A Comprehensive Computer-Assisted Diagnosis System for Early Assessment of Renal Cancer Tumors

Renal cell carcinoma (RCC) is the most common and a highly aggressive type of malignant renal tumor. In this manuscript, we aim to identify and integrate the optimal discriminating morphological, textural, and functional features that best describe the malignancy status of a given renal tumor. The i...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 21; no. 14; p. 4928
Main Authors Shehata, Mohamed, Alksas, Ahmed, Abouelkheir, Rasha T., Elmahdy, Ahmed, Shaffie, Ahmed, Soliman, Ahmed, Ghazal, Mohammed, Abu Khalifeh, Hadil, Salim, Reem, Abdel Razek, Ahmed Abdel Khalek, Alghamdi, Norah Saleh, El-Baz, Ayman
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 20.07.2021
MDPI
Subjects
Online AccessGet full text
ISSN1424-8220
1424-8220
DOI10.3390/s21144928

Cover

Loading…
Abstract Renal cell carcinoma (RCC) is the most common and a highly aggressive type of malignant renal tumor. In this manuscript, we aim to identify and integrate the optimal discriminating morphological, textural, and functional features that best describe the malignancy status of a given renal tumor. The integrated discriminating features may lead to the development of a novel comprehensive renal cancer computer-assisted diagnosis (RC-CAD) system with the ability to discriminate between benign and malignant renal tumors and specify the malignancy subtypes for optimal medical management. Informed consent was obtained from a total of 140 biopsy-proven patients to participate in the study (male = 72 and female = 68, age range = 15 to 87 years). There were 70 patients who had RCC (40 clear cell RCC (ccRCC), 30 nonclear cell RCC (nccRCC)), while the other 70 had benign angiomyolipoma tumors. Contrast-enhanced computed tomography (CE-CT) images were acquired, and renal tumors were segmented for all patients to allow the extraction of discriminating imaging features. The RC-CAD system incorporates the following major steps: (i) applying a new parametric spherical harmonic technique to estimate the morphological features, (ii) modeling a novel angular invariant gray-level co-occurrence matrix to estimate the textural features, and (iii) constructing wash-in/wash-out slopes to estimate the functional features by quantifying enhancement variations across different CE-CT phases. These features were subsequently combined and processed using a two-stage multilayer perceptron artificial neural network (MLP-ANN) classifier to classify the renal tumor as benign or malignant and identify the malignancy subtype as well. Using the combined features and a leave-one-subject-out cross-validation approach, the developed RC-CAD system achieved a sensitivity of 95.3%±2.0%, a specificity of 99.9%±0.4%, and Dice similarity coefficient of 0.98±0.01 in differentiating malignant from benign tumors, as well as an overall accuracy of 89.6%±5.0% in discriminating ccRCC from nccRCC. The diagnostic abilities of the developed RC-CAD system were further validated using a randomly stratified 10-fold cross-validation approach. The obtained results using the proposed MLP-ANN classification model outperformed other machine learning classifiers (e.g., support vector machine, random forests, relational functional gradient boosting, etc.). Hence, integrating morphological, textural, and functional features enhances the diagnostic performance, making the proposal a reliable noninvasive diagnostic tool for renal tumors.
AbstractList Renal cell carcinoma (RCC) is the most common and a highly aggressive type of malignant renal tumor. In this manuscript, we aim to identify and integrate the optimal discriminating morphological, textural, and functional features that best describe the malignancy status of a given renal tumor. The integrated discriminating features may lead to the development of a novel comprehensive renal cancer computer-assisted diagnosis (RC-CAD) system with the ability to discriminate between benign and malignant renal tumors and specify the malignancy subtypes for optimal medical management. Informed consent was obtained from a total of 140 biopsy-proven patients to participate in the study (male = 72 and female = 68, age range = 15 to 87 years). There were 70 patients who had RCC (40 clear cell RCC (ccRCC), 30 nonclear cell RCC (nccRCC)), while the other 70 had benign angiomyolipoma tumors. Contrast-enhanced computed tomography (CE-CT) images were acquired, and renal tumors were segmented for all patients to allow the extraction of discriminating imaging features. The RC-CAD system incorporates the following major steps: (i) applying a new parametric spherical harmonic technique to estimate the morphological features, (ii) modeling a novel angular invariant gray-level co-occurrence matrix to estimate the textural features, and (iii) constructing wash-in/wash-out slopes to estimate the functional features by quantifying enhancement variations across different CE-CT phases. These features were subsequently combined and processed using a two-stage multilayer perceptron artificial neural network (MLP-ANN) classifier to classify the renal tumor as benign or malignant and identify the malignancy subtype as well. Using the combined features and a leave-one-subject-out cross-validation approach, the developed RC-CAD system achieved a sensitivity of 95.3 % ± 2.0 % , a specificity of 99.9 % ± 0.4 % , and Dice similarity coefficient of 0.98 ± 0.01 in differentiating malignant from benign tumors, as well as an overall accuracy of 89.6 % ± 5.0 % in discriminating ccRCC from nccRCC. The diagnostic abilities of the developed RC-CAD system were further validated using a randomly stratified 10-fold cross-validation approach. The obtained results using the proposed MLP-ANN classification model outperformed other machine learning classifiers (e.g., support vector machine, random forests, relational functional gradient boosting, etc.). Hence, integrating morphological, textural, and functional features enhances the diagnostic performance, making the proposal a reliable noninvasive diagnostic tool for renal tumors.
Renal cell carcinoma (RCC) is the most common and a highly aggressive type of malignant renal tumor. In this manuscript, we aim to identify and integrate the optimal discriminating morphological, textural, and functional features that best describe the malignancy status of a given renal tumor. The integrated discriminating features may lead to the development of a novel comprehensive renal cancer computer-assisted diagnosis (RC-CAD) system with the ability to discriminate between benign and malignant renal tumors and specify the malignancy subtypes for optimal medical management. Informed consent was obtained from a total of 140 biopsy-proven patients to participate in the study (male = 72 and female = 68, age range = 15 to 87 years). There were 70 patients who had RCC (40 clear cell RCC (ccRCC), 30 nonclear cell RCC (nccRCC)), while the other 70 had benign angiomyolipoma tumors. Contrast-enhanced computed tomography (CE-CT) images were acquired, and renal tumors were segmented for all patients to allow the extraction of discriminating imaging features. The RC-CAD system incorporates the following major steps: (i) applying a new parametric spherical harmonic technique to estimate the morphological features, (ii) modeling a novel angular invariant gray-level co-occurrence matrix to estimate the textural features, and (iii) constructing wash-in/wash-out slopes to estimate the functional features by quantifying enhancement variations across different CE-CT phases. These features were subsequently combined and processed using a two-stage multilayer perceptron artificial neural network (MLP-ANN) classifier to classify the renal tumor as benign or malignant and identify the malignancy subtype as well. Using the combined features and a leave-one-subject-out cross-validation approach, the developed RC-CAD system achieved a sensitivity of 95.3%±2.0%, a specificity of 99.9%±0.4%, and Dice similarity coefficient of 0.98±0.01 in differentiating malignant from benign tumors, as well as an overall accuracy of 89.6%±5.0% in discriminating ccRCC from nccRCC. The diagnostic abilities of the developed RC-CAD system were further validated using a randomly stratified 10-fold cross-validation approach. The obtained results using the proposed MLP-ANN classification model outperformed other machine learning classifiers (e.g., support vector machine, random forests, relational functional gradient boosting, etc.). Hence, integrating morphological, textural, and functional features enhances the diagnostic performance, making the proposal a reliable noninvasive diagnostic tool for renal tumors.Renal cell carcinoma (RCC) is the most common and a highly aggressive type of malignant renal tumor. In this manuscript, we aim to identify and integrate the optimal discriminating morphological, textural, and functional features that best describe the malignancy status of a given renal tumor. The integrated discriminating features may lead to the development of a novel comprehensive renal cancer computer-assisted diagnosis (RC-CAD) system with the ability to discriminate between benign and malignant renal tumors and specify the malignancy subtypes for optimal medical management. Informed consent was obtained from a total of 140 biopsy-proven patients to participate in the study (male = 72 and female = 68, age range = 15 to 87 years). There were 70 patients who had RCC (40 clear cell RCC (ccRCC), 30 nonclear cell RCC (nccRCC)), while the other 70 had benign angiomyolipoma tumors. Contrast-enhanced computed tomography (CE-CT) images were acquired, and renal tumors were segmented for all patients to allow the extraction of discriminating imaging features. The RC-CAD system incorporates the following major steps: (i) applying a new parametric spherical harmonic technique to estimate the morphological features, (ii) modeling a novel angular invariant gray-level co-occurrence matrix to estimate the textural features, and (iii) constructing wash-in/wash-out slopes to estimate the functional features by quantifying enhancement variations across different CE-CT phases. These features were subsequently combined and processed using a two-stage multilayer perceptron artificial neural network (MLP-ANN) classifier to classify the renal tumor as benign or malignant and identify the malignancy subtype as well. Using the combined features and a leave-one-subject-out cross-validation approach, the developed RC-CAD system achieved a sensitivity of 95.3%±2.0%, a specificity of 99.9%±0.4%, and Dice similarity coefficient of 0.98±0.01 in differentiating malignant from benign tumors, as well as an overall accuracy of 89.6%±5.0% in discriminating ccRCC from nccRCC. The diagnostic abilities of the developed RC-CAD system were further validated using a randomly stratified 10-fold cross-validation approach. The obtained results using the proposed MLP-ANN classification model outperformed other machine learning classifiers (e.g., support vector machine, random forests, relational functional gradient boosting, etc.). Hence, integrating morphological, textural, and functional features enhances the diagnostic performance, making the proposal a reliable noninvasive diagnostic tool for renal tumors.
Renal cell carcinoma (RCC) is the most common and a highly aggressive type of malignant renal tumor. In this manuscript, we aim to identify and integrate the optimal discriminating morphological, textural, and functional features that best describe the malignancy status of a given renal tumor. The integrated discriminating features may lead to the development of a novel comprehensive renal cancer computer-assisted diagnosis (RC-CAD) system with the ability to discriminate between benign and malignant renal tumors and specify the malignancy subtypes for optimal medical management. Informed consent was obtained from a total of 140 biopsy-proven patients to participate in the study (male = 72 and female = 68, age range = 15 to 87 years). There were 70 patients who had RCC (40 clear cell RCC (ccRCC), 30 nonclear cell RCC (nccRCC)), while the other 70 had benign angiomyolipoma tumors. Contrast-enhanced computed tomography (CE-CT) images were acquired, and renal tumors were segmented for all patients to allow the extraction of discriminating imaging features. The RC-CAD system incorporates the following major steps: (i) applying a new parametric spherical harmonic technique to estimate the morphological features, (ii) modeling a novel angular invariant gray-level co-occurrence matrix to estimate the textural features, and (iii) constructing wash-in/wash-out slopes to estimate the functional features by quantifying enhancement variations across different CE-CT phases. These features were subsequently combined and processed using a two-stage multilayer perceptron artificial neural network (MLP-ANN) classifier to classify the renal tumor as benign or malignant and identify the malignancy subtype as well. Using the combined features and a leave-one-subject-out cross-validation approach, the developed RC-CAD system achieved a sensitivity of 95.3%±2.0% , a specificity of 99.9%±0.4% , and Dice similarity coefficient of 0.98±0.01 in differentiating malignant from benign tumors, as well as an overall accuracy of 89.6%±5.0% in discriminating ccRCC from nccRCC. The diagnostic abilities of the developed RC-CAD system were further validated using a randomly stratified 10-fold cross-validation approach. The obtained results using the proposed MLP-ANN classification model outperformed other machine learning classifiers (e.g., support vector machine, random forests, relational functional gradient boosting, etc.). Hence, integrating morphological, textural, and functional features enhances the diagnostic performance, making the proposal a reliable noninvasive diagnostic tool for renal tumors.
Author Shehata, Mohamed
Abdel Razek, Ahmed Abdel Khalek
Elmahdy, Ahmed
El-Baz, Ayman
Shaffie, Ahmed
Abu Khalifeh, Hadil
Ghazal, Mohammed
Alghamdi, Norah Saleh
Salim, Reem
Abouelkheir, Rasha T.
Soliman, Ahmed
Alksas, Ahmed
AuthorAffiliation 5 College of Computer and Information Science, Princess Nourah Bint Abdulrahman University, Riyadh 11564, Saudi Arabia; nosalghamdi@pnu.edu.sa
4 Department of Radiology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt; arazek@mans.edu.eg
1 BioImaging Lab, Bioengineering Department, University of Louisville, Louisville, KY 40292, USA; mnsheh01@louisville.edu (M.S.); ammost01@louisville.edu (A.A.); amshaf02@louisville.edu (A.S.); ahmed.soliman@louisville.edu (A.S.)
2 Department of Radiology, Urology and Nephrology Center, University of Mansoura, Mansoura 35516, Egypt; rashataha2020@gmail.com (R.T.A.); ahmed.elmahdy89@yahoo.com (A.E.)
3 College of Engineering, Abu Dhabi University, Abu Dhabi 59911, United Arab Emirates; mohammed.ghazal@adu.ac.ae (M.G.); hadil.abukhalifeh@adu.ac.ae (H.A.K.); reem.salim@adu.ac.ae (R.S.)
AuthorAffiliation_xml – name: 1 BioImaging Lab, Bioengineering Department, University of Louisville, Louisville, KY 40292, USA; mnsheh01@louisville.edu (M.S.); ammost01@louisville.edu (A.A.); amshaf02@louisville.edu (A.S.); ahmed.soliman@louisville.edu (A.S.)
– name: 5 College of Computer and Information Science, Princess Nourah Bint Abdulrahman University, Riyadh 11564, Saudi Arabia; nosalghamdi@pnu.edu.sa
– name: 2 Department of Radiology, Urology and Nephrology Center, University of Mansoura, Mansoura 35516, Egypt; rashataha2020@gmail.com (R.T.A.); ahmed.elmahdy89@yahoo.com (A.E.)
– name: 3 College of Engineering, Abu Dhabi University, Abu Dhabi 59911, United Arab Emirates; mohammed.ghazal@adu.ac.ae (M.G.); hadil.abukhalifeh@adu.ac.ae (H.A.K.); reem.salim@adu.ac.ae (R.S.)
– name: 4 Department of Radiology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt; arazek@mans.edu.eg
Author_xml – sequence: 1
  givenname: Mohamed
  orcidid: 0000-0001-6640-6183
  surname: Shehata
  fullname: Shehata, Mohamed
– sequence: 2
  givenname: Ahmed
  orcidid: 0000-0001-9409-931X
  surname: Alksas
  fullname: Alksas, Ahmed
– sequence: 3
  givenname: Rasha T.
  orcidid: 0000-0002-4250-8772
  surname: Abouelkheir
  fullname: Abouelkheir, Rasha T.
– sequence: 4
  givenname: Ahmed
  surname: Elmahdy
  fullname: Elmahdy, Ahmed
– sequence: 5
  givenname: Ahmed
  surname: Shaffie
  fullname: Shaffie, Ahmed
– sequence: 6
  givenname: Ahmed
  surname: Soliman
  fullname: Soliman, Ahmed
– sequence: 7
  givenname: Mohammed
  orcidid: 0000-0002-9045-6698
  surname: Ghazal
  fullname: Ghazal, Mohammed
– sequence: 8
  givenname: Hadil
  surname: Abu Khalifeh
  fullname: Abu Khalifeh, Hadil
– sequence: 9
  givenname: Reem
  surname: Salim
  fullname: Salim, Reem
– sequence: 10
  givenname: Ahmed Abdel Khalek
  orcidid: 0000-0002-9613-5932
  surname: Abdel Razek
  fullname: Abdel Razek, Ahmed Abdel Khalek
– sequence: 11
  givenname: Norah Saleh
  orcidid: 0000-0001-6421-6001
  surname: Alghamdi
  fullname: Alghamdi, Norah Saleh
– sequence: 12
  givenname: Ayman
  orcidid: 0000-0001-7264-1323
  surname: El-Baz
  fullname: El-Baz, Ayman
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34300667$$D View this record in MEDLINE/PubMed
BookMark eNplkk1v1DAQhi1URD_gwB9AlrjAIXT8meSCtFoKVKqEBOWK5TiTrVdJvNhJpf33eHfbqi0ne8bPvHpnPKfkaAwjEvKWwSchajhPnDEpa169ICdMcllUnMPRo_sxOU1pDcCFENUrciykANC6PCF_FnQZhk3EGxyTv8V9NE8Yi0VKPk3Y0i_ersaQA_prmxMD7UKkFzb2W5oZTGnAcaKhoz9xtD1d2tFhpNfzEGJ6TV52tk_45u48I7-_XlwvvxdXP75dLhdXhZO6ngpdYqsb2datQLC6ZFw2Fjqo2ka6DpTgJaATWKOCxrpSV1aW4FSjWu5cbuuMXB5022DXZhP9YOPWBOvNPhHiytg4edej4aoSjZal0kJLCW2D2KkGmALLuhqrrPX5oLWZmwFbl7uLtn8i-vRl9DdmFW5NJaAu2U7gw51ADH9nTJMZfHLY93bEMKfsQCkGlRJ1Rt8_Q9dhjnmMe0rqSghWZurdY0cPVu6_MQPnB8DFkFLEzjg_2cmHnUHfGwZmtyjmYVFyxcdnFfei_7P_AHWAvLE
CitedBy_id crossref_primary_10_1007_s10278_024_01276_7
crossref_primary_10_3390_bioengineering10070755
crossref_primary_10_1186_s12885_025_13582_6
crossref_primary_10_31083_j_fbl2709276
crossref_primary_10_3390_bioengineering9100532
crossref_primary_10_3390_jcm12154995
crossref_primary_10_3390_biomedicines11112875
crossref_primary_10_3390_s22208052
crossref_primary_10_1007_s12539_024_00649_4
crossref_primary_10_3389_fpubh_2023_1109236
crossref_primary_10_1016_j_displa_2024_102867
crossref_primary_10_17816_DD515814
crossref_primary_10_22328_2079_5343_2023_14_4_7_18
crossref_primary_10_3390_biomedicines11010006
crossref_primary_10_1007_s11831_022_09750_7
crossref_primary_10_1186_s12885_025_13547_9
crossref_primary_10_3389_fneur_2021_780628
crossref_primary_10_1007_s42979_023_02258_2
crossref_primary_10_3390_diagnostics13030486
crossref_primary_10_3390_cancers15102835
crossref_primary_10_3390_bioengineering9090423
crossref_primary_10_3389_fonc_2022_889886
crossref_primary_10_3389_fonc_2022_976168
crossref_primary_10_7759_cureus_72748
Cites_doi 10.1023/A:1012487302797
10.1038/s41598-020-64803-w
10.5489/cuaj.10038
10.2214/ajr.178.6.1781499
10.1016/j.ultrasmedbio.2011.02.015
10.1148/radiol.13112617
10.1002/jmri.22807
10.1259/bjr.20200002
10.1016/j.cmpb.2008.08.005
10.1148/radiol.2015151169
10.1002/mp.12828
10.3322/caac.21338
10.1109/CVPR.2016.90
10.1016/j.mri.2013.04.006
10.1016/j.ejrad.2018.08.014
10.1148/radiol.2015142215
10.1080/00313020701570061
10.1148/rg.2017170056
10.1016/j.eururo.2016.02.029
10.1148/radiol.12111281
10.3892/ol.2016.4214
10.1016/j.tranon.2018.10.012
10.1016/j.isprsjprs.2019.01.008
10.1016/S0022-5347(17)61327-2
10.1056/NEJMcp0910041
10.1109/ISBI48211.2021.9433865
10.1109/CVPR.2015.7298594
10.1007/s00330-017-4988-4
10.3322/caac.21254
10.1109/PROC.1979.11328
10.1016/j.crad.2004.07.008
10.1016/j.eururo.2009.10.023
10.1109/ICIP.2017.8296506
10.1148/radiol.2303030003
10.1016/j.crad.2019.09.131
10.1158/0008-5472.CAN-17-0339
10.2214/AJR.19.21617
10.1111/j.1464-410X.2005.05243.x
10.2307/1932409
10.1097/MOU.0b013e32833625f8
10.1007/s10278-018-0100-0
10.1097/00000478-200305000-00005
10.1148/radiol.2472061846
10.1148/radiol.2442060927
10.3892/ol.2011.520
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 by the authors. 2021
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s21144928
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
Medical Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

Publicly Available Content Database
MEDLINE
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_2583b6475636440dbeef5b0150a1f9e8
PMC8309718
34300667
10_3390_s21144928
Genre Journal Article
GeographicLocations United States--US
GeographicLocations_xml – name: United States--US
GrantInformation_xml – fundername: The Deanship of Scientific Research at Princess Nourah bint Abdulrahman University
  grantid: Fast-track Research Funding Program
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c469t-67ed6b4d9d3e0a67124ba0f08db4cf053270ec3e9e50bac768a470c5b5d2cc023
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 00:58:03 EDT 2025
Thu Aug 21 18:15:02 EDT 2025
Tue Aug 05 09:55:19 EDT 2025
Fri Jul 25 22:44:27 EDT 2025
Mon Jul 21 05:49:57 EDT 2025
Tue Jul 01 03:56:16 EDT 2025
Thu Apr 24 23:10:44 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Keywords RC-CAD
renal cell carcinoma
functionality
morphology
CE-CT
texture
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c469t-67ed6b4d9d3e0a67124ba0f08db4cf053270ec3e9e50bac768a470c5b5d2cc023
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contributed equally to this work.
ORCID 0000-0001-6421-6001
0000-0001-9409-931X
0000-0001-7264-1323
0000-0002-4250-8772
0000-0001-6640-6183
0000-0002-9045-6698
0000-0002-9613-5932
OpenAccessLink https://doaj.org/article/2583b6475636440dbeef5b0150a1f9e8
PMID 34300667
PQID 2554683317
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_2583b6475636440dbeef5b0150a1f9e8
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8309718
proquest_miscellaneous_2555108539
proquest_journals_2554683317
pubmed_primary_34300667
crossref_citationtrail_10_3390_s21144928
crossref_primary_10_3390_s21144928
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210720
PublicationDateYYYYMMDD 2021-07-20
PublicationDate_xml – month: 7
  year: 2021
  text: 20210720
  day: 20
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2021
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Kim (ref_51) 2004; 230
Cheville (ref_8) 2003; 27
Moch (ref_6) 2016; 70
Zhou (ref_38) 2019; 12
Fedorov (ref_49) 2017; 77
Mindrup (ref_15) 2005; 95
Kocak (ref_29) 2018; 107
Lubner (ref_24) 2017; 37
Young (ref_22) 2013; 267
Xie (ref_53) 2016; 11
ref_16
Lim (ref_17) 2018; 28
Anderson (ref_48) 2012; 35
Tustison (ref_45) 2008; 1
Zhou (ref_19) 2011; 37
Dice (ref_54) 1945; 26
Xipell (ref_12) 1971; 106
Castellano (ref_47) 2004; 59
Deng (ref_26) 2020; 75
Kurani (ref_44) 2004; 27
Gillies (ref_25) 2016; 278
Delahunt (ref_7) 2007; 39
Oberai (ref_37) 2020; 93
Sun (ref_31) 2020; 214
Mues (ref_10) 2010; 20
ref_36
ref_35
Siegel (ref_4) 2015; 65
ref_34
ref_33
Strzelecki (ref_30) 2009; 94
Chandarana (ref_18) 2012; 265
Kim (ref_23) 2002; 178
ref_39
Lee (ref_32) 2018; 45
Moya (ref_42) 2019; 149
Rendon (ref_9) 2010; 4
Barry (ref_46) 2014; 32
Zhang (ref_21) 2007; 244
Dyer (ref_20) 2008; 247
Chen (ref_5) 2016; 66
Ye (ref_52) 2012; 3
Heuer (ref_11) 2010; 57
ref_43
ref_41
Gill (ref_13) 2010; 362
Guyon (ref_28) 2002; 46
ref_40
ref_1
ref_3
ref_2
Haralick (ref_50) 1979; 67
Kunapuli (ref_27) 2018; 31
Hodgdon (ref_14) 2015; 276
Carass (ref_55) 2020; 10
References_xml – volume: 46
  start-page: 389
  year: 2002
  ident: ref_28
  article-title: Gene selection for cancer classification using support vector machines
  publication-title: Mach. Learn.
  doi: 10.1023/A:1012487302797
– volume: 10
  start-page: 8242
  year: 2020
  ident: ref_55
  article-title: Evaluating White Matter Lesion Segmentations with Refined Sørensen-Dice Analysis
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-64803-w
– volume: 4
  start-page: 136
  year: 2010
  ident: ref_9
  article-title: Active surveillance as the preferred management option for small renal masses
  publication-title: Can. Urol. Assoc. J.
  doi: 10.5489/cuaj.10038
– volume: 178
  start-page: 1499
  year: 2002
  ident: ref_23
  article-title: Differentiation of subtypes of renal cell carcinoma on helical CT scans
  publication-title: Am. J. Roentgenol.
  doi: 10.2214/ajr.178.6.1781499
– volume: 37
  start-page: 845
  year: 2011
  ident: ref_19
  article-title: Characterization and diagnostic confidence of contrast-enhanced ultrasound for solid renal tumors
  publication-title: Ultrasound Med. Biol.
  doi: 10.1016/j.ultrasmedbio.2011.02.015
– volume: 267
  start-page: 444
  year: 2013
  ident: ref_22
  article-title: Clear cell renal cell carcinoma: Discrimination from other renal cell carcinoma subtypes and oncocytoma at multiphasic multidetector CT
  publication-title: Radiology
  doi: 10.1148/radiol.13112617
– ident: ref_16
– volume: 35
  start-page: 140
  year: 2012
  ident: ref_48
  article-title: Effect of disease progression on liver apparent diffusion coefficient and T2 values in a murine model of hepatic fibrosis at 11.7 Tesla MRI
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.22807
– volume: 27
  start-page: 25
  year: 2004
  ident: ref_44
  article-title: Co-occurrence matrices for volumetric data
  publication-title: Heart
– volume: 93
  start-page: 20200002
  year: 2020
  ident: ref_37
  article-title: Deep learning based classification of solid lipid-poor contrast enhancing renal masses using contrast enhanced CT
  publication-title: Br. J. Radiol.
  doi: 10.1259/bjr.20200002
– ident: ref_1
– volume: 94
  start-page: 66
  year: 2009
  ident: ref_30
  article-title: MaZda—A software package for image texture analysis
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2008.08.005
– volume: 278
  start-page: 563
  year: 2016
  ident: ref_25
  article-title: Radiomics: Images are more than pictures, they are data
  publication-title: Radiology
  doi: 10.1148/radiol.2015151169
– volume: 45
  start-page: 1550
  year: 2018
  ident: ref_32
  article-title: Deep feature classification of angiomyolipoma without visible fat and renal cell carcinoma in abdominal contrast-enhanced CT images with texture image patches and hand-crafted feature concatenation
  publication-title: Med. Phys.
  doi: 10.1002/mp.12828
– volume: 66
  start-page: 115
  year: 2016
  ident: ref_5
  article-title: Cancer statistics in China, 2015
  publication-title: CA Cancer J. Clin.
  doi: 10.3322/caac.21338
– ident: ref_36
  doi: 10.1109/CVPR.2016.90
– volume: 32
  start-page: 84
  year: 2014
  ident: ref_46
  article-title: Quantifying liver fibrosis through the application of texture analysis to diffusion weighted imaging
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/j.mri.2013.04.006
– volume: 107
  start-page: 149
  year: 2018
  ident: ref_29
  article-title: Textural differences between renal cell carcinoma subtypes: Machine learning-based quantitative computed tomography texture analysis with independent external validation
  publication-title: Eur. J. Radiol.
  doi: 10.1016/j.ejrad.2018.08.014
– volume: 276
  start-page: 787
  year: 2015
  ident: ref_14
  article-title: Can quantitative CT texture analysis be used to differentiate fat-poor renal angiomyolipoma from renal cell carcinoma on unenhanced CT images?
  publication-title: Radiology
  doi: 10.1148/radiol.2015142215
– ident: ref_41
– volume: 39
  start-page: 459
  year: 2007
  ident: ref_7
  article-title: Outcome prediction for renal cell carcinoma: Evaluation of prognostic factors for tumours divided according to histological subtype
  publication-title: Pathology
  doi: 10.1080/00313020701570061
– volume: 37
  start-page: 1483
  year: 2017
  ident: ref_24
  article-title: CT texture analysis: Definitions, applications, biologic correlates, and challenges
  publication-title: Radiographics
  doi: 10.1148/rg.2017170056
– volume: 1
  start-page: 1
  year: 2008
  ident: ref_45
  article-title: Run-Length Matrices for Texture Analysis
  publication-title: Insight J.
– volume: 70
  start-page: 93
  year: 2016
  ident: ref_6
  article-title: The 2016 WHO classification of tumours of the urinary system and male genital organs—Part A: Renal, penile, and testicular tumours
  publication-title: Eur. Urol.
  doi: 10.1016/j.eururo.2016.02.029
– volume: 265
  start-page: 790
  year: 2012
  ident: ref_18
  article-title: Histogram analysis of whole-lesion enhancement in differentiating clear cell from papillary subtype of renal cell cancer
  publication-title: Radiology
  doi: 10.1148/radiol.12111281
– volume: 11
  start-page: 2327
  year: 2016
  ident: ref_53
  article-title: Lipid-poor renal angiomyolipoma: Differentiation from clear cell renal cell carcinoma using wash-in and washout characteristics on contrast-enhanced computed tomography
  publication-title: Oncol. Lett.
  doi: 10.3892/ol.2016.4214
– volume: 12
  start-page: 292
  year: 2019
  ident: ref_38
  article-title: A deep learning-based radiomics model for differentiating benign and malignant renal tumors
  publication-title: Transl. Oncol.
  doi: 10.1016/j.tranon.2018.10.012
– volume: 149
  start-page: 14
  year: 2019
  ident: ref_42
  article-title: 3D gray level co-occurrence matrix and its application to identifying collapsed buildings
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2019.01.008
– volume: 106
  start-page: 503
  year: 1971
  ident: ref_12
  article-title: The incidence of benign renal nodules (a clinicopathologic study)
  publication-title: J. Urol.
  doi: 10.1016/S0022-5347(17)61327-2
– volume: 362
  start-page: 624
  year: 2010
  ident: ref_13
  article-title: Small renal mass
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMcp0910041
– ident: ref_39
  doi: 10.1109/ISBI48211.2021.9433865
– ident: ref_3
– ident: ref_35
  doi: 10.1109/CVPR.2015.7298594
– ident: ref_34
– volume: 28
  start-page: 542
  year: 2018
  ident: ref_17
  article-title: Renal angiomyolipoma without visible fat: Can we make the diagnosis using CT and MRI?
  publication-title: Eur. Radiol.
  doi: 10.1007/s00330-017-4988-4
– volume: 65
  start-page: 5
  year: 2015
  ident: ref_4
  article-title: Cancer statistics, 2015
  publication-title: CA Cancer J. Clin.
  doi: 10.3322/caac.21254
– volume: 67
  start-page: 786
  year: 1979
  ident: ref_50
  article-title: Statistical and structural approaches to texture
  publication-title: Proc. IEEE
  doi: 10.1109/PROC.1979.11328
– volume: 59
  start-page: 1061
  year: 2004
  ident: ref_47
  article-title: Texture analysis of medical images
  publication-title: Clin. Radiol.
  doi: 10.1016/j.crad.2004.07.008
– volume: 57
  start-page: 223
  year: 2010
  ident: ref_11
  article-title: A critical analysis of the actual role of minimally invasive surgery and active surveillance for kidney cancer
  publication-title: Eur. Urol.
  doi: 10.1016/j.eururo.2009.10.023
– ident: ref_40
  doi: 10.1109/ICIP.2017.8296506
– volume: 230
  start-page: 677
  year: 2004
  ident: ref_51
  article-title: Angiomyolipoma with minimal fat: Differentiation from renal cell carcinoma at biphasic helical CT
  publication-title: Radiology
  doi: 10.1148/radiol.2303030003
– volume: 75
  start-page: 108
  year: 2020
  ident: ref_26
  article-title: Usefulness of CT texture analysis in differentiating benign and malignant renal tumours
  publication-title: Clin. Radiol.
  doi: 10.1016/j.crad.2019.09.131
– ident: ref_33
– volume: 77
  start-page: e104
  year: 2017
  ident: ref_49
  article-title: Computational radiomics system to decode the radiographic phenotype
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-17-0339
– volume: 214
  start-page: W44
  year: 2020
  ident: ref_31
  article-title: Radiologic-Radiomic Machine Learning Models for Differentiation of Benign and Malignant Solid Renal Masses: Comparison with Expert-Level Radiologists
  publication-title: Am. J. Roentgenol.
  doi: 10.2214/AJR.19.21617
– ident: ref_2
– volume: 95
  start-page: 31
  year: 2005
  ident: ref_15
  article-title: The prevalence of renal cell carcinoma diagnosed at autopsy
  publication-title: BJU Int.
  doi: 10.1111/j.1464-410X.2005.05243.x
– volume: 26
  start-page: 297
  year: 1945
  ident: ref_54
  article-title: Measures of the amount of ecologic association between species
  publication-title: Ecology
  doi: 10.2307/1932409
– volume: 20
  start-page: 105
  year: 2010
  ident: ref_10
  article-title: Small renal masses: Current concepts regarding the natural history and reflections on the American Urological Association guidelines
  publication-title: Curr. Opin. Urol.
  doi: 10.1097/MOU.0b013e32833625f8
– volume: 31
  start-page: 929
  year: 2018
  ident: ref_27
  article-title: A decision-support tool for renal mass classification
  publication-title: J. Digit. Imaging
  doi: 10.1007/s10278-018-0100-0
– volume: 27
  start-page: 612
  year: 2003
  ident: ref_8
  article-title: Comparisons of outcome and prognostic features among histologic subtypes of renal cell carcinoma
  publication-title: Am. J. Surg. Pathol.
  doi: 10.1097/00000478-200305000-00005
– volume: 247
  start-page: 331
  year: 2008
  ident: ref_20
  article-title: Simplified imaging approach for evaluation of the solid renal mass in adults
  publication-title: Radiology
  doi: 10.1148/radiol.2472061846
– volume: 244
  start-page: 494
  year: 2007
  ident: ref_21
  article-title: Solid renal cortical tumors: Differentiation with CT
  publication-title: Radiology
  doi: 10.1148/radiol.2442060927
– volume: 3
  start-page: 672
  year: 2012
  ident: ref_52
  article-title: Characterization of solitary pulmonary nodules: Use of washout characteristics at contrast-enhanced computed tomography
  publication-title: Oncol. Lett.
  doi: 10.3892/ol.2011.520
– ident: ref_43
SSID ssj0023338
Score 2.4372108
Snippet Renal cell carcinoma (RCC) is the most common and a highly aggressive type of malignant renal tumor. In this manuscript, we aim to identify and integrate the...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 4928
SubjectTerms Accuracy
Adolescent
Adult
Aged
Aged, 80 and over
Angiomyolipoma
Carcinoma, Renal Cell - diagnostic imaging
CE-CT
Classification
Cost estimates
Diagnosis, Computer-Assisted
Diagnosis, Differential
Female
functionality
Humans
Investigations
Kidney cancer
Kidney Neoplasms - diagnostic imaging
Machine learning
Male
Middle Aged
morphology
Neural networks
Open source software
Public domain
RC-CAD
renal cell carcinoma
Support vector machines
texture
Tumors
Young Adult
SummonAdditionalLinks – databaseName: Directory of Open Access Journals (DOAJ)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hnuCAeBNokUEcuER1188ct4WqQoIDaqWeiPxUK0G22sf_Z8bORruoEheu8URxZsaZ-ZzxNwAfO-mF5S62xkvTSqts66PQbSrZhwtWJNrv-PZdX1zJr9fqeqfVF9WEVXrgqrjjmbLCa2mUFhi6efQpZeUJp7uT3KVyzBdj3hZMjVBLIPKqPEICQf3xCmGOlB21XN-JPoWk_77M8u8CyZ2Ic_4EHo-pIpvXKT6FB2l4Bo92CASfw885owW9TDe1Dp1tmzS0qHYyYGSfay3d7YpVcnKGWSortMZsPrFyskVmPxI97Yy8YMkuN78Xy9ULuDr_cnl20Y4dE9qAMHfdapOi9jJ2USTutMHg7R3P3EYvQ6YmEIanIFKXFPcuINRw0vCgvIqzEFBtL-FgWAzpNTClhLJRxZBzlCc5eytDxNAm_cy4pE0Dn7aa7MNIJ05dLX71CCtI6f2k9AY-TKJ3lUPjPqFTMsckQLTX5QI6Qz86Q_8vZ2jgcGvMflyLK7xJSW0FJkoNvJ-GcRXRrxE3pMWmyCg6hyG6Bl5V208zEVKUUuAGzJ5X7E11f2S4vSlM3VYQRZd98z_e7S08nFE9DTf4ZTuEg_Vyk44wIVr7d8X3_wDHugnR
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELZauLSHir5DoXKrHnqxMLEdOye0UBCqVFQhkDg18iuA1CaQ7P7_ziTesFuhXuNRYs177Mk3hHwppROG28C0k5pJowxzQRQsDtmH9UZEPO_4cVacXsrvV-oqHbj1qa1y6RMHRx1aj2fkezm2UxkB4e7g7p7h1Ci8XU0jNJ6STXDBBjR88_D47Of5VHIJqMBGPCEBxf1eD-WOlCWOXl-JQgNY_2MZ5r-NkiuR52SLvEgpI52NMn5JnsTmFXm-AiT4mvyaUTTsLt6M_eh0OayBAftRkIF-G3vqbns6gpRTyFbpAG9MZxM6J21reh7xa0eoDR29WPxpu_4NuTw5vjg6ZWlyAvNQ7s5ZoWMonAxlEJHbQkMQd5bX3AQnfY3DIDSPXsQyKu6sh5LDSs29cirk3gPb3pKNpm3ie0KVEsoEFXxdB7lf185IHyDESZdrGwudka9LTlY-wYrjdIvfFZQXyPRqYnpGPk-kdyOWxmNEhyiOiQDhr4cHbXddJWuqcmWEK6RWhYB8jgcXY60cHt7Y_bqM8JKdpTCrZJN99aBBGfk0LYM14RWJbWK7GGgU_o8hyoy8G2U_7URIMbQEZ0SvacXaVtdXmtubAbHbCITqMtv_39YH8izHjhmuwXftkI15t4i7kPLM3cek138B04YDYQ
  priority: 102
  providerName: ProQuest
Title A Comprehensive Computer-Assisted Diagnosis System for Early Assessment of Renal Cancer Tumors
URI https://www.ncbi.nlm.nih.gov/pubmed/34300667
https://www.proquest.com/docview/2554683317
https://www.proquest.com/docview/2555108539
https://pubmed.ncbi.nlm.nih.gov/PMC8309718
https://doaj.org/article/2583b6475636440dbeef5b0150a1f9e8
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB71cYFDRXkG2pVBHLgE3NiOnQNC29KlQmqFqq60J6L4EVqpTSC7K8G_Z-w81KA9cMkhsRNrxpOZscffB_A245opWthYai5jroSKtWVp7EL0URjFnF_vOL9Iz-b860IstqDn2OwEuNyY2nk-qXlz-_73rz-f0OA_-owTU_YPS0xiOM8StQ276JCkZ3A458NmQsJYILT2Z7pi9Ie0BRgadx25pYDevynk_Ldy8p4rmj2CvS6GJNNW6fuw5arH8PAesuAT-D4l3tIbd90WqJOevSFGfXjNWvK5LbK7WZIWtZxg-EoC3jGZDnCdpC7JpfNfO_HToyFX67u6WT6F-ez06uQs7qgUYoP57ypOpbOp5jazzNEilejVdUFLqqzmpvTsEJI6w1zmBNWFwRyk4JIaoYVNjEERPoOdqq7cCyBCMKGssKYsLT8qS624sejzuE5k4VIZwbtekrnpcMY93cVtjvmGF3o-CD2CN0PTny24xqZGx14dQwOPhx1u1M2PvDOvPBGK6ZRLkTIM8KjVzpVC-9Wc4qjMHL7koFdm3s8x7CR4qhhGUBG8Hh6jefk9k6Jy9Tq0Ef6ABssieN7qfhgJ4yzUCEcgR7NiNNTxk-rmOkB4K-axu9TL_xHAK3iQ-EIaKvGXdgA7q2btDjESWukJbMuFxKuafZnA7vHpxbfLSVhVmAQL-AsBcAsI
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqcgAOiHdTChgEEpeobmzHzgGhpaXa0scBbaU9EeJHaCVI2uyuEH-K38iM8-guqrj1mliJNTOehz3-PkLeZMJwzQoXKyNULLTUsXE8jX3IPgqrucf9juOTdHwqPk_ldI386e_CYFtl7xODo3a1xT3y7QTbqTSHcPfh4jJG1ig8Xe0pNFqzOPS_f0HJNnt_sAf6fZsk-58mu-O4YxWILZSC8zhV3qVGuMxxz4pUQYAzBSuZdkbYEokSFPOW-8xLZgoL6XghFLPSSJdYG4AOwOXfgsDLsIVQTa8KPA71XotexHnGtmdQXAmRIdH7UswL1ADX5bP_tmUuxbn9--Rel6DSUWtRD8iarx6Su0uwhY_I1xFFN9L4s7b7nfbUEDEoG83G0b22g-98RltIdAq5MQ1gynQ0YIHSuqRfPP5tF22voZPFz7qZPSanNyLRJ2S9qiu_QaiUXGonnS1LJ3bK0mhhHQRUYRJV-FRF5F0vydx2IObIpfEjh2IGhZ4PQo_I62HoRYvccd2gj6iOYQCCbYcHdfM979ZunkjNTSqUTDlkj8wZ70tpcKuo2CkzDx_Z6pWZdx5gll_Za0ReDa9h7eKBTFH5ehHGSLz9wbOIPG11P8yECx4akCOiVqxiZaqrb6rzs4APrjkCg-nN_0_rJbk9nhwf5UcHJ4fPyJ0Ee3WYAq-5RdbnzcI_h2Rrbl4EC6fk200vqb8-VD-a
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIiE4IN4EChgEEpdo3diOnQNCS5dVS6FCqJX2RIgfoZXapGx2hfhr_DpmnEd3UcWt12SUWPMee_wNIa8yYbhmhYuVESoWWurYOJ7GPmQfhdXc437H54N090h8nMnZBvnT34XBtsreJwZH7WqLe-SjBNupNIdwNyq7togvk-m7858xTpDCk9Z-nEarIvv-9y8o35q3exOQ9eskmX443NmNuwkDsYWycBGnyrvUCJc57lmRKgh2pmAl084IW-LQBMW85T7zkpnCQmpeCMWsNNIl1gbQA3D_1xSHsAm2pGYXxR6H2q9FMuI8Y6MGCi0hMhz6vhL_wpiAy3Lbf1s0V2Le9Da51SWrdNxq1x2y4au75OYKhOE98m1M0aXM_XHbCU_7MRExCB5VyNFJ28130tAWHp1CnkwDsDIdD7igtC7pV49_20E9nNPD5Vk9b-6Toyvh6AOyWdWVf0SolFxqJ50tSye2y9JoYR0EV2ESVfhUReRNz8ncdoDmOFfjNIfCBpmeD0yPyMuB9LxF8biM6D2KYyBA4O3woJ7_yDs7zhOpuUmFkimHTJI5430pDW4bFdtl5uEjW70w884bNPmF7kbkxfAa7BgPZ4rK18tAI_EmCM8i8rCV_bASLnhoRo6IWtOKtaWuv6lOjgNWuOYIEqYf_39Zz8l1MKb8097B_hNyI8G2HabAgW6RzcV86Z9C3rUwz4KCU_L9qi3qL9vDQ9A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Comprehensive+Computer-Assisted+Diagnosis+System+for+Early+Assessment+of+Renal+Cancer+Tumors&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Shehata%2C+Mohamed&rft.au=Alksas%2C+Ahmed&rft.au=Abouelkheir%2C+Rasha+T.&rft.au=Elmahdy%2C+Ahmed&rft.date=2021-07-20&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=21&rft.issue=14&rft.spage=4928&rft_id=info:doi/10.3390%2Fs21144928&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_s21144928
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon