Appropriate Mother Wavelets for Continuous Gait Event Detection Based on Time-Frequency Analysis for Hemiplegic and Healthy Individuals

Gait event detection is a crucial step towards the effective assessment and rehabilitation of motor dysfunctions. Recently, the continuous wavelet transform (CWT) based methods have been increasingly proposed for gait event detection due to their robustness. However, few investigations on determinin...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 19; no. 16; p. 3462
Main Authors Ji, Ning, Zhou, Hui, Guo, Kaifeng, Samuel, Oluwarotimi Williams, Huang, Zhen, Xu, Lisheng, Li, Guanglin
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 08.08.2019
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Gait event detection is a crucial step towards the effective assessment and rehabilitation of motor dysfunctions. Recently, the continuous wavelet transform (CWT) based methods have been increasingly proposed for gait event detection due to their robustness. However, few investigations on determining the appropriate mother wavelet with proper selection criteria have been performed, especially for hemiplegic patients. In this study, the performances of commonly used mother wavelets in detecting gait events were systematically investigated. The acceleration signals from the tibialis anterior muscle of both healthy and hemiplegic subjects were recorded during ground walking and the two core gait events of heel strike (HS) and toe off (TO) were detected from the signal recordings by a CWT algorithm with different mother wavelets. Our results showed that the overall performance of the CWT algorithm in detecting the two gait events was significantly different when using various mother wavelets. By using different wavelet selection criteria, we also found that the accuracy criteria based on time-error minimization and F1-score maximization could provide the appropriate mother wavelet for gait event detection. The findings from this study will provide an insight on the selection of an appropriate mother wavelet for gait event detection and facilitate the development of adequate rehabilitation aids.
AbstractList Gait event detection is a crucial step towards the effective assessment and rehabilitation of motor dysfunctions. Recently, the continuous wavelet transform (CWT) based methods have been increasingly proposed for gait event detection due to their robustness. However, few investigations on determining the appropriate mother wavelet with proper selection criteria have been performed, especially for hemiplegic patients. In this study, the performances of commonly used mother wavelets in detecting gait events were systematically investigated. The acceleration signals from the tibialis anterior muscle of both healthy and hemiplegic subjects were recorded during ground walking and the two core gait events of heel strike (HS) and toe off (TO) were detected from the signal recordings by a CWT algorithm with different mother wavelets. Our results showed that the overall performance of the CWT algorithm in detecting the two gait events was significantly different when using various mother wavelets. By using different wavelet selection criteria, we also found that the accuracy criteria based on time-error minimization and F1-score maximization could provide the appropriate mother wavelet for gait event detection. The findings from this study will provide an insight on the selection of an appropriate mother wavelet for gait event detection and facilitate the development of adequate rehabilitation aids.
Gait event detection is a crucial step towards the effective assessment and rehabilitation of motor dysfunctions. Recently, the continuous wavelet transform (CWT) based methods have been increasingly proposed for gait event detection due to their robustness. However, few investigations on determining the appropriate mother wavelet with proper selection criteria have been performed, especially for hemiplegic patients. In this study, the performances of commonly used mother wavelets in detecting gait events were systematically investigated. The acceleration signals from the tibialis anterior muscle of both healthy and hemiplegic subjects were recorded during ground walking and the two core gait events of heel strike (HS) and toe off (TO) were detected from the signal recordings by a CWT algorithm with different mother wavelets. Our results showed that the overall performance of the CWT algorithm in detecting the two gait events was significantly different when using various mother wavelets. By using different wavelet selection criteria, we also found that the accuracy criteria based on time-error minimization and F1-score maximization could provide the appropriate mother wavelet for gait event detection. The findings from this study will provide an insight on the selection of an appropriate mother wavelet for gait event detection and facilitate the development of adequate rehabilitation aids.Gait event detection is a crucial step towards the effective assessment and rehabilitation of motor dysfunctions. Recently, the continuous wavelet transform (CWT) based methods have been increasingly proposed for gait event detection due to their robustness. However, few investigations on determining the appropriate mother wavelet with proper selection criteria have been performed, especially for hemiplegic patients. In this study, the performances of commonly used mother wavelets in detecting gait events were systematically investigated. The acceleration signals from the tibialis anterior muscle of both healthy and hemiplegic subjects were recorded during ground walking and the two core gait events of heel strike (HS) and toe off (TO) were detected from the signal recordings by a CWT algorithm with different mother wavelets. Our results showed that the overall performance of the CWT algorithm in detecting the two gait events was significantly different when using various mother wavelets. By using different wavelet selection criteria, we also found that the accuracy criteria based on time-error minimization and F1-score maximization could provide the appropriate mother wavelet for gait event detection. The findings from this study will provide an insight on the selection of an appropriate mother wavelet for gait event detection and facilitate the development of adequate rehabilitation aids.
Author Samuel, Oluwarotimi Williams
Ji, Ning
Xu, Lisheng
Guo, Kaifeng
Zhou, Hui
Huang, Zhen
Li, Guanglin
AuthorAffiliation 3 School of Automation, Nanjing University of Science and Technology, Nanjing 210094, China
1 College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110819, China
2 CAS Key Lab of Human-Machine Intelligence-Synergy Systems of Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen 518055, China
4 Panyu Central Hospital, Guangzhou 511400, China
AuthorAffiliation_xml – name: 1 College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110819, China
– name: 3 School of Automation, Nanjing University of Science and Technology, Nanjing 210094, China
– name: 4 Panyu Central Hospital, Guangzhou 511400, China
– name: 2 CAS Key Lab of Human-Machine Intelligence-Synergy Systems of Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen 518055, China
Author_xml – sequence: 1
  givenname: Ning
  orcidid: 0000-0001-7702-1537
  surname: Ji
  fullname: Ji, Ning
– sequence: 2
  givenname: Hui
  surname: Zhou
  fullname: Zhou, Hui
– sequence: 3
  givenname: Kaifeng
  surname: Guo
  fullname: Guo, Kaifeng
– sequence: 4
  givenname: Oluwarotimi Williams
  surname: Samuel
  fullname: Samuel, Oluwarotimi Williams
– sequence: 5
  givenname: Zhen
  surname: Huang
  fullname: Huang, Zhen
– sequence: 6
  givenname: Lisheng
  orcidid: 0000-0001-8360-3605
  surname: Xu
  fullname: Xu, Lisheng
– sequence: 7
  givenname: Guanglin
  surname: Li
  fullname: Li, Guanglin
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31398903$$D View this record in MEDLINE/PubMed
BookMark eNplkk1vEzEQhleoiH7AgT-ALHGBQ6i9duzdC1Ia-hGpiEsRR2vsnU1cbexgeyPlF_C3cUlbteU0Y_udR-N35rg68MFjVb1n9AvnLT1NrGWSC1m_qo6YqMWkqWt68CQ_rI5TuqW05pw3b6pDznjbtJQfVX9mm00Mm-ggI_ke8goj-QVbHDAn0odI5sFn58cwJnIJLpPzLfpMvmFGm13w5AwSdqQkN26Nk4uIv0f0dkdmHoZdcnvIFa7dZsClswR8V44w5NWOLHzntq4bYUhvq9d9CfjuPp5UPy_Ob-ZXk-sfl4v57HpihWzzRFrsOShDVY3KIoXGtCW1RsFUgKFG2t4qyVjftKi44MCs5Iw1aCwaofhJtdhzuwC3uvx7DXGnAzj97yLEpYaYnR1Qd00LwLuCklJMlTGWoTCMGassCNsX1tc9azOaNXa2GBNheAZ9_uLdSi_DVktVU8FlAXy6B8RQbEtZr12yOAzgsRiu61qxRqgppUX68YX0NoyxeFxUnLKGTylvi-rD044eW3mYdxGc7gU2hpQi9tq6DHeDLA26QTOq7zZKP25Uqfj8ouIB-r_2L7cSzYk
CitedBy_id crossref_primary_10_3389_fneur_2023_1247532
crossref_primary_10_21595_jve_2022_22319
crossref_primary_10_3390_s23020745
crossref_primary_10_1063_5_0056893
crossref_primary_10_3390_s22208016
crossref_primary_10_35414_akufemubid_856995
crossref_primary_10_1186_s12984_024_01405_x
crossref_primary_10_3390_s22041678
crossref_primary_10_3390_s22103859
crossref_primary_10_3390_app14020816
crossref_primary_10_3390_s20143972
crossref_primary_10_3390_s22166282
crossref_primary_10_1016_j_bspc_2024_106577
crossref_primary_10_3390_app12136470
crossref_primary_10_3390_s22113980
crossref_primary_10_1016_j_apmr_2023_10_008
crossref_primary_10_3390_s19245499
crossref_primary_10_1016_j_gaitpost_2024_05_033
crossref_primary_10_3357_AMHP_5961_2022
crossref_primary_10_1109_TRO_2021_3122975
crossref_primary_10_3390_info13020101
crossref_primary_10_1007_s00170_022_08792_2
crossref_primary_10_1186_s12984_021_00828_0
crossref_primary_10_1016_j_medengphy_2021_04_004
Cites_doi 10.1109/TITB.2010.2047402
10.1109/TNSRE.2013.2239313
10.3390/s16101634
10.1016/j.medengphy.2013.10.004
10.1016/j.medengphy.2009.10.014
10.1109/7333.918277
10.1109/TBME.2018.2876068
10.4028/www.scientific.net/AMM.393.953
10.1016/j.gaitpost.2004.06.009
10.1109/TITB.2009.2022913
10.3390/s16040475
10.1109/TNSRE.2002.806832
10.1016/j.gaitpost.2017.07.030
10.1109/TNSRE.2016.2536278
10.3390/s18041091
10.3390/s151129015
10.1016/j.neunet.2018.08.023
10.1016/j.eswa.2010.11.050
10.1016/j.gaitpost.2008.01.019
10.1155/2016/4073584
10.1016/j.pmrj.2018.02.012
10.1016/j.gaitpost.2016.09.023
10.1007/978-3-319-46532-6_65
10.1109/83.887972
10.1016/j.gaitpost.2012.02.019
10.1016/j.dsp.2005.12.003
10.1109/TITB.2011.2112773
10.1186/s12984-016-0145-6
10.1109/86.867873
10.3389/fneur.2017.00457
10.1589/jpts.26.1941
10.1109/TNSRE.2018.2811415
10.1109/IEMBS.2009.5333137
10.1109/TSP.2008.2007607
10.3390/s100201154
10.1016/j.gaitpost.2009.11.014
10.1016/S0966-6362(00)00095-3
10.1016/j.bspc.2017.08.017
10.1109/TNSRE.2014.2337914
ContentType Journal Article
Copyright 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2019 by the authors. 2019
Copyright_xml – notice: 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2019 by the authors. 2019
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s19163462
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection (ProQuest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
CrossRef

MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_d89aa3d1f866457bbc1e4b11bc7ca4cf
PMC6720436
31398903
10_3390_s19163462
Genre Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c469t-6cef3a7b072e7ce0a8b972ecb7a54ab0b6cfc7611f89e7343a1c63118ebceb473
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:32:11 EDT 2025
Thu Aug 21 18:29:59 EDT 2025
Sun Aug 24 03:45:02 EDT 2025
Fri Jul 25 20:39:46 EDT 2025
Thu Apr 03 07:09:10 EDT 2025
Tue Jul 01 00:42:03 EDT 2025
Thu Apr 24 22:58:21 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 16
Keywords hemiplegic gait
acceleration signal
gait event detection
wavelet-selection criteria
appropriate mother wavelet
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c469t-6cef3a7b072e7ce0a8b972ecb7a54ab0b6cfc7611f89e7343a1c63118ebceb473
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7702-1537
0000-0001-8360-3605
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s19163462
PMID 31398903
PQID 2301835039
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_d89aa3d1f866457bbc1e4b11bc7ca4cf
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6720436
proquest_miscellaneous_2271847500
proquest_journals_2301835039
pubmed_primary_31398903
crossref_citationtrail_10_3390_s19163462
crossref_primary_10_3390_s19163462
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190808
PublicationDateYYYYMMDD 2019-08-08
PublicationDate_xml – month: 8
  year: 2019
  text: 20190808
  day: 8
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2019
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Chen (ref_41) 2005; 22
Alvarez (ref_36) 2010; 31
Khandelwal (ref_21) 2018; 59
ref_33
Skelly (ref_5) 2002; 9
ref_18
ref_39
Khandelwal (ref_13) 2016; 24
ref_16
ref_38
Mannini (ref_7) 2010; 10
Chau (ref_29) 2001; 13
Rafiee (ref_31) 2011; 38
Lopezmeyer (ref_8) 2011; 15
Aung (ref_24) 2013; 21
Lyons (ref_2) 2002; 10
(ref_9) 2010; 14
Pham (ref_22) 2017; 8
Khandelwal (ref_28) 2016; 51
Sota (ref_40) 2018; 10
Lilly (ref_42) 2009; 57
Singh (ref_15) 2006; 16
Catalfamo (ref_37) 2008; 28
Rueterbories (ref_4) 2014; 36
Bejarano (ref_10) 2015; 23
ref_25
Encarna (ref_11) 2016; 13
Lai (ref_14) 2009; 13
Williamson (ref_12) 2000; 8
Orellana (ref_35) 2018; 39
Mccamley (ref_20) 2012; 36
Kotiadis (ref_3) 2010; 32
ref_27
Cho (ref_34) 2014; 26
Beritelli (ref_19) 2018; 108
ref_26
Glowinski (ref_23) 2017; 16
Rackov (ref_32) 2000; 9
Ali (ref_17) 2015; 15
Cui (ref_1) 2018; 24
ref_6
Ngui (ref_30) 2013; 393
References_xml – volume: 14
  start-page: 1180
  year: 2010
  ident: ref_9
  article-title: A symbol-based approach to gait analysis from acceleration signals: Identification and detection of gait events and a new measure of gait symmetry
  publication-title: IEEE Trans. Inf. Technol. Biomed.
  doi: 10.1109/TITB.2010.2047402
– volume: 21
  start-page: 908
  year: 2013
  ident: ref_24
  article-title: Automated detection of instantaneous gait events using time frequency analysis and manifold embedding
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2013.2239313
– ident: ref_26
  doi: 10.3390/s16101634
– volume: 36
  start-page: 502
  year: 2014
  ident: ref_4
  article-title: Gait event detection for use in FES rehabilitation by radial and tangential foot accelerations
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2013.10.004
– volume: 32
  start-page: 287
  year: 2010
  ident: ref_3
  article-title: Inertial Gait Phase Detection for control of a drop foot stimulator Inertial sensing for gait phase detection
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2009.10.014
– volume: 9
  start-page: 59
  year: 2002
  ident: ref_5
  article-title: Real-time gait event detection for paraplegic FES walking
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/7333.918277
– ident: ref_18
  doi: 10.1109/TBME.2018.2876068
– volume: 393
  start-page: 953
  year: 2013
  ident: ref_30
  article-title: Wavelet Analysis: Mother Wavelet Selection Methods
  publication-title: Appl. Mech. Mater.
  doi: 10.4028/www.scientific.net/AMM.393.953
– volume: 22
  start-page: 51
  year: 2005
  ident: ref_41
  article-title: Gait differences between individuals with post-stroke hemiparesis and non-disabled controls at matched speeds
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2004.06.009
– volume: 13
  start-page: 687
  year: 2009
  ident: ref_14
  article-title: Computational intelligence in gait research: A perspective on current applications and future challenges
  publication-title: IEEE Trans. Inf. Technol. Biomed.
  doi: 10.1109/TITB.2009.2022913
– ident: ref_27
  doi: 10.3390/s16040475
– volume: 10
  start-page: 260
  year: 2002
  ident: ref_2
  article-title: A review of portable FES-based neural orthoses for the correction of drop foot
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2002.806832
– ident: ref_16
– ident: ref_39
– volume: 59
  start-page: 278
  year: 2018
  ident: ref_21
  article-title: Novel methodology for estimating Initial Contact events from accelerometers positioned at different body locations
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2017.07.030
– volume: 24
  start-page: 1363
  year: 2016
  ident: ref_13
  article-title: Gait Event Detection in Real-World Environment for Long-Term Applications: Incorporating Domain Knowledge into Time-Frequency Analysis
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2016.2536278
– ident: ref_38
  doi: 10.3390/s18041091
– volume: 15
  start-page: 29015
  year: 2015
  ident: ref_17
  article-title: Selection of Mother Wavelet Functions for Multi-Channel EEG Signal Analysis during a Working Memory Task
  publication-title: Sensors
  doi: 10.3390/s151129015
– volume: 108
  start-page: 331
  year: 2018
  ident: ref_19
  article-title: A novel training method to preserve generalization of RBPNN classifiers applied to ECG signals diagnosis
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2018.08.023
– volume: 38
  start-page: 6190
  year: 2011
  ident: ref_31
  article-title: Wavelet basis functions in biomedical signal processing
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2010.11.050
– volume: 28
  start-page: 420
  year: 2008
  ident: ref_37
  article-title: Detection of gait events using an F-Scan in-shoe pressure measurement system
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2008.01.019
– ident: ref_6
  doi: 10.1155/2016/4073584
– volume: 10
  start-page: 798
  year: 2018
  ident: ref_40
  article-title: Examination of factors related to the effect of improving gait speed with functional electrical stimulation intervention for patients with stroke
  publication-title: PM&R
  doi: 10.1016/j.pmrj.2018.02.012
– volume: 51
  start-page: 84
  year: 2016
  ident: ref_28
  article-title: Evaluation of the performance of accelerometer-based gait event detection algorithms in different real-world scenarios using the MAREA gait database
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2016.09.023
– volume: 16
  start-page: 397
  year: 2017
  ident: ref_23
  article-title: Human Gait Feature Detection Using Inertial Sensors Wavelets
  publication-title: Wearable Robot. Chall. Trends
  doi: 10.1007/978-3-319-46532-6_65
– volume: 9
  start-page: 2043
  year: 2000
  ident: ref_32
  article-title: On the selection of an optimal wavelet basis for texture characterization
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/83.887972
– volume: 36
  start-page: 316
  year: 2012
  ident: ref_20
  article-title: An enhanced estimate of initial contact and final contact instants of time using lower trunk inertial sensor data
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2012.02.019
– volume: 16
  start-page: 275
  year: 2006
  ident: ref_15
  article-title: Optimal selection of wavelet basis function applied to ECG signal denoising
  publication-title: Digit. Signal Process.
  doi: 10.1016/j.dsp.2005.12.003
– ident: ref_33
– volume: 15
  start-page: 594
  year: 2011
  ident: ref_8
  article-title: Automatic Detection of Temporal Gait Parameters in Poststroke Individuals
  publication-title: IEEE Trans. Inf. Technol. Biomed.
  doi: 10.1109/TITB.2011.2112773
– volume: 13
  start-page: 38
  year: 2016
  ident: ref_11
  article-title: A novel accelerometry-based algorithm for the detection of step durations over short episodes of gait in healthy elderly
  publication-title: J. Neuroeng. Rehabil.
  doi: 10.1186/s12984-016-0145-6
– volume: 8
  start-page: 312
  year: 2000
  ident: ref_12
  article-title: Gait event detection for FES using accelerometers and supervised machine learning
  publication-title: IEEE Trans. Rehabil. Eng.
  doi: 10.1109/86.867873
– volume: 8
  start-page: 457
  year: 2017
  ident: ref_22
  article-title: Validation of a Step Detection Algorithm during Straight Walking and Turning in Patients with Parkinson’s Disease and Older Adults Using an Inertial Measurement Unit at the Lower Back
  publication-title: Front. Neurol.
  doi: 10.3389/fneur.2017.00457
– volume: 26
  start-page: 1941
  year: 2014
  ident: ref_34
  article-title: Factors Related to Gait Function in Post-stroke Patients
  publication-title: J. Phys. Ther. Sci.
  doi: 10.1589/jpts.26.1941
– volume: 24
  start-page: 856
  year: 2018
  ident: ref_1
  article-title: Simultaneous Recognition and Assessment of Post-Stroke Hemiparetic Gait by Fusing Kinematic, Kinetic, and Electrophysiological Data
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2018.2811415
– ident: ref_25
  doi: 10.1109/IEMBS.2009.5333137
– volume: 57
  start-page: 146
  year: 2009
  ident: ref_42
  article-title: Higher-Order Properties of Analytic Wavelets
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2008.2007607
– volume: 10
  start-page: 1154
  year: 2010
  ident: ref_7
  article-title: Machine Learning Methods for Classifying Human Physical Activity from on-Body Accelerometers
  publication-title: Sensors
  doi: 10.3390/s100201154
– volume: 31
  start-page: 322
  year: 2010
  ident: ref_36
  article-title: Real-time gait event detection for normal subjects from lower trunk accelerations
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2009.11.014
– volume: 13
  start-page: 102
  year: 2001
  ident: ref_29
  article-title: A review of analytical techniques for gait data. Part 2: Neural network and wavelet methods
  publication-title: Gait Posture
  doi: 10.1016/S0966-6362(00)00095-3
– volume: 39
  start-page: 431
  year: 2018
  ident: ref_35
  article-title: Multiscale time irreversibility: Is it useful in the analysis of human gait?
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2017.08.017
– volume: 23
  start-page: 413
  year: 2015
  ident: ref_10
  article-title: A Novel Adaptive, Real-Time Algorithm to Detect Gait Events from Wearable Sensors
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2014.2337914
SSID ssj0023338
Score 2.430489
Snippet Gait event detection is a crucial step towards the effective assessment and rehabilitation of motor dysfunctions. Recently, the continuous wavelet transform...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 3462
SubjectTerms acceleration signal
Accelerometry
Adult
Algorithms
appropriate mother wavelet
Artificial intelligence
Female
Gait
Gait - physiology
gait event detection
Hemiplegia - physiopathology
hemiplegic gait
Humans
Machine learning
Male
Middle Aged
Paralysis
Posture
Sensors
Signal processing
Stroke
Time Factors
Wavelet Analysis
Wavelet transforms
wavelet-selection criteria
Young Adult
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iSQ_i2_oiigcvxXaTJs3R17oKelL0VpJ0igtaF7ce_AX-bWfabtkVwYu30oSSZmYy8yWTbxg7itGpFBYtTQIkodSFIZuj7TAXu8jndJRG2RZ3avAgb56Sp6lSX5QT1tADNxN3kqfGWpHHRaqUTLRzPgbp4th57a30Ba2-6PMmYKqFWgKRV8MjJBDUn4wRlSghVW_G-9Qk_b9Flj8TJKc8Tn-ZLbWhIj9thrjC5qBcZYtTBIJr7OuUKMFHqEQV8Nv6MhV_tFRLohpzDEc5kU8Nyw-E9_zKDit-SemN_AKqOgOr5GfoxHKOD3QVJOy_N4nVn3zCVVJ_ZACvtB2PayS3Zc6bm0uf_Lq7yzVeZw_9y_vzQdiWVgg94uEqVB4KYbWLdA-0h8imzuCjd9om0rrIKV94rWKcdgNaSGFjrwSCEXAenNRig82XbyVsMa5SIEIeKXLvJBhpPUYYVCbQ5Bi7WBOw48mUZ77lHafyFy8Z4g-STtZJJ2CHXddRQ7bxW6czklvXgfix6xeoNVmrNdlfWhOw3YnUs9ZoxxmiMVzgkkjgmA-6ZjQ3OkOxJaCssl4PnbnEMCsK2GajJN1IBEbTqYlEwPSM-swMdbalHD7XlN6KagUJtf0f_7bDFtAATZ2lmO6y-er9A_Ywcqrcfm0k36eoG68
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwEB1BucAB8U2gIIM4cImarB07PqEWul2Q4ERFb5HtTMpKkF026aG_gL_NjJMNXVRxi2IrsjIznjf2zBuANzk5lcaRpSnEIlWmsWxzfBzmc5-Fmq_SONvii16cqk9nxdl44NaNaZXbPTFu1PUq8Bn5AUFl0r4ik_bd-lfKXaP4dnVsoXETbuXkaTilq5yfTAGXpPhrYBOSFNofdBSbaKn0bMcHRar-6_Dlv2mSV_zO_B7cHQGjOBwkfB9uYPsA7lyhEXwIvw-ZGHxNqtSj-BxLqsQ3xx0l-k4QKBVMQbVsLyjIFydu2YtjTnIUH7CPeVitOCJXVgt64IKQdL4Z0qsvxZaxJH5kgT_5UJ52SuHaWgz1S5fi41TR1T2C0_nx1_eLdGywkAaKivtUB2ykMz4zMzQBM1d6S4_BG1co5zOvQxOMzvOmtGikki4PWlJIgj6gV0Y-hr121eJTELpEpuVRsg5eoVUuEM7gZoG2JgTjbAJvt7-8CiP7ODfB-FFRFMLSqSbpJPB6mroeKDeum3TEcpsmMEt2fLHanFej0VV1aZ2TNS1fa1UY70OOyue5DyY4FZoE9rdSr0bT7aq_ipbAq2mYjI5vUlyLJKtqNiOXrghsZQk8GZRkWokkTF3aTCZgdtRnZ6m7I-3yeyT21twxSOpn_1_Wc7hNBmZjFmK5D3v95gJfEDLq_cuo_n8A9OwRlQ
  priority: 102
  providerName: ProQuest
Title Appropriate Mother Wavelets for Continuous Gait Event Detection Based on Time-Frequency Analysis for Hemiplegic and Healthy Individuals
URI https://www.ncbi.nlm.nih.gov/pubmed/31398903
https://www.proquest.com/docview/2301835039
https://www.proquest.com/docview/2271847500
https://pubmed.ncbi.nlm.nih.gov/PMC6720436
https://doaj.org/article/d89aa3d1f866457bbc1e4b11bc7ca4cf
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6V9gIHxJuUsjKIA5dAsnbs5IBQF3a7ILVCiBV7i2zHgZXatOymEvsL-NvMOA81aA9coihxEivj8cxnz3wD8CpGo1Jq1DThXBIKVWakc7QcZmIT2YK20ija4kzOF-LzMlnuQVdjs_2Bm53QjupJLdbnb37_2r5HhX9HiBMh-9sNYg7JBc3EB2iQFBUyOBX9ZsKYc1_QmnK6QrSHUUMwNHx0YJY8e_8ul_PfyMkbpmh2D-62PiQ7boR-H_Zc9QDu3GAWfAh_jokr_ApHV-3Yqc-yYt81FZmoNwz9VEasVKvqGnE_O9Grmk0p7pF9dLUPzarYBK1bwfCEckTC2bqJuN6yjsTEv2TuLmidHidPpquCNSlNW_apT_LaPILFbPrtwzxsay6EFoFyHUrrSq6VidTYKesinZoMT61ROhHaREba0ioZx2WaOcUF17GVHFGKM9YZofhj2K8uK_cUmEwdMfUIXlgjXCa0RdeD6gdmBTo1OgvgdffLc9sSklNdjPMcgQlJJ--lE8DLvulVw8Kxq9GE5NY3IOJsf-Fy_SNv9TAv0kxrXmD3pRSJMsbGTpg4NlZZLWwZwFEn9bwbjDnCNJz5kohjn1_0t1EPaXNFVw5llY_HaOUF-l9RAE-aQdL3hKObnWYRD0ANhs-gq8M71eqn5_qWVESIy8P_-O4zuI2Kl_noxPQI9uv1tXuOHlNtRnBLLRUe09nJCA4m07MvX0d-9WHkNeUvJkYbRg
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiDeBAgaBxCVqEjtOfECopd3u0sepFb0F23FgJcgum6zQ_gL-Db-Rmbzooopbb1FsWVZmxvNNPPMNwOsQnUqh0dKEc7EvkkKRzdHvMBOawOZ0lUbZFidyfCY-nsfnG_C7r4WhtMr-TGwO6nxm6R_5NkJl1L444Or9_IdPXaPodrVvodGqxaFb_cSQrXo32UP5vomi0f7ph7HfdRXwLYaCtS-tK7hOTJBELrEu0KlR-GhNomOhTWCkLSwG92GRKpdwwXVoJUcc7ox1RiQc170G1wVHT06V6aODIcDjGO-17EU4GGxXGAtJLmS05vOa1gCX4dl_0zIv-LnRHbjdAVS202rUXdhw5T24dYG28D782iEi8jmqbu3YcVPCxT5p6mBRVwxBMCPKq2m5nC0rdqCnNdunpEq25-om76tku-g6c4YPVIDijxZtOveK9QwpzSJj950uAfBkZrrMWVsvtWKToYKsegBnV_LpH8JmOSvdY2AydUQDJHhujXBKaIu4hpoTqhwRk1YevO0_eWY7tnNquvEtw6iHpJMN0vHg1TB13lJ8XDZpl-Q2TCBW7ubFbPEl64w8y1OlNc9x-1KKODHGhk6YMDQ2sVrYwoOtXupZd1RU2V_F9uDlMIxGTjc3unQoqyyKEEIIBHeBB49aJRl2whHDpyrgHiRr6rO21fWRcvq1IRKX1KGIyyf_39YLuDE-PT7KjiYnh0_hJhq3ajIg0y3YrBdL9wxRWW2eN6bA4PNV294fV0dQHw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NjtMwELaWroTggPgnsIBBIHGJmsSuHR8Q2tKWloVqhVixt2A7DlSCtDSpUJ-Ad-LpmMkfW7TitjcrsSzLM2N_Y898Q8izEA6VTIOlcecGPpeZQpvD6zATmsCm-JSG0RZzMT3hb08Hp3vkd5sLg2GV7Z5YbdTp0uIdeR-gMmjfIGCqnzVhEcejyavVDx8rSOFLa1tOo1aRI7f9Ce5b8XI2Alk_j6LJ-OPrqd9UGPAtuIWlL6zLmJYmkJGT1gU6Ngqa1kg94NoERtjMgqMfZrFyknGmQysYYHJnrDNcMhj3EtmX6BX1yP5wPD_-0Ll7DLy_msuIMRX0C_CMBOMi2jkBq0IB56Hbf4M0z5x6k-vkWgNX6WGtXzfInstvkqtnSAxvkV-HSEu-AkUuHX1fJXTRTxrrWZQFBUhMkQBrkW-Wm4K-0YuSjjHEko5cWUWB5XQIB2lKoYHpKP5kXQd3b2nLl1INMnXf8UkA9mmq85TW2VNbOuvyyYrb5ORCFv8O6eXL3N0jVMQOSYE4S63hTnFtAeVgqUKVAn7SyiMv2iVPbMN9jiU4viXgA6F0kk46HnnadV3VhB_ndRqi3LoOyNFdfViuvySNySdprLRmKUxfCD6QxtjQcROGxkqruc08ctBKPWk2jiL5q-YeedL9BpPHdxydO5BVEkUAKDhAvcAjd2sl6WbCANHHKmAekTvqszPV3T_54mtFKy6wXhET9_8_rcfkMthd8m42P3pAroClqyocMj4gvXK9cQ8BopXmUWMLlHy-aPP7AyuaVbE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Appropriate+Mother+Wavelets+for+Continuous+Gait+Event+Detection+Based+on+Time-Frequency+Analysis+for+Hemiplegic+and+Healthy+Individuals&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Ji%2C+Ning&rft.au=Zhou%2C+Hui&rft.au=Guo%2C+Kaifeng&rft.au=Samuel%2C+Oluwarotimi+Williams&rft.date=2019-08-08&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=19&rft.issue=16&rft_id=info:doi/10.3390%2Fs19163462&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon