A Comprehensive Computer-Assisted Diagnosis System for Early Assessment of Renal Cancer Tumors
Renal cell carcinoma (RCC) is the most common and a highly aggressive type of malignant renal tumor. In this manuscript, we aim to identify and integrate the optimal discriminating morphological, textural, and functional features that best describe the malignancy status of a given renal tumor. The i...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 21; no. 14; p. 4928 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
20.07.2021
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 1424-8220 1424-8220 |
DOI | 10.3390/s21144928 |
Cover
Loading…
Abstract | Renal cell carcinoma (RCC) is the most common and a highly aggressive type of malignant renal tumor. In this manuscript, we aim to identify and integrate the optimal discriminating morphological, textural, and functional features that best describe the malignancy status of a given renal tumor. The integrated discriminating features may lead to the development of a novel comprehensive renal cancer computer-assisted diagnosis (RC-CAD) system with the ability to discriminate between benign and malignant renal tumors and specify the malignancy subtypes for optimal medical management. Informed consent was obtained from a total of 140 biopsy-proven patients to participate in the study (male = 72 and female = 68, age range = 15 to 87 years). There were 70 patients who had RCC (40 clear cell RCC (ccRCC), 30 nonclear cell RCC (nccRCC)), while the other 70 had benign angiomyolipoma tumors. Contrast-enhanced computed tomography (CE-CT) images were acquired, and renal tumors were segmented for all patients to allow the extraction of discriminating imaging features. The RC-CAD system incorporates the following major steps: (i) applying a new parametric spherical harmonic technique to estimate the morphological features, (ii) modeling a novel angular invariant gray-level co-occurrence matrix to estimate the textural features, and (iii) constructing wash-in/wash-out slopes to estimate the functional features by quantifying enhancement variations across different CE-CT phases. These features were subsequently combined and processed using a two-stage multilayer perceptron artificial neural network (MLP-ANN) classifier to classify the renal tumor as benign or malignant and identify the malignancy subtype as well. Using the combined features and a leave-one-subject-out cross-validation approach, the developed RC-CAD system achieved a sensitivity of 95.3%±2.0%, a specificity of 99.9%±0.4%, and Dice similarity coefficient of 0.98±0.01 in differentiating malignant from benign tumors, as well as an overall accuracy of 89.6%±5.0% in discriminating ccRCC from nccRCC. The diagnostic abilities of the developed RC-CAD system were further validated using a randomly stratified 10-fold cross-validation approach. The obtained results using the proposed MLP-ANN classification model outperformed other machine learning classifiers (e.g., support vector machine, random forests, relational functional gradient boosting, etc.). Hence, integrating morphological, textural, and functional features enhances the diagnostic performance, making the proposal a reliable noninvasive diagnostic tool for renal tumors. |
---|---|
AbstractList | Renal cell carcinoma (RCC) is the most common and a highly aggressive type of malignant renal tumor. In this manuscript, we aim to identify and integrate the optimal discriminating morphological, textural, and functional features that best describe the malignancy status of a given renal tumor. The integrated discriminating features may lead to the development of a novel comprehensive renal cancer computer-assisted diagnosis (RC-CAD) system with the ability to discriminate between benign and malignant renal tumors and specify the malignancy subtypes for optimal medical management. Informed consent was obtained from a total of 140 biopsy-proven patients to participate in the study (male = 72 and female = 68, age range = 15 to 87 years). There were 70 patients who had RCC (40 clear cell RCC (ccRCC), 30 nonclear cell RCC (nccRCC)), while the other 70 had benign angiomyolipoma tumors. Contrast-enhanced computed tomography (CE-CT) images were acquired, and renal tumors were segmented for all patients to allow the extraction of discriminating imaging features. The RC-CAD system incorporates the following major steps: (i) applying a new parametric spherical harmonic technique to estimate the morphological features, (ii) modeling a novel angular invariant gray-level co-occurrence matrix to estimate the textural features, and (iii) constructing wash-in/wash-out slopes to estimate the functional features by quantifying enhancement variations across different CE-CT phases. These features were subsequently combined and processed using a two-stage multilayer perceptron artificial neural network (MLP-ANN) classifier to classify the renal tumor as benign or malignant and identify the malignancy subtype as well. Using the combined features and a leave-one-subject-out cross-validation approach, the developed RC-CAD system achieved a sensitivity of
95.3
%
±
2.0
%
, a specificity of
99.9
%
±
0.4
%
, and Dice similarity coefficient of
0.98
±
0.01
in differentiating malignant from benign tumors, as well as an overall accuracy of
89.6
%
±
5.0
%
in discriminating ccRCC from nccRCC. The diagnostic abilities of the developed RC-CAD system were further validated using a randomly stratified 10-fold cross-validation approach. The obtained results using the proposed MLP-ANN classification model outperformed other machine learning classifiers (e.g., support vector machine, random forests, relational functional gradient boosting, etc.). Hence, integrating morphological, textural, and functional features enhances the diagnostic performance, making the proposal a reliable noninvasive diagnostic tool for renal tumors. Renal cell carcinoma (RCC) is the most common and a highly aggressive type of malignant renal tumor. In this manuscript, we aim to identify and integrate the optimal discriminating morphological, textural, and functional features that best describe the malignancy status of a given renal tumor. The integrated discriminating features may lead to the development of a novel comprehensive renal cancer computer-assisted diagnosis (RC-CAD) system with the ability to discriminate between benign and malignant renal tumors and specify the malignancy subtypes for optimal medical management. Informed consent was obtained from a total of 140 biopsy-proven patients to participate in the study (male = 72 and female = 68, age range = 15 to 87 years). There were 70 patients who had RCC (40 clear cell RCC (ccRCC), 30 nonclear cell RCC (nccRCC)), while the other 70 had benign angiomyolipoma tumors. Contrast-enhanced computed tomography (CE-CT) images were acquired, and renal tumors were segmented for all patients to allow the extraction of discriminating imaging features. The RC-CAD system incorporates the following major steps: (i) applying a new parametric spherical harmonic technique to estimate the morphological features, (ii) modeling a novel angular invariant gray-level co-occurrence matrix to estimate the textural features, and (iii) constructing wash-in/wash-out slopes to estimate the functional features by quantifying enhancement variations across different CE-CT phases. These features were subsequently combined and processed using a two-stage multilayer perceptron artificial neural network (MLP-ANN) classifier to classify the renal tumor as benign or malignant and identify the malignancy subtype as well. Using the combined features and a leave-one-subject-out cross-validation approach, the developed RC-CAD system achieved a sensitivity of 95.3%±2.0%, a specificity of 99.9%±0.4%, and Dice similarity coefficient of 0.98±0.01 in differentiating malignant from benign tumors, as well as an overall accuracy of 89.6%±5.0% in discriminating ccRCC from nccRCC. The diagnostic abilities of the developed RC-CAD system were further validated using a randomly stratified 10-fold cross-validation approach. The obtained results using the proposed MLP-ANN classification model outperformed other machine learning classifiers (e.g., support vector machine, random forests, relational functional gradient boosting, etc.). Hence, integrating morphological, textural, and functional features enhances the diagnostic performance, making the proposal a reliable noninvasive diagnostic tool for renal tumors.Renal cell carcinoma (RCC) is the most common and a highly aggressive type of malignant renal tumor. In this manuscript, we aim to identify and integrate the optimal discriminating morphological, textural, and functional features that best describe the malignancy status of a given renal tumor. The integrated discriminating features may lead to the development of a novel comprehensive renal cancer computer-assisted diagnosis (RC-CAD) system with the ability to discriminate between benign and malignant renal tumors and specify the malignancy subtypes for optimal medical management. Informed consent was obtained from a total of 140 biopsy-proven patients to participate in the study (male = 72 and female = 68, age range = 15 to 87 years). There were 70 patients who had RCC (40 clear cell RCC (ccRCC), 30 nonclear cell RCC (nccRCC)), while the other 70 had benign angiomyolipoma tumors. Contrast-enhanced computed tomography (CE-CT) images were acquired, and renal tumors were segmented for all patients to allow the extraction of discriminating imaging features. The RC-CAD system incorporates the following major steps: (i) applying a new parametric spherical harmonic technique to estimate the morphological features, (ii) modeling a novel angular invariant gray-level co-occurrence matrix to estimate the textural features, and (iii) constructing wash-in/wash-out slopes to estimate the functional features by quantifying enhancement variations across different CE-CT phases. These features were subsequently combined and processed using a two-stage multilayer perceptron artificial neural network (MLP-ANN) classifier to classify the renal tumor as benign or malignant and identify the malignancy subtype as well. Using the combined features and a leave-one-subject-out cross-validation approach, the developed RC-CAD system achieved a sensitivity of 95.3%±2.0%, a specificity of 99.9%±0.4%, and Dice similarity coefficient of 0.98±0.01 in differentiating malignant from benign tumors, as well as an overall accuracy of 89.6%±5.0% in discriminating ccRCC from nccRCC. The diagnostic abilities of the developed RC-CAD system were further validated using a randomly stratified 10-fold cross-validation approach. The obtained results using the proposed MLP-ANN classification model outperformed other machine learning classifiers (e.g., support vector machine, random forests, relational functional gradient boosting, etc.). Hence, integrating morphological, textural, and functional features enhances the diagnostic performance, making the proposal a reliable noninvasive diagnostic tool for renal tumors. Renal cell carcinoma (RCC) is the most common and a highly aggressive type of malignant renal tumor. In this manuscript, we aim to identify and integrate the optimal discriminating morphological, textural, and functional features that best describe the malignancy status of a given renal tumor. The integrated discriminating features may lead to the development of a novel comprehensive renal cancer computer-assisted diagnosis (RC-CAD) system with the ability to discriminate between benign and malignant renal tumors and specify the malignancy subtypes for optimal medical management. Informed consent was obtained from a total of 140 biopsy-proven patients to participate in the study (male = 72 and female = 68, age range = 15 to 87 years). There were 70 patients who had RCC (40 clear cell RCC (ccRCC), 30 nonclear cell RCC (nccRCC)), while the other 70 had benign angiomyolipoma tumors. Contrast-enhanced computed tomography (CE-CT) images were acquired, and renal tumors were segmented for all patients to allow the extraction of discriminating imaging features. The RC-CAD system incorporates the following major steps: (i) applying a new parametric spherical harmonic technique to estimate the morphological features, (ii) modeling a novel angular invariant gray-level co-occurrence matrix to estimate the textural features, and (iii) constructing wash-in/wash-out slopes to estimate the functional features by quantifying enhancement variations across different CE-CT phases. These features were subsequently combined and processed using a two-stage multilayer perceptron artificial neural network (MLP-ANN) classifier to classify the renal tumor as benign or malignant and identify the malignancy subtype as well. Using the combined features and a leave-one-subject-out cross-validation approach, the developed RC-CAD system achieved a sensitivity of 95.3%±2.0% , a specificity of 99.9%±0.4% , and Dice similarity coefficient of 0.98±0.01 in differentiating malignant from benign tumors, as well as an overall accuracy of 89.6%±5.0% in discriminating ccRCC from nccRCC. The diagnostic abilities of the developed RC-CAD system were further validated using a randomly stratified 10-fold cross-validation approach. The obtained results using the proposed MLP-ANN classification model outperformed other machine learning classifiers (e.g., support vector machine, random forests, relational functional gradient boosting, etc.). Hence, integrating morphological, textural, and functional features enhances the diagnostic performance, making the proposal a reliable noninvasive diagnostic tool for renal tumors. |
Author | Shehata, Mohamed Abdel Razek, Ahmed Abdel Khalek Elmahdy, Ahmed El-Baz, Ayman Shaffie, Ahmed Abu Khalifeh, Hadil Ghazal, Mohammed Alghamdi, Norah Saleh Salim, Reem Abouelkheir, Rasha T. Soliman, Ahmed Alksas, Ahmed |
AuthorAffiliation | 5 College of Computer and Information Science, Princess Nourah Bint Abdulrahman University, Riyadh 11564, Saudi Arabia; nosalghamdi@pnu.edu.sa 4 Department of Radiology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt; arazek@mans.edu.eg 1 BioImaging Lab, Bioengineering Department, University of Louisville, Louisville, KY 40292, USA; mnsheh01@louisville.edu (M.S.); ammost01@louisville.edu (A.A.); amshaf02@louisville.edu (A.S.); ahmed.soliman@louisville.edu (A.S.) 2 Department of Radiology, Urology and Nephrology Center, University of Mansoura, Mansoura 35516, Egypt; rashataha2020@gmail.com (R.T.A.); ahmed.elmahdy89@yahoo.com (A.E.) 3 College of Engineering, Abu Dhabi University, Abu Dhabi 59911, United Arab Emirates; mohammed.ghazal@adu.ac.ae (M.G.); hadil.abukhalifeh@adu.ac.ae (H.A.K.); reem.salim@adu.ac.ae (R.S.) |
AuthorAffiliation_xml | – name: 1 BioImaging Lab, Bioengineering Department, University of Louisville, Louisville, KY 40292, USA; mnsheh01@louisville.edu (M.S.); ammost01@louisville.edu (A.A.); amshaf02@louisville.edu (A.S.); ahmed.soliman@louisville.edu (A.S.) – name: 5 College of Computer and Information Science, Princess Nourah Bint Abdulrahman University, Riyadh 11564, Saudi Arabia; nosalghamdi@pnu.edu.sa – name: 2 Department of Radiology, Urology and Nephrology Center, University of Mansoura, Mansoura 35516, Egypt; rashataha2020@gmail.com (R.T.A.); ahmed.elmahdy89@yahoo.com (A.E.) – name: 3 College of Engineering, Abu Dhabi University, Abu Dhabi 59911, United Arab Emirates; mohammed.ghazal@adu.ac.ae (M.G.); hadil.abukhalifeh@adu.ac.ae (H.A.K.); reem.salim@adu.ac.ae (R.S.) – name: 4 Department of Radiology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt; arazek@mans.edu.eg |
Author_xml | – sequence: 1 givenname: Mohamed orcidid: 0000-0001-6640-6183 surname: Shehata fullname: Shehata, Mohamed – sequence: 2 givenname: Ahmed orcidid: 0000-0001-9409-931X surname: Alksas fullname: Alksas, Ahmed – sequence: 3 givenname: Rasha T. orcidid: 0000-0002-4250-8772 surname: Abouelkheir fullname: Abouelkheir, Rasha T. – sequence: 4 givenname: Ahmed surname: Elmahdy fullname: Elmahdy, Ahmed – sequence: 5 givenname: Ahmed surname: Shaffie fullname: Shaffie, Ahmed – sequence: 6 givenname: Ahmed surname: Soliman fullname: Soliman, Ahmed – sequence: 7 givenname: Mohammed orcidid: 0000-0002-9045-6698 surname: Ghazal fullname: Ghazal, Mohammed – sequence: 8 givenname: Hadil surname: Abu Khalifeh fullname: Abu Khalifeh, Hadil – sequence: 9 givenname: Reem surname: Salim fullname: Salim, Reem – sequence: 10 givenname: Ahmed Abdel Khalek orcidid: 0000-0002-9613-5932 surname: Abdel Razek fullname: Abdel Razek, Ahmed Abdel Khalek – sequence: 11 givenname: Norah Saleh orcidid: 0000-0001-6421-6001 surname: Alghamdi fullname: Alghamdi, Norah Saleh – sequence: 12 givenname: Ayman orcidid: 0000-0001-7264-1323 surname: El-Baz fullname: El-Baz, Ayman |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34300667$$D View this record in MEDLINE/PubMed |
BookMark | eNplkk1v1DAQhi1URD_gwB9AlrjAIXT8meSCtFoKVKqEBOWK5TiTrVdJvNhJpf33eHfbqi0ne8bPvHpnPKfkaAwjEvKWwSchajhPnDEpa169ICdMcllUnMPRo_sxOU1pDcCFENUrciykANC6PCF_FnQZhk3EGxyTv8V9NE8Yi0VKPk3Y0i_ersaQA_prmxMD7UKkFzb2W5oZTGnAcaKhoz9xtD1d2tFhpNfzEGJ6TV52tk_45u48I7-_XlwvvxdXP75dLhdXhZO6ngpdYqsb2datQLC6ZFw2Fjqo2ka6DpTgJaATWKOCxrpSV1aW4FSjWu5cbuuMXB5022DXZhP9YOPWBOvNPhHiytg4edej4aoSjZal0kJLCW2D2KkGmALLuhqrrPX5oLWZmwFbl7uLtn8i-vRl9DdmFW5NJaAu2U7gw51ADH9nTJMZfHLY93bEMKfsQCkGlRJ1Rt8_Q9dhjnmMe0rqSghWZurdY0cPVu6_MQPnB8DFkFLEzjg_2cmHnUHfGwZmtyjmYVFyxcdnFfei_7P_AHWAvLE |
CitedBy_id | crossref_primary_10_1007_s10278_024_01276_7 crossref_primary_10_3390_bioengineering10070755 crossref_primary_10_1186_s12885_025_13582_6 crossref_primary_10_31083_j_fbl2709276 crossref_primary_10_3390_bioengineering9100532 crossref_primary_10_3390_jcm12154995 crossref_primary_10_3390_biomedicines11112875 crossref_primary_10_3390_s22208052 crossref_primary_10_1007_s12539_024_00649_4 crossref_primary_10_3389_fpubh_2023_1109236 crossref_primary_10_1016_j_displa_2024_102867 crossref_primary_10_17816_DD515814 crossref_primary_10_22328_2079_5343_2023_14_4_7_18 crossref_primary_10_3390_biomedicines11010006 crossref_primary_10_1007_s11831_022_09750_7 crossref_primary_10_1186_s12885_025_13547_9 crossref_primary_10_3389_fneur_2021_780628 crossref_primary_10_1007_s42979_023_02258_2 crossref_primary_10_3390_diagnostics13030486 crossref_primary_10_3390_cancers15102835 crossref_primary_10_3390_bioengineering9090423 crossref_primary_10_3389_fonc_2022_889886 crossref_primary_10_3389_fonc_2022_976168 crossref_primary_10_7759_cureus_72748 |
Cites_doi | 10.1023/A:1012487302797 10.1038/s41598-020-64803-w 10.5489/cuaj.10038 10.2214/ajr.178.6.1781499 10.1016/j.ultrasmedbio.2011.02.015 10.1148/radiol.13112617 10.1002/jmri.22807 10.1259/bjr.20200002 10.1016/j.cmpb.2008.08.005 10.1148/radiol.2015151169 10.1002/mp.12828 10.3322/caac.21338 10.1109/CVPR.2016.90 10.1016/j.mri.2013.04.006 10.1016/j.ejrad.2018.08.014 10.1148/radiol.2015142215 10.1080/00313020701570061 10.1148/rg.2017170056 10.1016/j.eururo.2016.02.029 10.1148/radiol.12111281 10.3892/ol.2016.4214 10.1016/j.tranon.2018.10.012 10.1016/j.isprsjprs.2019.01.008 10.1016/S0022-5347(17)61327-2 10.1056/NEJMcp0910041 10.1109/ISBI48211.2021.9433865 10.1109/CVPR.2015.7298594 10.1007/s00330-017-4988-4 10.3322/caac.21254 10.1109/PROC.1979.11328 10.1016/j.crad.2004.07.008 10.1016/j.eururo.2009.10.023 10.1109/ICIP.2017.8296506 10.1148/radiol.2303030003 10.1016/j.crad.2019.09.131 10.1158/0008-5472.CAN-17-0339 10.2214/AJR.19.21617 10.1111/j.1464-410X.2005.05243.x 10.2307/1932409 10.1097/MOU.0b013e32833625f8 10.1007/s10278-018-0100-0 10.1097/00000478-200305000-00005 10.1148/radiol.2472061846 10.1148/radiol.2442060927 10.3892/ol.2011.520 |
ContentType | Journal Article |
Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 by the authors. 2021 |
Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 by the authors. 2021 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/s21144928 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) Medical Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals (DOAJ) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_2583b6475636440dbeef5b0150a1f9e8 PMC8309718 34300667 10_3390_s21144928 |
Genre | Journal Article |
GeographicLocations | United States--US |
GeographicLocations_xml | – name: United States--US |
GrantInformation_xml | – fundername: The Deanship of Scientific Research at Princess Nourah bint Abdulrahman University grantid: Fast-track Research Funding Program |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M CGR CUY CVF ECM EIF NPM PJZUB PPXIY 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c469t-67ed6b4d9d3e0a67124ba0f08db4cf053270ec3e9e50bac768a470c5b5d2cc023 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 00:58:03 EDT 2025 Thu Aug 21 18:15:02 EDT 2025 Tue Aug 05 09:55:19 EDT 2025 Fri Jul 25 22:44:27 EDT 2025 Mon Jul 21 05:49:57 EDT 2025 Tue Jul 01 03:56:16 EDT 2025 Thu Apr 24 23:10:44 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Keywords | RC-CAD renal cell carcinoma functionality morphology CE-CT texture |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c469t-67ed6b4d9d3e0a67124ba0f08db4cf053270ec3e9e50bac768a470c5b5d2cc023 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 These authors contributed equally to this work. |
ORCID | 0000-0001-6421-6001 0000-0001-9409-931X 0000-0001-7264-1323 0000-0002-4250-8772 0000-0001-6640-6183 0000-0002-9045-6698 0000-0002-9613-5932 |
OpenAccessLink | https://doaj.org/article/2583b6475636440dbeef5b0150a1f9e8 |
PMID | 34300667 |
PQID | 2554683317 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_2583b6475636440dbeef5b0150a1f9e8 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8309718 proquest_miscellaneous_2555108539 proquest_journals_2554683317 pubmed_primary_34300667 crossref_citationtrail_10_3390_s21144928 crossref_primary_10_3390_s21144928 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210720 |
PublicationDateYYYYMMDD | 2021-07-20 |
PublicationDate_xml | – month: 7 year: 2021 text: 20210720 day: 20 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2021 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Kim (ref_51) 2004; 230 Cheville (ref_8) 2003; 27 Moch (ref_6) 2016; 70 Zhou (ref_38) 2019; 12 Fedorov (ref_49) 2017; 77 Mindrup (ref_15) 2005; 95 Kocak (ref_29) 2018; 107 Lubner (ref_24) 2017; 37 Young (ref_22) 2013; 267 Xie (ref_53) 2016; 11 ref_16 Lim (ref_17) 2018; 28 Anderson (ref_48) 2012; 35 Tustison (ref_45) 2008; 1 Zhou (ref_19) 2011; 37 Dice (ref_54) 1945; 26 Xipell (ref_12) 1971; 106 Castellano (ref_47) 2004; 59 Deng (ref_26) 2020; 75 Kurani (ref_44) 2004; 27 Gillies (ref_25) 2016; 278 Delahunt (ref_7) 2007; 39 Oberai (ref_37) 2020; 93 Sun (ref_31) 2020; 214 Mues (ref_10) 2010; 20 ref_36 ref_35 Siegel (ref_4) 2015; 65 ref_34 ref_33 Strzelecki (ref_30) 2009; 94 Chandarana (ref_18) 2012; 265 Kim (ref_23) 2002; 178 ref_39 Lee (ref_32) 2018; 45 Moya (ref_42) 2019; 149 Rendon (ref_9) 2010; 4 Barry (ref_46) 2014; 32 Zhang (ref_21) 2007; 244 Dyer (ref_20) 2008; 247 Chen (ref_5) 2016; 66 Ye (ref_52) 2012; 3 Heuer (ref_11) 2010; 57 ref_43 ref_41 Gill (ref_13) 2010; 362 Guyon (ref_28) 2002; 46 ref_40 ref_1 ref_3 ref_2 Haralick (ref_50) 1979; 67 Kunapuli (ref_27) 2018; 31 Hodgdon (ref_14) 2015; 276 Carass (ref_55) 2020; 10 |
References_xml | – volume: 46 start-page: 389 year: 2002 ident: ref_28 article-title: Gene selection for cancer classification using support vector machines publication-title: Mach. Learn. doi: 10.1023/A:1012487302797 – volume: 10 start-page: 8242 year: 2020 ident: ref_55 article-title: Evaluating White Matter Lesion Segmentations with Refined Sørensen-Dice Analysis publication-title: Sci. Rep. doi: 10.1038/s41598-020-64803-w – volume: 4 start-page: 136 year: 2010 ident: ref_9 article-title: Active surveillance as the preferred management option for small renal masses publication-title: Can. Urol. Assoc. J. doi: 10.5489/cuaj.10038 – volume: 178 start-page: 1499 year: 2002 ident: ref_23 article-title: Differentiation of subtypes of renal cell carcinoma on helical CT scans publication-title: Am. J. Roentgenol. doi: 10.2214/ajr.178.6.1781499 – volume: 37 start-page: 845 year: 2011 ident: ref_19 article-title: Characterization and diagnostic confidence of contrast-enhanced ultrasound for solid renal tumors publication-title: Ultrasound Med. Biol. doi: 10.1016/j.ultrasmedbio.2011.02.015 – volume: 267 start-page: 444 year: 2013 ident: ref_22 article-title: Clear cell renal cell carcinoma: Discrimination from other renal cell carcinoma subtypes and oncocytoma at multiphasic multidetector CT publication-title: Radiology doi: 10.1148/radiol.13112617 – ident: ref_16 – volume: 35 start-page: 140 year: 2012 ident: ref_48 article-title: Effect of disease progression on liver apparent diffusion coefficient and T2 values in a murine model of hepatic fibrosis at 11.7 Tesla MRI publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.22807 – volume: 27 start-page: 25 year: 2004 ident: ref_44 article-title: Co-occurrence matrices for volumetric data publication-title: Heart – volume: 93 start-page: 20200002 year: 2020 ident: ref_37 article-title: Deep learning based classification of solid lipid-poor contrast enhancing renal masses using contrast enhanced CT publication-title: Br. J. Radiol. doi: 10.1259/bjr.20200002 – ident: ref_1 – volume: 94 start-page: 66 year: 2009 ident: ref_30 article-title: MaZda—A software package for image texture analysis publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2008.08.005 – volume: 278 start-page: 563 year: 2016 ident: ref_25 article-title: Radiomics: Images are more than pictures, they are data publication-title: Radiology doi: 10.1148/radiol.2015151169 – volume: 45 start-page: 1550 year: 2018 ident: ref_32 article-title: Deep feature classification of angiomyolipoma without visible fat and renal cell carcinoma in abdominal contrast-enhanced CT images with texture image patches and hand-crafted feature concatenation publication-title: Med. Phys. doi: 10.1002/mp.12828 – volume: 66 start-page: 115 year: 2016 ident: ref_5 article-title: Cancer statistics in China, 2015 publication-title: CA Cancer J. Clin. doi: 10.3322/caac.21338 – ident: ref_36 doi: 10.1109/CVPR.2016.90 – volume: 32 start-page: 84 year: 2014 ident: ref_46 article-title: Quantifying liver fibrosis through the application of texture analysis to diffusion weighted imaging publication-title: Magn. Reson. Imaging doi: 10.1016/j.mri.2013.04.006 – volume: 107 start-page: 149 year: 2018 ident: ref_29 article-title: Textural differences between renal cell carcinoma subtypes: Machine learning-based quantitative computed tomography texture analysis with independent external validation publication-title: Eur. J. Radiol. doi: 10.1016/j.ejrad.2018.08.014 – volume: 276 start-page: 787 year: 2015 ident: ref_14 article-title: Can quantitative CT texture analysis be used to differentiate fat-poor renal angiomyolipoma from renal cell carcinoma on unenhanced CT images? publication-title: Radiology doi: 10.1148/radiol.2015142215 – ident: ref_41 – volume: 39 start-page: 459 year: 2007 ident: ref_7 article-title: Outcome prediction for renal cell carcinoma: Evaluation of prognostic factors for tumours divided according to histological subtype publication-title: Pathology doi: 10.1080/00313020701570061 – volume: 37 start-page: 1483 year: 2017 ident: ref_24 article-title: CT texture analysis: Definitions, applications, biologic correlates, and challenges publication-title: Radiographics doi: 10.1148/rg.2017170056 – volume: 1 start-page: 1 year: 2008 ident: ref_45 article-title: Run-Length Matrices for Texture Analysis publication-title: Insight J. – volume: 70 start-page: 93 year: 2016 ident: ref_6 article-title: The 2016 WHO classification of tumours of the urinary system and male genital organs—Part A: Renal, penile, and testicular tumours publication-title: Eur. Urol. doi: 10.1016/j.eururo.2016.02.029 – volume: 265 start-page: 790 year: 2012 ident: ref_18 article-title: Histogram analysis of whole-lesion enhancement in differentiating clear cell from papillary subtype of renal cell cancer publication-title: Radiology doi: 10.1148/radiol.12111281 – volume: 11 start-page: 2327 year: 2016 ident: ref_53 article-title: Lipid-poor renal angiomyolipoma: Differentiation from clear cell renal cell carcinoma using wash-in and washout characteristics on contrast-enhanced computed tomography publication-title: Oncol. Lett. doi: 10.3892/ol.2016.4214 – volume: 12 start-page: 292 year: 2019 ident: ref_38 article-title: A deep learning-based radiomics model for differentiating benign and malignant renal tumors publication-title: Transl. Oncol. doi: 10.1016/j.tranon.2018.10.012 – volume: 149 start-page: 14 year: 2019 ident: ref_42 article-title: 3D gray level co-occurrence matrix and its application to identifying collapsed buildings publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2019.01.008 – volume: 106 start-page: 503 year: 1971 ident: ref_12 article-title: The incidence of benign renal nodules (a clinicopathologic study) publication-title: J. Urol. doi: 10.1016/S0022-5347(17)61327-2 – volume: 362 start-page: 624 year: 2010 ident: ref_13 article-title: Small renal mass publication-title: N. Engl. J. Med. doi: 10.1056/NEJMcp0910041 – ident: ref_39 doi: 10.1109/ISBI48211.2021.9433865 – ident: ref_3 – ident: ref_35 doi: 10.1109/CVPR.2015.7298594 – ident: ref_34 – volume: 28 start-page: 542 year: 2018 ident: ref_17 article-title: Renal angiomyolipoma without visible fat: Can we make the diagnosis using CT and MRI? publication-title: Eur. Radiol. doi: 10.1007/s00330-017-4988-4 – volume: 65 start-page: 5 year: 2015 ident: ref_4 article-title: Cancer statistics, 2015 publication-title: CA Cancer J. Clin. doi: 10.3322/caac.21254 – volume: 67 start-page: 786 year: 1979 ident: ref_50 article-title: Statistical and structural approaches to texture publication-title: Proc. IEEE doi: 10.1109/PROC.1979.11328 – volume: 59 start-page: 1061 year: 2004 ident: ref_47 article-title: Texture analysis of medical images publication-title: Clin. Radiol. doi: 10.1016/j.crad.2004.07.008 – volume: 57 start-page: 223 year: 2010 ident: ref_11 article-title: A critical analysis of the actual role of minimally invasive surgery and active surveillance for kidney cancer publication-title: Eur. Urol. doi: 10.1016/j.eururo.2009.10.023 – ident: ref_40 doi: 10.1109/ICIP.2017.8296506 – volume: 230 start-page: 677 year: 2004 ident: ref_51 article-title: Angiomyolipoma with minimal fat: Differentiation from renal cell carcinoma at biphasic helical CT publication-title: Radiology doi: 10.1148/radiol.2303030003 – volume: 75 start-page: 108 year: 2020 ident: ref_26 article-title: Usefulness of CT texture analysis in differentiating benign and malignant renal tumours publication-title: Clin. Radiol. doi: 10.1016/j.crad.2019.09.131 – ident: ref_33 – volume: 77 start-page: e104 year: 2017 ident: ref_49 article-title: Computational radiomics system to decode the radiographic phenotype publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-17-0339 – volume: 214 start-page: W44 year: 2020 ident: ref_31 article-title: Radiologic-Radiomic Machine Learning Models for Differentiation of Benign and Malignant Solid Renal Masses: Comparison with Expert-Level Radiologists publication-title: Am. J. Roentgenol. doi: 10.2214/AJR.19.21617 – ident: ref_2 – volume: 95 start-page: 31 year: 2005 ident: ref_15 article-title: The prevalence of renal cell carcinoma diagnosed at autopsy publication-title: BJU Int. doi: 10.1111/j.1464-410X.2005.05243.x – volume: 26 start-page: 297 year: 1945 ident: ref_54 article-title: Measures of the amount of ecologic association between species publication-title: Ecology doi: 10.2307/1932409 – volume: 20 start-page: 105 year: 2010 ident: ref_10 article-title: Small renal masses: Current concepts regarding the natural history and reflections on the American Urological Association guidelines publication-title: Curr. Opin. Urol. doi: 10.1097/MOU.0b013e32833625f8 – volume: 31 start-page: 929 year: 2018 ident: ref_27 article-title: A decision-support tool for renal mass classification publication-title: J. Digit. Imaging doi: 10.1007/s10278-018-0100-0 – volume: 27 start-page: 612 year: 2003 ident: ref_8 article-title: Comparisons of outcome and prognostic features among histologic subtypes of renal cell carcinoma publication-title: Am. J. Surg. Pathol. doi: 10.1097/00000478-200305000-00005 – volume: 247 start-page: 331 year: 2008 ident: ref_20 article-title: Simplified imaging approach for evaluation of the solid renal mass in adults publication-title: Radiology doi: 10.1148/radiol.2472061846 – volume: 244 start-page: 494 year: 2007 ident: ref_21 article-title: Solid renal cortical tumors: Differentiation with CT publication-title: Radiology doi: 10.1148/radiol.2442060927 – volume: 3 start-page: 672 year: 2012 ident: ref_52 article-title: Characterization of solitary pulmonary nodules: Use of washout characteristics at contrast-enhanced computed tomography publication-title: Oncol. Lett. doi: 10.3892/ol.2011.520 – ident: ref_43 |
SSID | ssj0023338 |
Score | 2.4372108 |
Snippet | Renal cell carcinoma (RCC) is the most common and a highly aggressive type of malignant renal tumor. In this manuscript, we aim to identify and integrate the... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 4928 |
SubjectTerms | Accuracy Adolescent Adult Aged Aged, 80 and over Angiomyolipoma Carcinoma, Renal Cell - diagnostic imaging CE-CT Classification Cost estimates Diagnosis, Computer-Assisted Diagnosis, Differential Female functionality Humans Investigations Kidney cancer Kidney Neoplasms - diagnostic imaging Machine learning Male Middle Aged morphology Neural networks Open source software Public domain RC-CAD renal cell carcinoma Support vector machines texture Tumors Young Adult |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals (DOAJ) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hnuCAeBNokUEcuER1188ct4WqQoIDaqWeiPxUK0G22sf_Z8bORruoEheu8URxZsaZ-ZzxNwAfO-mF5S62xkvTSqts66PQbSrZhwtWJNrv-PZdX1zJr9fqeqfVF9WEVXrgqrjjmbLCa2mUFhi6efQpZeUJp7uT3KVyzBdj3hZMjVBLIPKqPEICQf3xCmGOlB21XN-JPoWk_77M8u8CyZ2Ic_4EHo-pIpvXKT6FB2l4Bo92CASfw885owW9TDe1Dp1tmzS0qHYyYGSfay3d7YpVcnKGWSortMZsPrFyskVmPxI97Yy8YMkuN78Xy9ULuDr_cnl20Y4dE9qAMHfdapOi9jJ2USTutMHg7R3P3EYvQ6YmEIanIFKXFPcuINRw0vCgvIqzEFBtL-FgWAzpNTClhLJRxZBzlCc5eytDxNAm_cy4pE0Dn7aa7MNIJ05dLX71CCtI6f2k9AY-TKJ3lUPjPqFTMsckQLTX5QI6Qz86Q_8vZ2jgcGvMflyLK7xJSW0FJkoNvJ-GcRXRrxE3pMWmyCg6hyG6Bl5V208zEVKUUuAGzJ5X7E11f2S4vSlM3VYQRZd98z_e7S08nFE9DTf4ZTuEg_Vyk44wIVr7d8X3_wDHugnR priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELZauLSHir5DoXKrHnqxMLEdOye0UBCqVFQhkDg18iuA1CaQ7P7_ziTesFuhXuNRYs177Mk3hHwppROG28C0k5pJowxzQRQsDtmH9UZEPO_4cVacXsrvV-oqHbj1qa1y6RMHRx1aj2fkezm2UxkB4e7g7p7h1Ci8XU0jNJ6STXDBBjR88_D47Of5VHIJqMBGPCEBxf1eD-WOlCWOXl-JQgNY_2MZ5r-NkiuR52SLvEgpI52NMn5JnsTmFXm-AiT4mvyaUTTsLt6M_eh0OayBAftRkIF-G3vqbns6gpRTyFbpAG9MZxM6J21reh7xa0eoDR29WPxpu_4NuTw5vjg6ZWlyAvNQ7s5ZoWMonAxlEJHbQkMQd5bX3AQnfY3DIDSPXsQyKu6sh5LDSs29cirk3gPb3pKNpm3ie0KVEsoEFXxdB7lf185IHyDESZdrGwudka9LTlY-wYrjdIvfFZQXyPRqYnpGPk-kdyOWxmNEhyiOiQDhr4cHbXddJWuqcmWEK6RWhYB8jgcXY60cHt7Y_bqM8JKdpTCrZJN99aBBGfk0LYM14RWJbWK7GGgU_o8hyoy8G2U_7URIMbQEZ0SvacXaVtdXmtubAbHbCITqMtv_39YH8izHjhmuwXftkI15t4i7kPLM3cek138B04YDYQ priority: 102 providerName: ProQuest |
Title | A Comprehensive Computer-Assisted Diagnosis System for Early Assessment of Renal Cancer Tumors |
URI | https://www.ncbi.nlm.nih.gov/pubmed/34300667 https://www.proquest.com/docview/2554683317 https://www.proquest.com/docview/2555108539 https://pubmed.ncbi.nlm.nih.gov/PMC8309718 https://doaj.org/article/2583b6475636440dbeef5b0150a1f9e8 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB71cYFDRXkG2pVBHLgE3NiOnQNC29KlQmqFqq60J6L4EVqpTSC7K8G_Z-w81KA9cMkhsRNrxpOZscffB_A245opWthYai5jroSKtWVp7EL0URjFnF_vOL9Iz-b860IstqDn2OwEuNyY2nk-qXlz-_73rz-f0OA_-owTU_YPS0xiOM8StQ276JCkZ3A458NmQsJYILT2Z7pi9Ie0BRgadx25pYDevynk_Ldy8p4rmj2CvS6GJNNW6fuw5arH8PAesuAT-D4l3tIbd90WqJOevSFGfXjNWvK5LbK7WZIWtZxg-EoC3jGZDnCdpC7JpfNfO_HToyFX67u6WT6F-ez06uQs7qgUYoP57ypOpbOp5jazzNEilejVdUFLqqzmpvTsEJI6w1zmBNWFwRyk4JIaoYVNjEERPoOdqq7cCyBCMKGssKYsLT8qS624sejzuE5k4VIZwbtekrnpcMY93cVtjvmGF3o-CD2CN0PTny24xqZGx14dQwOPhx1u1M2PvDOvPBGK6ZRLkTIM8KjVzpVC-9Wc4qjMHL7koFdm3s8x7CR4qhhGUBG8Hh6jefk9k6Jy9Tq0Ef6ABssieN7qfhgJ4yzUCEcgR7NiNNTxk-rmOkB4K-axu9TL_xHAK3iQ-EIaKvGXdgA7q2btDjESWukJbMuFxKuafZnA7vHpxbfLSVhVmAQL-AsBcAsI |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqcgAOiHdTChgEEpeobmzHzgGhpaXa0scBbaU9EeJHaCVI2uyuEH-K38iM8-guqrj1mliJNTOehz3-PkLeZMJwzQoXKyNULLTUsXE8jX3IPgqrucf9juOTdHwqPk_ldI386e_CYFtl7xODo3a1xT3y7QTbqTSHcPfh4jJG1ig8Xe0pNFqzOPS_f0HJNnt_sAf6fZsk-58mu-O4YxWILZSC8zhV3qVGuMxxz4pUQYAzBSuZdkbYEokSFPOW-8xLZgoL6XghFLPSSJdYG4AOwOXfgsDLsIVQTa8KPA71XotexHnGtmdQXAmRIdH7UswL1ADX5bP_tmUuxbn9--Rel6DSUWtRD8iarx6Su0uwhY_I1xFFN9L4s7b7nfbUEDEoG83G0b22g-98RltIdAq5MQ1gynQ0YIHSuqRfPP5tF22voZPFz7qZPSanNyLRJ2S9qiu_QaiUXGonnS1LJ3bK0mhhHQRUYRJV-FRF5F0vydx2IObIpfEjh2IGhZ4PQo_I62HoRYvccd2gj6iOYQCCbYcHdfM979ZunkjNTSqUTDlkj8wZ70tpcKuo2CkzDx_Z6pWZdx5gll_Za0ReDa9h7eKBTFH5ehHGSLz9wbOIPG11P8yECx4akCOiVqxiZaqrb6rzs4APrjkCg-nN_0_rJbk9nhwf5UcHJ4fPyJ0Ee3WYAq-5RdbnzcI_h2Rrbl4EC6fk200vqb8-VD-a |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIiE4IN4EChgEEpdo3diOnQNCS5dVS6FCqJX2RIgfoZXapGx2hfhr_DpmnEd3UcWt12SUWPMee_wNIa8yYbhmhYuVESoWWurYOJ7GPmQfhdXc437H54N090h8nMnZBvnT34XBtsreJwZH7WqLe-SjBNupNIdwNyq7togvk-m7858xTpDCk9Z-nEarIvv-9y8o35q3exOQ9eskmX443NmNuwkDsYWycBGnyrvUCJc57lmRKgh2pmAl084IW-LQBMW85T7zkpnCQmpeCMWsNNIl1gbQA3D_1xSHsAm2pGYXxR6H2q9FMuI8Y6MGCi0hMhz6vhL_wpiAy3Lbf1s0V2Le9Da51SWrdNxq1x2y4au75OYKhOE98m1M0aXM_XHbCU_7MRExCB5VyNFJ28130tAWHp1CnkwDsDIdD7igtC7pV49_20E9nNPD5Vk9b-6Toyvh6AOyWdWVf0SolFxqJ50tSye2y9JoYR0EV2ESVfhUReRNz8ncdoDmOFfjNIfCBpmeD0yPyMuB9LxF8biM6D2KYyBA4O3woJ7_yDs7zhOpuUmFkimHTJI5430pDW4bFdtl5uEjW70w884bNPmF7kbkxfAa7BgPZ4rK18tAI_EmCM8i8rCV_bASLnhoRo6IWtOKtaWuv6lOjgNWuOYIEqYf_39Zz8l1MKb8097B_hNyI8G2HabAgW6RzcV86Z9C3rUwz4KCU_L9qi3qL9vDQ9A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Comprehensive+Computer-Assisted+Diagnosis+System+for+Early+Assessment+of+Renal+Cancer+Tumors&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Shehata%2C+Mohamed&rft.au=Alksas%2C+Ahmed&rft.au=Abouelkheir%2C+Rasha+T.&rft.au=Elmahdy%2C+Ahmed&rft.date=2021-07-20&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=21&rft.issue=14&rft.spage=4928&rft_id=info:doi/10.3390%2Fs21144928&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_s21144928 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |