Role of protein Post-translational modifications in enterovirus infection

Enteroviruses (EVs) are the main cause of a number of neurological diseases. Growing evidence has revealed that successful infection with enteroviruses is highly dependent on the host machinery, therefore, host proteins play a pivotal role in viral infections. Both host and viral proteins can underg...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in microbiology Vol. 15; p. 1341599
Main Authors Zhao, Xiaohui, Hu, Yibo, Zhao, Jun, Liu, Yan, Ma, Xueman, Chen, Hongru, Xing, Yonghua
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 26.02.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Enteroviruses (EVs) are the main cause of a number of neurological diseases. Growing evidence has revealed that successful infection with enteroviruses is highly dependent on the host machinery, therefore, host proteins play a pivotal role in viral infections. Both host and viral proteins can undergo post-translational modification (PTM) which can regulate protein activity, stability, solubility and interactions with other proteins; thereby influencing various biological processes, including cell metabolism, metabolic, signaling pathways, cell death, and cancer development. During viral infection, both host and viral proteins regulate the viral life cycle through various PTMs and different mechanisms, including the regulation of host cell entry, viral protein synthesis, genome replication, and the antiviral immune response. Therefore, protein PTMs play important roles in EV infections. Here, we review the role of various host- and virus-associated PTMs during enterovirus infection.
AbstractList Enteroviruses (EVs) are the main cause of a number of neurological diseases. Growing evidence has revealed that successful infection with enteroviruses is highly dependent on the host machinery, therefore, host proteins play a pivotal role in viral infections. Both host and viral proteins can undergo post-translational modification (PTM) which can regulate protein activity, stability, solubility and interactions with other proteins; thereby influencing various biological processes, including cell metabolism, metabolic, signaling pathways, cell death, and cancer development. During viral infection, both host and viral proteins regulate the viral life cycle through various PTMs and different mechanisms, including the regulation of host cell entry, viral protein synthesis, genome replication, and the antiviral immune response. Therefore, protein PTMs play important roles in EV infections. Here, we review the role of various host- and virus-associated PTMs during enterovirus infection.
Enteroviruses (EVs) are the main cause of a number of neurological diseases. Growing evidence has revealed that successful infection with enteroviruses is highly dependent on the host machinery, therefore, host proteins play a pivotal role in viral infections. Both host and viral proteins can undergo post-translational modification (PTM) which can regulate protein activity, stability, solubility and interactions with other proteins; thereby influencing various biological processes, including cell metabolism, metabolic, signaling pathways, cell death, and cancer development. During viral infection, both host and viral proteins regulate the viral life cycle through various PTMs and different mechanisms, including the regulation of host cell entry, viral protein synthesis, genome replication, and the antiviral immune response. Therefore, protein PTMs play important roles in EV infections. Here, we review the role of various host- and virus-associated PTMs during enterovirus infection.Enteroviruses (EVs) are the main cause of a number of neurological diseases. Growing evidence has revealed that successful infection with enteroviruses is highly dependent on the host machinery, therefore, host proteins play a pivotal role in viral infections. Both host and viral proteins can undergo post-translational modification (PTM) which can regulate protein activity, stability, solubility and interactions with other proteins; thereby influencing various biological processes, including cell metabolism, metabolic, signaling pathways, cell death, and cancer development. During viral infection, both host and viral proteins regulate the viral life cycle through various PTMs and different mechanisms, including the regulation of host cell entry, viral protein synthesis, genome replication, and the antiviral immune response. Therefore, protein PTMs play important roles in EV infections. Here, we review the role of various host- and virus-associated PTMs during enterovirus infection.
Author Liu, Yan
Ma, Xueman
Hu, Yibo
Xing, Yonghua
Chen, Hongru
Zhao, Jun
Zhao, Xiaohui
AuthorAffiliation 1 Department of Pathogen Biology, School of Medicine, Qinghai University , Qinghai , China
6 Department of Genetics, School of Medicine, Qinghai University , Qinghai , China
4 Department of Traditional Chinese Medicine, School of Medicine, Qinghai University , Qinghai , China
5 Department of Public Health, School of Medicine, Qinghai University , Qinghai , China
2 Department of Orthopaedic Trauma, The Affiliated Hospital of Qinghai University , Qinghai , China
3 Department of Immunology, School of Medicine , Qinghai , China
AuthorAffiliation_xml – name: 5 Department of Public Health, School of Medicine, Qinghai University , Qinghai , China
– name: 4 Department of Traditional Chinese Medicine, School of Medicine, Qinghai University , Qinghai , China
– name: 3 Department of Immunology, School of Medicine , Qinghai , China
– name: 6 Department of Genetics, School of Medicine, Qinghai University , Qinghai , China
– name: 1 Department of Pathogen Biology, School of Medicine, Qinghai University , Qinghai , China
– name: 2 Department of Orthopaedic Trauma, The Affiliated Hospital of Qinghai University , Qinghai , China
Author_xml – sequence: 1
  givenname: Xiaohui
  surname: Zhao
  fullname: Zhao, Xiaohui
– sequence: 2
  givenname: Yibo
  surname: Hu
  fullname: Hu, Yibo
– sequence: 3
  givenname: Jun
  surname: Zhao
  fullname: Zhao, Jun
– sequence: 4
  givenname: Yan
  surname: Liu
  fullname: Liu, Yan
– sequence: 5
  givenname: Xueman
  surname: Ma
  fullname: Ma, Xueman
– sequence: 6
  givenname: Hongru
  surname: Chen
  fullname: Chen, Hongru
– sequence: 7
  givenname: Yonghua
  surname: Xing
  fullname: Xing, Yonghua
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38596371$$D View this record in MEDLINE/PubMed
BookMark eNp9UUtrFTEUDlKxtfYPuJBZuplr3jdZiRRtLxQs0oK7kElOakpmck3mFvz35j4srYtmkeTkfI8cvrfoaMoTIPSe4AVjSn8KY3TDgmLKF4RxIrR-hU6IlLxnmP48enI_Rme13uO2OKZtf4OOmRJasiU5QasfOUGXQ7cueYY4dde5zv1c7FSTnWOebOrG7GOIblfWrmFgmqHkh1g22zKA23beodfBpgpnh_MU3X77enN-2V99v1idf7nqHZd67oUHYEQTTLQUjYoHrRTzWlDuKcdCMEncUjvuiNRKCzIogj0wSyl4xiQ7Rau9rs_23qxLHG35Y7KNZveQy52xZY4ugcHgJAceuOC-mSsrl146y5wOOlA6NK3Pe631ZhjBuzZYsemZ6PPOFH-Zu_xgCMGYaqybwseDQsm_N1BnM8bqICU7Qd5UwzBrIy01Uw364anZo8u_MBqA7gGu5FoLhEcIwWYbutmFbrahm0PojaT-I7k476JqH47pJepfCE-zCQ
CitedBy_id crossref_primary_10_3389_fmicb_2024_1501061
Cites_doi 10.1128/jvi.00119-22
10.3389/fimmu.2022.1068449
10.1093/nar/gkac193
10.3390/ijms22010323
10.1021/acschemneuro.1c00028
10.3390/ijms23094593
10.1371/journal.pbio.3000718
10.1093/nar/gkw1042
10.1007/s00726-021-02984-y
10.1016/j.semcdb.2012.05.009
10.1128/JVI.01004-13
10.1016/j.bbrc.2012.03.094
10.3389/fcimb.2017.00284
10.3390/biom10081122
10.1016/j.bbcan.2022.188735
10.3390/ijms21165941
10.1038/cddis.2017.257
10.3390/ijms23073480
10.1007/978-3-031-05460-0_7
10.3390/ijms20194870
10.3390/molecules27134190
10.1158/0008-5472.CAN-05-1123
10.1016/j.arr.2021.101336
10.1161/01.RES.0000264500.11888.f0
10.3390/cells11030538
10.1016/j.lfs.2005.04.076
10.1021/acschembio.5b01067
10.1080/14789450.2021.2007766
10.1016/j.sbi.2018.04.006
10.3390/v14112486
10.1074/jbc.M111.254896
10.1007/978-3-030-15950-4_11
10.1038/s41467-018-07179-w
10.15252/embj.201798804
10.1002/jmv.25482
10.1371/journal.ppat.1004070
10.1038/nrm2293
10.1038/nrm3011
10.1038/s41598-018-31734-6
10.4049/jimmunol.1100285
10.1016/j.ymeth.2020.01.012
10.1128/JVI.77.1.1-9.2003
10.1038/cr.2016.39
10.1128/spectrum.00446-23
10.3389/fimmu.2018.02479
10.15252/embr.201948441
10.3390/biom13050869
10.1371/journal.pone.0073900
10.34133/research.0078
10.1101/gad.1843810
10.1128/JVI.02791-14
10.1016/j.cell.2005.10.035
10.1016/j.mam.2022.101066
10.1038/s41598-019-45868-8
10.1128/JVI.02028-06
10.1128/jvi.00598-22
10.1016/j.tibs.2015.12.006
10.1242/jcs.193698
10.1093/nar/gkx519
10.1021/acsinfecdis.9b00179
10.1371/journal.pbio.1001074
10.1016/bs.aivir.2021.03.001
10.1007/s00018-015-2036-6
10.3390/ijms231911308
10.1016/j.bbrc.2015.02.035
10.1016/j.antiviral.2017.04.008
10.1016/j.biocel.2022.106208
10.1109/TCBB.2020.2991207
10.1128/JVI.79.13.8014-8023.2005
10.1021/ar020143l
10.1021/acs.jcim.2c00484
10.1128/mBio.00305-20
10.1016/j.mcpro.2021.100129
10.1016/j.virs.2022.05.001
10.3390/v13071360
10.1021/acs.chemrev.6b00737
10.1161/CIRCRESAHA.108.191171
10.1016/j.virusres.2013.11.020
10.1083/jcb.200810114
10.1128/JVI.01028-15
10.1038/s42003-021-02187-x
10.1007/s12250-021-00410-x
10.1016/j.tplants.2018.09.004
10.1074/mcp.TIR118.000783
10.3389/fmolb.2022.1095142
10.1042/BJ20150419
10.1016/j.antiviral.2017.10.006
10.4149/av_2013_04_462
10.1128/JVI.01756-16
10.15252/embr.201846520
10.1039/C7CC00901A
10.1042/BST20150209
10.1126/sciadv.aay1109
10.1155/2020/2430640
10.1038/nrm.2017.83
10.1042/BST0370937
10.1039/D1CS00991E
10.1111/febs.15471
10.1186/1471-2105-12-S14-S8
10.1371/journal.pone.0191617
10.1038/nature00991
10.4161/auto.19781
10.1128/MMBR.00001-14
10.1126/science.2538923
10.1038/s41467-020-18168-3
10.15252/embr.201847528
10.1038/emi.2016.20
10.1016/j.ceb.2013.11.004
10.1128/JVI.00008-10
10.1038/nrm3931
10.1016/j.cell.2021.04.047
10.1016/j.tibs.2018.02.004
10.1152/ajpheart.00292.2008
10.1186/1743-422X-8-61
10.3389/fmolb.2020.00095
10.1128/JVI.79.22.13875-13881.2005
10.1371/journal.pone.0002585
10.1016/j.antiviral.2021.105021
ContentType Journal Article
Copyright Copyright © 2024 Zhao, Hu, Zhao, Liu, Ma, Chen and Xing.
Copyright © 2024 Zhao, Hu, Zhao, Liu, Ma, Chen and Xing. 2024 Zhao, Hu, Zhao, Liu, Ma, Chen and Xing
Copyright_xml – notice: Copyright © 2024 Zhao, Hu, Zhao, Liu, Ma, Chen and Xing.
– notice: Copyright © 2024 Zhao, Hu, Zhao, Liu, Ma, Chen and Xing. 2024 Zhao, Hu, Zhao, Liu, Ma, Chen and Xing
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3389/fmicb.2024.1341599
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ : Directory of Open Access Journals [open access]
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList CrossRef


PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1664-302X
ExternalDocumentID oai_doaj_org_article_0ec64e4f454d4698a67d6ca3c9f9f22b
PMC11002909
38596371
10_3389_fmicb_2024_1341599
Genre Journal Article
Review
GroupedDBID 53G
5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CITATION
DIK
ECGQY
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
O5R
O5S
OK1
PGMZT
RNS
RPM
IPNFZ
NPM
RIG
7X8
5PM
ID FETCH-LOGICAL-c469t-5dee319101965fec0b9883d9524d24055361c79c4c1698951b810de3a22ed3363
IEDL.DBID M48
ISSN 1664-302X
IngestDate Wed Aug 27 01:28:52 EDT 2025
Thu Aug 21 18:34:08 EDT 2025
Fri Jul 11 13:14:39 EDT 2025
Thu Apr 03 07:00:51 EDT 2025
Thu Apr 24 22:59:11 EDT 2025
Tue Jul 01 02:18:44 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords enterovirus infection
enterovirus life cycle
pathogenesis
host factors
post-translation modification
Language English
License Copyright © 2024 Zhao, Hu, Zhao, Liu, Ma, Chen and Xing.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c469t-5dee319101965fec0b9883d9524d24055361c79c4c1698951b810de3a22ed3363
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
Mir Mubashir Khalid, Gladstone Institutes, United States
Fuminori Tokunaga, Osaka Metropolitan University, Japan
Edited by: Leiliang Zhang, Shandong First Medical University and Shandong Academy of Medical Sciences, China
Reviewed by: Girish Patil, Oklahoma State University, United States
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fmicb.2024.1341599
PMID 38596371
PQID 3035537938
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_0ec64e4f454d4698a67d6ca3c9f9f22b
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11002909
proquest_miscellaneous_3035537938
pubmed_primary_38596371
crossref_primary_10_3389_fmicb_2024_1341599
crossref_citationtrail_10_3389_fmicb_2024_1341599
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-02-26
PublicationDateYYYYMMDD 2024-02-26
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-26
  day: 26
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in microbiology
PublicationTitleAlternate Front Microbiol
PublicationYear 2024
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Zhao (ref112) 2010; 24
Dai (ref17) 2021; 18
Arnesen (ref2) 2011; 9
Bilbrough (ref6) 2022; 51
Zhu (ref116); 1877
Sun (ref86) 2020; 10
Liang (ref54) 2023; 6
Xu (ref101) 2018; 8
Zheng (ref114) 2011; 187
Schweppe (ref76) 2003; 36
Fan (ref22) 2021; 184
Shishova (ref78) 2022; 14
Bauer (ref5) 2019; 5
Jiang (ref43) 2019; 91
Morales-Tarre (ref65) 2021; 18
Xiao (ref100) 2021; 36
He (ref34) 2021; 12
Kang (ref44) 2011; 12
Deutscher (ref20) 2014; 78
Gao (ref24) 2010; 84
Han (ref31) 2016; 129
Li (ref53) 2020; 21
Geiss-Friedlander (ref27) 2007; 8
Wei (ref97) 2022; 146
Karim (ref45) 2020; 11
Voss (ref93) 2021; 13
Zhu (ref118); 62
Shim (ref77) 2013; 57
Swatek (ref87) 2016; 26
Wang (ref95) 2019; 20
Murray (ref66) 2018; 9
Haolong (ref32) 2013; 8
Liu (ref55) 2011; 8
Liu (ref56) 2018; 9
Park (ref69); 50
Wang (ref96) 2022; 96
Kespohl (ref46) 2020; 6
Kirsch (ref47) 2020; 184
Komander (ref48) 2009; 37
Hoege (ref37) 2002; 419
Cuijpers (ref16) 2018; 43
Rape (ref73) 2018; 19
Liu (ref57) 2016; 90
Chang (ref9) 2017; 7
Iwai (ref40) 2021; 288
Zhang (ref106) 2014; 180
Luo (ref59) 2003; 77
Van Wijk (ref91) 2019; 20
Huang (ref39) 2018; 13
Wong (ref98) 2005; 78
Gong (ref29) 2022; 27
Tabor-Godwin (ref88) 2012; 8
Baeza (ref4) 2016; 41
Chaugule (ref12) 2016; 44
Leutert (ref52) 2021; 20
Chau (ref11) 1989; 243
Yamasaki (ref103) 2020; 18
Gao (ref23) 2020; 2020
Dores (ref21) 2014; 27
Meng (ref63) 2017; 8
Chang (ref10) 2021; 4
Coyne (ref15) 2006; 124
Hofmann (ref38) 2023; 11
Zolg (ref119) 2018; 17
Zhang (ref107) 2017; 53
Si (ref80); 79
Song (ref85) 2021; 109
Giansanti (ref28) 2020; 11
Park (ref67); 23
Vu (ref94) 2018; 23
Si (ref79) 2008; 3
Zhang (ref111) 2022; 37
Lyoo (ref60) 2017; 147
Marchant (ref61) 2009; 104
Zhao (ref113) 2022; 96
Hattori (ref33) 2018; 51
Si (ref81); 79
Song (ref84) 2019; 9
Zhu (ref117); 9
Mcphail (ref62) 2020; 21
Si (ref82) 2007; 81
Mirzalieva (ref64) 2022; 11
Reineke (ref74) 2015; 89
Gareau (ref26) 2010; 11
Jheng (ref41) 2012; 420
Smith (ref83) 2022; 1382
Verdin (ref92) 2015; 16
Zhou (ref115) 2015; 89
Desai (ref19) 2006; 66
Yu (ref105) 2021; 187
Wu (ref99) 2017; 143
Gupta (ref30) 2021; 68
Puertollano (ref71) 2018; 37
Saguil (ref75) 2019; 100
Gao (ref25) 2008; 295
Zhang (ref110) 2016; 473
Caruso Bavisotto (ref8) 2020; 7
Tsikas (ref89) 2021; 53
Lopez (ref58) 2016; 11
Andres (ref1) 2020; 21
Cappadocia (ref7) 2018; 118
Lauwers (ref51) 2009; 185
Qiu (ref72) 2016; 73
Ye (ref104) 2014; 10
Park (ref68) 2023; 13
Dave (ref18) 2017; 45
Cheng (ref14) 2022; 13
Herrmann (ref36) 2007; 100
Pellegrino (ref70) 2022; 23
Hermann (ref35) 2022; 86
Jheng (ref42) 2016; 5
Aslebagh (ref3) 2019; 1140
Xue (ref102) 2022; 23
Kumar (ref49) 2020; 22
Zhang (ref109) 2012; 23
Chen (ref13) 2011; 286
Turkki (ref90) 2013; 87
Kung (ref50) 2017; 45
Zhang (ref108) 2015; 458
References_xml – volume: 96
  start-page: e0011922
  year: 2022
  ident: ref113
  article-title: N-acetyltransferase 8 promotes viral replication by increasing the stability of enterovirus 71 nonstructural proteins
  publication-title: J. Virol.
  doi: 10.1128/jvi.00119-22
– volume: 13
  start-page: 1068449
  year: 2022
  ident: ref14
  article-title: Protein post-translational modification in Sars-CoV-2 and host interaction
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2022.1068449
– volume: 50
  start-page: 3835
  ident: ref69
  article-title: Zwc complex-mediated Spt5 phosphorylation suppresses divergent antisense Rna transcription at active gene promoters
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkac193
– volume: 22
  year: 2020
  ident: ref49
  article-title: Role of host-mediated Post-translational modifications (Ptms) in Rna virus pathogenesis
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms22010323
– volume: 12
  start-page: 1061
  year: 2021
  ident: ref34
  article-title: Effects of alpha-Synuclein-associated Post-translational modifications in Parkinson's disease
  publication-title: ACS Chem. Neurosci.
  doi: 10.1021/acschemneuro.1c00028
– volume: 23
  ident: ref67
  article-title: The roles of ubiquitination in pathogenesis of influenza virus infection
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms23094593
– volume: 18
  start-page: e3000718
  year: 2020
  ident: ref103
  article-title: Mitotic phosphorylation of the Ulk complex regulates cell cycle progression
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.3000718
– volume: 45
  start-page: 271
  year: 2017
  ident: ref50
  article-title: Control of the negative Ires trans-acting factor Khsrp by ubiquitination
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkw1042
– volume: 53
  start-page: 485
  year: 2021
  ident: ref89
  article-title: Post-translational modifications (Ptm): analytical approaches, signaling, physiology and pathophysiology-part I
  publication-title: Amino Acids
  doi: 10.1007/s00726-021-02984-y
– volume: 23
  start-page: 872
  year: 2012
  ident: ref109
  article-title: Using protein microarrays to study phosphorylation-mediated signal transduction
  publication-title: Semin. Cell Dev. Biol.
  doi: 10.1016/j.semcdb.2012.05.009
– volume: 87
  start-page: 9822
  year: 2013
  ident: ref90
  article-title: Cell susceptibility to baculovirus transduction and echovirus infection is modified by protein kinase C phosphorylation and vimentin organization
  publication-title: J. Virol.
  doi: 10.1128/JVI.01004-13
– volume: 420
  start-page: 882
  year: 2012
  ident: ref41
  article-title: Inhibition of enterovirus 71 entry by transcription factor Xbp1
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2012.03.094
– volume: 7
  start-page: 284
  year: 2017
  ident: ref9
  article-title: Dsrna binding domain of Pkr is Proteolytically released by enterovirus A71 to facilitate viral replication
  publication-title: Front. Cell. Infect. Microbiol.
  doi: 10.3389/fcimb.2017.00284
– volume: 10
  year: 2020
  ident: ref86
  article-title: Regulation of protein Post-translational modifications on metabolism of Actinomycetes
  publication-title: Biomol. Ther.
  doi: 10.3390/biom10081122
– volume: 1877
  start-page: 188735
  ident: ref116
  article-title: Proteomics of post-translational modifications in colorectal cancer: discovery of new biomarkers
  publication-title: Biochim. Biophys. Acta Rev. Cancer
  doi: 10.1016/j.bbcan.2022.188735
– volume: 21
  start-page: 5941
  year: 2020
  ident: ref1
  article-title: Histone H1 Post-translational modifications: update and future perspectives
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms21165941
– volume: 8
  start-page: e2866
  year: 2017
  ident: ref63
  article-title: Arrdc4 regulates enterovirus 71-induced innate immune response by promoting K63 polyubiquitination of Mda5 through Trim65
  publication-title: Cell Death Dis.
  doi: 10.1038/cddis.2017.257
– volume: 23
  year: 2022
  ident: ref70
  article-title: The next frontier: translational development of ubiquitination, Sumoylation, and Neddylation in Cancer
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms23073480
– volume: 1382
  start-page: 95
  year: 2022
  ident: ref83
  article-title: Histone modifications in neurological disorders
  publication-title: Adv. Exp. Med. Biol.
  doi: 10.1007/978-3-031-05460-0_7
– volume: 20
  year: 2019
  ident: ref95
  article-title: Stat3 regulates the type I Ifn-mediated antiviral response by interfering with the nuclear entry of Stat1
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms20194870
– volume: 27
  year: 2022
  ident: ref29
  article-title: Phosphorylation of Erk-dependent Nf-kappaB triggers Nlrp3 Inflammasome mediated by vimentin in Ev71-infected glioblastoma cells
  publication-title: Molecules
  doi: 10.3390/molecules27134190
– volume: 66
  start-page: 921
  year: 2006
  ident: ref19
  article-title: Elevated expression of Isg15 in tumor cells interferes with the ubiquitin/26S proteasome pathway
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-05-1123
– volume: 68
  start-page: 101336
  year: 2021
  ident: ref30
  article-title: Post-translational modifications: regulators of neurodegenerative proteinopathies
  publication-title: Ageing Res. Rev.
  doi: 10.1016/j.arr.2021.101336
– volume: 100
  start-page: 1276
  year: 2007
  ident: ref36
  article-title: Ubiquitin and ubiquitin-like proteins in protein regulation
  publication-title: Circ. Res.
  doi: 10.1161/01.RES.0000264500.11888.f0
– volume: 11
  year: 2022
  ident: ref64
  article-title: Isg15 and Isgylation in human diseases
  publication-title: Cell
  doi: 10.3390/cells11030538
– volume: 78
  start-page: 82
  year: 2005
  ident: ref98
  article-title: Phosphorylation of Pi3K/Akt and Mapk/Erk in an early entry step of enterovirus 71
  publication-title: Life Sci.
  doi: 10.1016/j.lfs.2005.04.076
– volume: 11
  start-page: 706
  year: 2016
  ident: ref58
  article-title: Metal-dependent deacetylases: Cancer and epigenetic regulators
  publication-title: ACS Chem. Biol.
  doi: 10.1021/acschembio.5b01067
– volume: 18
  start-page: 949
  year: 2021
  ident: ref65
  article-title: Protein lysine acetylation and its role in different human pathologies: a proteomic approach
  publication-title: Expert Rev. Proteomics
  doi: 10.1080/14789450.2021.2007766
– volume: 51
  start-page: 141
  year: 2018
  ident: ref33
  article-title: Next-generation antibodies for post-translational modifications
  publication-title: Curr. Opin. Struct. Biol.
  doi: 10.1016/j.sbi.2018.04.006
– volume: 14
  year: 2022
  ident: ref78
  article-title: Enteroviruses manipulate the unfolded protein response through multifaceted deregulation of the Ire1-Xbp1 pathway
  publication-title: Viruses
  doi: 10.3390/v14112486
– volume: 286
  start-page: 31373
  year: 2011
  ident: ref13
  article-title: Sumoylation-promoted enterovirus 71 3C degradation correlates with a reduction in viral replication and cell apoptosis
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M111.254896
– volume: 1140
  start-page: 199
  year: 2019
  ident: ref3
  article-title: Identification of posttranslational modifications (Ptms) of proteins by mass spectrometry
  publication-title: Adv. Exp. Med. Biol.
  doi: 10.1007/978-3-030-15950-4_11
– volume: 9
  start-page: 4967
  year: 2018
  ident: ref66
  article-title: Orchestration of protein acetylation as a toggle for cellular defense and virus replication
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-07179-w
– volume: 37
  year: 2018
  ident: ref71
  article-title: The complex relationship between Tfeb transcription factor phosphorylation and subcellular localization
  publication-title: EMBO J.
  doi: 10.15252/embj.201798804
– volume: 91
  start-page: 1643
  year: 2019
  ident: ref43
  article-title: Microrna-34a aggravates coxsackievirus B3-induced apoptosis of cardiomyocytes through the Sirt1-p53 pathway
  publication-title: J. Med. Virol.
  doi: 10.1002/jmv.25482
– volume: 10
  start-page: e1004070
  year: 2014
  ident: ref104
  article-title: Coxsackievirus-induced miR-21 disrupts cardiomyocyte interactions via the downregulation of intercalated disk components
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1004070
– volume: 8
  start-page: 947
  year: 2007
  ident: ref27
  article-title: Concepts in sumoylation: a decade on
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm2293
– volume: 11
  start-page: 861
  year: 2010
  ident: ref26
  article-title: The Sumo pathway: emerging mechanisms that shape specificity, conjugation and recognition
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm3011
– volume: 8
  start-page: 13418
  year: 2018
  ident: ref101
  article-title: Usp4 positively regulates Rlr-induced Nf-kappaB activation by targeting Traf6 for K48-linked deubiquitination and inhibits enterovirus 71 replication
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-31734-6
– volume: 187
  start-page: 2202
  year: 2011
  ident: ref114
  article-title: Enterovirus 71 2C protein inhibits Tnf-alpha-mediated activation of Nf-kappaB by suppressing IkappaB kinase beta phosphorylation
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1100285
– volume: 184
  start-page: 78
  year: 2020
  ident: ref47
  article-title: Visualization of the dynamics of histone modifications and their crosstalk using Ptm-CrossTalkMapper
  publication-title: Methods
  doi: 10.1016/j.ymeth.2020.01.012
– volume: 77
  start-page: 1
  year: 2003
  ident: ref59
  article-title: Ubiquitin-dependent proteolysis of cyclin D1 is associated with coxsackievirus-induced cell growth arrest
  publication-title: J. Virol.
  doi: 10.1128/JVI.77.1.1-9.2003
– volume: 26
  start-page: 399
  year: 2016
  ident: ref87
  article-title: Ubiquitin modifications
  publication-title: Cell Res.
  doi: 10.1038/cr.2016.39
– volume: 11
  start-page: e0044623
  year: 2023
  ident: ref38
  article-title: Sumo modification of hepatitis B virus Core mediates nuclear entry, Promyelocytic leukemia nuclear body association, and efficient formation of covalently closed circular Dna
  publication-title: Microbiol Spectr
  doi: 10.1128/spectrum.00446-23
– volume: 9
  start-page: 2479
  year: 2018
  ident: ref56
  article-title: Trim21 restricts Coxsackievirus B3 replication, cardiac and pancreatic injury via interacting with Mavs and positively regulating Irf3-mediated type-I interferon production
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2018.02479
– volume: 21
  start-page: e48441
  year: 2020
  ident: ref62
  article-title: Characterization of the c10orf76-Pi4kb complex and its necessity for Golgi Pi4P levels and enterovirus replication
  publication-title: EMBO Rep.
  doi: 10.15252/embr.201948441
– volume: 13
  year: 2023
  ident: ref68
  article-title: Orchestration of mitochondrial function and remodeling by Post-translational modifications provide insight into mechanisms of viral infection
  publication-title: Biomol. Ther.
  doi: 10.3390/biom13050869
– volume: 8
  start-page: e73900
  year: 2013
  ident: ref32
  article-title: Enterovirus 71 Vp1 activates calmodulin-dependent protein kinase ii and results in the rearrangement of vimentin in human astrocyte cells
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0073900
– volume: 6
  start-page: 0078
  year: 2023
  ident: ref54
  article-title: Sars-CoV-2 spike protein Post-translational modification landscape and its impact on protein structure and function via computational prediction
  publication-title: Research
  doi: 10.34133/research.0078
– volume: 24
  start-page: 72
  year: 2010
  ident: ref112
  article-title: A coordinated phosphorylation by Lats and Ck1 regulates yap stability through Scf (beta-Trcp)
  publication-title: Genes Dev.
  doi: 10.1101/gad.1843810
– volume: 89
  start-page: 2575
  year: 2015
  ident: ref74
  article-title: The stress granule protein G3bp1 recruits protein kinase R to promote multiple innate immune antiviral responses
  publication-title: J. Virol.
  doi: 10.1128/JVI.02791-14
– volume: 124
  start-page: 119
  year: 2006
  ident: ref15
  article-title: Virus-induced Abl and Fyn kinase signals permit coxsackievirus entry through epithelial tight junctions
  publication-title: Cell
  doi: 10.1016/j.cell.2005.10.035
– volume: 86
  start-page: 101066
  year: 2022
  ident: ref35
  article-title: Identification and characterization of post-translational modifications: clinical implications
  publication-title: Mol. Asp. Med.
  doi: 10.1016/j.mam.2022.101066
– volume: 9
  start-page: 9413
  year: 2019
  ident: ref84
  article-title: Manassantin B shows antiviral activity against coxsackievirus B3 infection by activation of the Sting/Tbk-1/Irf3 signalling pathway
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-45868-8
– volume: 81
  start-page: 3142
  year: 2007
  ident: ref82
  article-title: Dysregulation of the ubiquitin-proteasome system by curcumin suppresses coxsackievirus B3 replication
  publication-title: J. Virol.
  doi: 10.1128/JVI.02028-06
– volume: 96
  start-page: e0059822
  year: 2022
  ident: ref96
  article-title: Neddylation of enterovirus 71 Vp2 protein reduces its stability and restricts viral replication
  publication-title: J. Virol.
  doi: 10.1128/jvi.00598-22
– volume: 41
  start-page: 231
  year: 2016
  ident: ref4
  article-title: Mechanisms and dynamics of protein acetylation in mitochondria
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/j.tibs.2015.12.006
– volume: 129
  start-page: 4534
  year: 2016
  ident: ref31
  article-title: Sirt1 inhibits Ev71 genome replication and Rna translation by interfering with the viral polymerase and 5'utr Rna
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.193698
– volume: 45
  start-page: 9068
  year: 2017
  ident: ref18
  article-title: Polypyrimidine tract-binding protein (Ptb) and Ptb-associated splicing factor in Cvb3 infection: an Itaf for an Itaf
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkx519
– volume: 5
  start-page: 1609
  year: 2019
  ident: ref5
  article-title: Fluoxetine inhibits enterovirus replication by targeting the viral 2C protein in a stereospecific manner
  publication-title: Acs Infect Dis
  doi: 10.1021/acsinfecdis.9b00179
– volume: 9
  start-page: e1001074
  year: 2011
  ident: ref2
  article-title: Towards a functional understanding of protein N-terminal acetylation
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.1001074
– volume: 109
  start-page: 163
  year: 2021
  ident: ref85
  article-title: Post-translational modification control of viral Dna sensors and innate immune signaling
  publication-title: Adv. Virus Res.
  doi: 10.1016/bs.aivir.2021.03.001
– volume: 73
  start-page: 1067
  year: 2016
  ident: ref72
  article-title: Hsp70-1: upregulation via selective phosphorylation of heat shock factor 1 during coxsackieviral infection and promotion of viral replication via the au-rich element
  publication-title: Cell. Mol. Life Sci.
  doi: 10.1007/s00018-015-2036-6
– volume: 23
  year: 2022
  ident: ref102
  article-title: Protein acetylation going viral: implications in antiviral immunity and viral infection
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms231911308
– volume: 458
  start-page: 810
  year: 2015
  ident: ref108
  article-title: Rassf4 promotes Ev71 replication to accelerate the inhibition of the phosphorylation of Akt
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2015.02.035
– volume: 100
  start-page: 408
  year: 2019
  ident: ref75
  article-title: Hand-foot-and-mouth disease: rapid evidence review
  publication-title: Am. Fam. Physician
– volume: 143
  start-page: 122
  year: 2017
  ident: ref99
  article-title: Antiviral screen identifies Ev71 inhibitors and reveals camptothecin-target, Dna topoisomerase 1 as a novel Ev71 host factor
  publication-title: Antivir. Res.
  doi: 10.1016/j.antiviral.2017.04.008
– volume: 146
  start-page: 106208
  year: 2022
  ident: ref97
  article-title: Trehalose induces B cell autophagy to alleviate myocardial injury via the Ampk/Ulk1 signalling pathway in acute viral myocarditis induced by Coxsackie virus B3
  publication-title: Int. J. Biochem. Cell Biol.
  doi: 10.1016/j.biocel.2022.106208
– volume: 18
  start-page: 2884
  year: 2021
  ident: ref17
  article-title: Understanding the limit of open search in the identification of peptides with Post-translational modifications - a simulation-based study
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform.
  doi: 10.1109/TCBB.2020.2991207
– volume: 79
  start-page: 8014
  ident: ref81
  article-title: Pyrrolidine dithiocarbamate reduces coxsackievirus B3 replication through inhibition of the ubiquitin-proteasome pathway
  publication-title: J. Virol.
  doi: 10.1128/JVI.79.13.8014-8023.2005
– volume: 36
  start-page: 453
  year: 2003
  ident: ref76
  article-title: The characterization of protein post-translational modifications by mass spectrometry
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar020143l
– volume: 62
  start-page: 3331
  ident: ref118
  article-title: Leveraging protein dynamics to identify functional phosphorylation sites using deep learning models
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.2c00484
– volume: 11
  year: 2020
  ident: ref45
  article-title: Nonproteolytic K29-linked ubiquitination of the Pb2 replication protein of influenza a viruses by Proviral Cullin 4-based E3 ligases
  publication-title: MBio
  doi: 10.1128/mBio.00305-20
– volume: 20
  start-page: 100129
  year: 2021
  ident: ref52
  article-title: Decoding Post-translational modification crosstalk with proteomics
  publication-title: Mol. Cell. Proteomics
  doi: 10.1016/j.mcpro.2021.100129
– volume: 37
  start-page: 569
  year: 2022
  ident: ref111
  article-title: Stub1 regulates antiviral Rnai through inducing ubiquitination and degradation of dicer and Ago2 in mammals
  publication-title: Virol. Sin.
  doi: 10.1016/j.virs.2022.05.001
– volume: 13
  year: 2021
  ident: ref93
  article-title: Coxsackievirus B3 exploits the ubiquitin-proteasome system to facilitate viral replication
  publication-title: Viruses
  doi: 10.3390/v13071360
– volume: 118
  start-page: 889
  year: 2018
  ident: ref7
  article-title: Ubiquitin-like protein conjugation: structures, chemistry, and mechanism
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.6b00737
– volume: 104
  start-page: 813
  year: 2009
  ident: ref61
  article-title: Bosentan enhances viral load via endothelin-1 receptor type-A-mediated p38 mitogen-activated protein kinase activation while improving cardiac function during coxsackievirus-induced myocarditis
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.108.191171
– volume: 180
  start-page: 1
  year: 2014
  ident: ref106
  article-title: The nuclear protein Sam68 is redistributed to the cytoplasm and is involved in Pi3K/Akt activation during Ev71 infection
  publication-title: Virus Res.
  doi: 10.1016/j.virusres.2013.11.020
– volume: 185
  start-page: 493
  year: 2009
  ident: ref51
  article-title: K63-linked ubiquitin chains as a specific signal for protein sorting into the multivesicular body pathway
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200810114
– volume: 89
  start-page: 10512
  year: 2015
  ident: ref115
  article-title: Inhibition of histone deacetylase activity aggravates Coxsackievirus B3-induced myocarditis by promoting viral replication and myocardial apoptosis
  publication-title: J. Virol.
  doi: 10.1128/JVI.01028-15
– volume: 4
  start-page: 663
  year: 2021
  ident: ref10
  article-title: Ikkepsilon isoform switching governs the immune response against Ev71 infection
  publication-title: Commun Biol
  doi: 10.1038/s42003-021-02187-x
– volume: 36
  start-page: 1363
  year: 2021
  ident: ref100
  article-title: Ectopic expression of Trim25 restores rig-I expression and Ifn production reduced by multiple enteroviruses 3C (pro)
  publication-title: Virol. Sin.
  doi: 10.1007/s12250-021-00410-x
– volume: 23
  start-page: 1068
  year: 2018
  ident: ref94
  article-title: Protein language: Post-translational modifications talking to each other
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2018.09.004
– volume: 17
  start-page: 1850
  year: 2018
  ident: ref119
  article-title: ProteomeTools: systematic characterization of 21 Post-translational protein modifications by liquid chromatography tandem mass spectrometry (Lc-Ms/Ms) using synthetic peptides
  publication-title: Mol. Cell. Proteomics
  doi: 10.1074/mcp.TIR118.000783
– volume: 9
  start-page: 1095142
  ident: ref117
  article-title: Protein sumoylation in normal and cancer stem cells
  publication-title: Front. Mol. Biosci.
  doi: 10.3389/fmolb.2022.1095142
– volume: 473
  start-page: 473
  year: 2016
  ident: ref110
  article-title: Emodin inhibits coxsackievirus B3 replication via multiple signalling cascades leading to suppression of translation
  publication-title: Biochem. J.
  doi: 10.1042/BJ20150419
– volume: 147
  start-page: 86
  year: 2017
  ident: ref60
  article-title: Modulation of proteolytic polyprotein processing by coxsackievirus mutants resistant to inhibitors targeting phosphatidylinositol-4-kinase Iiibeta or oxysterol binding protein
  publication-title: Antivir. Res.
  doi: 10.1016/j.antiviral.2017.10.006
– volume: 57
  start-page: 462
  year: 2013
  ident: ref77
  article-title: Histone deacetylase inhibitors suppress coxsackievirus B3 growth in vitro and myocarditis induced in mice
  publication-title: Acta Virol.
  doi: 10.4149/av_2013_04_462
– volume: 90
  start-page: 10472
  year: 2016
  ident: ref57
  article-title: Sumo modification stabilizes enterovirus 71 polymerase 3D to facilitate viral replication
  publication-title: J. Virol.
  doi: 10.1128/JVI.01756-16
– volume: 20
  year: 2019
  ident: ref91
  article-title: Visualizing ubiquitination in mammalian cells
  publication-title: EMBO Rep.
  doi: 10.15252/embr.201846520
– volume: 53
  start-page: 6989
  year: 2017
  ident: ref107
  article-title: The strategies for identification and quantification of Sumoylation
  publication-title: Chem. Commun. (Camb.)
  doi: 10.1039/C7CC00901A
– volume: 44
  start-page: 212
  year: 2016
  ident: ref12
  article-title: Specificity and disease in the ubiquitin system
  publication-title: Biochem. Soc. Trans.
  doi: 10.1042/BST20150209
– volume: 6
  start-page: eaay1109
  year: 2020
  ident: ref46
  article-title: Protein modification with Isg15 blocks coxsackievirus pathology by antiviral and metabolic reprogramming
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aay1109
– volume: 2020
  start-page: 2430640
  year: 2020
  ident: ref23
  article-title: Induction of Socs expression by Ev71 infection promotes Ev71 replication
  publication-title: Biomed. Res. Int.
  doi: 10.1155/2020/2430640
– volume: 19
  start-page: 59
  year: 2018
  ident: ref73
  article-title: Ubiquitylation at the crossroads of development and disease
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm.2017.83
– volume: 37
  start-page: 937
  year: 2009
  ident: ref48
  article-title: The emerging complexity of protein ubiquitination
  publication-title: Biochem. Soc. Trans.
  doi: 10.1042/BST0370937
– volume: 51
  start-page: 5691
  year: 2022
  ident: ref6
  article-title: Dissecting the role of protein phosphorylation: a chemical biology toolbox
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D1CS00991E
– volume: 288
  start-page: 1060
  year: 2021
  ident: ref40
  article-title: Discovery of linear ubiquitination, a crucial regulator for immune signaling and cell death
  publication-title: FEBS J.
  doi: 10.1111/febs.15471
– volume: 12
  start-page: S8
  year: 2011
  ident: ref44
  article-title: Identification of ubiquitin/ubiquitin-like protein modification from tandem mass spectra with various Ptms
  publication-title: BMC Bioinform
  doi: 10.1186/1471-2105-12-S14-S8
– volume: 13
  start-page: e0191617
  year: 2018
  ident: ref39
  article-title: Inhibition of Ev71 by curcumin in intestinal epithelial cells
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0191617
– volume: 419
  start-page: 135
  year: 2002
  ident: ref37
  article-title: Rad6-dependent Dna repair is linked to modification of Pcna by ubiquitin and Sumo
  publication-title: Nature
  doi: 10.1038/nature00991
– volume: 8
  start-page: 938
  year: 2012
  ident: ref88
  article-title: The role of autophagy during coxsackievirus infection of neural progenitor and stem cells
  publication-title: Autophagy
  doi: 10.4161/auto.19781
– volume: 78
  start-page: 231
  year: 2014
  ident: ref20
  article-title: The bacterial phosphoenolpyruvate:carbohydrate phosphotransferase system: regulation by protein phosphorylation and phosphorylation-dependent protein-protein interactions
  publication-title: Microbiol. Mol. Biol. Rev.
  doi: 10.1128/MMBR.00001-14
– volume: 243
  start-page: 1576
  year: 1989
  ident: ref11
  article-title: A multiubiquitin chain is confined to specific lysine in a targeted short-lived protein
  publication-title: Science
  doi: 10.1126/science.2538923
– volume: 11
  start-page: 4332
  year: 2020
  ident: ref28
  article-title: Dynamic remodelling of the human host cell proteome and phosphoproteome upon enterovirus infection
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-18168-3
– volume: 21
  start-page: e47528
  year: 2020
  ident: ref53
  article-title: Trim21-mediated proteasomal degradation of Samhd1 regulates its antiviral activity
  publication-title: EMBO Rep.
  doi: 10.15252/embr.201847528
– volume: 5
  start-page: e23
  year: 2016
  ident: ref42
  article-title: Enterovirus 71 induces dsrna/Pkr-dependent cytoplasmic redistribution of Grp78/BiP to promote viral replication
  publication-title: Emerg Microbes Infect
  doi: 10.1038/emi.2016.20
– volume: 27
  start-page: 44
  year: 2014
  ident: ref21
  article-title: Atypical regulation of G protein-coupled receptor intracellular trafficking by ubiquitination
  publication-title: Curr. Opin. Cell Biol.
  doi: 10.1016/j.ceb.2013.11.004
– volume: 84
  start-page: 11056
  year: 2010
  ident: ref24
  article-title: Proteasome activator Reggamma enhances coxsackieviral infection by facilitating p53 degradation
  publication-title: J. Virol.
  doi: 10.1128/JVI.00008-10
– volume: 16
  start-page: 258
  year: 2015
  ident: ref92
  article-title: 50 years of protein acetylation: from gene regulation to epigenetics, metabolism and beyond
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm3931
– volume: 184
  start-page: e17
  year: 2021
  ident: ref22
  article-title: Trim7 inhibits enterovirus replication and promotes emergence of a viral variant with increased pathogenicity
  publication-title: Cell
  doi: 10.1016/j.cell.2021.04.047
– volume: 43
  start-page: 251
  year: 2018
  ident: ref16
  article-title: Guiding mitotic progression by crosstalk between Post-translational modifications
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/j.tibs.2018.02.004
– volume: 295
  start-page: H401
  year: 2008
  ident: ref25
  article-title: Proteasome inhibition attenuates coxsackievirus-induced myocardial damage in mice
  publication-title: Am. J. Physiol. Heart Circ. Physiol.
  doi: 10.1152/ajpheart.00292.2008
– volume: 8
  start-page: 61
  year: 2011
  ident: ref55
  article-title: Enterovirus 71 induces degradation of Trim38, a potential E3 ubiquitin ligase
  publication-title: Virol. J.
  doi: 10.1186/1743-422X-8-61
– volume: 7
  start-page: 95
  year: 2020
  ident: ref8
  article-title: Hsp60 Post-translational modifications: functional and pathological consequences
  publication-title: Front. Mol. Biosci.
  doi: 10.3389/fmolb.2020.00095
– volume: 79
  start-page: 13875
  ident: ref80
  article-title: Stress-activated protein kinases are involved in coxsackievirus B3 viral progeny release
  publication-title: J. Virol.
  doi: 10.1128/JVI.79.22.13875-13881.2005
– volume: 3
  start-page: e2585
  year: 2008
  ident: ref79
  article-title: Ubiquitination is required for effective replication of coxsackievirus B3
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0002585
– volume: 187
  start-page: 105021
  year: 2021
  ident: ref105
  article-title: Cathelicidin antimicrobial peptides suppress Ev71 infection via regulating antiviral response and inhibiting viral binding
  publication-title: Antivir. Res.
  doi: 10.1016/j.antiviral.2021.105021
SSID ssj0000402000
Score 2.3900175
SecondaryResourceType review_article
Snippet Enteroviruses (EVs) are the main cause of a number of neurological diseases. Growing evidence has revealed that successful infection with enteroviruses is...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1341599
SubjectTerms enterovirus infection
enterovirus life cycle
host factors
Microbiology
pathogenesis
post-translation modification
SummonAdditionalLinks – databaseName: DOAJ : Directory of Open Access Journals [open access]
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS-RAEG5EELwsq-6u8UWEvUnWpF_pPqooKuhBFLw1ST9wYDaRcebgv7eqO44zsuxe9pikkjRfVbqqOtVfEfLThyClU7qQjYIERTeygDhOFLZsNfOCyTZWVd7cyssHfv0oHhdafWFNWKIHTsAdl95K7nnggjvsdtjI2knbMKuDDpS2OPuCz1tIpuIcjGlRWaZdMpCFaVDTyLaQD1L-CznMRCR7_fBEkbD_T1Hm52LJBe9z8ZV8GcLG_CQNd4Os-G6TrKVGkq9b5OquH_u8D3mkXRh1OfbgLaboh8bDal_-u3dYFpRW6HKQQTZOXFCYzPAw1WR138jDxfn92WUxNEkoLMAxLYTzHj6jKlIDgihgrBRzWlDuwFsLgLuytbbcVtgrUlStqkrnWUOpd4xJ9p2sdn3nt0kuS1cqHmrqIcaofWgFcw6e4ynVMrQ0I9U7YMYODOLYyGJsIJNAkE0E2SDIZgA5I0fze54Tf8ZfpU9RD3NJ5L6OJ8AizGAR5l8WkZHDdy0a-FbwB0jT-X72YsBdAx4wI6mM_Ehanb-KKQFzUV1lRC3pe2ksy1e60VPk40bWPapLvfM_Rr9L1hGRuGte7pHV6WTm9yHumbYH0cTfAPQ3AMA
  priority: 102
  providerName: Directory of Open Access Journals
Title Role of protein Post-translational modifications in enterovirus infection
URI https://www.ncbi.nlm.nih.gov/pubmed/38596371
https://www.proquest.com/docview/3035537938
https://pubmed.ncbi.nlm.nih.gov/PMC11002909
https://doaj.org/article/0ec64e4f454d4698a67d6ca3c9f9f22b
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Li9RAEC7WFcGL-DY-lgjeJEv6me6DiIrrKqwHcWBuTdIPHRgTnZ0B999b1ckMjqziJZCkkk6quruq-vF9AM9iSloHYyvdGkxQbKsrjONU5evOiqiE7vKqyrOP-nQmP8zV_AC2dEeTAs8vTe2IT2q2Wh7__HHxEhv8C8o40d-iBRa-w1SPy2OCJ1PWXoGr6JkaYjQ4m8L93DNTspR3pTCtaUKAz8d9NH95zZ6vypD-l8Whfy6n_M0_ndyEG1NgWb4aa8ItOIj9bbg2Uk1e3IH3n4ZlLIdUZmCGRV8SS2-1Jk-1nMYDy29DoIVD4xheiTKE10lDDqsNnY6rtvq7MDt5-_nNaTXRKFQec991pUKM2NBYBg9EUbSCMSJYxWVAf67QIMw31kvPiE1Ssc6wOkTRch6DEFrcg8N-6OMDKHUdaiNTwyNGIU1MnRIh4Hsi51anjhfAtgpzfsIYJ6qLpcNcg5TsspIdKdlNSi7g-e6Z7yPCxj-lX5MddpKEjp0vDKsvbmpsro5eyyiTVDIQQ2arm6B9K7xNNnHeFfB0a0WHrYmmSNo-Dptzhw4d9YF9ling_mjVXVHCKOytGlaA2bP33rfs3-kXXzNiN-HycVvbh_9R8CO4Tj-ct83rx3C4Xm3iEwx81t1RHjDA47s5O8o1-xccagGV
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Role+of+protein+Post-translational+modifications+in+enterovirus+infection&rft.jtitle=Frontiers+in+microbiology&rft.au=Zhao%2C+Xiaohui&rft.au=Hu%2C+Yibo&rft.au=Zhao%2C+Jun&rft.au=Liu%2C+Yan&rft.date=2024-02-26&rft.issn=1664-302X&rft.eissn=1664-302X&rft.volume=15&rft.spage=1341599&rft_id=info:doi/10.3389%2Ffmicb.2024.1341599&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-302X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-302X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-302X&client=summon