Appropriate Mother Wavelets for Continuous Gait Event Detection Based on Time-Frequency Analysis for Hemiplegic and Healthy Individuals
Gait event detection is a crucial step towards the effective assessment and rehabilitation of motor dysfunctions. Recently, the continuous wavelet transform (CWT) based methods have been increasingly proposed for gait event detection due to their robustness. However, few investigations on determinin...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 19; no. 16; p. 3462 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
08.08.2019
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Gait event detection is a crucial step towards the effective assessment and rehabilitation of motor dysfunctions. Recently, the continuous wavelet transform (CWT) based methods have been increasingly proposed for gait event detection due to their robustness. However, few investigations on determining the appropriate mother wavelet with proper selection criteria have been performed, especially for hemiplegic patients. In this study, the performances of commonly used mother wavelets in detecting gait events were systematically investigated. The acceleration signals from the tibialis anterior muscle of both healthy and hemiplegic subjects were recorded during ground walking and the two core gait events of heel strike (HS) and toe off (TO) were detected from the signal recordings by a CWT algorithm with different mother wavelets. Our results showed that the overall performance of the CWT algorithm in detecting the two gait events was significantly different when using various mother wavelets. By using different wavelet selection criteria, we also found that the accuracy criteria based on time-error minimization and F1-score maximization could provide the appropriate mother wavelet for gait event detection. The findings from this study will provide an insight on the selection of an appropriate mother wavelet for gait event detection and facilitate the development of adequate rehabilitation aids. |
---|---|
AbstractList | Gait event detection is a crucial step towards the effective assessment and rehabilitation of motor dysfunctions. Recently, the continuous wavelet transform (CWT) based methods have been increasingly proposed for gait event detection due to their robustness. However, few investigations on determining the appropriate mother wavelet with proper selection criteria have been performed, especially for hemiplegic patients. In this study, the performances of commonly used mother wavelets in detecting gait events were systematically investigated. The acceleration signals from the tibialis anterior muscle of both healthy and hemiplegic subjects were recorded during ground walking and the two core gait events of heel strike (HS) and toe off (TO) were detected from the signal recordings by a CWT algorithm with different mother wavelets. Our results showed that the overall performance of the CWT algorithm in detecting the two gait events was significantly different when using various mother wavelets. By using different wavelet selection criteria, we also found that the accuracy criteria based on time-error minimization and F1-score maximization could provide the appropriate mother wavelet for gait event detection. The findings from this study will provide an insight on the selection of an appropriate mother wavelet for gait event detection and facilitate the development of adequate rehabilitation aids. Gait event detection is a crucial step towards the effective assessment and rehabilitation of motor dysfunctions. Recently, the continuous wavelet transform (CWT) based methods have been increasingly proposed for gait event detection due to their robustness. However, few investigations on determining the appropriate mother wavelet with proper selection criteria have been performed, especially for hemiplegic patients. In this study, the performances of commonly used mother wavelets in detecting gait events were systematically investigated. The acceleration signals from the tibialis anterior muscle of both healthy and hemiplegic subjects were recorded during ground walking and the two core gait events of heel strike (HS) and toe off (TO) were detected from the signal recordings by a CWT algorithm with different mother wavelets. Our results showed that the overall performance of the CWT algorithm in detecting the two gait events was significantly different when using various mother wavelets. By using different wavelet selection criteria, we also found that the accuracy criteria based on time-error minimization and F1-score maximization could provide the appropriate mother wavelet for gait event detection. The findings from this study will provide an insight on the selection of an appropriate mother wavelet for gait event detection and facilitate the development of adequate rehabilitation aids.Gait event detection is a crucial step towards the effective assessment and rehabilitation of motor dysfunctions. Recently, the continuous wavelet transform (CWT) based methods have been increasingly proposed for gait event detection due to their robustness. However, few investigations on determining the appropriate mother wavelet with proper selection criteria have been performed, especially for hemiplegic patients. In this study, the performances of commonly used mother wavelets in detecting gait events were systematically investigated. The acceleration signals from the tibialis anterior muscle of both healthy and hemiplegic subjects were recorded during ground walking and the two core gait events of heel strike (HS) and toe off (TO) were detected from the signal recordings by a CWT algorithm with different mother wavelets. Our results showed that the overall performance of the CWT algorithm in detecting the two gait events was significantly different when using various mother wavelets. By using different wavelet selection criteria, we also found that the accuracy criteria based on time-error minimization and F1-score maximization could provide the appropriate mother wavelet for gait event detection. The findings from this study will provide an insight on the selection of an appropriate mother wavelet for gait event detection and facilitate the development of adequate rehabilitation aids. |
Author | Samuel, Oluwarotimi Williams Ji, Ning Xu, Lisheng Guo, Kaifeng Zhou, Hui Huang, Zhen Li, Guanglin |
AuthorAffiliation | 3 School of Automation, Nanjing University of Science and Technology, Nanjing 210094, China 1 College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110819, China 2 CAS Key Lab of Human-Machine Intelligence-Synergy Systems of Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen 518055, China 4 Panyu Central Hospital, Guangzhou 511400, China |
AuthorAffiliation_xml | – name: 1 College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110819, China – name: 3 School of Automation, Nanjing University of Science and Technology, Nanjing 210094, China – name: 4 Panyu Central Hospital, Guangzhou 511400, China – name: 2 CAS Key Lab of Human-Machine Intelligence-Synergy Systems of Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen 518055, China |
Author_xml | – sequence: 1 givenname: Ning orcidid: 0000-0001-7702-1537 surname: Ji fullname: Ji, Ning – sequence: 2 givenname: Hui surname: Zhou fullname: Zhou, Hui – sequence: 3 givenname: Kaifeng surname: Guo fullname: Guo, Kaifeng – sequence: 4 givenname: Oluwarotimi Williams surname: Samuel fullname: Samuel, Oluwarotimi Williams – sequence: 5 givenname: Zhen surname: Huang fullname: Huang, Zhen – sequence: 6 givenname: Lisheng orcidid: 0000-0001-8360-3605 surname: Xu fullname: Xu, Lisheng – sequence: 7 givenname: Guanglin surname: Li fullname: Li, Guanglin |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31398903$$D View this record in MEDLINE/PubMed |
BookMark | eNplkk1vEzEQhleoiH7AgT-ALHGBQ6i9duzdC1Ia-hGpiEsRR2vsnU1cbexgeyPlF_C3cUlbteU0Y_udR-N35rg68MFjVb1n9AvnLT1NrGWSC1m_qo6YqMWkqWt68CQ_rI5TuqW05pw3b6pDznjbtJQfVX9mm00Mm-ggI_ke8goj-QVbHDAn0odI5sFn58cwJnIJLpPzLfpMvmFGm13w5AwSdqQkN26Nk4uIv0f0dkdmHoZdcnvIFa7dZsClswR8V44w5NWOLHzntq4bYUhvq9d9CfjuPp5UPy_Ob-ZXk-sfl4v57HpihWzzRFrsOShDVY3KIoXGtCW1RsFUgKFG2t4qyVjftKi44MCs5Iw1aCwaofhJtdhzuwC3uvx7DXGnAzj97yLEpYaYnR1Qd00LwLuCklJMlTGWoTCMGassCNsX1tc9azOaNXa2GBNheAZ9_uLdSi_DVktVU8FlAXy6B8RQbEtZr12yOAzgsRiu61qxRqgppUX68YX0NoyxeFxUnLKGTylvi-rD044eW3mYdxGc7gU2hpQi9tq6DHeDLA26QTOq7zZKP25Uqfj8ouIB-r_2L7cSzYk |
CitedBy_id | crossref_primary_10_3389_fneur_2023_1247532 crossref_primary_10_21595_jve_2022_22319 crossref_primary_10_3390_s23020745 crossref_primary_10_1063_5_0056893 crossref_primary_10_3390_s22208016 crossref_primary_10_35414_akufemubid_856995 crossref_primary_10_1186_s12984_024_01405_x crossref_primary_10_3390_s22041678 crossref_primary_10_3390_s22103859 crossref_primary_10_3390_app14020816 crossref_primary_10_3390_s20143972 crossref_primary_10_3390_s22166282 crossref_primary_10_1016_j_bspc_2024_106577 crossref_primary_10_3390_app12136470 crossref_primary_10_3390_s22113980 crossref_primary_10_1016_j_apmr_2023_10_008 crossref_primary_10_3390_s19245499 crossref_primary_10_1016_j_gaitpost_2024_05_033 crossref_primary_10_3357_AMHP_5961_2022 crossref_primary_10_1109_TRO_2021_3122975 crossref_primary_10_3390_info13020101 crossref_primary_10_1007_s00170_022_08792_2 crossref_primary_10_1186_s12984_021_00828_0 crossref_primary_10_1016_j_medengphy_2021_04_004 |
Cites_doi | 10.1109/TITB.2010.2047402 10.1109/TNSRE.2013.2239313 10.3390/s16101634 10.1016/j.medengphy.2013.10.004 10.1016/j.medengphy.2009.10.014 10.1109/7333.918277 10.1109/TBME.2018.2876068 10.4028/www.scientific.net/AMM.393.953 10.1016/j.gaitpost.2004.06.009 10.1109/TITB.2009.2022913 10.3390/s16040475 10.1109/TNSRE.2002.806832 10.1016/j.gaitpost.2017.07.030 10.1109/TNSRE.2016.2536278 10.3390/s18041091 10.3390/s151129015 10.1016/j.neunet.2018.08.023 10.1016/j.eswa.2010.11.050 10.1016/j.gaitpost.2008.01.019 10.1155/2016/4073584 10.1016/j.pmrj.2018.02.012 10.1016/j.gaitpost.2016.09.023 10.1007/978-3-319-46532-6_65 10.1109/83.887972 10.1016/j.gaitpost.2012.02.019 10.1016/j.dsp.2005.12.003 10.1109/TITB.2011.2112773 10.1186/s12984-016-0145-6 10.1109/86.867873 10.3389/fneur.2017.00457 10.1589/jpts.26.1941 10.1109/TNSRE.2018.2811415 10.1109/IEMBS.2009.5333137 10.1109/TSP.2008.2007607 10.3390/s100201154 10.1016/j.gaitpost.2009.11.014 10.1016/S0966-6362(00)00095-3 10.1016/j.bspc.2017.08.017 10.1109/TNSRE.2014.2337914 |
ContentType | Journal Article |
Copyright | 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2019 by the authors. 2019 |
Copyright_xml | – notice: 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2019 by the authors. 2019 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/s19163462 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection (ProQuest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_d89aa3d1f866457bbc1e4b11bc7ca4cf PMC6720436 31398903 10_3390_s19163462 |
Genre | Journal Article |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M CGR CUY CVF ECM EIF NPM 3V. 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c469t-6cef3a7b072e7ce0a8b972ecb7a54ab0b6cfc7611f89e7343a1c63118ebceb473 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:32:11 EDT 2025 Thu Aug 21 18:29:59 EDT 2025 Sun Aug 24 03:45:02 EDT 2025 Fri Jul 25 20:39:46 EDT 2025 Thu Apr 03 07:09:10 EDT 2025 Tue Jul 01 00:42:03 EDT 2025 Thu Apr 24 22:58:21 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Keywords | hemiplegic gait acceleration signal gait event detection wavelet-selection criteria appropriate mother wavelet |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c469t-6cef3a7b072e7ce0a8b972ecb7a54ab0b6cfc7611f89e7343a1c63118ebceb473 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-7702-1537 0000-0001-8360-3605 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s19163462 |
PMID | 31398903 |
PQID | 2301835039 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_d89aa3d1f866457bbc1e4b11bc7ca4cf pubmedcentral_primary_oai_pubmedcentral_nih_gov_6720436 proquest_miscellaneous_2271847500 proquest_journals_2301835039 pubmed_primary_31398903 crossref_citationtrail_10_3390_s19163462 crossref_primary_10_3390_s19163462 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20190808 |
PublicationDateYYYYMMDD | 2019-08-08 |
PublicationDate_xml | – month: 8 year: 2019 text: 20190808 day: 8 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2019 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Chen (ref_41) 2005; 22 Alvarez (ref_36) 2010; 31 Khandelwal (ref_21) 2018; 59 ref_33 Skelly (ref_5) 2002; 9 ref_18 ref_39 Khandelwal (ref_13) 2016; 24 ref_16 ref_38 Mannini (ref_7) 2010; 10 Chau (ref_29) 2001; 13 Rafiee (ref_31) 2011; 38 Lopezmeyer (ref_8) 2011; 15 Aung (ref_24) 2013; 21 Lyons (ref_2) 2002; 10 (ref_9) 2010; 14 Pham (ref_22) 2017; 8 Khandelwal (ref_28) 2016; 51 Sota (ref_40) 2018; 10 Lilly (ref_42) 2009; 57 Singh (ref_15) 2006; 16 Catalfamo (ref_37) 2008; 28 Rueterbories (ref_4) 2014; 36 Bejarano (ref_10) 2015; 23 ref_25 Encarna (ref_11) 2016; 13 Lai (ref_14) 2009; 13 Williamson (ref_12) 2000; 8 Orellana (ref_35) 2018; 39 Mccamley (ref_20) 2012; 36 Kotiadis (ref_3) 2010; 32 ref_27 Cho (ref_34) 2014; 26 Beritelli (ref_19) 2018; 108 ref_26 Glowinski (ref_23) 2017; 16 Rackov (ref_32) 2000; 9 Ali (ref_17) 2015; 15 Cui (ref_1) 2018; 24 ref_6 Ngui (ref_30) 2013; 393 |
References_xml | – volume: 14 start-page: 1180 year: 2010 ident: ref_9 article-title: A symbol-based approach to gait analysis from acceleration signals: Identification and detection of gait events and a new measure of gait symmetry publication-title: IEEE Trans. Inf. Technol. Biomed. doi: 10.1109/TITB.2010.2047402 – volume: 21 start-page: 908 year: 2013 ident: ref_24 article-title: Automated detection of instantaneous gait events using time frequency analysis and manifold embedding publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2013.2239313 – ident: ref_26 doi: 10.3390/s16101634 – volume: 36 start-page: 502 year: 2014 ident: ref_4 article-title: Gait event detection for use in FES rehabilitation by radial and tangential foot accelerations publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2013.10.004 – volume: 32 start-page: 287 year: 2010 ident: ref_3 article-title: Inertial Gait Phase Detection for control of a drop foot stimulator Inertial sensing for gait phase detection publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2009.10.014 – volume: 9 start-page: 59 year: 2002 ident: ref_5 article-title: Real-time gait event detection for paraplegic FES walking publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/7333.918277 – ident: ref_18 doi: 10.1109/TBME.2018.2876068 – volume: 393 start-page: 953 year: 2013 ident: ref_30 article-title: Wavelet Analysis: Mother Wavelet Selection Methods publication-title: Appl. Mech. Mater. doi: 10.4028/www.scientific.net/AMM.393.953 – volume: 22 start-page: 51 year: 2005 ident: ref_41 article-title: Gait differences between individuals with post-stroke hemiparesis and non-disabled controls at matched speeds publication-title: Gait Posture doi: 10.1016/j.gaitpost.2004.06.009 – volume: 13 start-page: 687 year: 2009 ident: ref_14 article-title: Computational intelligence in gait research: A perspective on current applications and future challenges publication-title: IEEE Trans. Inf. Technol. Biomed. doi: 10.1109/TITB.2009.2022913 – ident: ref_27 doi: 10.3390/s16040475 – volume: 10 start-page: 260 year: 2002 ident: ref_2 article-title: A review of portable FES-based neural orthoses for the correction of drop foot publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2002.806832 – ident: ref_16 – ident: ref_39 – volume: 59 start-page: 278 year: 2018 ident: ref_21 article-title: Novel methodology for estimating Initial Contact events from accelerometers positioned at different body locations publication-title: Gait Posture doi: 10.1016/j.gaitpost.2017.07.030 – volume: 24 start-page: 1363 year: 2016 ident: ref_13 article-title: Gait Event Detection in Real-World Environment for Long-Term Applications: Incorporating Domain Knowledge into Time-Frequency Analysis publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2016.2536278 – ident: ref_38 doi: 10.3390/s18041091 – volume: 15 start-page: 29015 year: 2015 ident: ref_17 article-title: Selection of Mother Wavelet Functions for Multi-Channel EEG Signal Analysis during a Working Memory Task publication-title: Sensors doi: 10.3390/s151129015 – volume: 108 start-page: 331 year: 2018 ident: ref_19 article-title: A novel training method to preserve generalization of RBPNN classifiers applied to ECG signals diagnosis publication-title: Neural Netw. doi: 10.1016/j.neunet.2018.08.023 – volume: 38 start-page: 6190 year: 2011 ident: ref_31 article-title: Wavelet basis functions in biomedical signal processing publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2010.11.050 – volume: 28 start-page: 420 year: 2008 ident: ref_37 article-title: Detection of gait events using an F-Scan in-shoe pressure measurement system publication-title: Gait Posture doi: 10.1016/j.gaitpost.2008.01.019 – ident: ref_6 doi: 10.1155/2016/4073584 – volume: 10 start-page: 798 year: 2018 ident: ref_40 article-title: Examination of factors related to the effect of improving gait speed with functional electrical stimulation intervention for patients with stroke publication-title: PM&R doi: 10.1016/j.pmrj.2018.02.012 – volume: 51 start-page: 84 year: 2016 ident: ref_28 article-title: Evaluation of the performance of accelerometer-based gait event detection algorithms in different real-world scenarios using the MAREA gait database publication-title: Gait Posture doi: 10.1016/j.gaitpost.2016.09.023 – volume: 16 start-page: 397 year: 2017 ident: ref_23 article-title: Human Gait Feature Detection Using Inertial Sensors Wavelets publication-title: Wearable Robot. Chall. Trends doi: 10.1007/978-3-319-46532-6_65 – volume: 9 start-page: 2043 year: 2000 ident: ref_32 article-title: On the selection of an optimal wavelet basis for texture characterization publication-title: IEEE Trans. Image Process. doi: 10.1109/83.887972 – volume: 36 start-page: 316 year: 2012 ident: ref_20 article-title: An enhanced estimate of initial contact and final contact instants of time using lower trunk inertial sensor data publication-title: Gait Posture doi: 10.1016/j.gaitpost.2012.02.019 – volume: 16 start-page: 275 year: 2006 ident: ref_15 article-title: Optimal selection of wavelet basis function applied to ECG signal denoising publication-title: Digit. Signal Process. doi: 10.1016/j.dsp.2005.12.003 – ident: ref_33 – volume: 15 start-page: 594 year: 2011 ident: ref_8 article-title: Automatic Detection of Temporal Gait Parameters in Poststroke Individuals publication-title: IEEE Trans. Inf. Technol. Biomed. doi: 10.1109/TITB.2011.2112773 – volume: 13 start-page: 38 year: 2016 ident: ref_11 article-title: A novel accelerometry-based algorithm for the detection of step durations over short episodes of gait in healthy elderly publication-title: J. Neuroeng. Rehabil. doi: 10.1186/s12984-016-0145-6 – volume: 8 start-page: 312 year: 2000 ident: ref_12 article-title: Gait event detection for FES using accelerometers and supervised machine learning publication-title: IEEE Trans. Rehabil. Eng. doi: 10.1109/86.867873 – volume: 8 start-page: 457 year: 2017 ident: ref_22 article-title: Validation of a Step Detection Algorithm during Straight Walking and Turning in Patients with Parkinson’s Disease and Older Adults Using an Inertial Measurement Unit at the Lower Back publication-title: Front. Neurol. doi: 10.3389/fneur.2017.00457 – volume: 26 start-page: 1941 year: 2014 ident: ref_34 article-title: Factors Related to Gait Function in Post-stroke Patients publication-title: J. Phys. Ther. Sci. doi: 10.1589/jpts.26.1941 – volume: 24 start-page: 856 year: 2018 ident: ref_1 article-title: Simultaneous Recognition and Assessment of Post-Stroke Hemiparetic Gait by Fusing Kinematic, Kinetic, and Electrophysiological Data publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2018.2811415 – ident: ref_25 doi: 10.1109/IEMBS.2009.5333137 – volume: 57 start-page: 146 year: 2009 ident: ref_42 article-title: Higher-Order Properties of Analytic Wavelets publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2008.2007607 – volume: 10 start-page: 1154 year: 2010 ident: ref_7 article-title: Machine Learning Methods for Classifying Human Physical Activity from on-Body Accelerometers publication-title: Sensors doi: 10.3390/s100201154 – volume: 31 start-page: 322 year: 2010 ident: ref_36 article-title: Real-time gait event detection for normal subjects from lower trunk accelerations publication-title: Gait Posture doi: 10.1016/j.gaitpost.2009.11.014 – volume: 13 start-page: 102 year: 2001 ident: ref_29 article-title: A review of analytical techniques for gait data. Part 2: Neural network and wavelet methods publication-title: Gait Posture doi: 10.1016/S0966-6362(00)00095-3 – volume: 39 start-page: 431 year: 2018 ident: ref_35 article-title: Multiscale time irreversibility: Is it useful in the analysis of human gait? publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2017.08.017 – volume: 23 start-page: 413 year: 2015 ident: ref_10 article-title: A Novel Adaptive, Real-Time Algorithm to Detect Gait Events from Wearable Sensors publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2014.2337914 |
SSID | ssj0023338 |
Score | 2.430489 |
Snippet | Gait event detection is a crucial step towards the effective assessment and rehabilitation of motor dysfunctions. Recently, the continuous wavelet transform... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 3462 |
SubjectTerms | acceleration signal Accelerometry Adult Algorithms appropriate mother wavelet Artificial intelligence Female Gait Gait - physiology gait event detection Hemiplegia - physiopathology hemiplegic gait Humans Machine learning Male Middle Aged Paralysis Posture Sensors Signal processing Stroke Time Factors Wavelet Analysis Wavelet transforms wavelet-selection criteria Young Adult |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iSQ_i2_oiigcvxXaTJs3R17oKelL0VpJ0igtaF7ce_AX-bWfabtkVwYu30oSSZmYy8yWTbxg7itGpFBYtTQIkodSFIZuj7TAXu8jndJRG2RZ3avAgb56Sp6lSX5QT1tADNxN3kqfGWpHHRaqUTLRzPgbp4th57a30Ba2-6PMmYKqFWgKRV8MjJBDUn4wRlSghVW_G-9Qk_b9Flj8TJKc8Tn-ZLbWhIj9thrjC5qBcZYtTBIJr7OuUKMFHqEQV8Nv6MhV_tFRLohpzDEc5kU8Nyw-E9_zKDit-SemN_AKqOgOr5GfoxHKOD3QVJOy_N4nVn3zCVVJ_ZACvtB2PayS3Zc6bm0uf_Lq7yzVeZw_9y_vzQdiWVgg94uEqVB4KYbWLdA-0h8imzuCjd9om0rrIKV94rWKcdgNaSGFjrwSCEXAenNRig82XbyVsMa5SIEIeKXLvJBhpPUYYVCbQ5Bi7WBOw48mUZ77lHafyFy8Z4g-STtZJJ2CHXddRQ7bxW6czklvXgfix6xeoNVmrNdlfWhOw3YnUs9ZoxxmiMVzgkkjgmA-6ZjQ3OkOxJaCssl4PnbnEMCsK2GajJN1IBEbTqYlEwPSM-swMdbalHD7XlN6KagUJtf0f_7bDFtAATZ2lmO6y-er9A_Ywcqrcfm0k36eoG68 priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwEB1BucAB8U2gIIM4cImarB07PqEWul2Q4ERFb5HtTMpKkF026aG_gL_NjJMNXVRxi2IrsjIznjf2zBuANzk5lcaRpSnEIlWmsWxzfBzmc5-Fmq_SONvii16cqk9nxdl44NaNaZXbPTFu1PUq8Bn5AUFl0r4ik_bd-lfKXaP4dnVsoXETbuXkaTilq5yfTAGXpPhrYBOSFNofdBSbaKn0bMcHRar-6_Dlv2mSV_zO_B7cHQGjOBwkfB9uYPsA7lyhEXwIvw-ZGHxNqtSj-BxLqsQ3xx0l-k4QKBVMQbVsLyjIFydu2YtjTnIUH7CPeVitOCJXVgt64IKQdL4Z0qsvxZaxJH5kgT_5UJ52SuHaWgz1S5fi41TR1T2C0_nx1_eLdGywkAaKivtUB2ykMz4zMzQBM1d6S4_BG1co5zOvQxOMzvOmtGikki4PWlJIgj6gV0Y-hr121eJTELpEpuVRsg5eoVUuEM7gZoG2JgTjbAJvt7-8CiP7ODfB-FFRFMLSqSbpJPB6mroeKDeum3TEcpsmMEt2fLHanFej0VV1aZ2TNS1fa1UY70OOyue5DyY4FZoE9rdSr0bT7aq_ipbAq2mYjI5vUlyLJKtqNiOXrghsZQk8GZRkWokkTF3aTCZgdtRnZ6m7I-3yeyT21twxSOpn_1_Wc7hNBmZjFmK5D3v95gJfEDLq_cuo_n8A9OwRlQ priority: 102 providerName: ProQuest |
Title | Appropriate Mother Wavelets for Continuous Gait Event Detection Based on Time-Frequency Analysis for Hemiplegic and Healthy Individuals |
URI | https://www.ncbi.nlm.nih.gov/pubmed/31398903 https://www.proquest.com/docview/2301835039 https://www.proquest.com/docview/2271847500 https://pubmed.ncbi.nlm.nih.gov/PMC6720436 https://doaj.org/article/d89aa3d1f866457bbc1e4b11bc7ca4cf |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6V9gIHxJuUsjKIA5dAsnbs5IBQF3a7ILVCiBV7i2zHgZXatOymEvsL-NvMOA81aA9coihxEivj8cxnz3wD8CpGo1Jq1DThXBIKVWakc7QcZmIT2YK20ija4kzOF-LzMlnuQVdjs_2Bm53QjupJLdbnb37_2r5HhX9HiBMh-9sNYg7JBc3EB2iQFBUyOBX9ZsKYc1_QmnK6QrSHUUMwNHx0YJY8e_8ul_PfyMkbpmh2D-62PiQ7boR-H_Zc9QDu3GAWfAh_jokr_ApHV-3Yqc-yYt81FZmoNwz9VEasVKvqGnE_O9Grmk0p7pF9dLUPzarYBK1bwfCEckTC2bqJuN6yjsTEv2TuLmidHidPpquCNSlNW_apT_LaPILFbPrtwzxsay6EFoFyHUrrSq6VidTYKesinZoMT61ROhHaREba0ioZx2WaOcUF17GVHFGKM9YZofhj2K8uK_cUmEwdMfUIXlgjXCa0RdeD6gdmBTo1OgvgdffLc9sSklNdjPMcgQlJJ--lE8DLvulVw8Kxq9GE5NY3IOJsf-Fy_SNv9TAv0kxrXmD3pRSJMsbGTpg4NlZZLWwZwFEn9bwbjDnCNJz5kohjn1_0t1EPaXNFVw5llY_HaOUF-l9RAE-aQdL3hKObnWYRD0ANhs-gq8M71eqn5_qWVESIy8P_-O4zuI2Kl_noxPQI9uv1tXuOHlNtRnBLLRUe09nJCA4m07MvX0d-9WHkNeUvJkYbRg |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiDeBAgaBxCVqEjtOfECopd3u0sepFb0F23FgJcgum6zQ_gL-Db-Rmbzooopbb1FsWVZmxvNNPPMNwOsQnUqh0dKEc7EvkkKRzdHvMBOawOZ0lUbZFidyfCY-nsfnG_C7r4WhtMr-TGwO6nxm6R_5NkJl1L444Or9_IdPXaPodrVvodGqxaFb_cSQrXo32UP5vomi0f7ph7HfdRXwLYaCtS-tK7hOTJBELrEu0KlR-GhNomOhTWCkLSwG92GRKpdwwXVoJUcc7ox1RiQc170G1wVHT06V6aODIcDjGO-17EU4GGxXGAtJLmS05vOa1gCX4dl_0zIv-LnRHbjdAVS202rUXdhw5T24dYG28D782iEi8jmqbu3YcVPCxT5p6mBRVwxBMCPKq2m5nC0rdqCnNdunpEq25-om76tku-g6c4YPVIDijxZtOveK9QwpzSJj950uAfBkZrrMWVsvtWKToYKsegBnV_LpH8JmOSvdY2AydUQDJHhujXBKaIu4hpoTqhwRk1YevO0_eWY7tnNquvEtw6iHpJMN0vHg1TB13lJ8XDZpl-Q2TCBW7ubFbPEl64w8y1OlNc9x-1KKODHGhk6YMDQ2sVrYwoOtXupZd1RU2V_F9uDlMIxGTjc3unQoqyyKEEIIBHeBB49aJRl2whHDpyrgHiRr6rO21fWRcvq1IRKX1KGIyyf_39YLuDE-PT7KjiYnh0_hJhq3ajIg0y3YrBdL9wxRWW2eN6bA4PNV294fV0dQHw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NjtMwELaWroTggPgnsIBBIHGJmsSuHR8Q2tKWloVqhVixt2A7DlSCtDSpUJ-Ad-LpmMkfW7TitjcrsSzLM2N_Y898Q8izEA6VTIOlcecGPpeZQpvD6zATmsCm-JSG0RZzMT3hb08Hp3vkd5sLg2GV7Z5YbdTp0uIdeR-gMmjfIGCqnzVhEcejyavVDx8rSOFLa1tOo1aRI7f9Ce5b8XI2Alk_j6LJ-OPrqd9UGPAtuIWlL6zLmJYmkJGT1gU6Ngqa1kg94NoERtjMgqMfZrFyknGmQysYYHJnrDNcMhj3EtmX6BX1yP5wPD_-0Ll7DLy_msuIMRX0C_CMBOMi2jkBq0IB56Hbf4M0z5x6k-vkWgNX6WGtXzfInstvkqtnSAxvkV-HSEu-AkUuHX1fJXTRTxrrWZQFBUhMkQBrkW-Wm4K-0YuSjjHEko5cWUWB5XQIB2lKoYHpKP5kXQd3b2nLl1INMnXf8UkA9mmq85TW2VNbOuvyyYrb5ORCFv8O6eXL3N0jVMQOSYE4S63hTnFtAeVgqUKVAn7SyiMv2iVPbMN9jiU4viXgA6F0kk46HnnadV3VhB_ndRqi3LoOyNFdfViuvySNySdprLRmKUxfCD6QxtjQcROGxkqruc08ctBKPWk2jiL5q-YeedL9BpPHdxydO5BVEkUAKDhAvcAjd2sl6WbCANHHKmAekTvqszPV3T_54mtFKy6wXhET9_8_rcfkMthd8m42P3pAroClqyocMj4gvXK9cQ8BopXmUWMLlHy-aPP7AyuaVbE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Appropriate+Mother+Wavelets+for+Continuous+Gait+Event+Detection+Based+on+Time-Frequency+Analysis+for+Hemiplegic+and+Healthy+Individuals&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Ji%2C+Ning&rft.au=Zhou%2C+Hui&rft.au=Guo%2C+Kaifeng&rft.au=Samuel%2C+Oluwarotimi+Williams&rft.date=2019-08-08&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=19&rft.issue=16&rft_id=info:doi/10.3390%2Fs19163462&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |