Model Driven Segmentation of Articulating Humans in Laplacian Eigenspace
We propose a general approach using Laplacian Eigenmaps and a graphical model of the human body to segment 3D voxel data of humans into different articulated chains. In the bottom-up stage, the voxels are transformed into a high-dimensional (6D or less) Laplacian Eigenspace (LE) of the voxel neighbo...
Saved in:
Published in | IEEE transactions on pattern analysis and machine intelligence Vol. 30; no. 10; pp. 1771 - 1785 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Los Alamitos, CA
IEEE
01.10.2008
IEEE Computer Society The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We propose a general approach using Laplacian Eigenmaps and a graphical model of the human body to segment 3D voxel data of humans into different articulated chains. In the bottom-up stage, the voxels are transformed into a high-dimensional (6D or less) Laplacian Eigenspace (LE) of the voxel neighborhood graph. We show that LE is effective at mapping voxels on long articulated chains to nodes on smooth 1D curves that can be easily discriminated, and prove these properties using representative graphs. We fit 1D splines to voxels belonging to different articulated chains such as the limbs, head and trunk, and determine the boundary between splines using the spline fitting error. A top-down probabilistic approach is then used to register the segmented chains, utilizing their mutual connectivity and individual properties. Our approach enables us to deal with complex poses such as those where the limbs form loops. We use the segmentation results to automatically estimate the human body models. While we use human subjects in our experiments, the method is fairly general and can be applied to voxel-based segmentation of any articulated object composed of long chains. We present results on real and synthetic data that illustrate the usefulness of this approach. |
---|---|
AbstractList | We propose a general approach using Laplacian Eigenmaps and a graphical model of the human body to segment 3D voxel data of humans into different articulated chains. In the bottom-up stage, the voxels are transformed into a high-dimensional (6D or less) Laplacian Eigenspace (LE) of the voxel neighborhood graph. We show that LE is effective at mapping voxels on long articulated chains to nodes on smooth 1D curves that can be easily discriminated, and prove these properties using representative graphs. We fit 1D splines to voxels belonging to different articulated chains such as the limbs, head and trunk, and we determine the boundary between splines by thresholding the spline fit error, which is high at junctions. A top-down probabilistic approach is then used to register the segmented chains, utilizing both their mutual connectivity and their individual properties such as length and thickness. Our approach enables us to deal with complex poses such as those where the limbs form loops. We use the segmentation results to automatically estimate the human body models. Although we use human subjects in our experiments, the method is fairly general and can be applied to voxel-based registration of any articulated object, which is composed of long chains. We present results on real and synthetic data that illustrate the usefulness of this approach.We propose a general approach using Laplacian Eigenmaps and a graphical model of the human body to segment 3D voxel data of humans into different articulated chains. In the bottom-up stage, the voxels are transformed into a high-dimensional (6D or less) Laplacian Eigenspace (LE) of the voxel neighborhood graph. We show that LE is effective at mapping voxels on long articulated chains to nodes on smooth 1D curves that can be easily discriminated, and prove these properties using representative graphs. We fit 1D splines to voxels belonging to different articulated chains such as the limbs, head and trunk, and we determine the boundary between splines by thresholding the spline fit error, which is high at junctions. A top-down probabilistic approach is then used to register the segmented chains, utilizing both their mutual connectivity and their individual properties such as length and thickness. Our approach enables us to deal with complex poses such as those where the limbs form loops. We use the segmentation results to automatically estimate the human body models. Although we use human subjects in our experiments, the method is fairly general and can be applied to voxel-based registration of any articulated object, which is composed of long chains. We present results on real and synthetic data that illustrate the usefulness of this approach. We propose a general approach using Laplacian Eigenmaps and a graphical model of the human body to segment 3D voxel data of humans into different articulated chains. In the bottom-up stage, the voxels are transformed into a high-dimensional [abstract truncated by publisher]. We propose a general approach using Laplacian Eigenmaps and a graphical model of the human body to segment 3D voxel data of humans into different articulated chains. In the bottom-up stage, the voxels are transformed into a high-dimensional (6D or less) Laplacian Eigenspace (LE) of the voxel neighborhood graph. We show that LE is effective at mapping voxels on long articulated chains to nodes on smooth 1D curves that can be easily discriminated, and prove these properties using representative graphs. We fit 1D splines to voxels belonging to different articulated chains such as the limbs, head and trunk, and determine the boundary between splines using the spline fitting error. A top-down probabilistic approach is then used to register the segmented chains, utilizing their mutual connectivity and individual properties. Our approach enables us to deal with complex poses such as those where the limbs form loops. We use the segmentation results to automatically estimate the human body models. While we use human subjects in our experiments, the method is fairly general and can be applied to voxel-based segmentation of any articulated object composed of long chains. We present results on real and synthetic data that illustrate the usefulness of this approach. In the bottom-up stage, the voxels are transformed into a high-dimensional (6D or less) Laplacian Eigenspace (LE) of the voxel neighborhood graph. We propose a general approach using Laplacian Eigenmaps and a graphical model of the human body to segment 3D voxel data of humans into different articulated chains. In the bottom-up stage, the voxels are transformed into a high-dimensional (6D or less) Laplacian Eigenspace (LE) of the voxel neighborhood graph. We show that LE is effective at mapping voxels on long articulated chains to nodes on smooth 1D curves that can be easily discriminated, and prove these properties using representative graphs. We fit 1D splines to voxels belonging to different articulated chains such as the limbs, head and trunk, and we determine the boundary between splines by thresholding the spline fit error, which is high at junctions. A top-down probabilistic approach is then used to register the segmented chains, utilizing both their mutual connectivity and their individual properties such as length and thickness. Our approach enables us to deal with complex poses such as those where the limbs form loops. We use the segmentation results to automatically estimate the human body models. Although we use human subjects in our experiments, the method is fairly general and can be applied to voxel-based registration of any articulated object, which is composed of long chains. We present results on real and synthetic data that illustrate the usefulness of this approach. |
Author | Chellappa, R. Sundaresan, A. |
Author_xml | – sequence: 1 givenname: A. surname: Sundaresan fullname: Sundaresan, A. organization: Artificial Intell. Center, SRI Int., Menlo Park, CA – sequence: 2 givenname: R. surname: Chellappa fullname: Chellappa, R. |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20628109$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/18703830$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0s1rFDEYBvAgFbut3gVBBkE9zfrmOzkutbqFLQrWc8hmkyVlJrMmM4L_vdnuWqGH9hQCv-d9IXnO0EkakkfoNYY5xqA_3XxfXF_NCYCcS1CEPkMzrKluKaf6BM0AC9IqRdQpOivlFgAzDvQFOsVKAlUUZmh5PWx813zO8bdPzQ-_7X0a7RiH1AyhWeQxuqmr97RtllNvU2lialZ211kXbWou49ansrPOv0TPg-2Kf3U8z9HPL5c3F8t29e3r1cVi1Tom9NhyJxkma7HWwSnlgw3CAQ3aBrYJ4IILPEjrgrLAAyiKJdTha6q1JHpDgJ6jj4e5uzz8mnwZTR-L811nkx-mYjRQQRhn9EmpJAchMJdVfnhUCs0opkQ9CSmre6nc7373AN4OU071YYwShHCOMavo7RFN695vzC7H3uY_5t_vVPD-CGxxtgvZJhfLvSMgiKo1qA4OzuWhlOzD_1Fg9kUxd0Ux-6KYu6LUiHgQcfHw72O2sXss-OYQjN77-z2MKsa0pn8BbT3ISQ |
CODEN | ITPIDJ |
CitedBy_id | crossref_primary_10_1109_TII_2011_2172450 crossref_primary_10_1109_TSMCA_2010_2040272 crossref_primary_10_1080_21681163_2013_834800 crossref_primary_10_1016_j_cviu_2010_09_001 crossref_primary_10_1016_j_patrec_2011_09_019 crossref_primary_10_1177_1094342014566289 crossref_primary_10_1007_s00530_021_00846_x crossref_primary_10_1016_j_patcog_2021_108450 crossref_primary_10_1002_cyto_a_22432 crossref_primary_10_3390_en14227674 crossref_primary_10_1007_s10489_014_0535_z crossref_primary_10_1007_s11554_014_0467_1 crossref_primary_10_1155_2013_786749 crossref_primary_10_1155_2014_757845 crossref_primary_10_1016_j_patrec_2012_08_007 crossref_primary_10_1016_j_bspc_2021_102512 crossref_primary_10_1109_JSTSP_2012_2196975 crossref_primary_10_1109_TPAMI_2012_270 crossref_primary_10_1016_j_asoc_2014_01_007 crossref_primary_10_1109_TIP_2009_2022290 crossref_primary_10_5772_62415 crossref_primary_10_1007_s10489_009_0209_4 crossref_primary_10_1007_s00138_011_0344_x |
Cites_doi | 10.1109/ICPR.2006.1034 10.1006/cviu.2000.0897 10.1007/978-94-015-8935-2_8 10.1002/(SICI)1096-8644(200005)112:1<39::AID-AJPA5>3.0.CO;2-# 10.1007/11789239_9 10.1126/science.290.5500.2323 10.1007/11612704_14 10.1007/978-3-540-24672-5_6 10.1109/CVPR.2003.1211340 10.1109/ICCV.1995.466881 10.1201/9780367801700 10.1162/089976603321780317 10.1007/3-540-47977-5_44 10.1109/ICCV.2005.204 10.1006/cviu.1998.0716 10.1109/CVPR.2003.1211504 10.1023/A:1023012723347 10.1109/CVPR.2007.383302 10.1006/cviu.1998.0744 10.1090/cbms/092 10.1016/S0379-0738(02)00425-5 10.1109/CVPR.1996.517056 10.1109/TPAMI.2005.55 10.1126/science.290.5500.2319 10.1093/oso/9780195073591.001.0001 10.1109/CVPR.2004.1315126 10.1145/882262.882309 10.1162/089976698300017467 10.3349/ymj.1997.38.2.79 |
ContentType | Journal Article |
Copyright | 2009 INIST-CNRS Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008 |
Copyright_xml | – notice: 2009 INIST-CNRS – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008 |
DBID | 97E RIA RIE AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7SC 7SP 8FD JQ2 L7M L~C L~D F28 FR3 7X8 |
DOI | 10.1109/TPAMI.2007.70823 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore Digital Library CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ANTE: Abstracts in New Technology & Engineering Engineering Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional Engineering Research Database ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Technology Research Database Technology Research Database Technology Research Database MEDLINE Technology Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science Applied Sciences |
EISSN | 1939-3539 |
EndPage | 1785 |
ExternalDocumentID | 2322656301 18703830 20628109 10_1109_TPAMI_2007_70823 4384499 |
Genre | orig-research Research Support, U.S. Gov't, Non-P.H.S Journal Article |
GroupedDBID | --- -DZ -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E 9M8 AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT ADRHT AENEX AETEA AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P FA8 HZ~ H~9 IBMZZ ICLAB IEDLZ IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNI RNS RXW RZB TAE TN5 UHB VH1 XJT ~02 AAYOK AAYXX CITATION RIG IQODW CGR CUY CVF ECM EIF NPM 7SC 7SP 8FD JQ2 L7M L~C L~D F28 FR3 7X8 |
ID | FETCH-LOGICAL-c469t-5c7412b6b9fc88efaf6c03f9af4df0cfcf5f7acf8a05f083170aceb399729d203 |
IEDL.DBID | RIE |
ISSN | 0162-8828 |
IngestDate | Fri Jul 11 16:47:42 EDT 2025 Sun Aug 24 04:00:09 EDT 2025 Fri Jul 11 15:46:13 EDT 2025 Fri Jul 11 05:46:59 EDT 2025 Mon Jun 30 06:00:04 EDT 2025 Mon Jul 21 06:00:58 EDT 2025 Mon Jul 21 09:15:59 EDT 2025 Tue Jul 01 05:17:32 EDT 2025 Thu Apr 24 22:58:14 EDT 2025 Tue Aug 26 16:47:22 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | partitioning Pattern Recognition Segmentation Graph-theoretic methods Region growing Image Processing and Computer Vision Image processing Threshold detection Top down method Modeling Spline approximation Multidimensional analysis Voxel region growing Pattern analysis Body Computer vision Head Probabilistic approach Chain length graph-theoretic methods Model driven architecture Graph theory Pattern recognition Object recognition Laplacian Bottom up method Tridimensional image Graph method Graphic method Artificial intelligence |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c469t-5c7412b6b9fc88efaf6c03f9af4df0cfcf5f7acf8a05f083170aceb399729d203 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
PMID | 18703830 |
PQID | 862255114 |
PQPubID | 23500 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_34433373 pubmed_primary_18703830 proquest_miscellaneous_875066157 ieee_primary_4384499 proquest_journals_862255114 crossref_primary_10_1109_TPAMI_2007_70823 proquest_miscellaneous_69431328 proquest_miscellaneous_903624543 pascalfrancis_primary_20628109 crossref_citationtrail_10_1109_TPAMI_2007_70823 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2008-10-01 |
PublicationDateYYYYMMDD | 2008-10-01 |
PublicationDate_xml | – month: 10 year: 2008 text: 2008-10-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Los Alamitos, CA |
PublicationPlace_xml | – name: Los Alamitos, CA – name: United States – name: New York |
PublicationTitle | IEEE transactions on pattern analysis and machine intelligence |
PublicationTitleAbbrev | TPAMI |
PublicationTitleAlternate | IEEE Trans Pattern Anal Mach Intell |
PublicationYear | 2008 |
Publisher | IEEE IEEE Computer Society The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: IEEE Computer Society – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 Anguelov (ref20) ref35 ref12 ref34 ref15 ref14 ref36 ref31 ref30 ref33 ref10 ref17 ref16 ref19 ref18 Mündermann (ref1) ref24 ref23 ref26 ref25 ref22 Mohar (ref32) 1991; 2 ref21 ref28 ref27 Nadler (ref29) Corazza (ref2) ref8 ref7 ref9 ref4 ref6 ref5 Chu (ref3); 2 Sigal (ref11) 2006 |
References_xml | – ident: ref6 doi: 10.1109/ICPR.2006.1034 – ident: ref10 doi: 10.1006/cviu.2000.0897 – ident: ref12 doi: 10.1007/978-94-015-8935-2_8 – ident: ref36 doi: 10.1002/(SICI)1096-8644(200005)112:1<39::AID-AJPA5>3.0.CO;2-# – volume: 2 start-page: 871 volume-title: Graph Theory, Combinatorics, and Applications year: 1991 ident: ref32 article-title: The Laplacian Spectrum of Graphs – ident: ref33 doi: 10.1007/11789239_9 – ident: ref28 doi: 10.1126/science.290.5500.2323 – ident: ref7 doi: 10.1007/11612704_14 – ident: ref22 doi: 10.1007/978-3-540-24672-5_6 – start-page: 18 volume-title: Proc. 20th Conf. Uncertainty in Artificial Intelligence (UAI ’04) ident: ref20 article-title: Recovering Articulated Object Models from 3D Range Data – ident: ref17 doi: 10.1109/CVPR.2003.1211340 – ident: ref16 doi: 10.1109/ICCV.1995.466881 – volume-title: Technical Report CS-06-08, Brown Univ. year: 2006 ident: ref11 article-title: HumanEva: Synchronized Video and Motion Capture Dataset for Evaluation of Articulated Human Motion – ident: ref30 doi: 10.1201/9780367801700 – volume-title: Proc. 20th Congress Int’l Soc. of Biomechanics and 29th Ann. Meeting Am. Soc. Biomechanics ident: ref1 article-title: Validation of a Markerless Motion Capture System for the Calculation of Lower Extremity Kinematics – ident: ref25 doi: 10.1162/089976603321780317 – ident: ref15 doi: 10.1007/3-540-47977-5_44 – volume-title: Proc. 20th Congress Int’l Soc. of Biomechanics and 29th Ann. Meeting Am. Soc. Biomechanics ident: ref2 article-title: Lower Limb Kinematics through Model-Free Markerless Motion Capture – ident: ref14 doi: 10.1109/ICCV.2005.204 – ident: ref8 doi: 10.1006/cviu.1998.0716 – ident: ref13 doi: 10.1109/CVPR.2003.1211504 – ident: ref4 doi: 10.1023/A:1023012723347 – ident: ref5 doi: 10.1109/CVPR.2007.383302 – ident: ref9 doi: 10.1006/cviu.1998.0744 – volume: 2 start-page: 475 volume-title: Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR ’03) ident: ref3 article-title: Markerless Kinematic Model and Motion Capture from Volume Sequences – ident: ref31 doi: 10.1090/cbms/092 – ident: ref34 doi: 10.1016/S0379-0738(02)00425-5 – ident: ref24 doi: 10.1109/CVPR.1996.517056 – ident: ref26 doi: 10.1109/TPAMI.2005.55 – ident: ref19 doi: 10.1126/science.290.5500.2319 – ident: ref23 doi: 10.1093/oso/9780195073591.001.0001 – volume-title: Proc. Conf. Neural Information Processing Systems (NIPS ’05) ident: ref29 article-title: Diffusion Maps, Spectral Clustering and the Eigenfunctions of Fokker-Planck Operators – ident: ref21 doi: 10.1109/CVPR.2004.1315126 – ident: ref18 doi: 10.1145/882262.882309 – ident: ref27 doi: 10.1162/089976698300017467 – ident: ref35 doi: 10.3349/ymj.1997.38.2.79 |
SSID | ssj0014503 |
Score | 2.1231623 |
Snippet | We propose a general approach using Laplacian Eigenmaps and a graphical model of the human body to segment 3D voxel data of humans into different articulated... In the bottom-up stage, the voxels are transformed into a high-dimensional (6D or less) Laplacian Eigenspace (LE) of the voxel neighborhood graph. |
SourceID | proquest pubmed pascalfrancis crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1771 |
SubjectTerms | Algorithms Application software Applied sciences Articulated Artificial Intelligence Biological system modeling Cameras Computer science; control theory; systems Computer Simulation Exact sciences and technology Graph-theoretic methods Graphs Human Human body Humans Image Enhancement - methods Image Interpretation, Computer-Assisted - methods Image Processing and Computer Vision Image segmentation Imaging, Three-Dimensional - methods Joints Joints - anatomy & histology Laplace equations Limbs Models, Anatomic Motion estimation partitioning Pattern Recognition Pattern Recognition, Automated - methods Pattern recognition. Digital image processing. Computational geometry Region growing Reproducibility of Results Segmentation Sensitivity and Specificity Splines Streaming media Studies Surveillance Three dimensional Whole Body Imaging - methods |
Title | Model Driven Segmentation of Articulating Humans in Laplacian Eigenspace |
URI | https://ieeexplore.ieee.org/document/4384499 https://www.ncbi.nlm.nih.gov/pubmed/18703830 https://www.proquest.com/docview/862255114 https://www.proquest.com/docview/34433373 https://www.proquest.com/docview/69431328 https://www.proquest.com/docview/875066157 https://www.proquest.com/docview/903624543 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxEB61PcGBlpbH0lJ84FKJTZy1vY9j1YcCIqhSW6m31drrqRBlg5rkwq9nxvuAVgRxi7QTJ2vPeL9vxzMfwPussHlmHcYJ7YSxtsj7oK1jpWp00hg0jjO6sy_p9Fp_ujE3G_BhqIXx3ofDZ37EH0Muv567Fb8qG2uVa0Lom7BJxK2t1RoyBtoEFWRCMBThRCP6lKQsxlcXx7OPbbfCjBNL3CiU3JS4mXzwNAryKnw4slrQ_GArbLEeeYYn0Pk2zPr_3h48-TZaLe3I_XzU1vF_b24HnnVQVBy3vvMcNnyzC9u9zIPoon4Xnv7Rs3APpqyedidO73mbFJf-9ntXvdSIObaDBUWw5laEBMFCfG3E54rPfpEnijPu_km7mPMv4Pr87OpkGndyDLEjDr2MjSP0kdjUFujy3GOFqZMKiwp1jdKhQ4NZ5TCvpEEWMMskDWYVl-YWdSLVS9hq5o1_DcKhrAnokR9MlE6ttNaTSZ3USZp7M0kjGPfLUrquVzlLZtyVgbPIogxryhqaWRnWNIKj4Rs_2j4d_7Dd4-kf7LqZj-DwwcoP1xOuM6WBItjvXaHsIn1REiMkVkasMoJ3w1UKUc67VI2frxal0loplan1FmmhuYVmHoFYY0G0ksDhxGTrTQoGI9po-p1XrZ_-nonO3d_8_c734UnSt_mdHMDW8n7l3xLWWtrDEGS_AODiJCw |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcgAOFFoeodD6wAWJdL2xncexglZb2K2Q2Eq9RbHjqRAli7q7F349M84DiljELVImTmzP2DMZz_cBvM4Km2fWYZzQShhri7wO2jpWqkYnjUHjOKM7O08nF_rDpbncgrdDLYz3Phw-80d8GXL59cKt-VfZSKtck4d-B-7Svm-StlpryBloE3iQyYchG6dAok9KymI0_3Q8O2vxCjNOLTFUKCkqRWfy1n4UCFb4eGS1pBHCltpis-8Z9qDTHZj1X98ePfl6tF7ZI_fjD2DH_-3eI3jYOaPiuNWex7Dlm13Y6YkeRGf3u_DgN9TCPZgwf9q1eH_DC6X47K--dfVLjVhg21jgBGuuREgRLMWXRkwrPv1FuihOGP-T1jHnn8DF6cn83STuCBliR1H0KjaO_I_EprZAl-ceK0ydVFhUqGuUDh0azCqHeSUNMoVZJqkxq7g4t6gTqZ7CdrNo_HMQDmVNrh5pwljp1EprPYnUSZ2kuTfjNIJRPy2l69DKmTTjugxRiyzKMKfMopmVYU4jeDM88b1F6viH7B4P_yDXjXwEB7dmfrifcKUpNRTBfq8KZWfry5JiQorLKK6M4HC4S0bKmZeq8Yv1slRaK6UytVkiLTSDaOYRiA0SFFiSezg22WaRgt0RbTS951mrp79GolP3F3_v-SHcm8xn03J6dv5xH-4nPejv-CVsr27W_hV5Xit7EAzuJzsxJ3Y |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Model+Driven+Segmentation+of+Articulating+Humans+in+Laplacian+Eigenspace&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Sundaresan%2C+A&rft.au=Chellappa%2C+R&rft.date=2008-10-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0162-8828&rft.eissn=1939-3539&rft.volume=30&rft.issue=10&rft.spage=1771&rft_id=info:doi/10.1109%2FTPAMI.2007.70823&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=2322656301 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon |