TBF-YOLOv8n: A Lightweight Tea Bud Detection Model Based on YOLOv8n Improvements
Tea bud localization detection not only ensures tea quality, improves picking efficiency, and advances intelligent harvesting, but also fosters tea industry upgrades and enhances economic benefits. To solve the problem of the high computational complexity of deep learning detection models, we develo...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 25; no. 2; p. 547 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
01.01.2025
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Tea bud localization detection not only ensures tea quality, improves picking efficiency, and advances intelligent harvesting, but also fosters tea industry upgrades and enhances economic benefits. To solve the problem of the high computational complexity of deep learning detection models, we developed the Tea Bud DSCF-YOLOv8n (TBF-YOLOv8n)lightweight detection model. Improvement of the Cross Stage Partial Bottleneck Module with Two Convolutions(C2f) module via efficient Distributed Shift Convolution (DSConv) yields the C2f module with DSConv(DSCf)module, which reduces the model’s size. Additionally, the coordinate attention (CA) mechanism is incorporated to mitigate interference from irrelevant factors, thereby improving mean accuracy. Furthermore, the SIOU_Loss (SCYLLA-IOU_Loss) function and the Dynamic Sample(DySample)up-sampling operator are implemented to accelerate convergence and enhance both average precision and detection accuracy. The experimental results show that compared to the YOLOv8n model, the TBF-YOLOv8n model has a 3.7% increase in accuracy, a 1.1% increase in average accuracy, a 44.4% reduction in gigabit floating point operations (GFLOPs), and a 13.4% reduction in the total number of parameters included in the model. In comparison experiments with a variety of lightweight detection models, the TBF-YOLOv8n still performs well in terms of detection accuracy while remaining more lightweight. In conclusion, the TBF-YOLOv8n model achieves a commendable balance between efficiency and precision, offering valuable insights for advancing intelligent tea bud harvesting technologies. |
---|---|
AbstractList | Tea bud localization detection not only ensures tea quality, improves picking efficiency, and advances intelligent harvesting, but also fosters tea industry upgrades and enhances economic benefits. To solve the problem of the high computational complexity of deep learning detection models, we developed the Tea Bud DSCF-YOLOv8n (TBF-YOLOv8n)lightweight detection model. Improvement of the Cross Stage Partial Bottleneck Module with Two Convolutions(C2f) module via efficient Distributed Shift Convolution (DSConv) yields the C2f module with DSConv(DSCf)module, which reduces the model’s size. Additionally, the coordinate attention (CA) mechanism is incorporated to mitigate interference from irrelevant factors, thereby improving mean accuracy. Furthermore, the SIOU_Loss (SCYLLA-IOU_Loss) function and the Dynamic Sample(DySample)up-sampling operator are implemented to accelerate convergence and enhance both average precision and detection accuracy. The experimental results show that compared to the YOLOv8n model, the TBF-YOLOv8n model has a 3.7% increase in accuracy, a 1.1% increase in average accuracy, a 44.4% reduction in gigabit floating point operations (GFLOPs), and a 13.4% reduction in the total number of parameters included in the model. In comparison experiments with a variety of lightweight detection models, the TBF-YOLOv8n still performs well in terms of detection accuracy while remaining more lightweight. In conclusion, the TBF-YOLOv8n model achieves a commendable balance between efficiency and precision, offering valuable insights for advancing intelligent tea bud harvesting technologies. Tea bud localization detection not only ensures tea quality, improves picking efficiency, and advances intelligent harvesting, but also fosters tea industry upgrades and enhances economic benefits. To solve the problem of the high computational complexity of deep learning detection models, we developed the Tea Bud DSCF-YOLOv8n (TBF-YOLOv8n)lightweight detection model. Improvement of the Cross Stage Partial Bottleneck Module with Two Convolutions(C2f) module via efficient Distributed Shift Convolution (DSConv) yields the C2f module with DSConv(DSCf)module, which reduces the model's size. Additionally, the coordinate attention (CA) mechanism is incorporated to mitigate interference from irrelevant factors, thereby improving mean accuracy. Furthermore, the SIOU_Loss (SCYLLA-IOU_Loss) function and the Dynamic Sample(DySample)up-sampling operator are implemented to accelerate convergence and enhance both average precision and detection accuracy. The experimental results show that compared to the YOLOv8n model, the TBF-YOLOv8n model has a 3.7% increase in accuracy, a 1.1% increase in average accuracy, a 44.4% reduction in gigabit floating point operations (GFLOPs), and a 13.4% reduction in the total number of parameters included in the model. In comparison experiments with a variety of lightweight detection models, the TBF-YOLOv8n still performs well in terms of detection accuracy while remaining more lightweight. In conclusion, the TBF-YOLOv8n model achieves a commendable balance between efficiency and precision, offering valuable insights for advancing intelligent tea bud harvesting technologies.Tea bud localization detection not only ensures tea quality, improves picking efficiency, and advances intelligent harvesting, but also fosters tea industry upgrades and enhances economic benefits. To solve the problem of the high computational complexity of deep learning detection models, we developed the Tea Bud DSCF-YOLOv8n (TBF-YOLOv8n)lightweight detection model. Improvement of the Cross Stage Partial Bottleneck Module with Two Convolutions(C2f) module via efficient Distributed Shift Convolution (DSConv) yields the C2f module with DSConv(DSCf)module, which reduces the model's size. Additionally, the coordinate attention (CA) mechanism is incorporated to mitigate interference from irrelevant factors, thereby improving mean accuracy. Furthermore, the SIOU_Loss (SCYLLA-IOU_Loss) function and the Dynamic Sample(DySample)up-sampling operator are implemented to accelerate convergence and enhance both average precision and detection accuracy. The experimental results show that compared to the YOLOv8n model, the TBF-YOLOv8n model has a 3.7% increase in accuracy, a 1.1% increase in average accuracy, a 44.4% reduction in gigabit floating point operations (GFLOPs), and a 13.4% reduction in the total number of parameters included in the model. In comparison experiments with a variety of lightweight detection models, the TBF-YOLOv8n still performs well in terms of detection accuracy while remaining more lightweight. In conclusion, the TBF-YOLOv8n model achieves a commendable balance between efficiency and precision, offering valuable insights for advancing intelligent tea bud harvesting technologies. |
Audience | Academic |
Author | Fang, Wenhui Chen, Weizhen |
AuthorAffiliation | School of Electrical and Electronic Engineering, Wuhan Polytechnic University, Wuhan 430048, China; f1602085219@163.com |
AuthorAffiliation_xml | – name: School of Electrical and Electronic Engineering, Wuhan Polytechnic University, Wuhan 430048, China; f1602085219@163.com |
Author_xml | – sequence: 1 givenname: Wenhui surname: Fang fullname: Fang, Wenhui – sequence: 2 givenname: Weizhen orcidid: 0000-0002-5407-6583 surname: Chen fullname: Chen, Weizhen |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39860916$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkktvEzEQxy1URB9w4AuglbjAYYtfa6-5oKSlECkoHHLhZHm949TR7jrYmyC-fZ0mRC2y5Mf4N3_PeOYSnQ1hAITeEnzNmMKfEq0wxRWXL9AF4ZSXNaX47Mn-HF2mtMaYMsbqV-icqVpgRcQF-rmc3pW_FvPFrh4-F5Ni7lf34x_Yz8USTDHdtsUtjGBHH4biR2ihK6YmQVvk49GvmPWbGHbQwzCm1-ilM12CN8f1Ci3vvi5vvpfzxbfZzWReWi7UWErFahCcOLBgCJGES-sw8Ea5xtRGWVs5im0jiCBSKQcgXVs1zuV8sRTsCs0Osm0wa72Jvjfxrw7G60dDiCtt4uhtB1rwiglnGZaSc0Zq1RAlWYtbZUVbQZO1vhy0Ntumh9bmNKLpnok-vxn8vV6Fnc5xC4U5zQofjgox_N5CGnXvk4WuMwOEbdKMVKrGjFOV0ff_oeuwjUP-qkdKUCzIXvD6QK1MzsAPLuSHbR4t9N7m6juf7ZOaUSFZRXB2ePc0h1Pw_yqdgY8HwMaQUgR3QgjW-y7Spy5iDwoytYM |
Cites_doi | 10.3390/app14135748 10.1109/CVPR52729.2023.00721 10.3390/agriculture13071285 10.3390/su141912274 10.1007/s00521-021-06029-z 10.1016/j.compag.2023.107636 10.1007/s11554-024-01499-5 10.1016/j.neucom.2021.03.091 10.3390/agriculture14020220 10.3389/fpls.2023.1199473 10.3934/mbe.2022602 10.3390/su15086898 10.1016/j.compag.2023.107955 10.3390/s24216777 10.1109/ICCV51070.2023.00554 10.1109/CVPR46437.2021.01350 10.1016/j.compag.2021.106547 10.1016/j.scienta.2024.113730 10.3389/fpls.2023.1223410 10.3390/s21020507 10.1016/j.compag.2019.01.012 10.1007/s11694-024-02746-w 10.1016/j.indcrop.2024.118358 10.3390/agronomy14061091 10.1007/978-3-030-01234-2_1 10.3389/fpls.2020.00898 10.1016/j.tifs.2024.104731 10.3390/s23146576 10.1109/ACCESS.2023.3305405 10.3390/biomimetics9110692 10.1016/j.compag.2021.106149 10.1016/j.compag.2022.107116 10.3390/agriculture12101594 10.3390/f13122091 10.1109/CVPR.2018.00745 10.1007/s00521-022-07743-y |
ContentType | Journal Article |
Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2025 by the authors. 2025 |
Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2025 by the authors. 2025 |
DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/s25020547 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Agriculture |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_64536fc3077443189b1973d0d9c6d5eb PMC11769042 A832673510 39860916 10_3390_s25020547 |
Genre | Journal Article |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GrantInformation_xml | – fundername: Science Research Foundation of the Education Department of Hubei Province of China grantid: B2020061 – fundername: Hubei Provincial Natural Science Foundation of China grantid: 2022CFB449 |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M NPM PJZUB PPXIY PMFND 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c469t-7938e641fecea117147cf0e4b9fba8a9cc5f20cb6161799fee7fd5bff3900763 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:17:49 EDT 2025 Thu Aug 21 18:40:34 EDT 2025 Mon Jul 21 11:30:40 EDT 2025 Fri Jul 25 22:24:58 EDT 2025 Tue Jun 10 21:01:05 EDT 2025 Mon Jul 21 05:52:28 EDT 2025 Tue Jul 01 02:10:09 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | distributed shift convolution YOLOv8n computer vision tea buds intelligence |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c469t-7938e641fecea117147cf0e4b9fba8a9cc5f20cb6161799fee7fd5bff3900763 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-5407-6583 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s25020547 |
PMID | 39860916 |
PQID | 3159620612 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_64536fc3077443189b1973d0d9c6d5eb pubmedcentral_primary_oai_pubmedcentral_nih_gov_11769042 proquest_miscellaneous_3159803429 proquest_journals_3159620612 gale_infotracacademiconefile_A832673510 pubmed_primary_39860916 crossref_primary_10_3390_s25020547 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-01-01 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2025 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Cao (ref_17) 2022; 19 Gui (ref_21) 2023; 205 Zhang (ref_11) 2021; 69 Wang (ref_41) 2024; 212 ref_36 ref_13 Meng (ref_23) 2023; 11 ref_35 ref_34 ref_33 ref_10 ref_30 ref_19 Gui (ref_26) 2024; 18 ref_38 ref_15 ref_37 Tian (ref_4) 2019; 157 Niu (ref_32) 2021; 452 Xu (ref_16) 2022; 192 Gai (ref_6) 2023; 35 ref_25 ref_24 Ren (ref_31) 2024; 21 ref_20 Li (ref_22) 2023; 211 Chen (ref_18) 2022; 198 ref_40 ref_1 Zhou (ref_39) 2024; 338 ref_3 ref_29 ref_28 Xu (ref_2) 2024; 153 ref_27 ref_9 Lanjewar (ref_12) 2023; 35 ref_8 ref_5 ref_7 Li (ref_14) 2021; 185 |
References_xml | – ident: ref_3 doi: 10.3390/app14135748 – ident: ref_27 doi: 10.1109/CVPR52729.2023.00721 – ident: ref_30 – ident: ref_9 doi: 10.3390/agriculture13071285 – ident: ref_28 doi: 10.3390/su141912274 – volume: 35 start-page: 13895 year: 2023 ident: ref_6 article-title: A detection algorithm for cherry fruits based on the improved YOLO-v4 model publication-title: Neural Comput. Appl. doi: 10.1007/s00521-021-06029-z – volume: 205 start-page: 107636 year: 2023 ident: ref_21 article-title: A lightweight tea bud detection model based on Yolov5 publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2023.107636 – volume: 69 start-page: 1109 year: 2021 ident: ref_11 article-title: Locating Famous Tea’s Picking Point Based on Shi-Tomasi Algorithm publication-title: Cmc-Comput. Mater. Contin. – volume: 21 start-page: 125 year: 2024 ident: ref_31 article-title: Lightweight safety helmet detection algorithm using improved YOLOv5 publication-title: J. Real-Time Image Process. doi: 10.1007/s11554-024-01499-5 – volume: 452 start-page: 48 year: 2021 ident: ref_32 article-title: A review on the attention mechanism of deep learning publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.03.091 – ident: ref_8 doi: 10.3390/agriculture14020220 – ident: ref_40 doi: 10.3389/fpls.2023.1199473 – volume: 19 start-page: 12897 year: 2022 ident: ref_17 article-title: Lightweight tea bud recognition network integrating GhostNet and YOLOv5 publication-title: MBE doi: 10.3934/mbe.2022602 – ident: ref_20 doi: 10.3390/su15086898 – volume: 211 start-page: 107955 year: 2023 ident: ref_22 article-title: Lightweight detection networks for tea bud on complex agricultural environment via improved YOLO v4 publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2023.107955 – ident: ref_15 doi: 10.3390/s24216777 – ident: ref_37 doi: 10.1109/ICCV51070.2023.00554 – ident: ref_35 doi: 10.1109/CVPR46437.2021.01350 – volume: 192 start-page: 106547 year: 2022 ident: ref_16 article-title: Detection and classification of tea buds based on deep learning publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2021.106547 – volume: 338 start-page: 113730 year: 2024 ident: ref_39 article-title: The tea buds detection and yield estimation method based on optimized YOLOv8 publication-title: Sci. Hortic. doi: 10.1016/j.scienta.2024.113730 – ident: ref_13 doi: 10.3389/fpls.2023.1223410 – ident: ref_7 doi: 10.3390/s21020507 – ident: ref_29 – volume: 157 start-page: 417 year: 2019 ident: ref_4 article-title: Apple detection during different growth stages in orchards using the improved YOLO-V3 model publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2019.01.012 – volume: 18 start-page: 7533 year: 2024 ident: ref_26 article-title: A lightweight tea buds detection model with occlusion handling publication-title: J. Food Meas. Charact. doi: 10.1007/s11694-024-02746-w – volume: 212 start-page: 118358 year: 2024 ident: ref_41 article-title: Tea yield estimation using UAV images and deep learning publication-title: Ind. Crops Prod. doi: 10.1016/j.indcrop.2024.118358 – ident: ref_10 doi: 10.3390/agronomy14061091 – ident: ref_34 doi: 10.1007/978-3-030-01234-2_1 – ident: ref_5 doi: 10.3389/fpls.2020.00898 – volume: 153 start-page: 104731 year: 2024 ident: ref_2 article-title: Advancing tea detection with artificial intelligence: Strategies, progress, and future prospects publication-title: Trends Food Sci. Technol. doi: 10.1016/j.tifs.2024.104731 – ident: ref_24 doi: 10.3390/s23146576 – volume: 11 start-page: 88295 year: 2023 ident: ref_23 article-title: Tea Buds Detection in Complex Background Based on Improved YOLOv7 publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3305405 – ident: ref_25 doi: 10.3390/biomimetics9110692 – volume: 185 start-page: 106149 year: 2021 ident: ref_14 article-title: In-field tea shoot detection and 3D localization using an RGB-D camera publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2021.106149 – volume: 198 start-page: 107116 year: 2022 ident: ref_18 article-title: A YOLOv3-based computer vision system for identification of tea buds and the picking point publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2022.107116 – ident: ref_19 doi: 10.3390/agriculture12101594 – ident: ref_38 – ident: ref_36 – ident: ref_1 doi: 10.3390/f13122091 – ident: ref_33 doi: 10.1109/CVPR.2018.00745 – volume: 35 start-page: 2755 year: 2023 ident: ref_12 article-title: Convolutional neural network based tea leaf disease prediction system on smart phone using paas cloud publication-title: Neural Comput. Appl. doi: 10.1007/s00521-022-07743-y |
SSID | ssj0023338 |
Score | 2.4425323 |
Snippet | Tea bud localization detection not only ensures tea quality, improves picking efficiency, and advances intelligent harvesting, but also fosters tea industry... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 547 |
SubjectTerms | Accuracy Agriculture Algorithms Analysis Artificial intelligence Classification computer vision Corn Deep learning Disease distributed shift convolution Efficiency Harvest intelligence Leaves Localization Tea tea buds Tea industry Unmanned aerial vehicles YOLOv8n |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB4hTu0BAS2Q8pBbVeIUkcSJY_e2W1ihCgqHRYKT5adAqkLV3W3_fmeS7GojDly4RErsSM6M5_E59jcAX-soc-PrLLUYjFO0xJAaJWwqrCmicJQy0wHn65_i8q78cV_dr5X6oj1hHT1wJ7gzUVZcRIdTsS4x2Ellc1Vzn3nlhK-CJe-LMW8JpnqoxRF5dTxCHEH92QwDfYHJST2IPi1J_0tXvBaLhvsk1wLPZBu2-oyRjbqR7sBGaHbh_RqP4Ae4nY4n6cPN1c1f2XxjI3ZFiPtfu-jJpsGw8cKz8zBvd101jMqf_WJjDF-e4W3_HuuWF9rVwtlHmE4upt8v075UQuoQ385TtDIZRJnH4ILJqah57WIWSquiNdIo56pYZM4KgjNKxRDq6CsbI0onQxezB5vNcxMOgBXR8lyEEDNXlQi7FTe5wGspPOZSXibwZSlB_bsjxNAIJEjMeiXmBMYk21UH4rBuH6Bmda9Z_ZpmEzglzWiyNBS_M_2BARwncVbpETojUXN0KgkcLZWnexOcaZ5TYSHK4BL4vGpG46E_IqYJz4uujyQSRJXAfqfr1Zi5kgInlkhADmbB4KOGLc3TY0vQjQoQCr3hp7cQwyG8K6jmcLvscwSb8z-LcIyJ0NyetHP-P6YCA7w priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BucChKu_QggxC4hQ1iRPH5oJ2gaVChXJYpHKK_CyVqmy7D_j7zCTesBESl0iOHcmZ8TxtfwPwug4y167OUoPGOEVJ9KlWwqTC6CIISy4zXXD-8lWcfC8_n1fnMeG2iscqtzqxU9RuYSlHfsxzqhNDBvnd9U1KVaNodzWW0LgNd3K0NHSkS84-DQEXx_irRxPiGNofr9DcF-ii1CMb1EH1_6uQdyzS-LTkjvmZHcB-9BvZpGf0fbjl2wdwb3KxjNgZHls72IIP4dt8Okt_nJ2e_ZLtWzZhpxSF_-4SoWzuNZtuHPvg191JrJZRSbQrNkWT5hg243esTzl0GcTVI5jPPs7fn6SxfEJqMeZdpyh50osyD956nVOh89qGzJdGBaOlVtZWocisERTiKBW8r4OrTAhIqwzVzmPYaxetfwqsCIbnwvuQ2arEUFxxnQt8lsKhf-VkAq-29Gyue5CMBoMLInozED2BKVF6GEC41t2LxfKiiWLSiLLiIlhUPHWJro1UJlc1d5lTVrjKmwTeEJ8akj5khtXxEgHOk3CsmgkqKFFzVDQJHG1Z2USxXDV_F1ECL4duFCjaJdGtX2z6MZKAEVUCT3rOD3PmSgp0sEQCcrQmRj817mkvf3ag3cgAoVBDPvv_vA7hbkEVhrskzxHsrZcb_xzdnrV50a3tPxWIAME priority: 102 providerName: ProQuest |
Title | TBF-YOLOv8n: A Lightweight Tea Bud Detection Model Based on YOLOv8n Improvements |
URI | https://www.ncbi.nlm.nih.gov/pubmed/39860916 https://www.proquest.com/docview/3159620612 https://www.proquest.com/docview/3159803429 https://pubmed.ncbi.nlm.nih.gov/PMC11769042 https://doaj.org/article/64536fc3077443189b1973d0d9c6d5eb |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Zi9RAEC72eNEH8TbrOrQi-BTN2YcgMtEdF9kLmYXxKXR3unVhyegcHv_eqiQTJuiDLw05mnTqrkq6PoDnwstYVyIKDTrjEDXRhVpxE3KjE88thcy0wfn0jB9fZh9n-WwHNhibHQGX_0ztCE_qcnH98tf3329R4d9Qxokp-6sluvEEQw-xC_vokAQBGZxm_ceEJE0bQGva0xWiP4zaBkPDqQO31HTv_9tGbzmp4Q-UWx5pchtudaEkG7e8vwM7rr4LN7caDN6Di2kxCT-fn5z_kPVrNmYnlIr_bKqhbOo0K9YVe-9Wze9YNSNctGtWoF-rGB5281hbd2jKiMv7MJ0cTd8dhx2GQmgx8V2FqH7S8Sz2zjodE9q5sD5ymVHeaKmVtblPIms45TlKeeeEr3LjPVInQtvzAPbqee0eAUu8SWPunI9snmE-rlIdcxwzXmGQVckAnm0oWH5rO2WUmGEQmcuezAEURNv-Bmpu3ZyYL76Una6UPMtT7i1aH5FhfCOViZVIq6hSlle5MwG8IM6UJBRIfqu7nQS4TmpmVY7RSnGRorUJ4HDDvHIjWmUaE-IQhXYBPO0vo1bRpxJdu_m6vUdSd0QVwMOW1_2aUyU5Rlk8ADmQgsFLDa_UV1-bzt3IAK7QTB78x4Mfw42EsIabcs8h7K0Wa_cEA6CVGcGumAkc5eTDCPaLo7OLT6OmmDBqBP8PaPsFzA |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiDeBAgaBOEVN4sSJkRDapSxbum05BKk9WbFjFySULfug4kfxH5nJi42QuPWyUtZJ5Mzzm7E9A_AydVlYlGnga3TGPmqi9QsptC90ETlhCDLTAefDIzH9En86SU624Hd3Foa2VXY2sTbU5dxQjnyXh9Qnhhzyu_MfPnWNotXVroVGIxYH9tcFhmzLt_t7yN9XUTT5kL-f-m1XAd9gKLjyUSAzK-LQWWOLkPp_p8YFNtbS6SIrpDGJiwKjBSF_KZ21qSsT7RyXtGzF8bVX4GrM0ZHTwfTJxz6-4xjuNcWLcDDYXSK6iBARpQOXV3cG-Nf-bzjA4ebMDW83uQU3W5jKRo1c3YYtW92BG6OzRVuqw-LVRinDu_A5H0_80-PZ8c-sesNGbEZB_0Wdd2W5Ldh4XbI9u6o3flWMOrB9Z2P0oCXDy_Y51mQ46oTl8h7kl0HX-7BdzSv7EFjkNA-FtS4wSYyRv-RFKPA3FiXCuTLz4EVHT3Xe1ORQGMsQ0VVPdA_GROn-BiqjXf8xX5ypViuViBMunEE7l8aIpDKpQ5nyMiilEWVitQeviU-KlB2ZYYr2zALOk8pmqRHaQ5FytGse7HSsVK0VWKq_MuvB834Y9ZcWZYrKztfNPRnVYZQePGg438-Zy0wgnhMeZAOZGHzUcKT69rWuEY4MEBIN8qP_z-sZXJvmhzM12z86eAzXI2puXOeXdmB7tVjbJ4i4VvppLecM1CXr1R_CJD5f |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEB6VVELwgLgxFFgQiCcrPtdeJIRi0qilIY1QkNqnlXe9WypVTslBxU_j3zHji0RIvPUlkuO1tZ7zm9ndGYA3iU39vEg8V6EzdlETjZsLrlyu8sByTZCZDjh_mfCDb9Hnk_hkB363Z2FoW2VrEytDXcw15cj7oU99Ysgh922zLWI6HH28_OFSBylaaW3badQicmR-XWH4tvxwOERevw2C0f7s04HbdBhwNYaFKxeFMzU88q3RJvepF3iirWciJazK01xoHdvA04pTFCCENSaxRaysDQUtYYX42huwm1BQ1IPdbH8y_dpFeyEGf3UpoxBH95eINQLER8mWA6z6BPzrDTbc4fZWzQ3fN7oLdxrQyga1lN2DHVPeh9uDs0VTuMPg1UZhwwcwnWUj9_R4fPwzLd-zARtTCuCqysKymclZti7Y0KyqbWAlo35sFyxDf1owvGyeY3W-o0pfLh_C7Doo-wh65bw0T4AFVoU-N8Z6Oo6MQniS-xx_I14guCtSB1639JSXdYUOiZENEV12RHcgI0p3A6iodvXHfHEmGx2VPIpDbjVavSRCXJUK5YskLLxCaF7ERjnwjvgkSfWRGTpvTjDgPKmIlhygdeRJiFbOgb2WlbKxCUv5V4IdeNXdRm2mJZq8NPN1PSalqozCgcc157s5hyLliO64A-mWTGx91Pad8vx7VTEcGcAFmuen_5_XS7iJOiXHh5OjZ3AroE7HVbJpD3qrxdo8R_i1Ui8aQWcgr1m1_gDL1kPx |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TBF-YOLOv8n%3A+A+Lightweight+Tea+Bud+Detection+Model+Based+on+YOLOv8n+Improvements&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Fang%2C+Wenhui&rft.au=Chen%2C+Weizhen&rft.date=2025-01-01&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=25&rft.issue=2&rft_id=info:doi/10.3390%2Fs25020547&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |