Sex-specific responses of Taxus mairei to UV-B radiation involved altering the interactions between the microbiota assembly and host secondary metabolism
To adapt to constantly changing environments, ancient gymnosperms have coevolved with diverse endophytic fungi that are essential for the fitness and adaptability of the plant host. However, the effect of sex on plant-endophyte interactions in response to environmental stressors remains unknown. RNA...
Saved in:
Published in | Microbiome Vol. 12; no. 1; pp. 165 - 18 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central
07.09.2024
BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | To adapt to constantly changing environments, ancient gymnosperms have coevolved with diverse endophytic fungi that are essential for the fitness and adaptability of the plant host. However, the effect of sex on plant-endophyte interactions in response to environmental stressors remains unknown. RNA-seq integrated with ITS analysis was applied to reveal the potential mechanisms underlying the sex-specific responses of Taxus mairei to ultraviolet (UV)-B radiation.
Enrichment analysis suggested that sex influenced the expression of several genes related to the oxidation-reduction system, which might play potential roles in sex-mediated responses to UV-B radiations. ITS-seq analysis clarified the effects of UV-B radiation and sex on the composition of endophytic fungal communities. Sex influenced various secondary metabolic pathways, thereby providing chemicals for T. mairei host to produce attractants and/or inhibitors to filter microbial taxa. Analysis of fungal biomarkers suggested that UV-B radiation reduced the effect of sex on fungal communities. Moreover, Guignardia isolate #1 was purified to investigate the role of endophytic fungi in sex-mediated responses to UV-B radiation. Inoculation with spores produced by isolate #1 significantly altered various oxidation-reduction systems of the host by regulating the expression of APX2, GST7 NCED1, ZE1, CS1, and CM1.
These results revealed the roles of endophytic fungi in sex-mediated responses to UV-B radiation and provided novel insights into the sex-specific responses of Taxus trees to environmental stressors. Video Abstract. |
---|---|
AbstractList | To adapt to constantly changing environments, ancient gymnosperms have coevolved with diverse endophytic fungi that are essential for the fitness and adaptability of the plant host. However, the effect of sex on plant-endophyte interactions in response to environmental stressors remains unknown. RNA-seq integrated with ITS analysis was applied to reveal the potential mechanisms underlying the sex-specific responses of Taxus mairei to ultraviolet (UV)-B radiation.
Enrichment analysis suggested that sex influenced the expression of several genes related to the oxidation-reduction system, which might play potential roles in sex-mediated responses to UV-B radiations. ITS-seq analysis clarified the effects of UV-B radiation and sex on the composition of endophytic fungal communities. Sex influenced various secondary metabolic pathways, thereby providing chemicals for T. mairei host to produce attractants and/or inhibitors to filter microbial taxa. Analysis of fungal biomarkers suggested that UV-B radiation reduced the effect of sex on fungal communities. Moreover, Guignardia isolate #1 was purified to investigate the role of endophytic fungi in sex-mediated responses to UV-B radiation. Inoculation with spores produced by isolate #1 significantly altered various oxidation-reduction systems of the host by regulating the expression of APX2, GST7 NCED1, ZE1, CS1, and CM1.
These results revealed the roles of endophytic fungi in sex-mediated responses to UV-B radiation and provided novel insights into the sex-specific responses of Taxus trees to environmental stressors. Video Abstract. To adapt to constantly changing environments, ancient gymnosperms have coevolved with diverse endophytic fungi that are essential for the fitness and adaptability of the plant host. However, the effect of sex on plant-endophyte interactions in response to environmental stressors remains unknown. RNA-seq integrated with ITS analysis was applied to reveal the potential mechanisms underlying the sex-specific responses of Taxus mairei to ultraviolet (UV)-B radiation.BACKGROUNDTo adapt to constantly changing environments, ancient gymnosperms have coevolved with diverse endophytic fungi that are essential for the fitness and adaptability of the plant host. However, the effect of sex on plant-endophyte interactions in response to environmental stressors remains unknown. RNA-seq integrated with ITS analysis was applied to reveal the potential mechanisms underlying the sex-specific responses of Taxus mairei to ultraviolet (UV)-B radiation.Enrichment analysis suggested that sex influenced the expression of several genes related to the oxidation-reduction system, which might play potential roles in sex-mediated responses to UV-B radiations. ITS-seq analysis clarified the effects of UV-B radiation and sex on the composition of endophytic fungal communities. Sex influenced various secondary metabolic pathways, thereby providing chemicals for T. mairei host to produce attractants and/or inhibitors to filter microbial taxa. Analysis of fungal biomarkers suggested that UV-B radiation reduced the effect of sex on fungal communities. Moreover, Guignardia isolate #1 was purified to investigate the role of endophytic fungi in sex-mediated responses to UV-B radiation. Inoculation with spores produced by isolate #1 significantly altered various oxidation-reduction systems of the host by regulating the expression of APX2, GST7 NCED1, ZE1, CS1, and CM1.RESULTSEnrichment analysis suggested that sex influenced the expression of several genes related to the oxidation-reduction system, which might play potential roles in sex-mediated responses to UV-B radiations. ITS-seq analysis clarified the effects of UV-B radiation and sex on the composition of endophytic fungal communities. Sex influenced various secondary metabolic pathways, thereby providing chemicals for T. mairei host to produce attractants and/or inhibitors to filter microbial taxa. Analysis of fungal biomarkers suggested that UV-B radiation reduced the effect of sex on fungal communities. Moreover, Guignardia isolate #1 was purified to investigate the role of endophytic fungi in sex-mediated responses to UV-B radiation. Inoculation with spores produced by isolate #1 significantly altered various oxidation-reduction systems of the host by regulating the expression of APX2, GST7 NCED1, ZE1, CS1, and CM1.These results revealed the roles of endophytic fungi in sex-mediated responses to UV-B radiation and provided novel insights into the sex-specific responses of Taxus trees to environmental stressors. Video Abstract.CONCLUSIONThese results revealed the roles of endophytic fungi in sex-mediated responses to UV-B radiation and provided novel insights into the sex-specific responses of Taxus trees to environmental stressors. Video Abstract. Abstract Background To adapt to constantly changing environments, ancient gymnosperms have coevolved with diverse endophytic fungi that are essential for the fitness and adaptability of the plant host. However, the effect of sex on plant-endophyte interactions in response to environmental stressors remains unknown. RNA-seq integrated with ITS analysis was applied to reveal the potential mechanisms underlying the sex-specific responses of Taxus mairei to ultraviolet (UV)-B radiation. Results Enrichment analysis suggested that sex influenced the expression of several genes related to the oxidation–reduction system, which might play potential roles in sex-mediated responses to UV-B radiations. ITS-seq analysis clarified the effects of UV-B radiation and sex on the composition of endophytic fungal communities. Sex influenced various secondary metabolic pathways, thereby providing chemicals for T. mairei host to produce attractants and/or inhibitors to filter microbial taxa. Analysis of fungal biomarkers suggested that UV-B radiation reduced the effect of sex on fungal communities. Moreover, Guignardia isolate #1 was purified to investigate the role of endophytic fungi in sex-mediated responses to UV-B radiation. Inoculation with spores produced by isolate #1 significantly altered various oxidation–reduction systems of the host by regulating the expression of APX2, GST7 NCED1, ZE1, CS1, and CM1. Conclusion These results revealed the roles of endophytic fungi in sex-mediated responses to UV-B radiation and provided novel insights into the sex-specific responses of Taxus trees to environmental stressors. Video Abstract |
ArticleNumber | 165 |
Author | Ying, Qicai Feng, Shangguo Zhang, Hongshan Lin, Wanting Hou, Kailin Zhan, Xiaori Shen, Chenjia Wang, Mingshuang Zang, Yue Wang, Huizhong Liang, Xueshuang Ma, Ruoyun Zheng, Bingsong |
Author_xml | – sequence: 1 givenname: Hongshan surname: Zhang fullname: Zhang, Hongshan – sequence: 2 givenname: Kailin surname: Hou fullname: Hou, Kailin – sequence: 3 givenname: Xueshuang surname: Liang fullname: Liang, Xueshuang – sequence: 4 givenname: Wanting surname: Lin fullname: Lin, Wanting – sequence: 5 givenname: Ruoyun surname: Ma fullname: Ma, Ruoyun – sequence: 6 givenname: Yue surname: Zang fullname: Zang, Yue – sequence: 7 givenname: Xiaori surname: Zhan fullname: Zhan, Xiaori – sequence: 8 givenname: Mingshuang surname: Wang fullname: Wang, Mingshuang – sequence: 9 givenname: Shangguo surname: Feng fullname: Feng, Shangguo – sequence: 10 givenname: Qicai surname: Ying fullname: Ying, Qicai – sequence: 11 givenname: Bingsong surname: Zheng fullname: Zheng, Bingsong – sequence: 12 givenname: Huizhong surname: Wang fullname: Wang, Huizhong – sequence: 13 givenname: Chenjia orcidid: 0000-0002-8575-0593 surname: Shen fullname: Shen, Chenjia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39244575$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uk1v1DAQjVARLaV_gAPykUsgdpzEPiGo-KhUiQMtV2tsj1tXib3Y3m37U_i3uLulajngiz0z770Zed7LZi_EgE3zmnbvKBXj-8w7Ooq2Y7ztqBCspc-aA9Zx2bKRir1H7_3mKOerrh5J-cTFi2a_l4zzYRoOmt8_8KbNKzTeeUMS5lUMGTOJjpzBzTqTBXxCT0ok5z_bTySB9VB8DMSHTZw3aAnMBZMPF6RcYs3WAMwdIhON5RoxbAuLNylqHwsQyBkXPd8SCJZcxlxIRhODhXRLFiyg4-zz8qp57mDOeHR_HzbnXz6fHX9rT79_PTn-eNoaPsrSjgYmMwmmpWXAew5MMzM4J4WzTA6OGWf7vheSapigY8JIo-XABtozMVrbHzYnO10b4Uqtkl_qHCqCV9tETBcKUvFmRmWdGYFqJ_XAOHWDHI2cei4nK0CbYapaH3Zaq7Ve0BoMJcH8RPRpJfhLdRE3itJedJMQVeHtvUKKv9aYi1p8NjjPEDCus-ppRyc5jh2v0DePmz10-bvcCmA7QP35nBO6Bwjt1J2J1M5EqppIbU2kaCWJf0jGl-3G68B-_h_1DzNAz8I |
CitedBy_id | crossref_primary_10_1186_s12879_025_10604_3 |
Cites_doi | 10.1038/s41477-021-00963-5 10.3389/fpls.2023.1166803 10.1186/s40168-022-01387-9 10.1371/journal.pbio.3001681 10.1016/j.envexpbot.2018.08.011 10.1017/S0953756204000619 10.1093/treephys/tpaa108 10.3390/molecules28176272 10.1111/j.1399-3054.2012.01656.x 10.3390/genes8120393 10.1093/hr/uhac062 10.1111/tpj.16315 10.1111/pce.12338 10.5511/plantbiotechnology.22.0730a 10.1094/MPMI-07-20-0178-R 10.1016/j.tim.2023.03.014 10.1016/j.tig.2011.05.003 10.3389/fmicb.2022.956855 10.3390/ijms232214225 10.1111/nph.16170 10.1007/s00442-010-1763-5 10.1016/j.phytochem.2014.09.021 10.1016/j.plaphy.2013.03.014 10.1111/ppl.12636 10.1007/s10646-014-1314-7 10.3390/ijms24043346 10.3389/fpls.2023.1100228 10.3390/biom12121879 10.1007/s12010-023-04661-0 10.1007/s12298-021-01057-4 10.3390/foods12020399 10.1016/j.plaphy.2018.02.025 10.1186/1471-2180-13-71 10.1016/j.scitotenv.2022.157171 10.1093/jxb/erac260 10.1111/tpj.16283 10.1007/s43630-021-00067-1 10.3390/ijms24054845 10.1038/s41587-020-0548-6 10.1155/2021/7020177 10.1016/j.foreco.2021.119403 10.3390/cells12030478 10.1111/tpj.15009 10.1093/treephys/tpaa069 10.1111/tpj.14710 10.3390/microorganisms11071645 10.1093/treephys/tpad019 10.1016/j.jphotobiol.2009.12.001 10.1016/j.gene.2022.146384 10.1002/jsfa.11483 10.1007/s00374-020-01527-z 10.1016/j.plaphy.2021.03.052 10.1016/j.xplc.2023.100630 10.1007/s00284-005-0241-5 10.3389/fpls.2022.991114 10.1111/ppl.13956 10.3390/molecules27175577 10.1093/treephys/tpq094 10.3389/fpls.2022.996750 |
ContentType | Journal Article |
Copyright | 2024. The Author(s). The Author(s) 2024 2024 |
Copyright_xml | – notice: 2024. The Author(s). – notice: The Author(s) 2024 2024 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
DOI | 10.1186/s40168-024-01882-1 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals - May need to register for free articles |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2049-2618 |
EndPage | 18 |
ExternalDocumentID | oai_doaj_org_article_dfc6a1bf9b5241f596c973497d8abc57 PMC11380788 39244575 10_1186_s40168_024_01882_1 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Opening Project of Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions grantid: 2022E10008 – fundername: National Natural Science Foundation of China grantid: 32271905 – fundername: Zhejiang Provincial Natural Science Foundation of China grantid: LY23C160001 |
GroupedDBID | 0R~ 53G 5VS 7X7 88E 8FE 8FH 8FI 8FJ AAFWJ AAHBH AAJSJ AASML AAYXX ABUWG ACGFS ADBBV ADRAZ ADUKV AENEX AFKRA AFPKN AHBYD AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AOIJS ASPBG BAWUL BBNVY BCNDV BENPR BFQNJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CITATION DIK EBLON EBS FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAG IAO IEP IHR INH INR ISR ITC KQ8 LK8 M1P M48 M7P M~E OK1 PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RBZ ROL RPM RSV SOJ UKHRP CGR CUY CVF ECM EIF NPM 7X8 PJZUB PPXIY PQGLB PUEGO 5PM |
ID | FETCH-LOGICAL-c469t-6ca7c782b9d2a434a2b2c5ff98fd295f2cfd333891ba7a028c9cb952513286dd3 |
IEDL.DBID | M48 |
ISSN | 2049-2618 |
IngestDate | Wed Aug 27 01:27:07 EDT 2025 Thu Aug 21 18:35:37 EDT 2025 Sun Aug 24 03:35:03 EDT 2025 Thu Apr 03 06:54:05 EDT 2025 Tue Jul 01 04:16:48 EDT 2025 Thu Apr 24 23:11:33 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Fungal community Oxidation–reduction system Guignardia Taxus UV-B radiation Dioecious plant |
Language | English |
License | 2024. The Author(s). Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c469t-6ca7c782b9d2a434a2b2c5ff98fd295f2cfd333891ba7a028c9cb952513286dd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-8575-0593 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s40168-024-01882-1 |
PMID | 39244575 |
PQID | 3101796604 |
PQPubID | 23479 |
PageCount | 18 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_dfc6a1bf9b5241f596c973497d8abc57 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11380788 proquest_miscellaneous_3101796604 pubmed_primary_39244575 crossref_primary_10_1186_s40168_024_01882_1 crossref_citationtrail_10_1186_s40168_024_01882_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-09-07 |
PublicationDateYYYYMMDD | 2024-09-07 |
PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-07 day: 07 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | Microbiome |
PublicationTitleAlternate | Microbiome |
PublicationYear | 2024 |
Publisher | BioMed Central BMC |
Publisher_xml | – name: BioMed Central – name: BMC |
References | H Velez (1882_CR31) 2022; 13 C Yu (1882_CR22) 2023; 115 Q Han (1882_CR5) 2018; 162 C Yu (1882_CR27) 2020; 103 GM Douglas (1882_CR33) 2020; 38 Z Xia (1882_CR13) 2020; 225 S Feng (1882_CR14) 2023; 43 YG Zu (1882_CR28) 2010; 98 Q Guo (1882_CR8) 2022; 10 M Rabska (1882_CR46) 2022; 23 R Ozgur (1882_CR44) 2021; 20 D Duan (1882_CR3) 2017; 8 Y Fu (1882_CR54) 2023; 196 R Yang (1882_CR60) 2023; 28 A VanWallendael (1882_CR50) 2022; 20 L Liu (1882_CR11) 2021; 34 G Agati (1882_CR42) 2013; 72 H Zhao (1882_CR16) 2011; 165 F Narra (1882_CR35) 2018; 126 X Pan (1882_CR58) 2022; 39 1882_CR43 X Xu (1882_CR37) 2010; 30 1882_CR40 Q Guo (1882_CR51) 2023; 31 C Yu (1882_CR34) 2022; 9 TS Suryanarayanan (1882_CR55) 2004; 108 MA Jansen (1882_CR36) 2012; 145 F Niu (1882_CR48) 2014; 23 Y Li (1882_CR20) 2021; 163 X Wu (1882_CR4) 2021; 41 F He (1882_CR7) 2022; 845 Y Tian (1882_CR29) 2014; 108 H Xu (1882_CR24) 2021; 2021 MC Diaz-Barradas (1882_CR17) 2018; 155 Y Zhou (1882_CR10) 2022; 13 Y Tan (1882_CR41) 2023; 24 I Kreft (1882_CR19) 2022; 27 Q Guo (1882_CR9) 2021; 496 UO Badmus (1882_CR45) 2022; 12 G Semenzato (1882_CR56) 2023; 24 J Jiao (1882_CR21) 2022; 823 W Xu (1882_CR30) 2023; 12 PK Diggle (1882_CR1) 2011; 27 D Xu (1882_CR57) 2023; 14 VF Zenoff (1882_CR49) 2006; 52 DR Gupta (1882_CR59) 2021; 27 K Keefover-Ring (1882_CR6) 2022; 73 T Ruuhola (1882_CR38) 2018; 126 CB Stromme (1882_CR39) 2015; 38 Q Liao (1882_CR2) 2020; 104 1882_CR23 T Lin (1882_CR18) 2023; 115 E Perez-Matas (1882_CR25) 2023; 14 Z Xia (1882_CR12) 2021; 57 J Liu (1882_CR15) 2020; 40 M Xu (1882_CR26) 2022; 102 Q Liu (1882_CR52) 2023; 11 ZQ Xiong (1882_CR53) 2013; 13 TX Li (1882_CR47) 2022; 13 X Xiong (1882_CR32) 2021; 7 |
References_xml | – volume: 7 start-page: 1026 issue: 8 year: 2021 ident: 1882_CR32 publication-title: Nat Plants doi: 10.1038/s41477-021-00963-5 – volume: 14 start-page: 1166803 year: 2023 ident: 1882_CR57 publication-title: Front Plant Sci doi: 10.3389/fpls.2023.1166803 – volume: 10 start-page: 191 issue: 1 year: 2022 ident: 1882_CR8 publication-title: Microbiome doi: 10.1186/s40168-022-01387-9 – volume: 20 start-page: e3001681 issue: 8 year: 2022 ident: 1882_CR50 publication-title: PLoS Biol doi: 10.1371/journal.pbio.3001681 – volume: 155 start-page: 10 year: 2018 ident: 1882_CR17 publication-title: Environ Exp Botany doi: 10.1016/j.envexpbot.2018.08.011 – volume: 108 start-page: 974 issue: Pt 8 year: 2004 ident: 1882_CR55 publication-title: Mycol Res doi: 10.1017/S0953756204000619 – volume: 41 start-page: 119 issue: 1 year: 2021 ident: 1882_CR4 publication-title: Tree Physiol doi: 10.1093/treephys/tpaa108 – volume: 28 start-page: 6272 issue: 17 year: 2023 ident: 1882_CR60 publication-title: Molecules doi: 10.3390/molecules28176272 – volume: 145 start-page: 501 issue: 4 year: 2012 ident: 1882_CR36 publication-title: Physiol Plant doi: 10.1111/j.1399-3054.2012.01656.x – volume: 8 start-page: 393 issue: 12 year: 2017 ident: 1882_CR3 publication-title: Genes (Basel) doi: 10.3390/genes8120393 – volume: 9 start-page: uhac062 year: 2022 ident: 1882_CR34 publication-title: Hortic Res doi: 10.1093/hr/uhac062 – volume: 115 start-page: 1243 issue: 5 year: 2023 ident: 1882_CR22 publication-title: Plant J doi: 10.1111/tpj.16315 – volume: 38 start-page: 867 issue: 5 year: 2015 ident: 1882_CR39 publication-title: Plant Cell Environ doi: 10.1111/pce.12338 – volume: 39 start-page: 335 issue: 4 year: 2022 ident: 1882_CR58 publication-title: Plant Biotechnol (Tokyo) doi: 10.5511/plantbiotechnology.22.0730a – volume: 34 start-page: 351 issue: 4 year: 2021 ident: 1882_CR11 publication-title: Mol Plant Microbe Interact doi: 10.1094/MPMI-07-20-0178-R – volume: 31 start-page: 894 issue: 9 year: 2023 ident: 1882_CR51 publication-title: Trends Microbiol doi: 10.1016/j.tim.2023.03.014 – volume: 27 start-page: 368 issue: 9 year: 2011 ident: 1882_CR1 publication-title: Trends Genet doi: 10.1016/j.tig.2011.05.003 – volume: 13 start-page: 956855 year: 2022 ident: 1882_CR31 publication-title: Taxus wallichiana Zucc Front Microbiol doi: 10.3389/fmicb.2022.956855 – volume: 23 start-page: 14225 issue: 22 year: 2022 ident: 1882_CR46 publication-title: Int J Mol Sci doi: 10.3390/ijms232214225 – volume: 225 start-page: 782 issue: 2 year: 2020 ident: 1882_CR13 publication-title: New Phytol doi: 10.1111/nph.16170 – volume: 165 start-page: 41 issue: 1 year: 2011 ident: 1882_CR16 publication-title: Oecologia doi: 10.1007/s00442-010-1763-5 – volume: 108 start-page: 95 year: 2014 ident: 1882_CR29 publication-title: Phytochemistry doi: 10.1016/j.phytochem.2014.09.021 – volume: 72 start-page: 35 year: 2013 ident: 1882_CR42 publication-title: Plant Physiol Biochem doi: 10.1016/j.plaphy.2013.03.014 – volume: 162 start-page: 301 issue: 3 year: 2018 ident: 1882_CR5 publication-title: Physiol Plant doi: 10.1111/ppl.12636 – volume: 23 start-page: 1833 issue: 10 year: 2014 ident: 1882_CR48 publication-title: Ecotoxicology doi: 10.1007/s10646-014-1314-7 – volume: 24 start-page: 3346 issue: 4 year: 2023 ident: 1882_CR41 publication-title: Int J Mol Sci doi: 10.3390/ijms24043346 – volume: 14 start-page: 1100228 year: 2023 ident: 1882_CR25 publication-title: Front Plant Sci doi: 10.3389/fpls.2023.1100228 – volume: 12 start-page: 1879 issue: 12 year: 2022 ident: 1882_CR45 publication-title: Biomolecules doi: 10.3390/biom12121879 – volume: 196 start-page: 2246 issue: 4 year: 2023 ident: 1882_CR54 publication-title: Appl Biochem Biotechnol doi: 10.1007/s12010-023-04661-0 – volume: 27 start-page: 2127 issue: 9 year: 2021 ident: 1882_CR59 publication-title: Physiol Mol Biol Plants doi: 10.1007/s12298-021-01057-4 – volume: 12 start-page: 399 issue: 2 year: 2023 ident: 1882_CR30 publication-title: Foods doi: 10.3390/foods12020399 – volume: 126 start-page: 55 year: 2018 ident: 1882_CR38 publication-title: Plant Physiol Bioch doi: 10.1016/j.plaphy.2018.02.025 – volume: 13 start-page: 71 year: 2013 ident: 1882_CR53 publication-title: Taxus x media BMC Microbiol doi: 10.1186/1471-2180-13-71 – volume: 845 start-page: 157171 year: 2022 ident: 1882_CR7 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2022.157171 – volume: 73 start-page: 6352 issue: 18 year: 2022 ident: 1882_CR6 publication-title: J Exp Bot doi: 10.1093/jxb/erac260 – volume: 115 start-page: 1100 issue: 4 year: 2023 ident: 1882_CR18 publication-title: Plant J doi: 10.1111/tpj.16283 – volume: 20 start-page: 889 issue: 7 year: 2021 ident: 1882_CR44 publication-title: Photochem Photobiol Sci doi: 10.1007/s43630-021-00067-1 – volume: 24 start-page: 4845 issue: 5 year: 2023 ident: 1882_CR56 publication-title: Int J Mol Sci doi: 10.3390/ijms24054845 – volume: 38 start-page: 685 issue: 6 year: 2020 ident: 1882_CR33 publication-title: Nat Biotechnol doi: 10.1038/s41587-020-0548-6 – volume: 2021 start-page: 7020177 year: 2021 ident: 1882_CR24 publication-title: J Healthc Eng doi: 10.1155/2021/7020177 – volume: 496 start-page: 119403 year: 2021 ident: 1882_CR9 publication-title: For Ecol Manage doi: 10.1016/j.foreco.2021.119403 – volume: 126 start-page: 55 year: 2018 ident: 1882_CR35 publication-title: Plant Physiol Bioch. doi: 10.1016/j.plaphy.2018.02.025 – ident: 1882_CR40 doi: 10.3390/cells12030478 – volume: 104 start-page: 1399 issue: 5 year: 2020 ident: 1882_CR2 publication-title: Plant J doi: 10.1111/tpj.15009 – volume: 40 start-page: 1178 issue: 9 year: 2020 ident: 1882_CR15 publication-title: Tree Physiol doi: 10.1093/treephys/tpaa069 – volume: 103 start-page: 95 issue: 1 year: 2020 ident: 1882_CR27 publication-title: Plant J doi: 10.1111/tpj.14710 – volume: 11 start-page: 1645 issue: 7 year: 2023 ident: 1882_CR52 publication-title: Microorganisms doi: 10.3390/microorganisms11071645 – volume: 43 start-page: 1009 issue: 6 year: 2023 ident: 1882_CR14 publication-title: Tree Physiol doi: 10.1093/treephys/tpad019 – volume: 98 start-page: 152 issue: 2 year: 2010 ident: 1882_CR28 publication-title: J Photochem Photobiol B doi: 10.1016/j.jphotobiol.2009.12.001 – volume: 823 start-page: 146384 year: 2022 ident: 1882_CR21 publication-title: Gene doi: 10.1016/j.gene.2022.146384 – volume: 102 start-page: 1488 issue: 4 year: 2022 ident: 1882_CR26 publication-title: J Sci Food Agr doi: 10.1002/jsfa.11483 – volume: 57 start-page: 421 year: 2021 ident: 1882_CR12 publication-title: Biol Fertil Soils doi: 10.1007/s00374-020-01527-z – volume: 163 start-page: 189 year: 2021 ident: 1882_CR20 publication-title: Plant Physiol Biochem doi: 10.1016/j.plaphy.2021.03.052 – ident: 1882_CR23 doi: 10.1016/j.xplc.2023.100630 – volume: 52 start-page: 359 issue: 5 year: 2006 ident: 1882_CR49 publication-title: Curr Microbiol doi: 10.1007/s00284-005-0241-5 – volume: 13 start-page: 991114 year: 2022 ident: 1882_CR10 publication-title: Front Plant Sci doi: 10.3389/fpls.2022.991114 – ident: 1882_CR43 doi: 10.1111/ppl.13956 – volume: 27 start-page: 5577 issue: 17 year: 2022 ident: 1882_CR19 publication-title: Molecules doi: 10.3390/molecules27175577 – volume: 30 start-page: 1489 issue: 12 year: 2010 ident: 1882_CR37 publication-title: Tree Physiol doi: 10.1093/treephys/tpq094 – volume: 13 start-page: 996750 year: 2022 ident: 1882_CR47 publication-title: Front Plant Sci doi: 10.3389/fpls.2022.996750 |
SSID | ssj0000914748 |
Score | 2.35703 |
Snippet | To adapt to constantly changing environments, ancient gymnosperms have coevolved with diverse endophytic fungi that are essential for the fitness and... Abstract Background To adapt to constantly changing environments, ancient gymnosperms have coevolved with diverse endophytic fungi that are essential for the... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 165 |
SubjectTerms | Dioecious plant Endophytes - genetics Endophytes - metabolism Fungal community Fungi - classification Fungi - genetics Fungi - metabolism Fungi - radiation effects Guignardia Microbiota Oxidation–reduction system Secondary Metabolism Taxus Taxus - microbiology Ultraviolet Rays UV-B radiation |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals - May need to register for free articles dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA9yIPginp_1iwi-SblNm6TJoyceh6Av3sq9hXxiYduVtiu3f8r9t06S7rIroi--lTZt085k5jdk5jcIvfWNdGZBSWkq7yFAIaI0ltESfIMIbGEbmyiFPn_hl0v66ZpdH7T6ijlhmR44_7gzFyzXxARpGDibwCS3sqmpbJzQ8NRURw4-7yCYSjZYEtpQsauSEfxshHlwUYJLgug5wkpy5IkSYf-fUObvyZIH3ufiAbo_w0b8Pk_3FN3x_UN0NzeS3D5Ct1_9TRmLJmPiDx5y3qsf8TrgK32zGXGnwbS1eFrj5bfyHA-RkSCKBLc92Kef3uG0bQ5-DAMixJFEYsglDyOeU7nSha7NxE2TxoC6fWdWW6x7h2OtCB5jcO30sMWdn0C5Vu3YPUbLi49XHy7LuelCaSFSnkpuNchHVEa6StOa6spUloUgRXCVZKGywdV13N00utGATqy0RjKASXUluHP1E3TSr3v_DOFAuA4seKNrShlYVh645xr8o3MajgpEdgJQdmYkj40xVipFJoKrLDQFQlNJaIoU6N3-nh-Zj-Ovo8-jXPcjI5d2OgEapmYNU__SsAK92WmFgrUXN1R079ebUdXJnnG-oAV6mrVk_yrAnfDRDSuQONKfo7kcX-nb74nfm5DUBUA8_x-zf4HuVUnpY63aS3QyDRv_CnDUZF6nJfML_moebw priority: 102 providerName: Directory of Open Access Journals |
Title | Sex-specific responses of Taxus mairei to UV-B radiation involved altering the interactions between the microbiota assembly and host secondary metabolism |
URI | https://www.ncbi.nlm.nih.gov/pubmed/39244575 https://www.proquest.com/docview/3101796604 https://pubmed.ncbi.nlm.nih.gov/PMC11380788 https://doaj.org/article/dfc6a1bf9b5241f596c973497d8abc57 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bi9NAFB7WXQRfxLvxUkbwTaLNZW4PIlZ2XYRdRLfStzBXDTSJJqm0P8V_65lJWqwUwZcQck_O7TuZOd9B6LllwqhpnsQqtRYSlITHSpM8htjAHZlqpgOl0MUlPZ_nHxZkcYS27Y7GD9gdTO18P6l5u3y5_rF5Awb_Ohg8p686uAXlMUQbSIw9YoRs6AQiE_MdDS5GuB88s0hyFhpqpQCMY0ge-LaO5uBl9mJVoPQ_hEP_nk75R3w6u4VujsASvx004TY6svUddH1oNbm5i359tuvYl1X6qUG4HWbG2g43Dl_J9arDlQTnV-K-wfMv8Qy3nrPACw2XNXiwn9bgMLAOkQ4DZsSeZqIdiiI6PE72CjuqcqB26iUGXG4rtdxgWRvsq0lw59NvI9sNrmwP6rcsu-oemp-dXr07j8e2DLGGXLqPqZYgQZ4qYVKZZ7lMVaqJc4I7kwriUu1MlvnxTyWZBPyihVaCAJDKUk6Nye6j47qp7UOEXUKlI84qmeU5Ad9LHbVUQgQ1RsJahJKtAAo9cpb71hnLIuQunBaD0AoQWhGEViQRerE75_vA2PHPo2derrsjPdt22NC0X4vReAvjNJWJckIRUCtHBNWCZblghkvQbBahZ1utKMA6_ZCLrG2z6ooseDxKp3mEHgxasrsVIFN4aUYixPf0Z-9Z9vfU5bfAAJ4koU8Af_Rf7_oY3UiDdvuytSfouG9X9ilAql5N0DW2YBN0Mju9_PhpEn5MwPL9IpkEC_oNvvwiiA |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sex-specific+responses+of+Taxus+mairei+to+UV-B+radiation+involved+altering+the+interactions+between+the+microbiota+assembly+and+host+secondary+metabolism&rft.jtitle=Microbiome&rft.au=Zhang%2C+Hongshan&rft.au=Hou%2C+Kailin&rft.au=Liang%2C+Xueshuang&rft.au=Lin%2C+Wanting&rft.date=2024-09-07&rft.issn=2049-2618&rft.eissn=2049-2618&rft.volume=12&rft.issue=1&rft_id=info:doi/10.1186%2Fs40168-024-01882-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s40168_024_01882_1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2049-2618&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2049-2618&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2049-2618&client=summon |