: 180 year: 2019 ident: ref_43 article-title: A novel two-dimensional ECG feature extraction and classi_cation algorithm based on convolution neural network for human authentication publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2019.06.008 – volume: 32 start-page: 230 year: 1985 ident: ref_65 article-title: A real-time QRS detection algorithm publication-title: IEEE Trans. Biomed. Eng. Mar. doi: 10.1109/TBME.1985.325532 – ident: ref_62 – ident: ref_55 doi: 10.1109/I2MTC43012.2020.9128394 – volume: 7 start-page: 1812 year: 2012 ident: ref_19 article-title: ECG Biometric Recognition: A Comparative Analysis publication-title: IEEE Trans. Inf. Forensics Secur. doi: 10.1109/TIFS.2012.2215324 – ident: ref_30 – volume: 12 start-page: 1 year: 2018 ident: ref_17 article-title: Cancelable biometric authentication system based on ECG publication-title: Multimed. Tools Appl. – volume: 101 start-page: e215 year: 2000 ident: ref_33 article-title: Physiobank physiotoolkit and physionet: Components of a new research resource for complex physiologic signals publication-title: Circulation doi: 10.1161/01.CIR.101.23.e215 – volume: 7 start-page: 145395 year: 2019 ident: ref_52 article-title: A Deep Bidirectional GRU Network Model for Biometric Electrocardiogram Classification Based on Recurrent Neural Networks publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2939947 – ident: ref_3 – volume: 48 start-page: 551 year: 2001 ident: ref_14 article-title: Geometrical aspects of the interindividual variability of multilead ECG recordings publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/10.918594 – volume: 129 start-page: 70 year: 2020 ident: ref_18 article-title: Robust ECG biometrics using GNMF and sparse representation publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2019.11.005 – volume: 4 start-page: 2685 year: 2003 ident: ref_29 article-title: SVM incremental learning, adaptation and optimization publication-title: Proc. Int. Jt. Conf. Neural Netw. – volume: 110 start-page: 2721 year: 2004 ident: ref_66 article-title: Practice standards for electrocardiographic monitoring in hospital settings: An American Heart Association scientific statement from the councils on cardiovascular nursing, clinical cardiology, and cardiovascular disease in the young: Endorsed by the international society of computerized electrocardiology and the American Association of Critical-Care Nurses publication-title: Circulation doi: 10.1161/01.CIR.0000145144.56673.59 – volume: 19 start-page: 2444 year: 2010 ident: ref_59 article-title: Prostate Cancer Localization With Multispectral MRI Using Cost-Sensitive Support Vector Machines and Conditional Random Fields publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2010.2048612 – volume: 113 start-page: 503 year: 2014 ident: ref_32 article-title: Check your biosignals here: A new dataset for off-the-person ECG biometrics publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2013.11.017 – ident: ref_40 doi: 10.1109/MUE.2008.67 – volume: 125 start-page: 634 year: 2018 ident: ref_67 article-title: Detection of abnormal heart conditions based on characteristics of ECG signals publication-title: Measurement doi: 10.1016/j.measurement.2018.05.033 – volume: 62 start-page: 11 year: 2007 ident: ref_5 article-title: Human recognition using biometrics: An overview publication-title: Ann. Télécommun. Jan. doi: 10.1007/BF03253248 – ident: ref_16 doi: 10.5220/0005160507650772 – ident: ref_48 doi: 10.3390/s17020410 – volume: 10 start-page: 1048 year: 1999 ident: ref_57 article-title: Support vector machines for spam categorization publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.788645 – volume: 31 start-page: 497 year: 2001 ident: ref_28 article-title: Learn++: An incremental learning algorithm for supervised neural networks publication-title: IEEE Trans. Syst. Man Cybern. C. doi: 10.1109/5326.983933 – volume: 7 start-page: 26527 year: 2018 ident: ref_56 article-title: Multimodal biometric authentication systems using convolution neural network based on different level fusion of ECG and fingerprint publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2886573 – volume: 50 start-page: 847 year: 2017 ident: ref_45 article-title: Biometric verification by cross-correlation analysis of 12-lead ECG patterns: Ranking of the most reliable peripheral and chest leads publication-title: J. Electrocardiol. doi: 10.1016/j.jelectrocard.2017.08.021 – volume: 27 start-page: 1088 year: 2005 ident: ref_61 article-title: Fast SVM Training Algorithm with Decomposition on Very Large Data Sets publication-title: IEEE Trans. Pattern Anal. – volume: 38 start-page: 133 year: 2005 ident: ref_12 article-title: ECG to identify individuals publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2004.05.014 – ident: ref_13 doi: 10.1109/ICDSP.2009.5201143 – volume: 128 start-page: 28 year: 2015 ident: ref_75 article-title: Time complexity analysis of support vector machines (SVM) in LibSVM publication-title: Int. J. Comput. Appl. – volume: 65 start-page: 591 year: 2016 ident: ref_20 article-title: ECG authentication for mobile devices publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2015.2503863 – volume: 10 start-page: e12547 year: 2020 ident: ref_39 article-title: ResNet-Attention model for human authentication using ECG signals publication-title: Expert Syst. – ident: ref_11 doi: 10.1007/978-3-540-89991-4_19 – ident: ref_38 doi: 10.1109/CISTI.2014.6877089 – volume: 8 start-page: 161 year: 2019 ident: ref_6 article-title: An Ultrasonic Scanner to Probe 3-D Finger Skin Structures for Biometric Recognition publication-title: IEIE Trans. – ident: ref_64 doi: 10.1109/ACCT.2015.87 – ident: ref_21 doi: 10.1109/BMEiCON.2017.8229170 – volume: 126 start-page: 78 year: 2018 ident: ref_36 article-title: Deep-ECG: Convolutional neural networks for ECG biometric recognition publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2018.03.028 – ident: ref_50 doi: 10.1109/IWCMC.2017.7986553 – volume: 13 start-page: 959 year: 2016 ident: ref_46 article-title: A novel biometric based on ECG signals and images for human authentication publication-title: Int. Arab J. Inf. Technol. – volume: 6 start-page: 18251 year: 2018 ident: ref_44 article-title: Amultiscale autoregressive model-based electrocardiogram identication method publication-title: IEEE Access. doi: 10.1109/ACCESS.2018.2820684 – volume: 53 start-page: 23 year: 2003 ident: ref_72 article-title: Theoretical and empirical analysis of relieff and rrelieff publication-title: Mach. Learn. doi: 10.1023/A:1025667309714 – volume: 33 start-page: 64 year: 2000 ident: ref_1 article-title: BiolD: A multimodal biometric identification system publication-title: Computer doi: 10.1109/2.820041 |
SSID | ssj0023338 |
Score | 2.3994749 |
Snippet | Recently, the interest in biometric authentication based on electrocardiograms (ECGs) has increased. Nevertheless, the ECG signal of a person may vary... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1568 |
SubjectTerms | authentication Biometric Identification Biometrics Distance learning ECG Electrocardiography Humans incremental learning incremental SVM Lagrange multiplier Machine learning Neural networks Signal processing Support Vector Machine Support vector machines SVM Wavelet transforms |
SummonAdditionalLinks | – databaseName: DOAJ dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA-ykx7Eb6tTqnjwUrbm4zU9Otkcgp4ceCtpkqogneh28L_3JenKJgMvQg-leW3S91763i9NfiHkKq1SjXHHJFbRLOEAVaIslImxQpSqUsA9b8HDI4wn_P5ZPC9t9eXmhAV64KC4nk2lpUqkloHiSvZLCoIaVkqtWUWVR-sY8xZgqoFaDJFX4BFiCOp7XwhsMHA7PtWl6ONJ-tdllr8nSC5FnNEO2W5SxfgmNHGXbNh6j2wtEQjuk8nQM0Dg_e_f8eTDLVWoX-Lh7V0ywOhk4oFbXO84-GM3FOYmBoURujgU4wl-H8IIIdbUcK2-HJDJaPh0O06ajRISjeh2lmQKExnFGc2zHHKWWpBKUG1obhRmz1xLppWRUkiLtulXmGVQMH0oZSWFkYYdkk49re0xiauKKcgMiNLmvNQ81-7BOtdcARpRR-R6ocBCNyzibjOL9wLRhNN10eo6Ipet6EegzlgnNHBWaAUc27W_gD5QND5Q_OUDEekubFg0XfCrQFzpyN9oH-u4aIux87g_Iqq207mXkf6AiBwFk7ctYQxAIliMSLbiDCtNXS2p3149QXeGoDNL85P_eLdTskndNBq3ip53SWf2ObdnmAfNynPv8j8cCgfP priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB6VcoEDankGWhQQBy6BxI-Jc6gQW22pkMqJSL1Fju1skVbZst1K9N8zk2SjBq2QcojiSWzN2Jn5_PgG4EPWZI78jk-CFXmiEJvEBqwTH7SubWNRdbwFFz_wvFTfL_XlHmxzbA4KvNkJ7TifVLlefvrz--4LDfgTRpwE2T_fEGwht4zmATwkh5Tz-LxQ42KCkATDelKhqfjEFXWM_bvCzH93S95zP2cH8GSIG-OvvaEPYS-0T-HxPTbBZ1DOOzoIen95F5fXfG6hXcTz02_JjFyVj2d80p4J-WOeF-NdQv10XdwX0w39LPrpQqppIF5dPIfybP7z9DwZsiYkjqDuJsktRTVWSVHkBRYyC2isFs6LwlsKpZUz0llvjDaBDJU2FHII9CnWpjHaGy9fwH67asMriJtGWsw96joUqnaqcPxhVzhlkSzqIvi4VWDlBkpxzmyxrAhasK6rUdcRvB9Fr3sejV1CM7bCKMDU192D1XpRDSOpCpkJwuosSLTKmrQWqIWXtXFONsKmERxtbVhtu1NFIJOZ4ERKdbwbi2kk8fKIbcPqtpMx3YURvOxNPrZESkRDyDGCfNIZJk2dlrS_rjq27pwQaJ4Vr__frDfwSPBuGT4sr45gf7O-DccU7mzqt11n_gvfwABn priority: 102 providerName: Scholars Portal |
Title | Efficiently Updating ECG-Based Biometric Authentication Based on Incremental Learning |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33668148 https://www.proquest.com/docview/2494072208 https://www.proquest.com/docview/2498498496 https://pubmed.ncbi.nlm.nih.gov/PMC7956719 https://doaj.org/article/e18e2a51e36a4a80b2652d3b8cc3f2a0 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swED-29mV7GPueuy54Yw97EbX1ZflpLCVpGbSMsUDejCzJ6aA4WZM-9L_fney4ySgDI4wl20In6e53Ov0E8Dlvcod6x7NgecGk1g2zQdfMB6Vq21gtI2_BxaU-n8nvczXvHW7rPqxyOyfGidovHfnITxAmEJcXz8zX1R9Gp0bR6mp_hMZjOCTqMgrpKub3gEsg_urYhARC-5M1whtU38SquqODIlX_Q_blv2GSO3pn-hye9QZj-q2T8At4FNqX8HSHRvAVzCaRBwLfv75LZyvasNAu0snpGRujjvLpmLbYExN_Sg4xCg_q_HRpl403OEt0fkL8U8-4ungNs-nk1-k5649LYA4x7oYVFs0ZKwUvi1KXIg_aWMWd56W3aENLZ4Sz3hhlAkooa9DW4NpnujaNUd548QYO2mUb3kHaNMLqwmtVh1LWTpaOPuxKJ61GUboEvmwbsHI9lzgdaXFdIaagtq6Gtk7g01B01RFoPFRoTFIYChDndXywvFlU_RCqQm4CtyoPQltpTVZzrbgXtXFONNxmCRxvZVj1A3Fd3XebBD4O2TiEaF3EtmF5G8uYeOkE3nYiH2oihNYGIWMCxV5n2Kvqfk77-yrSdBcIPYu8PPp_td7DE05hMrRLXh7DwebmNnxAO2dTj2JnxtRMz0ZwOJ5c_vg5ij4DTC-k-QukegNN |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcoAeEM8SKBAQSFysJrbjOAeE2LJlSx-nrrS34NjOUqnKLt2tUP8Uv5GZvLqLKm6Vcohix3HsGc98fnwD8D4uY4t2xzFveMqkUiUzXhXM-SQpTGmUrHkLjk_UaCy_T5LJBvzpzsLQtspuTKwHajezNEe-izCBuLx4pD_PfzGKGkWrq10IjUYsDv3Vb4Rsi08HX7F_P3C-PzzdG7E2qgCzCAWXLDVo9Y0UPEszlYnYK20Sbh3PnEFXU1otrHFaJ9rjj0QlmmSuXKQKXerEaSew3DtwFw1vRBqVTq4BnkC817AXCZFFuwuEU-guEIvris2rQwPc5M_-uy1zxc7tP4QHrYMafmkk6hFs-OoxbK3QFj6B8bDmncD3z6_C8ZwOSFTTcLj3jQ3QJrpwQEf6ifk_pAk42o7UzAuGTTLe4KjUzEvil1qG1-lTGN9KQz6DzWpW-ecQlqUwKnUqKXwmCyszSwXbzEqjUHRsAB-7Bsxty11OITTOc8Qw1NZ539YBvOuzzhvCjpsyDagX-gzEsV0_mF1M81Zlcx9rz00Se6GMNDoquEq4E4W2VpTcRAHsdH2Yt4q_yK_FNIC3fTKqLK3DmMrPLus8ur5UANtNl_c1EUIpjRA1gHRNGNaqup5Snf2sacFThLppnL34f7XewL3R6fFRfnRwcvgS7nPaokMn9OUObC4vLv0r9LGWxetasEP4cdua9BcG5zpf |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiE4IN4ECgQEEpdoE7_iHBBi211aChUHVtpbcGxnW6nKLt2tUP8av46ZvLqLKm6VcohiJ3HsGc98zvgbgLdJmVi0Oy7yhqWRUKqMjFdF5LyUhSmNEjVvwbcjtT8RX6ZyugV_ur0wFFbZzYn1RO3mltbIBwgTiMuLxXpQtmER3_fGHxe_IsogRX9au3QajYgc-ovfCN-WHw72cKzfMTYe_djdj9oMA5FFWLiKUoMegBGcZWmmMp54pY1k1rHMGXQ7hdXcGqe11B4_Ki7RPDPlYlXoUkunHcfn3oCbKZcJ6Vg6vQR7HLFfw2TEeRYPlgit0HUgRtc1-1enCbjKt_03RHPN5o3vwd3WWQ0_NdJ1H7Z89QDurFEYPoTJqOagwPtPL8LJgjZLVLNwtPs5GqJ9dOGQtvdTFoCQFuMoNKlZIwybYjzBGapZo8Q3tWyvs0cwuZaOfAzb1bzyTyEsS25U6pQsfCYKKzJLD7aZFUahGNkA3ncdmNuWx5zSaZzmiGeor_O-rwN401ddNOQdV1Ua0ij0FYhvu74wP5vlrfrmPtGeGZl4rowwOi6YkszxQlvLS2biAHa6MczbSWCZX4psAK_7YlRf-idjKj8_r-vo-lABPGmGvG8J50pphKsBpBvCsNHUzZLq5LimCE8R9qZJ9uz_zXoFt1CH8q8HR4fP4TajaB3arC92YHt1du5foLu1Kl7Wch3Cz-tWpL-J0T6V |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficiently+Updating+ECG-Based+Biometric+Authentication+Based+on+Incremental+Learning&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.date=2021-02-24&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=21&rft.issue=5&rft.spage=1568&rft_id=info:doi/10.3390%2Fs21051568&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |