Simultaneous Ship Detection and Orientation Estimation in SAR Images Based on Attention Module and Angle Regression

Ship detection and angle estimation in SAR images play an important role in marine surveillance. Previous works have detected ships first and estimated their orientations second. This is time-consuming and tedious. In order to solve the problems above, we attempt to combine these two tasks using a c...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 18; no. 9; p. 2851
Main Authors Wang, Jizhou, Lu, Changhua, Jiang, Weiwei
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 29.08.2018
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Ship detection and angle estimation in SAR images play an important role in marine surveillance. Previous works have detected ships first and estimated their orientations second. This is time-consuming and tedious. In order to solve the problems above, we attempt to combine these two tasks using a convolutional neural network so that ships may be detected and their orientations estimated simultaneously. The proposed method is based on the original SSD (Single Shot Detector), but using a rotatable bounding box. This method can learn and predict the class, location, and angle information of ships using only one forward computation. The generated oriented bounding box is much tighter than the traditional bounding box and is robust to background disturbances. We develop a semantic aggregation method which fuses features in a top-down way. This method can provide abundant location and semantic information, which is helpful for classification and location. We adopt the attention module for the six prediction layers. It can adaptively select meaningful features and neglect weak ones. This is helpful for detecting small ships. Multi-orientation anchors are designed with different sizes, aspect ratios, and orientations. These can consider both speed and accuracy. Angular regression is embedded into the existing bounding box regression module, and thus the angle prediction is output with the position and score, without requiring too many extra computations. The loss function with angular regression is used for optimizing the model. AAP (average angle precision) is used for evaluating the performance. The experiments on the dataset demonstrate the effectiveness of our method.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1424-8220
1424-8220
DOI:10.3390/s18092851