TBF-YOLOv8n: A Lightweight Tea Bud Detection Model Based on YOLOv8n Improvements

Tea bud localization detection not only ensures tea quality, improves picking efficiency, and advances intelligent harvesting, but also fosters tea industry upgrades and enhances economic benefits. To solve the problem of the high computational complexity of deep learning detection models, we develo...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 25; no. 2; p. 547
Main Authors Fang, Wenhui, Chen, Weizhen
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 01.01.2025
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Tea bud localization detection not only ensures tea quality, improves picking efficiency, and advances intelligent harvesting, but also fosters tea industry upgrades and enhances economic benefits. To solve the problem of the high computational complexity of deep learning detection models, we developed the Tea Bud DSCF-YOLOv8n (TBF-YOLOv8n)lightweight detection model. Improvement of the Cross Stage Partial Bottleneck Module with Two Convolutions(C2f) module via efficient Distributed Shift Convolution (DSConv) yields the C2f module with DSConv(DSCf)module, which reduces the model’s size. Additionally, the coordinate attention (CA) mechanism is incorporated to mitigate interference from irrelevant factors, thereby improving mean accuracy. Furthermore, the SIOU_Loss (SCYLLA-IOU_Loss) function and the Dynamic Sample(DySample)up-sampling operator are implemented to accelerate convergence and enhance both average precision and detection accuracy. The experimental results show that compared to the YOLOv8n model, the TBF-YOLOv8n model has a 3.7% increase in accuracy, a 1.1% increase in average accuracy, a 44.4% reduction in gigabit floating point operations (GFLOPs), and a 13.4% reduction in the total number of parameters included in the model. In comparison experiments with a variety of lightweight detection models, the TBF-YOLOv8n still performs well in terms of detection accuracy while remaining more lightweight. In conclusion, the TBF-YOLOv8n model achieves a commendable balance between efficiency and precision, offering valuable insights for advancing intelligent tea bud harvesting technologies.
AbstractList Tea bud localization detection not only ensures tea quality, improves picking efficiency, and advances intelligent harvesting, but also fosters tea industry upgrades and enhances economic benefits. To solve the problem of the high computational complexity of deep learning detection models, we developed the Tea Bud DSCF-YOLOv8n (TBF-YOLOv8n)lightweight detection model. Improvement of the Cross Stage Partial Bottleneck Module with Two Convolutions(C2f) module via efficient Distributed Shift Convolution (DSConv) yields the C2f module with DSConv(DSCf)module, which reduces the model’s size. Additionally, the coordinate attention (CA) mechanism is incorporated to mitigate interference from irrelevant factors, thereby improving mean accuracy. Furthermore, the SIOU_Loss (SCYLLA-IOU_Loss) function and the Dynamic Sample(DySample)up-sampling operator are implemented to accelerate convergence and enhance both average precision and detection accuracy. The experimental results show that compared to the YOLOv8n model, the TBF-YOLOv8n model has a 3.7% increase in accuracy, a 1.1% increase in average accuracy, a 44.4% reduction in gigabit floating point operations (GFLOPs), and a 13.4% reduction in the total number of parameters included in the model. In comparison experiments with a variety of lightweight detection models, the TBF-YOLOv8n still performs well in terms of detection accuracy while remaining more lightweight. In conclusion, the TBF-YOLOv8n model achieves a commendable balance between efficiency and precision, offering valuable insights for advancing intelligent tea bud harvesting technologies.
Tea bud localization detection not only ensures tea quality, improves picking efficiency, and advances intelligent harvesting, but also fosters tea industry upgrades and enhances economic benefits. To solve the problem of the high computational complexity of deep learning detection models, we developed the Tea Bud DSCF-YOLOv8n (TBF-YOLOv8n)lightweight detection model. Improvement of the Cross Stage Partial Bottleneck Module with Two Convolutions(C2f) module via efficient Distributed Shift Convolution (DSConv) yields the C2f module with DSConv(DSCf)module, which reduces the model's size. Additionally, the coordinate attention (CA) mechanism is incorporated to mitigate interference from irrelevant factors, thereby improving mean accuracy. Furthermore, the SIOU_Loss (SCYLLA-IOU_Loss) function and the Dynamic Sample(DySample)up-sampling operator are implemented to accelerate convergence and enhance both average precision and detection accuracy. The experimental results show that compared to the YOLOv8n model, the TBF-YOLOv8n model has a 3.7% increase in accuracy, a 1.1% increase in average accuracy, a 44.4% reduction in gigabit floating point operations (GFLOPs), and a 13.4% reduction in the total number of parameters included in the model. In comparison experiments with a variety of lightweight detection models, the TBF-YOLOv8n still performs well in terms of detection accuracy while remaining more lightweight. In conclusion, the TBF-YOLOv8n model achieves a commendable balance between efficiency and precision, offering valuable insights for advancing intelligent tea bud harvesting technologies.Tea bud localization detection not only ensures tea quality, improves picking efficiency, and advances intelligent harvesting, but also fosters tea industry upgrades and enhances economic benefits. To solve the problem of the high computational complexity of deep learning detection models, we developed the Tea Bud DSCF-YOLOv8n (TBF-YOLOv8n)lightweight detection model. Improvement of the Cross Stage Partial Bottleneck Module with Two Convolutions(C2f) module via efficient Distributed Shift Convolution (DSConv) yields the C2f module with DSConv(DSCf)module, which reduces the model's size. Additionally, the coordinate attention (CA) mechanism is incorporated to mitigate interference from irrelevant factors, thereby improving mean accuracy. Furthermore, the SIOU_Loss (SCYLLA-IOU_Loss) function and the Dynamic Sample(DySample)up-sampling operator are implemented to accelerate convergence and enhance both average precision and detection accuracy. The experimental results show that compared to the YOLOv8n model, the TBF-YOLOv8n model has a 3.7% increase in accuracy, a 1.1% increase in average accuracy, a 44.4% reduction in gigabit floating point operations (GFLOPs), and a 13.4% reduction in the total number of parameters included in the model. In comparison experiments with a variety of lightweight detection models, the TBF-YOLOv8n still performs well in terms of detection accuracy while remaining more lightweight. In conclusion, the TBF-YOLOv8n model achieves a commendable balance between efficiency and precision, offering valuable insights for advancing intelligent tea bud harvesting technologies.
Audience Academic
Author Fang, Wenhui
Chen, Weizhen
AuthorAffiliation School of Electrical and Electronic Engineering, Wuhan Polytechnic University, Wuhan 430048, China; f1602085219@163.com
AuthorAffiliation_xml – name: School of Electrical and Electronic Engineering, Wuhan Polytechnic University, Wuhan 430048, China; f1602085219@163.com
Author_xml – sequence: 1
  givenname: Wenhui
  surname: Fang
  fullname: Fang, Wenhui
– sequence: 2
  givenname: Weizhen
  orcidid: 0000-0002-5407-6583
  surname: Chen
  fullname: Chen, Weizhen
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39860916$$D View this record in MEDLINE/PubMed
BookMark eNpdkktvEzEQxy1URB9w4AuglbjAYYtfa6-5oKSlECkoHHLhZHm949TR7jrYmyC-fZ0mRC2y5Mf4N3_PeOYSnQ1hAITeEnzNmMKfEq0wxRWXL9AF4ZSXNaX47Mn-HF2mtMaYMsbqV-icqVpgRcQF-rmc3pW_FvPFrh4-F5Ni7lf34x_Yz8USTDHdtsUtjGBHH4biR2ihK6YmQVvk49GvmPWbGHbQwzCm1-ilM12CN8f1Ci3vvi5vvpfzxbfZzWReWi7UWErFahCcOLBgCJGES-sw8Ea5xtRGWVs5im0jiCBSKQcgXVs1zuV8sRTsCs0Osm0wa72Jvjfxrw7G60dDiCtt4uhtB1rwiglnGZaSc0Zq1RAlWYtbZUVbQZO1vhy0Ntumh9bmNKLpnok-vxn8vV6Fnc5xC4U5zQofjgox_N5CGnXvk4WuMwOEbdKMVKrGjFOV0ff_oeuwjUP-qkdKUCzIXvD6QK1MzsAPLuSHbR4t9N7m6juf7ZOaUSFZRXB2ePc0h1Pw_yqdgY8HwMaQUgR3QgjW-y7Spy5iDwoytYM
Cites_doi 10.3390/app14135748
10.1109/CVPR52729.2023.00721
10.3390/agriculture13071285
10.3390/su141912274
10.1007/s00521-021-06029-z
10.1016/j.compag.2023.107636
10.1007/s11554-024-01499-5
10.1016/j.neucom.2021.03.091
10.3390/agriculture14020220
10.3389/fpls.2023.1199473
10.3934/mbe.2022602
10.3390/su15086898
10.1016/j.compag.2023.107955
10.3390/s24216777
10.1109/ICCV51070.2023.00554
10.1109/CVPR46437.2021.01350
10.1016/j.compag.2021.106547
10.1016/j.scienta.2024.113730
10.3389/fpls.2023.1223410
10.3390/s21020507
10.1016/j.compag.2019.01.012
10.1007/s11694-024-02746-w
10.1016/j.indcrop.2024.118358
10.3390/agronomy14061091
10.1007/978-3-030-01234-2_1
10.3389/fpls.2020.00898
10.1016/j.tifs.2024.104731
10.3390/s23146576
10.1109/ACCESS.2023.3305405
10.3390/biomimetics9110692
10.1016/j.compag.2021.106149
10.1016/j.compag.2022.107116
10.3390/agriculture12101594
10.3390/f13122091
10.1109/CVPR.2018.00745
10.1007/s00521-022-07743-y
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2025 by the authors. 2025
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2025 by the authors. 2025
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s25020547
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef


Publicly Available Content Database
PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Agriculture
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_64536fc3077443189b1973d0d9c6d5eb
PMC11769042
A832673510
39860916
10_3390_s25020547
Genre Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: Science Research Foundation of the Education Department of Hubei Province of China
  grantid: B2020061
– fundername: Hubei Provincial Natural Science Foundation of China
  grantid: 2022CFB449
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
NPM
PJZUB
PPXIY
PMFND
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c469t-7938e641fecea117147cf0e4b9fba8a9cc5f20cb6161799fee7fd5bff3900763
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:17:49 EDT 2025
Thu Aug 21 18:40:34 EDT 2025
Mon Jul 21 11:30:40 EDT 2025
Fri Jul 25 22:24:58 EDT 2025
Tue Jun 10 21:01:05 EDT 2025
Mon Jul 21 05:52:28 EDT 2025
Tue Jul 01 02:10:09 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords distributed shift convolution
YOLOv8n
computer vision
tea buds
intelligence
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c469t-7938e641fecea117147cf0e4b9fba8a9cc5f20cb6161799fee7fd5bff3900763
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5407-6583
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s25020547
PMID 39860916
PQID 3159620612
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_64536fc3077443189b1973d0d9c6d5eb
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11769042
proquest_miscellaneous_3159803429
proquest_journals_3159620612
gale_infotracacademiconefile_A832673510
pubmed_primary_39860916
crossref_primary_10_3390_s25020547
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2025
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Cao (ref_17) 2022; 19
Gui (ref_21) 2023; 205
Zhang (ref_11) 2021; 69
Wang (ref_41) 2024; 212
ref_36
ref_13
Meng (ref_23) 2023; 11
ref_35
ref_34
ref_33
ref_10
ref_30
ref_19
Gui (ref_26) 2024; 18
ref_38
ref_15
ref_37
Tian (ref_4) 2019; 157
Niu (ref_32) 2021; 452
Xu (ref_16) 2022; 192
Gai (ref_6) 2023; 35
ref_25
ref_24
Ren (ref_31) 2024; 21
ref_20
Li (ref_22) 2023; 211
Chen (ref_18) 2022; 198
ref_40
ref_1
Zhou (ref_39) 2024; 338
ref_3
ref_29
ref_28
Xu (ref_2) 2024; 153
ref_27
ref_9
Lanjewar (ref_12) 2023; 35
ref_8
ref_5
ref_7
Li (ref_14) 2021; 185
References_xml – ident: ref_3
  doi: 10.3390/app14135748
– ident: ref_27
  doi: 10.1109/CVPR52729.2023.00721
– ident: ref_30
– ident: ref_9
  doi: 10.3390/agriculture13071285
– ident: ref_28
  doi: 10.3390/su141912274
– volume: 35
  start-page: 13895
  year: 2023
  ident: ref_6
  article-title: A detection algorithm for cherry fruits based on the improved YOLO-v4 model
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-021-06029-z
– volume: 205
  start-page: 107636
  year: 2023
  ident: ref_21
  article-title: A lightweight tea bud detection model based on Yolov5
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2023.107636
– volume: 69
  start-page: 1109
  year: 2021
  ident: ref_11
  article-title: Locating Famous Tea’s Picking Point Based on Shi-Tomasi Algorithm
  publication-title: Cmc-Comput. Mater. Contin.
– volume: 21
  start-page: 125
  year: 2024
  ident: ref_31
  article-title: Lightweight safety helmet detection algorithm using improved YOLOv5
  publication-title: J. Real-Time Image Process.
  doi: 10.1007/s11554-024-01499-5
– volume: 452
  start-page: 48
  year: 2021
  ident: ref_32
  article-title: A review on the attention mechanism of deep learning
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.03.091
– ident: ref_8
  doi: 10.3390/agriculture14020220
– ident: ref_40
  doi: 10.3389/fpls.2023.1199473
– volume: 19
  start-page: 12897
  year: 2022
  ident: ref_17
  article-title: Lightweight tea bud recognition network integrating GhostNet and YOLOv5
  publication-title: MBE
  doi: 10.3934/mbe.2022602
– ident: ref_20
  doi: 10.3390/su15086898
– volume: 211
  start-page: 107955
  year: 2023
  ident: ref_22
  article-title: Lightweight detection networks for tea bud on complex agricultural environment via improved YOLO v4
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2023.107955
– ident: ref_15
  doi: 10.3390/s24216777
– ident: ref_37
  doi: 10.1109/ICCV51070.2023.00554
– ident: ref_35
  doi: 10.1109/CVPR46437.2021.01350
– volume: 192
  start-page: 106547
  year: 2022
  ident: ref_16
  article-title: Detection and classification of tea buds based on deep learning
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2021.106547
– volume: 338
  start-page: 113730
  year: 2024
  ident: ref_39
  article-title: The tea buds detection and yield estimation method based on optimized YOLOv8
  publication-title: Sci. Hortic.
  doi: 10.1016/j.scienta.2024.113730
– ident: ref_13
  doi: 10.3389/fpls.2023.1223410
– ident: ref_7
  doi: 10.3390/s21020507
– ident: ref_29
– volume: 157
  start-page: 417
  year: 2019
  ident: ref_4
  article-title: Apple detection during different growth stages in orchards using the improved YOLO-V3 model
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2019.01.012
– volume: 18
  start-page: 7533
  year: 2024
  ident: ref_26
  article-title: A lightweight tea buds detection model with occlusion handling
  publication-title: J. Food Meas. Charact.
  doi: 10.1007/s11694-024-02746-w
– volume: 212
  start-page: 118358
  year: 2024
  ident: ref_41
  article-title: Tea yield estimation using UAV images and deep learning
  publication-title: Ind. Crops Prod.
  doi: 10.1016/j.indcrop.2024.118358
– ident: ref_10
  doi: 10.3390/agronomy14061091
– ident: ref_34
  doi: 10.1007/978-3-030-01234-2_1
– ident: ref_5
  doi: 10.3389/fpls.2020.00898
– volume: 153
  start-page: 104731
  year: 2024
  ident: ref_2
  article-title: Advancing tea detection with artificial intelligence: Strategies, progress, and future prospects
  publication-title: Trends Food Sci. Technol.
  doi: 10.1016/j.tifs.2024.104731
– ident: ref_24
  doi: 10.3390/s23146576
– volume: 11
  start-page: 88295
  year: 2023
  ident: ref_23
  article-title: Tea Buds Detection in Complex Background Based on Improved YOLOv7
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3305405
– ident: ref_25
  doi: 10.3390/biomimetics9110692
– volume: 185
  start-page: 106149
  year: 2021
  ident: ref_14
  article-title: In-field tea shoot detection and 3D localization using an RGB-D camera
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2021.106149
– volume: 198
  start-page: 107116
  year: 2022
  ident: ref_18
  article-title: A YOLOv3-based computer vision system for identification of tea buds and the picking point
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2022.107116
– ident: ref_19
  doi: 10.3390/agriculture12101594
– ident: ref_38
– ident: ref_36
– ident: ref_1
  doi: 10.3390/f13122091
– ident: ref_33
  doi: 10.1109/CVPR.2018.00745
– volume: 35
  start-page: 2755
  year: 2023
  ident: ref_12
  article-title: Convolutional neural network based tea leaf disease prediction system on smart phone using paas cloud
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-022-07743-y
SSID ssj0023338
Score 2.4425323
Snippet Tea bud localization detection not only ensures tea quality, improves picking efficiency, and advances intelligent harvesting, but also fosters tea industry...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 547
SubjectTerms Accuracy
Agriculture
Algorithms
Analysis
Artificial intelligence
Classification
computer vision
Corn
Deep learning
Disease
distributed shift convolution
Efficiency
Harvest
intelligence
Leaves
Localization
Tea
tea buds
Tea industry
Unmanned aerial vehicles
YOLOv8n
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB4hTu0BAS2Q8pBbVeIUkcSJY_e2W1ihCgqHRYKT5adAqkLV3W3_fmeS7GojDly4RErsSM6M5_E59jcAX-soc-PrLLUYjFO0xJAaJWwqrCmicJQy0wHn65_i8q78cV_dr5X6oj1hHT1wJ7gzUVZcRIdTsS4x2Ellc1Vzn3nlhK-CJe-LMW8JpnqoxRF5dTxCHEH92QwDfYHJST2IPi1J_0tXvBaLhvsk1wLPZBu2-oyRjbqR7sBGaHbh_RqP4Ae4nY4n6cPN1c1f2XxjI3ZFiPtfu-jJpsGw8cKz8zBvd101jMqf_WJjDF-e4W3_HuuWF9rVwtlHmE4upt8v075UQuoQ385TtDIZRJnH4ILJqah57WIWSquiNdIo56pYZM4KgjNKxRDq6CsbI0onQxezB5vNcxMOgBXR8lyEEDNXlQi7FTe5wGspPOZSXibwZSlB_bsjxNAIJEjMeiXmBMYk21UH4rBuH6Bmda9Z_ZpmEzglzWiyNBS_M_2BARwncVbpETojUXN0KgkcLZWnexOcaZ5TYSHK4BL4vGpG46E_IqYJz4uujyQSRJXAfqfr1Zi5kgInlkhADmbB4KOGLc3TY0vQjQoQCr3hp7cQwyG8K6jmcLvscwSb8z-LcIyJ0NyetHP-P6YCA7w
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BucChKu_QggxC4hQ1iRPH5oJ2gaVChXJYpHKK_CyVqmy7D_j7zCTesBESl0iOHcmZ8TxtfwPwug4y167OUoPGOEVJ9KlWwqTC6CIISy4zXXD-8lWcfC8_n1fnMeG2iscqtzqxU9RuYSlHfsxzqhNDBvnd9U1KVaNodzWW0LgNd3K0NHSkS84-DQEXx_irRxPiGNofr9DcF-ii1CMb1EH1_6uQdyzS-LTkjvmZHcB-9BvZpGf0fbjl2wdwb3KxjNgZHls72IIP4dt8Okt_nJ2e_ZLtWzZhpxSF_-4SoWzuNZtuHPvg191JrJZRSbQrNkWT5hg243esTzl0GcTVI5jPPs7fn6SxfEJqMeZdpyh50osyD956nVOh89qGzJdGBaOlVtZWocisERTiKBW8r4OrTAhIqwzVzmPYaxetfwqsCIbnwvuQ2arEUFxxnQt8lsKhf-VkAq-29Gyue5CMBoMLInozED2BKVF6GEC41t2LxfKiiWLSiLLiIlhUPHWJro1UJlc1d5lTVrjKmwTeEJ8akj5khtXxEgHOk3CsmgkqKFFzVDQJHG1Z2USxXDV_F1ECL4duFCjaJdGtX2z6MZKAEVUCT3rOD3PmSgp0sEQCcrQmRj817mkvf3ag3cgAoVBDPvv_vA7hbkEVhrskzxHsrZcb_xzdnrV50a3tPxWIAME
  priority: 102
  providerName: ProQuest
Title TBF-YOLOv8n: A Lightweight Tea Bud Detection Model Based on YOLOv8n Improvements
URI https://www.ncbi.nlm.nih.gov/pubmed/39860916
https://www.proquest.com/docview/3159620612
https://www.proquest.com/docview/3159803429
https://pubmed.ncbi.nlm.nih.gov/PMC11769042
https://doaj.org/article/64536fc3077443189b1973d0d9c6d5eb
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Zi9RAEC72eNEH8TbrOrQi-BTN2YcgMtEdF9kLmYXxKXR3unVhyegcHv_eqiQTJuiDLw05mnTqrkq6PoDnwstYVyIKDTrjEDXRhVpxE3KjE88thcy0wfn0jB9fZh9n-WwHNhibHQGX_0ztCE_qcnH98tf3329R4d9Qxokp-6sluvEEQw-xC_vokAQBGZxm_ceEJE0bQGva0xWiP4zaBkPDqQO31HTv_9tGbzmp4Q-UWx5pchtudaEkG7e8vwM7rr4LN7caDN6Di2kxCT-fn5z_kPVrNmYnlIr_bKqhbOo0K9YVe-9Wze9YNSNctGtWoF-rGB5281hbd2jKiMv7MJ0cTd8dhx2GQmgx8V2FqH7S8Sz2zjodE9q5sD5ymVHeaKmVtblPIms45TlKeeeEr3LjPVInQtvzAPbqee0eAUu8SWPunI9snmE-rlIdcxwzXmGQVckAnm0oWH5rO2WUmGEQmcuezAEURNv-Bmpu3ZyYL76Una6UPMtT7i1aH5FhfCOViZVIq6hSlle5MwG8IM6UJBRIfqu7nQS4TmpmVY7RSnGRorUJ4HDDvHIjWmUaE-IQhXYBPO0vo1bRpxJdu_m6vUdSd0QVwMOW1_2aUyU5Rlk8ADmQgsFLDa_UV1-bzt3IAK7QTB78x4Mfw42EsIabcs8h7K0Wa_cEA6CVGcGumAkc5eTDCPaLo7OLT6OmmDBqBP8PaPsFzA
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiDeBAgaBOEVN4sSJkRDapSxbum05BKk9WbFjFySULfug4kfxH5nJi42QuPWyUtZJ5Mzzm7E9A_AydVlYlGnga3TGPmqi9QsptC90ETlhCDLTAefDIzH9En86SU624Hd3Foa2VXY2sTbU5dxQjnyXh9Qnhhzyu_MfPnWNotXVroVGIxYH9tcFhmzLt_t7yN9XUTT5kL-f-m1XAd9gKLjyUSAzK-LQWWOLkPp_p8YFNtbS6SIrpDGJiwKjBSF_KZ21qSsT7RyXtGzF8bVX4GrM0ZHTwfTJxz6-4xjuNcWLcDDYXSK6iBARpQOXV3cG-Nf-bzjA4ebMDW83uQU3W5jKRo1c3YYtW92BG6OzRVuqw-LVRinDu_A5H0_80-PZ8c-sesNGbEZB_0Wdd2W5Ldh4XbI9u6o3flWMOrB9Z2P0oCXDy_Y51mQ46oTl8h7kl0HX-7BdzSv7EFjkNA-FtS4wSYyRv-RFKPA3FiXCuTLz4EVHT3Xe1ORQGMsQ0VVPdA_GROn-BiqjXf8xX5ypViuViBMunEE7l8aIpDKpQ5nyMiilEWVitQeviU-KlB2ZYYr2zALOk8pmqRHaQ5FytGse7HSsVK0VWKq_MuvB834Y9ZcWZYrKztfNPRnVYZQePGg438-Zy0wgnhMeZAOZGHzUcKT69rWuEY4MEBIN8qP_z-sZXJvmhzM12z86eAzXI2puXOeXdmB7tVjbJ4i4VvppLecM1CXr1R_CJD5f
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEB6VVELwgLgxFFgQiCcrPtdeJIRi0qilIY1QkNqnlXe9WypVTslBxU_j3zHji0RIvPUlkuO1tZ7zm9ndGYA3iU39vEg8V6EzdlETjZsLrlyu8sByTZCZDjh_mfCDb9Hnk_hkB363Z2FoW2VrEytDXcw15cj7oU99Ysgh922zLWI6HH28_OFSBylaaW3badQicmR-XWH4tvxwOERevw2C0f7s04HbdBhwNYaFKxeFMzU88q3RJvepF3iirWciJazK01xoHdvA04pTFCCENSaxRaysDQUtYYX42huwm1BQ1IPdbH8y_dpFeyEGf3UpoxBH95eINQLER8mWA6z6BPzrDTbc4fZWzQ3fN7oLdxrQyga1lN2DHVPeh9uDs0VTuMPg1UZhwwcwnWUj9_R4fPwzLd-zARtTCuCqysKymclZti7Y0KyqbWAlo35sFyxDf1owvGyeY3W-o0pfLh_C7Doo-wh65bw0T4AFVoU-N8Z6Oo6MQniS-xx_I14guCtSB1639JSXdYUOiZENEV12RHcgI0p3A6iodvXHfHEmGx2VPIpDbjVavSRCXJUK5YskLLxCaF7ERjnwjvgkSfWRGTpvTjDgPKmIlhygdeRJiFbOgb2WlbKxCUv5V4IdeNXdRm2mJZq8NPN1PSalqozCgcc157s5hyLliO64A-mWTGx91Pad8vx7VTEcGcAFmuen_5_XS7iJOiXHh5OjZ3AroE7HVbJpD3qrxdo8R_i1Ui8aQWcgr1m1_gDL1kPx
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TBF-YOLOv8n%3A+A+Lightweight+Tea+Bud+Detection+Model+Based+on+YOLOv8n+Improvements&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Fang%2C+Wenhui&rft.au=Chen%2C+Weizhen&rft.date=2025-01-01&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=25&rft.issue=2&rft_id=info:doi/10.3390%2Fs25020547&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon