Accurate Fall Detection in a Top View Privacy Preserving Configuration

Fall detection is one of the most investigated themes in the research on assistive solutions for aged people. In particular, a false-alarm-free discrimination between falls and non-falls is indispensable, especially to assist elderly people living alone. Current technological solutions designed to m...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 18; no. 6; p. 1754
Main Authors Ricciuti, Manola, Spinsante, Susanna, Gambi, Ennio
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 29.05.2018
MDPI
Subjects
Online AccessGet full text
ISSN1424-8220
1424-8220
DOI10.3390/s18061754

Cover

Loading…
Abstract Fall detection is one of the most investigated themes in the research on assistive solutions for aged people. In particular, a false-alarm-free discrimination between falls and non-falls is indispensable, especially to assist elderly people living alone. Current technological solutions designed to monitor several types of activities in indoor environments can guarantee absolute privacy to the people that decide to rely on them. Devices integrating RGB and depth cameras, such as the Microsoft Kinect, can ensure privacy and anonymity, since the depth information is considered to extract only meaningful information from video streams. In this paper, we propose an accurate fall detection method investigating the depth frames of the human body using a single device in a top-view configuration, with the subjects located under the device inside a room. Features extracted from depth frames train a classifier based on a binary support vector machine learning algorithm. The dataset includes 32 falls and 8 activities considered for comparison, for a total of 800 sequences performed by 20 adults. The system showed an accuracy of 98.6% and only one false positive.
AbstractList Fall detection is one of the most investigated themes in the research on assistive solutions for aged people. In particular, a false-alarm-free discrimination between falls and non-falls is indispensable, especially to assist elderly people living alone. Current technological solutions designed to monitor several types of activities in indoor environments can guarantee absolute privacy to the people that decide to rely on them. Devices integrating RGB and depth cameras, such as the Microsoft Kinect, can ensure privacy and anonymity, since the depth information is considered to extract only meaningful information from video streams. In this paper, we propose an accurate fall detection method investigating the depth frames of the human body using a single device in a top-view configuration, with the subjects located under the device inside a room. Features extracted from depth frames train a classifier based on a binary support vector machine learning algorithm. The dataset includes 32 falls and 8 activities considered for comparison, for a total of 800 sequences performed by 20 adults. The system showed an accuracy of 98.6% and only one false positive.
Fall detection is one of the most investigated themes in the research on assistive solutions for aged people. In particular, a false-alarm-free discrimination between falls and non-falls is indispensable, especially to assist elderly people living alone. Current technological solutions designed to monitor several types of activities in indoor environments can guarantee absolute privacy to the people that decide to rely on them. Devices integrating RGB and depth cameras, such as the Microsoft Kinect, can ensure privacy and anonymity, since the depth information is considered to extract only meaningful information from video streams. In this paper, we propose an accurate fall detection method investigating the depth frames of the human body using a single device in a top-view configuration, with the subjects located under the device inside a room. Features extracted from depth frames train a classifier based on a binary support vector machine learning algorithm. The dataset includes 32 falls and 8 activities considered for comparison, for a total of 800 sequences performed by 20 adults. The system showed an accuracy of 98.6% and only one false positive.Fall detection is one of the most investigated themes in the research on assistive solutions for aged people. In particular, a false-alarm-free discrimination between falls and non-falls is indispensable, especially to assist elderly people living alone. Current technological solutions designed to monitor several types of activities in indoor environments can guarantee absolute privacy to the people that decide to rely on them. Devices integrating RGB and depth cameras, such as the Microsoft Kinect, can ensure privacy and anonymity, since the depth information is considered to extract only meaningful information from video streams. In this paper, we propose an accurate fall detection method investigating the depth frames of the human body using a single device in a top-view configuration, with the subjects located under the device inside a room. Features extracted from depth frames train a classifier based on a binary support vector machine learning algorithm. The dataset includes 32 falls and 8 activities considered for comparison, for a total of 800 sequences performed by 20 adults. The system showed an accuracy of 98.6% and only one false positive.
Author Ricciuti, Manola
Gambi, Ennio
Spinsante, Susanna
AuthorAffiliation Dipartimento di Ingegneria dell’Informazione, Università Politecnica delle Marche via Brecce Bianche 12, 60131 Ancona, Italy; s.spinsante@univpm.it (S.S.); e.gambi@univpm.it (E.G.)
AuthorAffiliation_xml – name: Dipartimento di Ingegneria dell’Informazione, Università Politecnica delle Marche via Brecce Bianche 12, 60131 Ancona, Italy; s.spinsante@univpm.it (S.S.); e.gambi@univpm.it (E.G.)
Author_xml – sequence: 1
  givenname: Manola
  orcidid: 0000-0003-4870-0914
  surname: Ricciuti
  fullname: Ricciuti, Manola
– sequence: 2
  givenname: Susanna
  orcidid: 0000-0002-7323-4030
  surname: Spinsante
  fullname: Spinsante, Susanna
– sequence: 3
  givenname: Ennio
  orcidid: 0000-0001-6852-8483
  surname: Gambi
  fullname: Gambi, Ennio
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29844298$$D View this record in MEDLINE/PubMed
BookMark eNptkktvGyEQgFGUKq_2kD9QrdRLenDDaxe4VLLcuo0UqT2kvSIMg4O1Bhd2HeXfl8SplUS9MDy--TQwnKLDmCIgdE7wJ8YUvixE4o6Ilh-gE8Ipn0hK8eGz-TE6LWWFMWWMySN0TJXkvA4naD61dsxmgGZu-r75AgPYIaTYhNiY5iZtmt8B7pqfOWyNva8RCuRtiMtmlqIPy4fcir9Fb7zpC7x7imfo1_zrzez75PrHt6vZ9HpieaeGSSuNk0QKD0YJL4AISYnz2AnBOaYcS0n4wjApua8rwqjznDHBLUgjZMfO0NXO65JZ6U0Oa5PvdTJBP26kvNQmD8H2oFtFGba2W3i-qG6hsHAKXGcYF8y1uLo-71ybcbEGZyEO2fQvpC9PYrjVy7TVHaZECVYFF0-CnP6MUAa9DsVC35sIaSyaYi4oF1KRin54ha7SmGN9Kk0JloLIVqlKvX9e0b6Uf-2qwMcdYHMqJYPfIwTrh6-g91-hspevWBuGx2bVy4T-Pxl_Aa91siA
CitedBy_id crossref_primary_10_1109_TAI_2023_3323272
crossref_primary_10_1007_s00521_021_06495_5
crossref_primary_10_3390_s24175592
crossref_primary_10_1016_j_aap_2025_107986
crossref_primary_10_1016_j_ijhcs_2024_103345
crossref_primary_10_3390_s19040836
crossref_primary_10_1007_s11042_022_12366_5
crossref_primary_10_3390_s21030947
Cites_doi 10.1109/JBHI.2014.2312180
10.1016/j.cmpb.2014.09.005
10.1007/s11760-014-0645-4
10.1371/journal.pone.0180318
10.1109/TCYB.2015.2494877
10.3390/s17092096
10.1109/JSEN.2015.2416651
10.1109/HSI.2017.8005016
10.1016/S0140-6736(14)61462-8
10.1007/978-981-10-3737-5_13
10.3390/s140202756
10.1155/2016/3754918
10.1109/JBHI.2014.2319372
10.1109/JSEN.2018.2829815
10.1201/9781420026856
10.1109/MeMeA.2016.7533763
10.1109/IDAACS.2015.7341395
10.1109/ACCESS.2017.2711495
10.1007/978-3-540-88682-2_42
10.1109/CVPR.2015.7298628
10.3233/AIS-170423
10.1109/CISP.2015.7407906
10.1109/JSEN.2017.2778742
ContentType Journal Article
Copyright 2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2018 by the authors. 2018
Copyright_xml – notice: 2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2018 by the authors. 2018
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s18061754
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection (ProQuest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database

MEDLINE - Academic
CrossRef

PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_59230cc6bf4b4027907d9ed6a3473d50
PMC6021973
29844298
10_3390_s18061754
Genre Journal Article
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
ADRAZ
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IPNFZ
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RIG
RNS
RPM
TUS
UKHRP
XSB
~8M
NPM
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c469t-58ad8187fea97f7e17821df0d774402408814ba3884f240132df43374ce8a7863
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:17:23 EDT 2025
Thu Aug 21 14:38:10 EDT 2025
Fri Jul 11 11:42:03 EDT 2025
Fri Jul 25 20:45:09 EDT 2025
Thu Apr 03 07:04:14 EDT 2025
Thu Apr 24 23:02:52 EDT 2025
Tue Jul 01 01:36:55 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Kinect
ADLs
fall detection
elderly people
privacy
machine learning
depth frame
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c469t-58ad8187fea97f7e17821df0d774402408814ba3884f240132df43374ce8a7863
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4870-0914
0000-0002-7323-4030
0000-0001-6852-8483
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s18061754
PMID 29844298
PQID 2108718599
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_59230cc6bf4b4027907d9ed6a3473d50
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6021973
proquest_miscellaneous_2047247891
proquest_journals_2108718599
pubmed_primary_29844298
crossref_primary_10_3390_s18061754
crossref_citationtrail_10_3390_s18061754
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20180529
PublicationDateYYYYMMDD 2018-05-29
PublicationDate_xml – month: 5
  year: 2018
  text: 20180529
  day: 29
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2018
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Feng (ref_18) 2014; 8
ref_14
Landau (ref_27) 2016; 46
ref_11
ref_19
Shrivakshan (ref_12) 2012; 9
ref_16
ref_15
Bian (ref_25) 2015; 19
Gasparrini (ref_10) 2014; 14
Yang (ref_26) 2015; 15
Tan (ref_6) 2017; 5
Kepski (ref_17) 2014; Volume 2
ref_24
Kwolek (ref_20) 2014; 117
ref_23
ref_22
ref_21
Chatterji (ref_2) 2015; 385
ref_1
Rosales (ref_4) 2017; 9
ref_3
Stone (ref_13) 2015; 19
ref_9
ref_8
ref_5
ref_7
References_xml – volume: 19
  start-page: 290
  year: 2015
  ident: ref_13
  article-title: Fall detection in homes of older adults using the Microsoft Kinect
  publication-title: IEEE J. Biomed. Health Inf.
  doi: 10.1109/JBHI.2014.2312180
– volume: 117
  start-page: 489
  year: 2014
  ident: ref_20
  article-title: Human fall detection on embedded platform using depth maps and wireless accelerometer
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2014.09.005
– volume: 8
  start-page: 1129
  year: 2014
  ident: ref_18
  article-title: Fall detection for elderly person care in a vision-based home surveillance environment using a monocular camera
  publication-title: Signal Image Video Process.
  doi: 10.1007/s11760-014-0645-4
– ident: ref_21
  doi: 10.1371/journal.pone.0180318
– volume: 46
  start-page: 3018
  year: 2016
  ident: ref_27
  article-title: Simulating Kinect Infrared and Depth Images
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2015.2494877
– ident: ref_5
– ident: ref_3
  doi: 10.3390/s17092096
– volume: 15
  start-page: 4275
  year: 2015
  ident: ref_26
  article-title: Evaluating and Improving the Depth Accuracy of Kinect for Windows v2
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2015.2416651
– ident: ref_19
  doi: 10.1109/HSI.2017.8005016
– volume: 385
  start-page: 563
  year: 2015
  ident: ref_2
  article-title: Health, functioning, and disability in older adults—Present status and future implications
  publication-title: Lancet
  doi: 10.1016/S0140-6736(14)61462-8
– ident: ref_22
  doi: 10.1007/978-981-10-3737-5_13
– ident: ref_1
– volume: 14
  start-page: 2756
  year: 2014
  ident: ref_10
  article-title: A Depth-Based Fall Detection System Using a Kinect® Sensor
  publication-title: Sensors
  doi: 10.3390/s140202756
– ident: ref_15
  doi: 10.1155/2016/3754918
– volume: 19
  start-page: 430
  year: 2015
  ident: ref_25
  article-title: Fall detection based on body part tracking using a depth camera
  publication-title: IEEE J. Biomed. Health Inf.
  doi: 10.1109/JBHI.2014.2319372
– ident: ref_23
  doi: 10.1109/JSEN.2018.2829815
– ident: ref_7
  doi: 10.1201/9781420026856
– ident: ref_16
  doi: 10.1109/MeMeA.2016.7533763
– ident: ref_8
  doi: 10.1109/IDAACS.2015.7341395
– volume: 5
  start-page: 10734
  year: 2017
  ident: ref_6
  article-title: Front-Door Event Classification Algorithm for Elderly People Living Alone in Smart House Using Wireless Binary Sensors
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2711495
– ident: ref_11
  doi: 10.1007/978-3-540-88682-2_42
– volume: Volume 2
  start-page: 640
  year: 2014
  ident: ref_17
  article-title: Fall detection using ceiling-mounted 3D depth camera
  publication-title: Proceedings of the 2014 International Conference on Computer Vision Theory and Applications (VISAPP)
– ident: ref_9
  doi: 10.1109/CVPR.2015.7298628
– volume: 9
  start-page: 272
  year: 2012
  ident: ref_12
  article-title: A comparison of various edge detection techniques used in image processing
  publication-title: IJCSI Int. J. Comput. Sci. Issues
– volume: 9
  start-page: 193
  year: 2017
  ident: ref_4
  article-title: Heart rate monitoring using hydraulic bed sensor ballistocardiogram
  publication-title: J. Ambient Intell. Smart Environ.
  doi: 10.3233/AIS-170423
– ident: ref_14
  doi: 10.1109/CISP.2015.7407906
– ident: ref_24
  doi: 10.1109/JSEN.2017.2778742
SSID ssj0023338
Score 2.2828093
Snippet Fall detection is one of the most investigated themes in the research on assistive solutions for aged people. In particular, a false-alarm-free discrimination...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1754
SubjectTerms ADLs
depth frame
elderly people
fall detection
Kinect
machine learning
Privacy
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELUQEwyIb8KXDGJgiZrETmyP5aOqkEAMgNgix3ZKpCqtSgvi33OXpFGLkFhYkxsu9-K8e8r5mZCLOI8jqR33baiUz13AfRVo52dBhmbgAVM57ka-f0j6z_zuNX5dOOoLZ8Jqe-C6cJ0YOpDAmCTLeQZaR4CYs8rZRDMumK3VOnDeXEw1UouB8qp9hBiI-s57KJGqY77EPpVJ_2-d5c8ByQXG6W2SjaZVpN06xS2y4sptsr5gILhDel1jZmj2QHt6OKQ3blpNVpW0KKmmT6MxfSncJ32cFB_afFGct8BvQzmguNOvGMxq_HfJc-_26brvNycj-Abk7NSPpbbAtCJ3WolcuBB4PrR5YAX6_aFrmQx5ppmUPI9QQUU254wJbpzUQiZsj6yWo9IdEJoBXwvNZYK-PIlRysQmZDrJlBVA_sojl_OKpaaxDcfTK4YpyAcsbtoW1yPnbei49sr4LegKy94GoL11dQFATxvQ079A98jxHLS0WXPvKYhXUH8yVpDzWXsbVgv-AtGlG80gBs0xuZAq9Mh-jXGbSaQkB3aWHhFL6C-lunynLN4qR-4EOiUl2OF_PNsRWYOmTOKEQqSOyep0MnMn0PhMs9PqHf8Ghz7-Pw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB6V9gKHCsorpSCDOHCJmsR2bJ9QWwhVJRCHFvUWObazXWmVLPuo1H_PTJINXVRxjedgz4w93zjjbwA-ylpm2gYR-9SYWIRExCaxIa6SisjAE25qeo38_Ud-fiUuruX1cOG2HMoqN2did1D71tEd-TGmJojttTTm8_x3TF2j6O_q0ELjEeylGGnIw3XxbUy4OOZfPZsQx9T-eJlqCthSbMWgjqr_IXz5b5nkvbhTPIX9ATCyk97Cz2AnNAfw5B6N4HMoTpxbE-UDK-xsxr6EVVdf1bBpwyy7bOfsF66N_VxMb627Y1R1QSdEM2H03m86Wfde8AKuiq-XZ-fx0B8hdpjUrmKprcd4q-pgjapVSDHap75OvCLWP-Iu06moLNda1BnlUZmvBedKuKCt0jl_CbtN24TXwCqM2soKnRM7T-6McdKl3OaV8QohgIng00ZjpRvIw6mHxazEJIKUW47KjeDDKDrvGTMeEjoltY8CRHLdfWgXk3LYM6VE8Jk4l1e1qHA9CvN4b4LPLReKe5lEcLQxWjnsvGX5108ieD8O456hHyG2Ce0aZYgiUyht0ghe9TYeZ5IZLTBG6wjUlvW3pro90kxvOl7uHPGSUfzw_9N6A48RdGmqQMjMEeyuFuvwFoHNqnrXee8fkpf2dw
  priority: 102
  providerName: ProQuest
Title Accurate Fall Detection in a Top View Privacy Preserving Configuration
URI https://www.ncbi.nlm.nih.gov/pubmed/29844298
https://www.proquest.com/docview/2108718599
https://www.proquest.com/docview/2047247891
https://pubmed.ncbi.nlm.nih.gov/PMC6021973
https://doaj.org/article/59230cc6bf4b4027907d9ed6a3473d50
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB71cYED4k1KWRnEgUsgiZ3YPiDUQkOF1KpCXbS3yHGcJdIqW7a7hf57ZvJSg_bEJYdkIjkzY8988fgbgLdxGUfKOOEXoda-cIHwdWCcnwc5kYEHXJd0GvnsPDmdim-zeLYDfY_NToHXW6Ed9ZOarhbv__y6_YQT_iMhToTsH65DRYE4FruwjwFJUgeHMzFsJkQcYVhLKjQWJyJgrQSuyGoUlRry_m0Z57-Fk3ciUfoQHnQpJDtqbf4Idlz9GO7fIRZ8AumRtRsigWCpWSzYF7duKq5qVtXMsMvlFftRud_sYlXdGHvLqA6D1ox6zugEYDXftH7xFKbpyeXnU7_rmOBbhLlrP1amwAgsS2e0LKULMf6HRRkUkngAic1MhSI3XClRRoSsoqIUnEthnTJSJfwZ7NXL2r0AlmMcl0aohPh6Equ1jW3ITZLrQmJSoD1412sssx2dOHW1WGQIK0jP2aBnD94Molcth8Y2oWNS-yBAtNfNjeVqnnWzKIsxHQ2sTfJS5Pg9EpF9oV2RGC4kL-LAg8PeaFnvShmCWkSFKtY45tfDY5xFtDViarfcoAyRZgqpdOjB89bGw0h6H_FAjqw_Gur4SV39bJi6E8ygtOQH__3mS7iHGZqicoVIH8LeerVxrzALWucT2JUziVeVfp3A_vHJ-cX3SfNHYdJ4_1_6uAmb
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiDeBAgaBxCVqEjuxfUCoUFZb-hCHLdpb6jjOstIqWfYB6p_iNzKTV7uo4tZrbEXOPDzfxONvAN7GRRwp44Sfh1r7wgXC14FxfhZkRAYecF3QbeTjk2R4Kr6O4_EW_OnuwlBZZbcn1ht1Xln6R76LqQliexVr_XH-06euUXS62rXQaMzi0J3_xpRt-eFgH_X7LooGX0afh37bVcC3mAqu_FiZHKOULJzRspAuxBgZ5kWQS-LKI8YvFYrMcKVEEVH2EeWF4FwK65SRKuH43htwEwNvQCWEcnyR4HHM9xr2Is51sLsMFQGEWGzEvLo1wFV49t-yzEtxbnAP7rYAle01FnUftlz5AO5coi18CIM9a9dEMcEGZjZj-25V13OVbFoyw0bVnH1HWbJvi-kvY88ZVXnQjlROGN0vnE7WjdU9gtNrkdxj2C6r0j0FliFKkEaohNiAEqu1jW3ITZLpXCLk0B687ySW2pasnHpmzFJMWki4aS9cD970U-cNQ8dVkz6R2PsJRKpdP6gWk7T10TRGsBtYm2SFyPB7pA5krl2eGC4kz-PAg51OaWnr6cv0wi49eN0Po4_SwYspXbXGOUTJKaTSoQdPGh33K4m0EogJlAdyQ_sbS90cKac_ah7wBPGZlvzZ_5f1Cm4NR8dH6dHByeFzuI2AT1H1Q6R3YHu1WLsXCKpW2cvakhmcXbfr_AUhfzEj
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiE4IN4EChgEEpdok9iJ7QNChSVqKVQ9tGhvwXGc7Uqr7HYfoP41fh0zebWLKm69xlbkzMPzTTz-BuBtXMaRMk74Rai1L1wgfB0Y5-dBTmTgAdcl3Ub-fpjsnYivo3i0BX-6uzBUVtntifVGXcws_SMfYGqC2F7FWg_KtiziaJh-nJ_51EGKTlq7dhqNiRy489-Yvi0_7A9R1--iKP1y_HnPbzsM-BbTwpUfK1NgxJKlM1qW0oUYL8OiDApJvHnE_qVCkRuulCgjykSiohScS2GdMlIlHN97A25KjmETfUmOLpI9jrlfw2TEuQ4Gy1ARWIjFRvyr2wRchW3_LdG8FPPSe3C3Batst7Gu-7Dlqgdw5xKF4UNId61dE90ES810yoZuVdd2VWxSMcOOZ3P2A-XKjhaTX8aeM6r4oN2pGjO6azgZrxsLfAQn1yK5x7BdzSr3FFiOiEEaoRJiBkqs1ja2ITdJrguJ8EN78L6TWGZb4nLqnzHNMIEh4Wa9cD1400-dN2wdV036RGLvJxDBdv1gthhnrb9mMQLfwNokL0WO3yN1IAvtisRwIXkRBx7sdErLWq9fZhc26sHrfhj9lQ5hTOVma5xD9JxCKh168KTRcb-SSCuB-EB5IDe0v7HUzZFqclpzgieI1bTkz_6_rFdwC50m-7Z_ePAcbiP2U1QIEekd2F4t1u4F4qtV_rI2ZAY_r9tz_gJg1TVZ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accurate+Fall+Detection+in+a+Top+View+Privacy+Preserving+Configuration&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Ricciuti%2C+Manola&rft.au=Spinsante%2C+Susanna&rft.au=Gambi%2C+Ennio&rft.date=2018-05-29&rft.pub=MDPI&rft.eissn=1424-8220&rft.volume=18&rft.issue=6&rft_id=info:doi/10.3390%2Fs18061754&rft_id=info%3Apmid%2F29844298&rft.externalDocID=PMC6021973
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon