Role of protein Post-translational modifications in enterovirus infection
Enteroviruses (EVs) are the main cause of a number of neurological diseases. Growing evidence has revealed that successful infection with enteroviruses is highly dependent on the host machinery, therefore, host proteins play a pivotal role in viral infections. Both host and viral proteins can underg...
Saved in:
Published in | Frontiers in microbiology Vol. 15; p. 1341599 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Media S.A
26.02.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Enteroviruses (EVs) are the main cause of a number of neurological diseases. Growing evidence has revealed that successful infection with enteroviruses is highly dependent on the host machinery, therefore, host proteins play a pivotal role in viral infections. Both host and viral proteins can undergo post-translational modification (PTM) which can regulate protein activity, stability, solubility and interactions with other proteins; thereby influencing various biological processes, including cell metabolism, metabolic, signaling pathways, cell death, and cancer development. During viral infection, both host and viral proteins regulate the viral life cycle through various PTMs and different mechanisms, including the regulation of host cell entry, viral protein synthesis, genome replication, and the antiviral immune response. Therefore, protein PTMs play important roles in EV infections. Here, we review the role of various host- and virus-associated PTMs during enterovirus infection. |
---|---|
AbstractList | Enteroviruses (EVs) are the main cause of a number of neurological diseases. Growing evidence has revealed that successful infection with enteroviruses is highly dependent on the host machinery, therefore, host proteins play a pivotal role in viral infections. Both host and viral proteins can undergo post-translational modification (PTM) which can regulate protein activity, stability, solubility and interactions with other proteins; thereby influencing various biological processes, including cell metabolism, metabolic, signaling pathways, cell death, and cancer development. During viral infection, both host and viral proteins regulate the viral life cycle through various PTMs and different mechanisms, including the regulation of host cell entry, viral protein synthesis, genome replication, and the antiviral immune response. Therefore, protein PTMs play important roles in EV infections. Here, we review the role of various host- and virus-associated PTMs during enterovirus infection. Enteroviruses (EVs) are the main cause of a number of neurological diseases. Growing evidence has revealed that successful infection with enteroviruses is highly dependent on the host machinery, therefore, host proteins play a pivotal role in viral infections. Both host and viral proteins can undergo post-translational modification (PTM) which can regulate protein activity, stability, solubility and interactions with other proteins; thereby influencing various biological processes, including cell metabolism, metabolic, signaling pathways, cell death, and cancer development. During viral infection, both host and viral proteins regulate the viral life cycle through various PTMs and different mechanisms, including the regulation of host cell entry, viral protein synthesis, genome replication, and the antiviral immune response. Therefore, protein PTMs play important roles in EV infections. Here, we review the role of various host- and virus-associated PTMs during enterovirus infection.Enteroviruses (EVs) are the main cause of a number of neurological diseases. Growing evidence has revealed that successful infection with enteroviruses is highly dependent on the host machinery, therefore, host proteins play a pivotal role in viral infections. Both host and viral proteins can undergo post-translational modification (PTM) which can regulate protein activity, stability, solubility and interactions with other proteins; thereby influencing various biological processes, including cell metabolism, metabolic, signaling pathways, cell death, and cancer development. During viral infection, both host and viral proteins regulate the viral life cycle through various PTMs and different mechanisms, including the regulation of host cell entry, viral protein synthesis, genome replication, and the antiviral immune response. Therefore, protein PTMs play important roles in EV infections. Here, we review the role of various host- and virus-associated PTMs during enterovirus infection. |
Author | Liu, Yan Ma, Xueman Hu, Yibo Xing, Yonghua Chen, Hongru Zhao, Jun Zhao, Xiaohui |
AuthorAffiliation | 1 Department of Pathogen Biology, School of Medicine, Qinghai University , Qinghai , China 6 Department of Genetics, School of Medicine, Qinghai University , Qinghai , China 4 Department of Traditional Chinese Medicine, School of Medicine, Qinghai University , Qinghai , China 5 Department of Public Health, School of Medicine, Qinghai University , Qinghai , China 2 Department of Orthopaedic Trauma, The Affiliated Hospital of Qinghai University , Qinghai , China 3 Department of Immunology, School of Medicine , Qinghai , China |
AuthorAffiliation_xml | – name: 5 Department of Public Health, School of Medicine, Qinghai University , Qinghai , China – name: 4 Department of Traditional Chinese Medicine, School of Medicine, Qinghai University , Qinghai , China – name: 3 Department of Immunology, School of Medicine , Qinghai , China – name: 6 Department of Genetics, School of Medicine, Qinghai University , Qinghai , China – name: 1 Department of Pathogen Biology, School of Medicine, Qinghai University , Qinghai , China – name: 2 Department of Orthopaedic Trauma, The Affiliated Hospital of Qinghai University , Qinghai , China |
Author_xml | – sequence: 1 givenname: Xiaohui surname: Zhao fullname: Zhao, Xiaohui – sequence: 2 givenname: Yibo surname: Hu fullname: Hu, Yibo – sequence: 3 givenname: Jun surname: Zhao fullname: Zhao, Jun – sequence: 4 givenname: Yan surname: Liu fullname: Liu, Yan – sequence: 5 givenname: Xueman surname: Ma fullname: Ma, Xueman – sequence: 6 givenname: Hongru surname: Chen fullname: Chen, Hongru – sequence: 7 givenname: Yonghua surname: Xing fullname: Xing, Yonghua |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38596371$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UUtrFTEUDlKxtfYPuJBZuplr3jdZiRRtLxQs0oK7kElOakpmck3mFvz35j4srYtmkeTkfI8cvrfoaMoTIPSe4AVjSn8KY3TDgmLKF4RxIrR-hU6IlLxnmP48enI_Rme13uO2OKZtf4OOmRJasiU5QasfOUGXQ7cueYY4dde5zv1c7FSTnWOebOrG7GOIblfWrmFgmqHkh1g22zKA23beodfBpgpnh_MU3X77enN-2V99v1idf7nqHZd67oUHYEQTTLQUjYoHrRTzWlDuKcdCMEncUjvuiNRKCzIogj0wSyl4xiQ7Rau9rs_23qxLHG35Y7KNZveQy52xZY4ugcHgJAceuOC-mSsrl146y5wOOlA6NK3Pe631ZhjBuzZYsemZ6PPOFH-Zu_xgCMGYaqybwseDQsm_N1BnM8bqICU7Qd5UwzBrIy01Uw364anZo8u_MBqA7gGu5FoLhEcIwWYbutmFbrahm0PojaT-I7k476JqH47pJepfCE-zCQ |
CitedBy_id | crossref_primary_10_3389_fmicb_2024_1501061 |
Cites_doi | 10.1128/jvi.00119-22 10.3389/fimmu.2022.1068449 10.1093/nar/gkac193 10.3390/ijms22010323 10.1021/acschemneuro.1c00028 10.3390/ijms23094593 10.1371/journal.pbio.3000718 10.1093/nar/gkw1042 10.1007/s00726-021-02984-y 10.1016/j.semcdb.2012.05.009 10.1128/JVI.01004-13 10.1016/j.bbrc.2012.03.094 10.3389/fcimb.2017.00284 10.3390/biom10081122 10.1016/j.bbcan.2022.188735 10.3390/ijms21165941 10.1038/cddis.2017.257 10.3390/ijms23073480 10.1007/978-3-031-05460-0_7 10.3390/ijms20194870 10.3390/molecules27134190 10.1158/0008-5472.CAN-05-1123 10.1016/j.arr.2021.101336 10.1161/01.RES.0000264500.11888.f0 10.3390/cells11030538 10.1016/j.lfs.2005.04.076 10.1021/acschembio.5b01067 10.1080/14789450.2021.2007766 10.1016/j.sbi.2018.04.006 10.3390/v14112486 10.1074/jbc.M111.254896 10.1007/978-3-030-15950-4_11 10.1038/s41467-018-07179-w 10.15252/embj.201798804 10.1002/jmv.25482 10.1371/journal.ppat.1004070 10.1038/nrm2293 10.1038/nrm3011 10.1038/s41598-018-31734-6 10.4049/jimmunol.1100285 10.1016/j.ymeth.2020.01.012 10.1128/JVI.77.1.1-9.2003 10.1038/cr.2016.39 10.1128/spectrum.00446-23 10.3389/fimmu.2018.02479 10.15252/embr.201948441 10.3390/biom13050869 10.1371/journal.pone.0073900 10.34133/research.0078 10.1101/gad.1843810 10.1128/JVI.02791-14 10.1016/j.cell.2005.10.035 10.1016/j.mam.2022.101066 10.1038/s41598-019-45868-8 10.1128/JVI.02028-06 10.1128/jvi.00598-22 10.1016/j.tibs.2015.12.006 10.1242/jcs.193698 10.1093/nar/gkx519 10.1021/acsinfecdis.9b00179 10.1371/journal.pbio.1001074 10.1016/bs.aivir.2021.03.001 10.1007/s00018-015-2036-6 10.3390/ijms231911308 10.1016/j.bbrc.2015.02.035 10.1016/j.antiviral.2017.04.008 10.1016/j.biocel.2022.106208 10.1109/TCBB.2020.2991207 10.1128/JVI.79.13.8014-8023.2005 10.1021/ar020143l 10.1021/acs.jcim.2c00484 10.1128/mBio.00305-20 10.1016/j.mcpro.2021.100129 10.1016/j.virs.2022.05.001 10.3390/v13071360 10.1021/acs.chemrev.6b00737 10.1161/CIRCRESAHA.108.191171 10.1016/j.virusres.2013.11.020 10.1083/jcb.200810114 10.1128/JVI.01028-15 10.1038/s42003-021-02187-x 10.1007/s12250-021-00410-x 10.1016/j.tplants.2018.09.004 10.1074/mcp.TIR118.000783 10.3389/fmolb.2022.1095142 10.1042/BJ20150419 10.1016/j.antiviral.2017.10.006 10.4149/av_2013_04_462 10.1128/JVI.01756-16 10.15252/embr.201846520 10.1039/C7CC00901A 10.1042/BST20150209 10.1126/sciadv.aay1109 10.1155/2020/2430640 10.1038/nrm.2017.83 10.1042/BST0370937 10.1039/D1CS00991E 10.1111/febs.15471 10.1186/1471-2105-12-S14-S8 10.1371/journal.pone.0191617 10.1038/nature00991 10.4161/auto.19781 10.1128/MMBR.00001-14 10.1126/science.2538923 10.1038/s41467-020-18168-3 10.15252/embr.201847528 10.1038/emi.2016.20 10.1016/j.ceb.2013.11.004 10.1128/JVI.00008-10 10.1038/nrm3931 10.1016/j.cell.2021.04.047 10.1016/j.tibs.2018.02.004 10.1152/ajpheart.00292.2008 10.1186/1743-422X-8-61 10.3389/fmolb.2020.00095 10.1128/JVI.79.22.13875-13881.2005 10.1371/journal.pone.0002585 10.1016/j.antiviral.2021.105021 |
ContentType | Journal Article |
Copyright | Copyright © 2024 Zhao, Hu, Zhao, Liu, Ma, Chen and Xing. Copyright © 2024 Zhao, Hu, Zhao, Liu, Ma, Chen and Xing. 2024 Zhao, Hu, Zhao, Liu, Ma, Chen and Xing |
Copyright_xml | – notice: Copyright © 2024 Zhao, Hu, Zhao, Liu, Ma, Chen and Xing. – notice: Copyright © 2024 Zhao, Hu, Zhao, Liu, Ma, Chen and Xing. 2024 Zhao, Hu, Zhao, Liu, Ma, Chen and Xing |
DBID | AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.3389/fmicb.2024.1341599 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ : Directory of Open Access Journals [open access] |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1664-302X |
ExternalDocumentID | oai_doaj_org_article_0ec64e4f454d4698a67d6ca3c9f9f22b PMC11002909 38596371 10_3389_fmicb_2024_1341599 |
Genre | Journal Article Review |
GroupedDBID | 53G 5VS 9T4 AAFWJ AAKDD AAYXX ACGFO ACGFS ACXDI ADBBV ADRAZ AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV CITATION DIK ECGQY GROUPED_DOAJ GX1 HYE KQ8 M48 M~E O5R O5S OK1 PGMZT RNS RPM IPNFZ NPM RIG 7X8 5PM |
ID | FETCH-LOGICAL-c469t-5dee319101965fec0b9883d9524d24055361c79c4c1698951b810de3a22ed3363 |
IEDL.DBID | M48 |
ISSN | 1664-302X |
IngestDate | Wed Aug 27 01:28:52 EDT 2025 Thu Aug 21 18:34:08 EDT 2025 Fri Jul 11 13:14:39 EDT 2025 Thu Apr 03 07:00:51 EDT 2025 Thu Apr 24 22:59:11 EDT 2025 Tue Jul 01 02:18:44 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | enterovirus infection enterovirus life cycle pathogenesis host factors post-translation modification |
Language | English |
License | Copyright © 2024 Zhao, Hu, Zhao, Liu, Ma, Chen and Xing. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c469t-5dee319101965fec0b9883d9524d24055361c79c4c1698951b810de3a22ed3363 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 Mir Mubashir Khalid, Gladstone Institutes, United States Fuminori Tokunaga, Osaka Metropolitan University, Japan Edited by: Leiliang Zhang, Shandong First Medical University and Shandong Academy of Medical Sciences, China Reviewed by: Girish Patil, Oklahoma State University, United States |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fmicb.2024.1341599 |
PMID | 38596371 |
PQID | 3035537938 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_0ec64e4f454d4698a67d6ca3c9f9f22b pubmedcentral_primary_oai_pubmedcentral_nih_gov_11002909 proquest_miscellaneous_3035537938 pubmed_primary_38596371 crossref_primary_10_3389_fmicb_2024_1341599 crossref_citationtrail_10_3389_fmicb_2024_1341599 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-02-26 |
PublicationDateYYYYMMDD | 2024-02-26 |
PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-26 day: 26 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Frontiers in microbiology |
PublicationTitleAlternate | Front Microbiol |
PublicationYear | 2024 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Zhao (ref112) 2010; 24 Dai (ref17) 2021; 18 Arnesen (ref2) 2011; 9 Bilbrough (ref6) 2022; 51 Zhu (ref116); 1877 Sun (ref86) 2020; 10 Liang (ref54) 2023; 6 Xu (ref101) 2018; 8 Zheng (ref114) 2011; 187 Schweppe (ref76) 2003; 36 Fan (ref22) 2021; 184 Shishova (ref78) 2022; 14 Bauer (ref5) 2019; 5 Jiang (ref43) 2019; 91 Morales-Tarre (ref65) 2021; 18 Xiao (ref100) 2021; 36 He (ref34) 2021; 12 Kang (ref44) 2011; 12 Deutscher (ref20) 2014; 78 Gao (ref24) 2010; 84 Han (ref31) 2016; 129 Li (ref53) 2020; 21 Geiss-Friedlander (ref27) 2007; 8 Wei (ref97) 2022; 146 Karim (ref45) 2020; 11 Voss (ref93) 2021; 13 Zhu (ref118); 62 Shim (ref77) 2013; 57 Swatek (ref87) 2016; 26 Wang (ref95) 2019; 20 Murray (ref66) 2018; 9 Haolong (ref32) 2013; 8 Liu (ref55) 2011; 8 Liu (ref56) 2018; 9 Park (ref69); 50 Wang (ref96) 2022; 96 Kespohl (ref46) 2020; 6 Kirsch (ref47) 2020; 184 Komander (ref48) 2009; 37 Hoege (ref37) 2002; 419 Cuijpers (ref16) 2018; 43 Rape (ref73) 2018; 19 Liu (ref57) 2016; 90 Chang (ref9) 2017; 7 Iwai (ref40) 2021; 288 Zhang (ref106) 2014; 180 Luo (ref59) 2003; 77 Van Wijk (ref91) 2019; 20 Huang (ref39) 2018; 13 Wong (ref98) 2005; 78 Gong (ref29) 2022; 27 Tabor-Godwin (ref88) 2012; 8 Baeza (ref4) 2016; 41 Chaugule (ref12) 2016; 44 Leutert (ref52) 2021; 20 Chau (ref11) 1989; 243 Yamasaki (ref103) 2020; 18 Gao (ref23) 2020; 2020 Dores (ref21) 2014; 27 Meng (ref63) 2017; 8 Chang (ref10) 2021; 4 Coyne (ref15) 2006; 124 Hofmann (ref38) 2023; 11 Zolg (ref119) 2018; 17 Zhang (ref107) 2017; 53 Si (ref80); 79 Song (ref85) 2021; 109 Giansanti (ref28) 2020; 11 Park (ref67); 23 Vu (ref94) 2018; 23 Si (ref79) 2008; 3 Zhang (ref111) 2022; 37 Lyoo (ref60) 2017; 147 Marchant (ref61) 2009; 104 Zhao (ref113) 2022; 96 Hattori (ref33) 2018; 51 Si (ref81); 79 Song (ref84) 2019; 9 Zhu (ref117); 9 Mcphail (ref62) 2020; 21 Si (ref82) 2007; 81 Mirzalieva (ref64) 2022; 11 Reineke (ref74) 2015; 89 Gareau (ref26) 2010; 11 Jheng (ref41) 2012; 420 Smith (ref83) 2022; 1382 Verdin (ref92) 2015; 16 Zhou (ref115) 2015; 89 Desai (ref19) 2006; 66 Yu (ref105) 2021; 187 Wu (ref99) 2017; 143 Gupta (ref30) 2021; 68 Puertollano (ref71) 2018; 37 Saguil (ref75) 2019; 100 Gao (ref25) 2008; 295 Zhang (ref110) 2016; 473 Caruso Bavisotto (ref8) 2020; 7 Tsikas (ref89) 2021; 53 Lopez (ref58) 2016; 11 Andres (ref1) 2020; 21 Cappadocia (ref7) 2018; 118 Lauwers (ref51) 2009; 185 Qiu (ref72) 2016; 73 Ye (ref104) 2014; 10 Park (ref68) 2023; 13 Dave (ref18) 2017; 45 Cheng (ref14) 2022; 13 Herrmann (ref36) 2007; 100 Pellegrino (ref70) 2022; 23 Hermann (ref35) 2022; 86 Jheng (ref42) 2016; 5 Aslebagh (ref3) 2019; 1140 Xue (ref102) 2022; 23 Kumar (ref49) 2020; 22 Zhang (ref109) 2012; 23 Chen (ref13) 2011; 286 Turkki (ref90) 2013; 87 Kung (ref50) 2017; 45 Zhang (ref108) 2015; 458 |
References_xml | – volume: 96 start-page: e0011922 year: 2022 ident: ref113 article-title: N-acetyltransferase 8 promotes viral replication by increasing the stability of enterovirus 71 nonstructural proteins publication-title: J. Virol. doi: 10.1128/jvi.00119-22 – volume: 13 start-page: 1068449 year: 2022 ident: ref14 article-title: Protein post-translational modification in Sars-CoV-2 and host interaction publication-title: Front. Immunol. doi: 10.3389/fimmu.2022.1068449 – volume: 50 start-page: 3835 ident: ref69 article-title: Zwc complex-mediated Spt5 phosphorylation suppresses divergent antisense Rna transcription at active gene promoters publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkac193 – volume: 22 year: 2020 ident: ref49 article-title: Role of host-mediated Post-translational modifications (Ptms) in Rna virus pathogenesis publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms22010323 – volume: 12 start-page: 1061 year: 2021 ident: ref34 article-title: Effects of alpha-Synuclein-associated Post-translational modifications in Parkinson's disease publication-title: ACS Chem. Neurosci. doi: 10.1021/acschemneuro.1c00028 – volume: 23 ident: ref67 article-title: The roles of ubiquitination in pathogenesis of influenza virus infection publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms23094593 – volume: 18 start-page: e3000718 year: 2020 ident: ref103 article-title: Mitotic phosphorylation of the Ulk complex regulates cell cycle progression publication-title: PLoS Biol. doi: 10.1371/journal.pbio.3000718 – volume: 45 start-page: 271 year: 2017 ident: ref50 article-title: Control of the negative Ires trans-acting factor Khsrp by ubiquitination publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkw1042 – volume: 53 start-page: 485 year: 2021 ident: ref89 article-title: Post-translational modifications (Ptm): analytical approaches, signaling, physiology and pathophysiology-part I publication-title: Amino Acids doi: 10.1007/s00726-021-02984-y – volume: 23 start-page: 872 year: 2012 ident: ref109 article-title: Using protein microarrays to study phosphorylation-mediated signal transduction publication-title: Semin. Cell Dev. Biol. doi: 10.1016/j.semcdb.2012.05.009 – volume: 87 start-page: 9822 year: 2013 ident: ref90 article-title: Cell susceptibility to baculovirus transduction and echovirus infection is modified by protein kinase C phosphorylation and vimentin organization publication-title: J. Virol. doi: 10.1128/JVI.01004-13 – volume: 420 start-page: 882 year: 2012 ident: ref41 article-title: Inhibition of enterovirus 71 entry by transcription factor Xbp1 publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2012.03.094 – volume: 7 start-page: 284 year: 2017 ident: ref9 article-title: Dsrna binding domain of Pkr is Proteolytically released by enterovirus A71 to facilitate viral replication publication-title: Front. Cell. Infect. Microbiol. doi: 10.3389/fcimb.2017.00284 – volume: 10 year: 2020 ident: ref86 article-title: Regulation of protein Post-translational modifications on metabolism of Actinomycetes publication-title: Biomol. Ther. doi: 10.3390/biom10081122 – volume: 1877 start-page: 188735 ident: ref116 article-title: Proteomics of post-translational modifications in colorectal cancer: discovery of new biomarkers publication-title: Biochim. Biophys. Acta Rev. Cancer doi: 10.1016/j.bbcan.2022.188735 – volume: 21 start-page: 5941 year: 2020 ident: ref1 article-title: Histone H1 Post-translational modifications: update and future perspectives publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms21165941 – volume: 8 start-page: e2866 year: 2017 ident: ref63 article-title: Arrdc4 regulates enterovirus 71-induced innate immune response by promoting K63 polyubiquitination of Mda5 through Trim65 publication-title: Cell Death Dis. doi: 10.1038/cddis.2017.257 – volume: 23 year: 2022 ident: ref70 article-title: The next frontier: translational development of ubiquitination, Sumoylation, and Neddylation in Cancer publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms23073480 – volume: 1382 start-page: 95 year: 2022 ident: ref83 article-title: Histone modifications in neurological disorders publication-title: Adv. Exp. Med. Biol. doi: 10.1007/978-3-031-05460-0_7 – volume: 20 year: 2019 ident: ref95 article-title: Stat3 regulates the type I Ifn-mediated antiviral response by interfering with the nuclear entry of Stat1 publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms20194870 – volume: 27 year: 2022 ident: ref29 article-title: Phosphorylation of Erk-dependent Nf-kappaB triggers Nlrp3 Inflammasome mediated by vimentin in Ev71-infected glioblastoma cells publication-title: Molecules doi: 10.3390/molecules27134190 – volume: 66 start-page: 921 year: 2006 ident: ref19 article-title: Elevated expression of Isg15 in tumor cells interferes with the ubiquitin/26S proteasome pathway publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-05-1123 – volume: 68 start-page: 101336 year: 2021 ident: ref30 article-title: Post-translational modifications: regulators of neurodegenerative proteinopathies publication-title: Ageing Res. Rev. doi: 10.1016/j.arr.2021.101336 – volume: 100 start-page: 1276 year: 2007 ident: ref36 article-title: Ubiquitin and ubiquitin-like proteins in protein regulation publication-title: Circ. Res. doi: 10.1161/01.RES.0000264500.11888.f0 – volume: 11 year: 2022 ident: ref64 article-title: Isg15 and Isgylation in human diseases publication-title: Cell doi: 10.3390/cells11030538 – volume: 78 start-page: 82 year: 2005 ident: ref98 article-title: Phosphorylation of Pi3K/Akt and Mapk/Erk in an early entry step of enterovirus 71 publication-title: Life Sci. doi: 10.1016/j.lfs.2005.04.076 – volume: 11 start-page: 706 year: 2016 ident: ref58 article-title: Metal-dependent deacetylases: Cancer and epigenetic regulators publication-title: ACS Chem. Biol. doi: 10.1021/acschembio.5b01067 – volume: 18 start-page: 949 year: 2021 ident: ref65 article-title: Protein lysine acetylation and its role in different human pathologies: a proteomic approach publication-title: Expert Rev. Proteomics doi: 10.1080/14789450.2021.2007766 – volume: 51 start-page: 141 year: 2018 ident: ref33 article-title: Next-generation antibodies for post-translational modifications publication-title: Curr. Opin. Struct. Biol. doi: 10.1016/j.sbi.2018.04.006 – volume: 14 year: 2022 ident: ref78 article-title: Enteroviruses manipulate the unfolded protein response through multifaceted deregulation of the Ire1-Xbp1 pathway publication-title: Viruses doi: 10.3390/v14112486 – volume: 286 start-page: 31373 year: 2011 ident: ref13 article-title: Sumoylation-promoted enterovirus 71 3C degradation correlates with a reduction in viral replication and cell apoptosis publication-title: J. Biol. Chem. doi: 10.1074/jbc.M111.254896 – volume: 1140 start-page: 199 year: 2019 ident: ref3 article-title: Identification of posttranslational modifications (Ptms) of proteins by mass spectrometry publication-title: Adv. Exp. Med. Biol. doi: 10.1007/978-3-030-15950-4_11 – volume: 9 start-page: 4967 year: 2018 ident: ref66 article-title: Orchestration of protein acetylation as a toggle for cellular defense and virus replication publication-title: Nat. Commun. doi: 10.1038/s41467-018-07179-w – volume: 37 year: 2018 ident: ref71 article-title: The complex relationship between Tfeb transcription factor phosphorylation and subcellular localization publication-title: EMBO J. doi: 10.15252/embj.201798804 – volume: 91 start-page: 1643 year: 2019 ident: ref43 article-title: Microrna-34a aggravates coxsackievirus B3-induced apoptosis of cardiomyocytes through the Sirt1-p53 pathway publication-title: J. Med. Virol. doi: 10.1002/jmv.25482 – volume: 10 start-page: e1004070 year: 2014 ident: ref104 article-title: Coxsackievirus-induced miR-21 disrupts cardiomyocyte interactions via the downregulation of intercalated disk components publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1004070 – volume: 8 start-page: 947 year: 2007 ident: ref27 article-title: Concepts in sumoylation: a decade on publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm2293 – volume: 11 start-page: 861 year: 2010 ident: ref26 article-title: The Sumo pathway: emerging mechanisms that shape specificity, conjugation and recognition publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm3011 – volume: 8 start-page: 13418 year: 2018 ident: ref101 article-title: Usp4 positively regulates Rlr-induced Nf-kappaB activation by targeting Traf6 for K48-linked deubiquitination and inhibits enterovirus 71 replication publication-title: Sci. Rep. doi: 10.1038/s41598-018-31734-6 – volume: 187 start-page: 2202 year: 2011 ident: ref114 article-title: Enterovirus 71 2C protein inhibits Tnf-alpha-mediated activation of Nf-kappaB by suppressing IkappaB kinase beta phosphorylation publication-title: J. Immunol. doi: 10.4049/jimmunol.1100285 – volume: 184 start-page: 78 year: 2020 ident: ref47 article-title: Visualization of the dynamics of histone modifications and their crosstalk using Ptm-CrossTalkMapper publication-title: Methods doi: 10.1016/j.ymeth.2020.01.012 – volume: 77 start-page: 1 year: 2003 ident: ref59 article-title: Ubiquitin-dependent proteolysis of cyclin D1 is associated with coxsackievirus-induced cell growth arrest publication-title: J. Virol. doi: 10.1128/JVI.77.1.1-9.2003 – volume: 26 start-page: 399 year: 2016 ident: ref87 article-title: Ubiquitin modifications publication-title: Cell Res. doi: 10.1038/cr.2016.39 – volume: 11 start-page: e0044623 year: 2023 ident: ref38 article-title: Sumo modification of hepatitis B virus Core mediates nuclear entry, Promyelocytic leukemia nuclear body association, and efficient formation of covalently closed circular Dna publication-title: Microbiol Spectr doi: 10.1128/spectrum.00446-23 – volume: 9 start-page: 2479 year: 2018 ident: ref56 article-title: Trim21 restricts Coxsackievirus B3 replication, cardiac and pancreatic injury via interacting with Mavs and positively regulating Irf3-mediated type-I interferon production publication-title: Front. Immunol. doi: 10.3389/fimmu.2018.02479 – volume: 21 start-page: e48441 year: 2020 ident: ref62 article-title: Characterization of the c10orf76-Pi4kb complex and its necessity for Golgi Pi4P levels and enterovirus replication publication-title: EMBO Rep. doi: 10.15252/embr.201948441 – volume: 13 year: 2023 ident: ref68 article-title: Orchestration of mitochondrial function and remodeling by Post-translational modifications provide insight into mechanisms of viral infection publication-title: Biomol. Ther. doi: 10.3390/biom13050869 – volume: 8 start-page: e73900 year: 2013 ident: ref32 article-title: Enterovirus 71 Vp1 activates calmodulin-dependent protein kinase ii and results in the rearrangement of vimentin in human astrocyte cells publication-title: PLoS One doi: 10.1371/journal.pone.0073900 – volume: 6 start-page: 0078 year: 2023 ident: ref54 article-title: Sars-CoV-2 spike protein Post-translational modification landscape and its impact on protein structure and function via computational prediction publication-title: Research doi: 10.34133/research.0078 – volume: 24 start-page: 72 year: 2010 ident: ref112 article-title: A coordinated phosphorylation by Lats and Ck1 regulates yap stability through Scf (beta-Trcp) publication-title: Genes Dev. doi: 10.1101/gad.1843810 – volume: 89 start-page: 2575 year: 2015 ident: ref74 article-title: The stress granule protein G3bp1 recruits protein kinase R to promote multiple innate immune antiviral responses publication-title: J. Virol. doi: 10.1128/JVI.02791-14 – volume: 124 start-page: 119 year: 2006 ident: ref15 article-title: Virus-induced Abl and Fyn kinase signals permit coxsackievirus entry through epithelial tight junctions publication-title: Cell doi: 10.1016/j.cell.2005.10.035 – volume: 86 start-page: 101066 year: 2022 ident: ref35 article-title: Identification and characterization of post-translational modifications: clinical implications publication-title: Mol. Asp. Med. doi: 10.1016/j.mam.2022.101066 – volume: 9 start-page: 9413 year: 2019 ident: ref84 article-title: Manassantin B shows antiviral activity against coxsackievirus B3 infection by activation of the Sting/Tbk-1/Irf3 signalling pathway publication-title: Sci. Rep. doi: 10.1038/s41598-019-45868-8 – volume: 81 start-page: 3142 year: 2007 ident: ref82 article-title: Dysregulation of the ubiquitin-proteasome system by curcumin suppresses coxsackievirus B3 replication publication-title: J. Virol. doi: 10.1128/JVI.02028-06 – volume: 96 start-page: e0059822 year: 2022 ident: ref96 article-title: Neddylation of enterovirus 71 Vp2 protein reduces its stability and restricts viral replication publication-title: J. Virol. doi: 10.1128/jvi.00598-22 – volume: 41 start-page: 231 year: 2016 ident: ref4 article-title: Mechanisms and dynamics of protein acetylation in mitochondria publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2015.12.006 – volume: 129 start-page: 4534 year: 2016 ident: ref31 article-title: Sirt1 inhibits Ev71 genome replication and Rna translation by interfering with the viral polymerase and 5'utr Rna publication-title: J. Cell Sci. doi: 10.1242/jcs.193698 – volume: 45 start-page: 9068 year: 2017 ident: ref18 article-title: Polypyrimidine tract-binding protein (Ptb) and Ptb-associated splicing factor in Cvb3 infection: an Itaf for an Itaf publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkx519 – volume: 5 start-page: 1609 year: 2019 ident: ref5 article-title: Fluoxetine inhibits enterovirus replication by targeting the viral 2C protein in a stereospecific manner publication-title: Acs Infect Dis doi: 10.1021/acsinfecdis.9b00179 – volume: 9 start-page: e1001074 year: 2011 ident: ref2 article-title: Towards a functional understanding of protein N-terminal acetylation publication-title: PLoS Biol. doi: 10.1371/journal.pbio.1001074 – volume: 109 start-page: 163 year: 2021 ident: ref85 article-title: Post-translational modification control of viral Dna sensors and innate immune signaling publication-title: Adv. Virus Res. doi: 10.1016/bs.aivir.2021.03.001 – volume: 73 start-page: 1067 year: 2016 ident: ref72 article-title: Hsp70-1: upregulation via selective phosphorylation of heat shock factor 1 during coxsackieviral infection and promotion of viral replication via the au-rich element publication-title: Cell. Mol. Life Sci. doi: 10.1007/s00018-015-2036-6 – volume: 23 year: 2022 ident: ref102 article-title: Protein acetylation going viral: implications in antiviral immunity and viral infection publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms231911308 – volume: 458 start-page: 810 year: 2015 ident: ref108 article-title: Rassf4 promotes Ev71 replication to accelerate the inhibition of the phosphorylation of Akt publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2015.02.035 – volume: 100 start-page: 408 year: 2019 ident: ref75 article-title: Hand-foot-and-mouth disease: rapid evidence review publication-title: Am. Fam. Physician – volume: 143 start-page: 122 year: 2017 ident: ref99 article-title: Antiviral screen identifies Ev71 inhibitors and reveals camptothecin-target, Dna topoisomerase 1 as a novel Ev71 host factor publication-title: Antivir. Res. doi: 10.1016/j.antiviral.2017.04.008 – volume: 146 start-page: 106208 year: 2022 ident: ref97 article-title: Trehalose induces B cell autophagy to alleviate myocardial injury via the Ampk/Ulk1 signalling pathway in acute viral myocarditis induced by Coxsackie virus B3 publication-title: Int. J. Biochem. Cell Biol. doi: 10.1016/j.biocel.2022.106208 – volume: 18 start-page: 2884 year: 2021 ident: ref17 article-title: Understanding the limit of open search in the identification of peptides with Post-translational modifications - a simulation-based study publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform. doi: 10.1109/TCBB.2020.2991207 – volume: 79 start-page: 8014 ident: ref81 article-title: Pyrrolidine dithiocarbamate reduces coxsackievirus B3 replication through inhibition of the ubiquitin-proteasome pathway publication-title: J. Virol. doi: 10.1128/JVI.79.13.8014-8023.2005 – volume: 36 start-page: 453 year: 2003 ident: ref76 article-title: The characterization of protein post-translational modifications by mass spectrometry publication-title: Acc. Chem. Res. doi: 10.1021/ar020143l – volume: 62 start-page: 3331 ident: ref118 article-title: Leveraging protein dynamics to identify functional phosphorylation sites using deep learning models publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.2c00484 – volume: 11 year: 2020 ident: ref45 article-title: Nonproteolytic K29-linked ubiquitination of the Pb2 replication protein of influenza a viruses by Proviral Cullin 4-based E3 ligases publication-title: MBio doi: 10.1128/mBio.00305-20 – volume: 20 start-page: 100129 year: 2021 ident: ref52 article-title: Decoding Post-translational modification crosstalk with proteomics publication-title: Mol. Cell. Proteomics doi: 10.1016/j.mcpro.2021.100129 – volume: 37 start-page: 569 year: 2022 ident: ref111 article-title: Stub1 regulates antiviral Rnai through inducing ubiquitination and degradation of dicer and Ago2 in mammals publication-title: Virol. Sin. doi: 10.1016/j.virs.2022.05.001 – volume: 13 year: 2021 ident: ref93 article-title: Coxsackievirus B3 exploits the ubiquitin-proteasome system to facilitate viral replication publication-title: Viruses doi: 10.3390/v13071360 – volume: 118 start-page: 889 year: 2018 ident: ref7 article-title: Ubiquitin-like protein conjugation: structures, chemistry, and mechanism publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.6b00737 – volume: 104 start-page: 813 year: 2009 ident: ref61 article-title: Bosentan enhances viral load via endothelin-1 receptor type-A-mediated p38 mitogen-activated protein kinase activation while improving cardiac function during coxsackievirus-induced myocarditis publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.108.191171 – volume: 180 start-page: 1 year: 2014 ident: ref106 article-title: The nuclear protein Sam68 is redistributed to the cytoplasm and is involved in Pi3K/Akt activation during Ev71 infection publication-title: Virus Res. doi: 10.1016/j.virusres.2013.11.020 – volume: 185 start-page: 493 year: 2009 ident: ref51 article-title: K63-linked ubiquitin chains as a specific signal for protein sorting into the multivesicular body pathway publication-title: J. Cell Biol. doi: 10.1083/jcb.200810114 – volume: 89 start-page: 10512 year: 2015 ident: ref115 article-title: Inhibition of histone deacetylase activity aggravates Coxsackievirus B3-induced myocarditis by promoting viral replication and myocardial apoptosis publication-title: J. Virol. doi: 10.1128/JVI.01028-15 – volume: 4 start-page: 663 year: 2021 ident: ref10 article-title: Ikkepsilon isoform switching governs the immune response against Ev71 infection publication-title: Commun Biol doi: 10.1038/s42003-021-02187-x – volume: 36 start-page: 1363 year: 2021 ident: ref100 article-title: Ectopic expression of Trim25 restores rig-I expression and Ifn production reduced by multiple enteroviruses 3C (pro) publication-title: Virol. Sin. doi: 10.1007/s12250-021-00410-x – volume: 23 start-page: 1068 year: 2018 ident: ref94 article-title: Protein language: Post-translational modifications talking to each other publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2018.09.004 – volume: 17 start-page: 1850 year: 2018 ident: ref119 article-title: ProteomeTools: systematic characterization of 21 Post-translational protein modifications by liquid chromatography tandem mass spectrometry (Lc-Ms/Ms) using synthetic peptides publication-title: Mol. Cell. Proteomics doi: 10.1074/mcp.TIR118.000783 – volume: 9 start-page: 1095142 ident: ref117 article-title: Protein sumoylation in normal and cancer stem cells publication-title: Front. Mol. Biosci. doi: 10.3389/fmolb.2022.1095142 – volume: 473 start-page: 473 year: 2016 ident: ref110 article-title: Emodin inhibits coxsackievirus B3 replication via multiple signalling cascades leading to suppression of translation publication-title: Biochem. J. doi: 10.1042/BJ20150419 – volume: 147 start-page: 86 year: 2017 ident: ref60 article-title: Modulation of proteolytic polyprotein processing by coxsackievirus mutants resistant to inhibitors targeting phosphatidylinositol-4-kinase Iiibeta or oxysterol binding protein publication-title: Antivir. Res. doi: 10.1016/j.antiviral.2017.10.006 – volume: 57 start-page: 462 year: 2013 ident: ref77 article-title: Histone deacetylase inhibitors suppress coxsackievirus B3 growth in vitro and myocarditis induced in mice publication-title: Acta Virol. doi: 10.4149/av_2013_04_462 – volume: 90 start-page: 10472 year: 2016 ident: ref57 article-title: Sumo modification stabilizes enterovirus 71 polymerase 3D to facilitate viral replication publication-title: J. Virol. doi: 10.1128/JVI.01756-16 – volume: 20 year: 2019 ident: ref91 article-title: Visualizing ubiquitination in mammalian cells publication-title: EMBO Rep. doi: 10.15252/embr.201846520 – volume: 53 start-page: 6989 year: 2017 ident: ref107 article-title: The strategies for identification and quantification of Sumoylation publication-title: Chem. Commun. (Camb.) doi: 10.1039/C7CC00901A – volume: 44 start-page: 212 year: 2016 ident: ref12 article-title: Specificity and disease in the ubiquitin system publication-title: Biochem. Soc. Trans. doi: 10.1042/BST20150209 – volume: 6 start-page: eaay1109 year: 2020 ident: ref46 article-title: Protein modification with Isg15 blocks coxsackievirus pathology by antiviral and metabolic reprogramming publication-title: Sci. Adv. doi: 10.1126/sciadv.aay1109 – volume: 2020 start-page: 2430640 year: 2020 ident: ref23 article-title: Induction of Socs expression by Ev71 infection promotes Ev71 replication publication-title: Biomed. Res. Int. doi: 10.1155/2020/2430640 – volume: 19 start-page: 59 year: 2018 ident: ref73 article-title: Ubiquitylation at the crossroads of development and disease publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm.2017.83 – volume: 37 start-page: 937 year: 2009 ident: ref48 article-title: The emerging complexity of protein ubiquitination publication-title: Biochem. Soc. Trans. doi: 10.1042/BST0370937 – volume: 51 start-page: 5691 year: 2022 ident: ref6 article-title: Dissecting the role of protein phosphorylation: a chemical biology toolbox publication-title: Chem. Soc. Rev. doi: 10.1039/D1CS00991E – volume: 288 start-page: 1060 year: 2021 ident: ref40 article-title: Discovery of linear ubiquitination, a crucial regulator for immune signaling and cell death publication-title: FEBS J. doi: 10.1111/febs.15471 – volume: 12 start-page: S8 year: 2011 ident: ref44 article-title: Identification of ubiquitin/ubiquitin-like protein modification from tandem mass spectra with various Ptms publication-title: BMC Bioinform doi: 10.1186/1471-2105-12-S14-S8 – volume: 13 start-page: e0191617 year: 2018 ident: ref39 article-title: Inhibition of Ev71 by curcumin in intestinal epithelial cells publication-title: PLoS One doi: 10.1371/journal.pone.0191617 – volume: 419 start-page: 135 year: 2002 ident: ref37 article-title: Rad6-dependent Dna repair is linked to modification of Pcna by ubiquitin and Sumo publication-title: Nature doi: 10.1038/nature00991 – volume: 8 start-page: 938 year: 2012 ident: ref88 article-title: The role of autophagy during coxsackievirus infection of neural progenitor and stem cells publication-title: Autophagy doi: 10.4161/auto.19781 – volume: 78 start-page: 231 year: 2014 ident: ref20 article-title: The bacterial phosphoenolpyruvate:carbohydrate phosphotransferase system: regulation by protein phosphorylation and phosphorylation-dependent protein-protein interactions publication-title: Microbiol. Mol. Biol. Rev. doi: 10.1128/MMBR.00001-14 – volume: 243 start-page: 1576 year: 1989 ident: ref11 article-title: A multiubiquitin chain is confined to specific lysine in a targeted short-lived protein publication-title: Science doi: 10.1126/science.2538923 – volume: 11 start-page: 4332 year: 2020 ident: ref28 article-title: Dynamic remodelling of the human host cell proteome and phosphoproteome upon enterovirus infection publication-title: Nat. Commun. doi: 10.1038/s41467-020-18168-3 – volume: 21 start-page: e47528 year: 2020 ident: ref53 article-title: Trim21-mediated proteasomal degradation of Samhd1 regulates its antiviral activity publication-title: EMBO Rep. doi: 10.15252/embr.201847528 – volume: 5 start-page: e23 year: 2016 ident: ref42 article-title: Enterovirus 71 induces dsrna/Pkr-dependent cytoplasmic redistribution of Grp78/BiP to promote viral replication publication-title: Emerg Microbes Infect doi: 10.1038/emi.2016.20 – volume: 27 start-page: 44 year: 2014 ident: ref21 article-title: Atypical regulation of G protein-coupled receptor intracellular trafficking by ubiquitination publication-title: Curr. Opin. Cell Biol. doi: 10.1016/j.ceb.2013.11.004 – volume: 84 start-page: 11056 year: 2010 ident: ref24 article-title: Proteasome activator Reggamma enhances coxsackieviral infection by facilitating p53 degradation publication-title: J. Virol. doi: 10.1128/JVI.00008-10 – volume: 16 start-page: 258 year: 2015 ident: ref92 article-title: 50 years of protein acetylation: from gene regulation to epigenetics, metabolism and beyond publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm3931 – volume: 184 start-page: e17 year: 2021 ident: ref22 article-title: Trim7 inhibits enterovirus replication and promotes emergence of a viral variant with increased pathogenicity publication-title: Cell doi: 10.1016/j.cell.2021.04.047 – volume: 43 start-page: 251 year: 2018 ident: ref16 article-title: Guiding mitotic progression by crosstalk between Post-translational modifications publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2018.02.004 – volume: 295 start-page: H401 year: 2008 ident: ref25 article-title: Proteasome inhibition attenuates coxsackievirus-induced myocardial damage in mice publication-title: Am. J. Physiol. Heart Circ. Physiol. doi: 10.1152/ajpheart.00292.2008 – volume: 8 start-page: 61 year: 2011 ident: ref55 article-title: Enterovirus 71 induces degradation of Trim38, a potential E3 ubiquitin ligase publication-title: Virol. J. doi: 10.1186/1743-422X-8-61 – volume: 7 start-page: 95 year: 2020 ident: ref8 article-title: Hsp60 Post-translational modifications: functional and pathological consequences publication-title: Front. Mol. Biosci. doi: 10.3389/fmolb.2020.00095 – volume: 79 start-page: 13875 ident: ref80 article-title: Stress-activated protein kinases are involved in coxsackievirus B3 viral progeny release publication-title: J. Virol. doi: 10.1128/JVI.79.22.13875-13881.2005 – volume: 3 start-page: e2585 year: 2008 ident: ref79 article-title: Ubiquitination is required for effective replication of coxsackievirus B3 publication-title: PLoS One doi: 10.1371/journal.pone.0002585 – volume: 187 start-page: 105021 year: 2021 ident: ref105 article-title: Cathelicidin antimicrobial peptides suppress Ev71 infection via regulating antiviral response and inhibiting viral binding publication-title: Antivir. Res. doi: 10.1016/j.antiviral.2021.105021 |
SSID | ssj0000402000 |
Score | 2.3900175 |
SecondaryResourceType | review_article |
Snippet | Enteroviruses (EVs) are the main cause of a number of neurological diseases. Growing evidence has revealed that successful infection with enteroviruses is... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1341599 |
SubjectTerms | enterovirus infection enterovirus life cycle host factors Microbiology pathogenesis post-translation modification |
SummonAdditionalLinks | – databaseName: DOAJ : Directory of Open Access Journals [open access] dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS-RAEG5EELwsq-6u8UWEvUnWpF_pPqooKuhBFLw1ST9wYDaRcebgv7eqO44zsuxe9pikkjRfVbqqOtVfEfLThyClU7qQjYIERTeygDhOFLZsNfOCyTZWVd7cyssHfv0oHhdafWFNWKIHTsAdl95K7nnggjvsdtjI2knbMKuDDpS2OPuCz1tIpuIcjGlRWaZdMpCFaVDTyLaQD1L-CznMRCR7_fBEkbD_T1Hm52LJBe9z8ZV8GcLG_CQNd4Os-G6TrKVGkq9b5OquH_u8D3mkXRh1OfbgLaboh8bDal_-u3dYFpRW6HKQQTZOXFCYzPAw1WR138jDxfn92WUxNEkoLMAxLYTzHj6jKlIDgihgrBRzWlDuwFsLgLuytbbcVtgrUlStqkrnWUOpd4xJ9p2sdn3nt0kuS1cqHmrqIcaofWgFcw6e4ynVMrQ0I9U7YMYODOLYyGJsIJNAkE0E2SDIZgA5I0fze54Tf8ZfpU9RD3NJ5L6OJ8AizGAR5l8WkZHDdy0a-FbwB0jT-X72YsBdAx4wI6mM_Ehanb-KKQFzUV1lRC3pe2ksy1e60VPk40bWPapLvfM_Rr9L1hGRuGte7pHV6WTm9yHumbYH0cTfAPQ3AMA priority: 102 providerName: Directory of Open Access Journals |
Title | Role of protein Post-translational modifications in enterovirus infection |
URI | https://www.ncbi.nlm.nih.gov/pubmed/38596371 https://www.proquest.com/docview/3035537938 https://pubmed.ncbi.nlm.nih.gov/PMC11002909 https://doaj.org/article/0ec64e4f454d4698a67d6ca3c9f9f22b |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Li9RAEC7WFcGL-DY-lgjeJEv6me6DiIrrKqwHcWBuTdIPHRgTnZ0B999b1ckMjqziJZCkkk6quruq-vF9AM9iSloHYyvdGkxQbKsrjONU5evOiqiE7vKqyrOP-nQmP8zV_AC2dEeTAs8vTe2IT2q2Wh7__HHxEhv8C8o40d-iBRa-w1SPy2OCJ1PWXoGr6JkaYjQ4m8L93DNTspR3pTCtaUKAz8d9NH95zZ6vypD-l8Whfy6n_M0_ndyEG1NgWb4aa8ItOIj9bbg2Uk1e3IH3n4ZlLIdUZmCGRV8SS2-1Jk-1nMYDy29DoIVD4xheiTKE10lDDqsNnY6rtvq7MDt5-_nNaTXRKFQec991pUKM2NBYBg9EUbSCMSJYxWVAf67QIMw31kvPiE1Ssc6wOkTRch6DEFrcg8N-6OMDKHUdaiNTwyNGIU1MnRIh4Hsi51anjhfAtgpzfsIYJ6qLpcNcg5TsspIdKdlNSi7g-e6Z7yPCxj-lX5MddpKEjp0vDKsvbmpsro5eyyiTVDIQQ2arm6B9K7xNNnHeFfB0a0WHrYmmSNo-Dptzhw4d9YF9ling_mjVXVHCKOytGlaA2bP33rfs3-kXXzNiN-HycVvbh_9R8CO4Tj-ct83rx3C4Xm3iEwx81t1RHjDA47s5O8o1-xccagGV |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Role+of+protein+Post-translational+modifications+in+enterovirus+infection&rft.jtitle=Frontiers+in+microbiology&rft.au=Zhao%2C+Xiaohui&rft.au=Hu%2C+Yibo&rft.au=Zhao%2C+Jun&rft.au=Liu%2C+Yan&rft.date=2024-02-26&rft.issn=1664-302X&rft.eissn=1664-302X&rft.volume=15&rft.spage=1341599&rft_id=info:doi/10.3389%2Ffmicb.2024.1341599&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-302X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-302X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-302X&client=summon |