Model Driven Segmentation of Articulating Humans in Laplacian Eigenspace

We propose a general approach using Laplacian Eigenmaps and a graphical model of the human body to segment 3D voxel data of humans into different articulated chains. In the bottom-up stage, the voxels are transformed into a high-dimensional (6D or less) Laplacian Eigenspace (LE) of the voxel neighbo...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on pattern analysis and machine intelligence Vol. 30; no. 10; pp. 1771 - 1785
Main Authors Sundaresan, A., Chellappa, R.
Format Journal Article
LanguageEnglish
Published Los Alamitos, CA IEEE 01.10.2008
IEEE Computer Society
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We propose a general approach using Laplacian Eigenmaps and a graphical model of the human body to segment 3D voxel data of humans into different articulated chains. In the bottom-up stage, the voxels are transformed into a high-dimensional (6D or less) Laplacian Eigenspace (LE) of the voxel neighborhood graph. We show that LE is effective at mapping voxels on long articulated chains to nodes on smooth 1D curves that can be easily discriminated, and prove these properties using representative graphs. We fit 1D splines to voxels belonging to different articulated chains such as the limbs, head and trunk, and determine the boundary between splines using the spline fitting error. A top-down probabilistic approach is then used to register the segmented chains, utilizing their mutual connectivity and individual properties. Our approach enables us to deal with complex poses such as those where the limbs form loops. We use the segmentation results to automatically estimate the human body models. While we use human subjects in our experiments, the method is fairly general and can be applied to voxel-based segmentation of any articulated object composed of long chains. We present results on real and synthetic data that illustrate the usefulness of this approach.
AbstractList We propose a general approach using Laplacian Eigenmaps and a graphical model of the human body to segment 3D voxel data of humans into different articulated chains. In the bottom-up stage, the voxels are transformed into a high-dimensional (6D or less) Laplacian Eigenspace (LE) of the voxel neighborhood graph. We show that LE is effective at mapping voxels on long articulated chains to nodes on smooth 1D curves that can be easily discriminated, and prove these properties using representative graphs. We fit 1D splines to voxels belonging to different articulated chains such as the limbs, head and trunk, and we determine the boundary between splines by thresholding the spline fit error, which is high at junctions. A top-down probabilistic approach is then used to register the segmented chains, utilizing both their mutual connectivity and their individual properties such as length and thickness. Our approach enables us to deal with complex poses such as those where the limbs form loops. We use the segmentation results to automatically estimate the human body models. Although we use human subjects in our experiments, the method is fairly general and can be applied to voxel-based registration of any articulated object, which is composed of long chains. We present results on real and synthetic data that illustrate the usefulness of this approach.We propose a general approach using Laplacian Eigenmaps and a graphical model of the human body to segment 3D voxel data of humans into different articulated chains. In the bottom-up stage, the voxels are transformed into a high-dimensional (6D or less) Laplacian Eigenspace (LE) of the voxel neighborhood graph. We show that LE is effective at mapping voxels on long articulated chains to nodes on smooth 1D curves that can be easily discriminated, and prove these properties using representative graphs. We fit 1D splines to voxels belonging to different articulated chains such as the limbs, head and trunk, and we determine the boundary between splines by thresholding the spline fit error, which is high at junctions. A top-down probabilistic approach is then used to register the segmented chains, utilizing both their mutual connectivity and their individual properties such as length and thickness. Our approach enables us to deal with complex poses such as those where the limbs form loops. We use the segmentation results to automatically estimate the human body models. Although we use human subjects in our experiments, the method is fairly general and can be applied to voxel-based registration of any articulated object, which is composed of long chains. We present results on real and synthetic data that illustrate the usefulness of this approach.
We propose a general approach using Laplacian Eigenmaps and a graphical model of the human body to segment 3D voxel data of humans into different articulated chains. In the bottom-up stage, the voxels are transformed into a high-dimensional [abstract truncated by publisher].
We propose a general approach using Laplacian Eigenmaps and a graphical model of the human body to segment 3D voxel data of humans into different articulated chains. In the bottom-up stage, the voxels are transformed into a high-dimensional (6D or less) Laplacian Eigenspace (LE) of the voxel neighborhood graph. We show that LE is effective at mapping voxels on long articulated chains to nodes on smooth 1D curves that can be easily discriminated, and prove these properties using representative graphs. We fit 1D splines to voxels belonging to different articulated chains such as the limbs, head and trunk, and determine the boundary between splines using the spline fitting error. A top-down probabilistic approach is then used to register the segmented chains, utilizing their mutual connectivity and individual properties. Our approach enables us to deal with complex poses such as those where the limbs form loops. We use the segmentation results to automatically estimate the human body models. While we use human subjects in our experiments, the method is fairly general and can be applied to voxel-based segmentation of any articulated object composed of long chains. We present results on real and synthetic data that illustrate the usefulness of this approach.
In the bottom-up stage, the voxels are transformed into a high-dimensional (6D or less) Laplacian Eigenspace (LE) of the voxel neighborhood graph.
We propose a general approach using Laplacian Eigenmaps and a graphical model of the human body to segment 3D voxel data of humans into different articulated chains. In the bottom-up stage, the voxels are transformed into a high-dimensional (6D or less) Laplacian Eigenspace (LE) of the voxel neighborhood graph. We show that LE is effective at mapping voxels on long articulated chains to nodes on smooth 1D curves that can be easily discriminated, and prove these properties using representative graphs. We fit 1D splines to voxels belonging to different articulated chains such as the limbs, head and trunk, and we determine the boundary between splines by thresholding the spline fit error, which is high at junctions. A top-down probabilistic approach is then used to register the segmented chains, utilizing both their mutual connectivity and their individual properties such as length and thickness. Our approach enables us to deal with complex poses such as those where the limbs form loops. We use the segmentation results to automatically estimate the human body models. Although we use human subjects in our experiments, the method is fairly general and can be applied to voxel-based registration of any articulated object, which is composed of long chains. We present results on real and synthetic data that illustrate the usefulness of this approach.
Author Chellappa, R.
Sundaresan, A.
Author_xml – sequence: 1
  givenname: A.
  surname: Sundaresan
  fullname: Sundaresan, A.
  organization: Artificial Intell. Center, SRI Int., Menlo Park, CA
– sequence: 2
  givenname: R.
  surname: Chellappa
  fullname: Chellappa, R.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20628109$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/18703830$$D View this record in MEDLINE/PubMed
BookMark eNqF0s1rFDEYBvAgFbut3gVBBkE9zfrmOzkutbqFLQrWc8hmkyVlJrMmM4L_vdnuWqGH9hQCv-d9IXnO0EkakkfoNYY5xqA_3XxfXF_NCYCcS1CEPkMzrKluKaf6BM0AC9IqRdQpOivlFgAzDvQFOsVKAlUUZmh5PWx813zO8bdPzQ-_7X0a7RiH1AyhWeQxuqmr97RtllNvU2lialZ211kXbWou49ansrPOv0TPg-2Kf3U8z9HPL5c3F8t29e3r1cVi1Tom9NhyJxkma7HWwSnlgw3CAQ3aBrYJ4IILPEjrgrLAAyiKJdTha6q1JHpDgJ6jj4e5uzz8mnwZTR-L811nkx-mYjRQQRhn9EmpJAchMJdVfnhUCs0opkQ9CSmre6nc7373AN4OU071YYwShHCOMavo7RFN695vzC7H3uY_5t_vVPD-CGxxtgvZJhfLvSMgiKo1qA4OzuWhlOzD_1Fg9kUxd0Ux-6KYu6LUiHgQcfHw72O2sXss-OYQjN77-z2MKsa0pn8BbT3ISQ
CODEN ITPIDJ
CitedBy_id crossref_primary_10_1109_TII_2011_2172450
crossref_primary_10_1109_TSMCA_2010_2040272
crossref_primary_10_1080_21681163_2013_834800
crossref_primary_10_1016_j_cviu_2010_09_001
crossref_primary_10_1016_j_patrec_2011_09_019
crossref_primary_10_1177_1094342014566289
crossref_primary_10_1007_s00530_021_00846_x
crossref_primary_10_1016_j_patcog_2021_108450
crossref_primary_10_1002_cyto_a_22432
crossref_primary_10_3390_en14227674
crossref_primary_10_1007_s10489_014_0535_z
crossref_primary_10_1007_s11554_014_0467_1
crossref_primary_10_1155_2013_786749
crossref_primary_10_1155_2014_757845
crossref_primary_10_1016_j_patrec_2012_08_007
crossref_primary_10_1016_j_bspc_2021_102512
crossref_primary_10_1109_JSTSP_2012_2196975
crossref_primary_10_1109_TPAMI_2012_270
crossref_primary_10_1016_j_asoc_2014_01_007
crossref_primary_10_1109_TIP_2009_2022290
crossref_primary_10_5772_62415
crossref_primary_10_1007_s10489_009_0209_4
crossref_primary_10_1007_s00138_011_0344_x
Cites_doi 10.1109/ICPR.2006.1034
10.1006/cviu.2000.0897
10.1007/978-94-015-8935-2_8
10.1002/(SICI)1096-8644(200005)112:1<39::AID-AJPA5>3.0.CO;2-#
10.1007/11789239_9
10.1126/science.290.5500.2323
10.1007/11612704_14
10.1007/978-3-540-24672-5_6
10.1109/CVPR.2003.1211340
10.1109/ICCV.1995.466881
10.1201/9780367801700
10.1162/089976603321780317
10.1007/3-540-47977-5_44
10.1109/ICCV.2005.204
10.1006/cviu.1998.0716
10.1109/CVPR.2003.1211504
10.1023/A:1023012723347
10.1109/CVPR.2007.383302
10.1006/cviu.1998.0744
10.1090/cbms/092
10.1016/S0379-0738(02)00425-5
10.1109/CVPR.1996.517056
10.1109/TPAMI.2005.55
10.1126/science.290.5500.2319
10.1093/oso/9780195073591.001.0001
10.1109/CVPR.2004.1315126
10.1145/882262.882309
10.1162/089976698300017467
10.3349/ymj.1997.38.2.79
ContentType Journal Article
Copyright 2009 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008
Copyright_xml – notice: 2009 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
7X8
DOI 10.1109/TPAMI.2007.70823
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore Digital Library
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Technology Research Database

Technology Research Database
Technology Research Database
MEDLINE
Technology Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Applied Sciences
EISSN 1939-3539
EndPage 1785
ExternalDocumentID 2322656301
18703830
20628109
10_1109_TPAMI_2007_70823
4384499
Genre orig-research
Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
9M8
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ADRHT
AENEX
AETEA
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
FA8
HZ~
H~9
IBMZZ
ICLAB
IEDLZ
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNI
RNS
RXW
RZB
TAE
TN5
UHB
VH1
XJT
~02
AAYOK
AAYXX
CITATION
RIG
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
7X8
ID FETCH-LOGICAL-c469t-5c7412b6b9fc88efaf6c03f9af4df0cfcf5f7acf8a05f083170aceb399729d203
IEDL.DBID RIE
ISSN 0162-8828
IngestDate Fri Jul 11 16:47:42 EDT 2025
Sun Aug 24 04:00:09 EDT 2025
Fri Jul 11 15:46:13 EDT 2025
Fri Jul 11 05:46:59 EDT 2025
Mon Jun 30 06:00:04 EDT 2025
Mon Jul 21 06:00:58 EDT 2025
Mon Jul 21 09:15:59 EDT 2025
Tue Jul 01 05:17:32 EDT 2025
Thu Apr 24 22:58:14 EDT 2025
Tue Aug 26 16:47:22 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords partitioning
Pattern Recognition
Segmentation
Graph-theoretic methods
Region growing
Image Processing and Computer Vision
Image processing
Threshold detection
Top down method
Modeling
Spline approximation
Multidimensional analysis
Voxel
region growing
Pattern analysis
Body
Computer vision
Head
Probabilistic approach
Chain length
graph-theoretic methods
Model driven architecture
Graph theory
Pattern recognition
Object recognition
Laplacian
Bottom up method
Tridimensional image
Graph method
Graphic method
Artificial intelligence
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c469t-5c7412b6b9fc88efaf6c03f9af4df0cfcf5f7acf8a05f083170aceb399729d203
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PMID 18703830
PQID 862255114
PQPubID 23500
PageCount 15
ParticipantIDs proquest_miscellaneous_34433373
pubmed_primary_18703830
proquest_miscellaneous_875066157
ieee_primary_4384499
proquest_journals_862255114
crossref_primary_10_1109_TPAMI_2007_70823
proquest_miscellaneous_69431328
proquest_miscellaneous_903624543
pascalfrancis_primary_20628109
crossref_citationtrail_10_1109_TPAMI_2007_70823
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2008-10-01
PublicationDateYYYYMMDD 2008-10-01
PublicationDate_xml – month: 10
  year: 2008
  text: 2008-10-01
  day: 01
PublicationDecade 2000
PublicationPlace Los Alamitos, CA
PublicationPlace_xml – name: Los Alamitos, CA
– name: United States
– name: New York
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationTitleAlternate IEEE Trans Pattern Anal Mach Intell
PublicationYear 2008
Publisher IEEE
IEEE Computer Society
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: IEEE Computer Society
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
Anguelov (ref20)
ref35
ref12
ref34
ref15
ref14
ref36
ref31
ref30
ref33
ref10
ref17
ref16
ref19
ref18
Mündermann (ref1)
ref24
ref23
ref26
ref25
ref22
Mohar (ref32) 1991; 2
ref21
ref28
ref27
Nadler (ref29)
Corazza (ref2)
ref8
ref7
ref9
ref4
ref6
ref5
Chu (ref3); 2
Sigal (ref11) 2006
References_xml – ident: ref6
  doi: 10.1109/ICPR.2006.1034
– ident: ref10
  doi: 10.1006/cviu.2000.0897
– ident: ref12
  doi: 10.1007/978-94-015-8935-2_8
– ident: ref36
  doi: 10.1002/(SICI)1096-8644(200005)112:1<39::AID-AJPA5>3.0.CO;2-#
– volume: 2
  start-page: 871
  volume-title: Graph Theory, Combinatorics, and Applications
  year: 1991
  ident: ref32
  article-title: The Laplacian Spectrum of Graphs
– ident: ref33
  doi: 10.1007/11789239_9
– ident: ref28
  doi: 10.1126/science.290.5500.2323
– ident: ref7
  doi: 10.1007/11612704_14
– ident: ref22
  doi: 10.1007/978-3-540-24672-5_6
– start-page: 18
  volume-title: Proc. 20th Conf. Uncertainty in Artificial Intelligence (UAI ’04)
  ident: ref20
  article-title: Recovering Articulated Object Models from 3D Range Data
– ident: ref17
  doi: 10.1109/CVPR.2003.1211340
– ident: ref16
  doi: 10.1109/ICCV.1995.466881
– volume-title: Technical Report CS-06-08, Brown Univ.
  year: 2006
  ident: ref11
  article-title: HumanEva: Synchronized Video and Motion Capture Dataset for Evaluation of Articulated Human Motion
– ident: ref30
  doi: 10.1201/9780367801700
– volume-title: Proc. 20th Congress Int’l Soc. of Biomechanics and 29th Ann. Meeting Am. Soc. Biomechanics
  ident: ref1
  article-title: Validation of a Markerless Motion Capture System for the Calculation of Lower Extremity Kinematics
– ident: ref25
  doi: 10.1162/089976603321780317
– ident: ref15
  doi: 10.1007/3-540-47977-5_44
– volume-title: Proc. 20th Congress Int’l Soc. of Biomechanics and 29th Ann. Meeting Am. Soc. Biomechanics
  ident: ref2
  article-title: Lower Limb Kinematics through Model-Free Markerless Motion Capture
– ident: ref14
  doi: 10.1109/ICCV.2005.204
– ident: ref8
  doi: 10.1006/cviu.1998.0716
– ident: ref13
  doi: 10.1109/CVPR.2003.1211504
– ident: ref4
  doi: 10.1023/A:1023012723347
– ident: ref5
  doi: 10.1109/CVPR.2007.383302
– ident: ref9
  doi: 10.1006/cviu.1998.0744
– volume: 2
  start-page: 475
  volume-title: Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR ’03)
  ident: ref3
  article-title: Markerless Kinematic Model and Motion Capture from Volume Sequences
– ident: ref31
  doi: 10.1090/cbms/092
– ident: ref34
  doi: 10.1016/S0379-0738(02)00425-5
– ident: ref24
  doi: 10.1109/CVPR.1996.517056
– ident: ref26
  doi: 10.1109/TPAMI.2005.55
– ident: ref19
  doi: 10.1126/science.290.5500.2319
– ident: ref23
  doi: 10.1093/oso/9780195073591.001.0001
– volume-title: Proc. Conf. Neural Information Processing Systems (NIPS ’05)
  ident: ref29
  article-title: Diffusion Maps, Spectral Clustering and the Eigenfunctions of Fokker-Planck Operators
– ident: ref21
  doi: 10.1109/CVPR.2004.1315126
– ident: ref18
  doi: 10.1145/882262.882309
– ident: ref27
  doi: 10.1162/089976698300017467
– ident: ref35
  doi: 10.3349/ymj.1997.38.2.79
SSID ssj0014503
Score 2.1231623
Snippet We propose a general approach using Laplacian Eigenmaps and a graphical model of the human body to segment 3D voxel data of humans into different articulated...
In the bottom-up stage, the voxels are transformed into a high-dimensional (6D or less) Laplacian Eigenspace (LE) of the voxel neighborhood graph.
SourceID proquest
pubmed
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1771
SubjectTerms Algorithms
Application software
Applied sciences
Articulated
Artificial Intelligence
Biological system modeling
Cameras
Computer science; control theory; systems
Computer Simulation
Exact sciences and technology
Graph-theoretic methods
Graphs
Human
Human body
Humans
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Image Processing and Computer Vision
Image segmentation
Imaging, Three-Dimensional - methods
Joints
Joints - anatomy & histology
Laplace equations
Limbs
Models, Anatomic
Motion estimation
partitioning
Pattern Recognition
Pattern Recognition, Automated - methods
Pattern recognition. Digital image processing. Computational geometry
Region growing
Reproducibility of Results
Segmentation
Sensitivity and Specificity
Splines
Streaming media
Studies
Surveillance
Three dimensional
Whole Body Imaging - methods
Title Model Driven Segmentation of Articulating Humans in Laplacian Eigenspace
URI https://ieeexplore.ieee.org/document/4384499
https://www.ncbi.nlm.nih.gov/pubmed/18703830
https://www.proquest.com/docview/862255114
https://www.proquest.com/docview/34433373
https://www.proquest.com/docview/69431328
https://www.proquest.com/docview/875066157
https://www.proquest.com/docview/903624543
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxEB61PcGBlpbH0lJ84FKJTZy1vY9j1YcCIqhSW6m31drrqRBlg5rkwq9nxvuAVgRxi7QTJ2vPeL9vxzMfwPussHlmHcYJ7YSxtsj7oK1jpWp00hg0jjO6sy_p9Fp_ujE3G_BhqIXx3ofDZ37EH0Muv567Fb8qG2uVa0Lom7BJxK2t1RoyBtoEFWRCMBThRCP6lKQsxlcXx7OPbbfCjBNL3CiU3JS4mXzwNAryKnw4slrQ_GArbLEeeYYn0Pk2zPr_3h48-TZaLe3I_XzU1vF_b24HnnVQVBy3vvMcNnyzC9u9zIPoon4Xnv7Rs3APpqyedidO73mbFJf-9ntXvdSIObaDBUWw5laEBMFCfG3E54rPfpEnijPu_km7mPMv4Pr87OpkGndyDLEjDr2MjSP0kdjUFujy3GOFqZMKiwp1jdKhQ4NZ5TCvpEEWMMskDWYVl-YWdSLVS9hq5o1_DcKhrAnokR9MlE6ttNaTSZ3USZp7M0kjGPfLUrquVzlLZtyVgbPIogxryhqaWRnWNIKj4Rs_2j4d_7Dd4-kf7LqZj-DwwcoP1xOuM6WBItjvXaHsIn1REiMkVkasMoJ3w1UKUc67VI2frxal0loplan1FmmhuYVmHoFYY0G0ksDhxGTrTQoGI9po-p1XrZ_-nonO3d_8_c734UnSt_mdHMDW8n7l3xLWWtrDEGS_AODiJCw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcgAOFFoeodD6wAWJdL2xncexglZb2K2Q2Eq9RbHjqRAli7q7F349M84DiljELVImTmzP2DMZz_cBvM4Km2fWYZzQShhri7wO2jpWqkYnjUHjOKM7O08nF_rDpbncgrdDLYz3Phw-80d8GXL59cKt-VfZSKtck4d-B-7Svm-StlpryBloE3iQyYchG6dAok9KymI0_3Q8O2vxCjNOLTFUKCkqRWfy1n4UCFb4eGS1pBHCltpis-8Z9qDTHZj1X98ePfl6tF7ZI_fjD2DH_-3eI3jYOaPiuNWex7Dlm13Y6YkeRGf3u_DgN9TCPZgwf9q1eH_DC6X47K--dfVLjVhg21jgBGuuREgRLMWXRkwrPv1FuihOGP-T1jHnn8DF6cn83STuCBliR1H0KjaO_I_EprZAl-ceK0ydVFhUqGuUDh0azCqHeSUNMoVZJqkxq7g4t6gTqZ7CdrNo_HMQDmVNrh5pwljp1EprPYnUSZ2kuTfjNIJRPy2l69DKmTTjugxRiyzKMKfMopmVYU4jeDM88b1F6viH7B4P_yDXjXwEB7dmfrifcKUpNRTBfq8KZWfry5JiQorLKK6M4HC4S0bKmZeq8Yv1slRaK6UytVkiLTSDaOYRiA0SFFiSezg22WaRgt0RbTS951mrp79GolP3F3_v-SHcm8xn03J6dv5xH-4nPejv-CVsr27W_hV5Xit7EAzuJzsxJ3Y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Model+Driven+Segmentation+of+Articulating+Humans+in+Laplacian+Eigenspace&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Sundaresan%2C+A&rft.au=Chellappa%2C+R&rft.date=2008-10-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0162-8828&rft.eissn=1939-3539&rft.volume=30&rft.issue=10&rft.spage=1771&rft_id=info:doi/10.1109%2FTPAMI.2007.70823&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=2322656301
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon