Accurate Fall Detection in a Top View Privacy Preserving Configuration
Fall detection is one of the most investigated themes in the research on assistive solutions for aged people. In particular, a false-alarm-free discrimination between falls and non-falls is indispensable, especially to assist elderly people living alone. Current technological solutions designed to m...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 18; no. 6; p. 1754 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
29.05.2018
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 1424-8220 1424-8220 |
DOI | 10.3390/s18061754 |
Cover
Loading…
Abstract | Fall detection is one of the most investigated themes in the research on assistive solutions for aged people. In particular, a false-alarm-free discrimination between falls and non-falls is indispensable, especially to assist elderly people living alone. Current technological solutions designed to monitor several types of activities in indoor environments can guarantee absolute privacy to the people that decide to rely on them. Devices integrating RGB and depth cameras, such as the Microsoft Kinect, can ensure privacy and anonymity, since the depth information is considered to extract only meaningful information from video streams. In this paper, we propose an accurate fall detection method investigating the depth frames of the human body using a single device in a top-view configuration, with the subjects located under the device inside a room. Features extracted from depth frames train a classifier based on a binary support vector machine learning algorithm. The dataset includes 32 falls and 8 activities considered for comparison, for a total of 800 sequences performed by 20 adults. The system showed an accuracy of 98.6% and only one false positive. |
---|---|
AbstractList | Fall detection is one of the most investigated themes in the research on assistive solutions for aged people. In particular, a false-alarm-free discrimination between falls and non-falls is indispensable, especially to assist elderly people living alone. Current technological solutions designed to monitor several types of activities in indoor environments can guarantee absolute privacy to the people that decide to rely on them. Devices integrating RGB and depth cameras, such as the Microsoft Kinect, can ensure privacy and anonymity, since the depth information is considered to extract only meaningful information from video streams. In this paper, we propose an accurate fall detection method investigating the depth frames of the human body using a single device in a top-view configuration, with the subjects located under the device inside a room. Features extracted from depth frames train a classifier based on a binary support vector machine learning algorithm. The dataset includes 32 falls and 8 activities considered for comparison, for a total of 800 sequences performed by 20 adults. The system showed an accuracy of 98.6% and only one false positive. Fall detection is one of the most investigated themes in the research on assistive solutions for aged people. In particular, a false-alarm-free discrimination between falls and non-falls is indispensable, especially to assist elderly people living alone. Current technological solutions designed to monitor several types of activities in indoor environments can guarantee absolute privacy to the people that decide to rely on them. Devices integrating RGB and depth cameras, such as the Microsoft Kinect, can ensure privacy and anonymity, since the depth information is considered to extract only meaningful information from video streams. In this paper, we propose an accurate fall detection method investigating the depth frames of the human body using a single device in a top-view configuration, with the subjects located under the device inside a room. Features extracted from depth frames train a classifier based on a binary support vector machine learning algorithm. The dataset includes 32 falls and 8 activities considered for comparison, for a total of 800 sequences performed by 20 adults. The system showed an accuracy of 98.6% and only one false positive.Fall detection is one of the most investigated themes in the research on assistive solutions for aged people. In particular, a false-alarm-free discrimination between falls and non-falls is indispensable, especially to assist elderly people living alone. Current technological solutions designed to monitor several types of activities in indoor environments can guarantee absolute privacy to the people that decide to rely on them. Devices integrating RGB and depth cameras, such as the Microsoft Kinect, can ensure privacy and anonymity, since the depth information is considered to extract only meaningful information from video streams. In this paper, we propose an accurate fall detection method investigating the depth frames of the human body using a single device in a top-view configuration, with the subjects located under the device inside a room. Features extracted from depth frames train a classifier based on a binary support vector machine learning algorithm. The dataset includes 32 falls and 8 activities considered for comparison, for a total of 800 sequences performed by 20 adults. The system showed an accuracy of 98.6% and only one false positive. |
Author | Ricciuti, Manola Gambi, Ennio Spinsante, Susanna |
AuthorAffiliation | Dipartimento di Ingegneria dell’Informazione, Università Politecnica delle Marche via Brecce Bianche 12, 60131 Ancona, Italy; s.spinsante@univpm.it (S.S.); e.gambi@univpm.it (E.G.) |
AuthorAffiliation_xml | – name: Dipartimento di Ingegneria dell’Informazione, Università Politecnica delle Marche via Brecce Bianche 12, 60131 Ancona, Italy; s.spinsante@univpm.it (S.S.); e.gambi@univpm.it (E.G.) |
Author_xml | – sequence: 1 givenname: Manola orcidid: 0000-0003-4870-0914 surname: Ricciuti fullname: Ricciuti, Manola – sequence: 2 givenname: Susanna orcidid: 0000-0002-7323-4030 surname: Spinsante fullname: Spinsante, Susanna – sequence: 3 givenname: Ennio orcidid: 0000-0001-6852-8483 surname: Gambi fullname: Gambi, Ennio |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29844298$$D View this record in MEDLINE/PubMed |
BookMark | eNptkktvGyEQgFGUKq_2kD9QrdRLenDDaxe4VLLcuo0UqT2kvSIMg4O1Bhd2HeXfl8SplUS9MDy--TQwnKLDmCIgdE7wJ8YUvixE4o6Ilh-gE8Ipn0hK8eGz-TE6LWWFMWWMySN0TJXkvA4naD61dsxmgGZu-r75AgPYIaTYhNiY5iZtmt8B7pqfOWyNva8RCuRtiMtmlqIPy4fcir9Fb7zpC7x7imfo1_zrzez75PrHt6vZ9HpieaeGSSuNk0QKD0YJL4AISYnz2AnBOaYcS0n4wjApua8rwqjznDHBLUgjZMfO0NXO65JZ6U0Oa5PvdTJBP26kvNQmD8H2oFtFGba2W3i-qG6hsHAKXGcYF8y1uLo-71ybcbEGZyEO2fQvpC9PYrjVy7TVHaZECVYFF0-CnP6MUAa9DsVC35sIaSyaYi4oF1KRin54ha7SmGN9Kk0JloLIVqlKvX9e0b6Uf-2qwMcdYHMqJYPfIwTrh6-g91-hspevWBuGx2bVy4T-Pxl_Aa91siA |
CitedBy_id | crossref_primary_10_1109_TAI_2023_3323272 crossref_primary_10_1007_s00521_021_06495_5 crossref_primary_10_3390_s24175592 crossref_primary_10_1016_j_aap_2025_107986 crossref_primary_10_1016_j_ijhcs_2024_103345 crossref_primary_10_3390_s19040836 crossref_primary_10_1007_s11042_022_12366_5 crossref_primary_10_3390_s21030947 |
Cites_doi | 10.1109/JBHI.2014.2312180 10.1016/j.cmpb.2014.09.005 10.1007/s11760-014-0645-4 10.1371/journal.pone.0180318 10.1109/TCYB.2015.2494877 10.3390/s17092096 10.1109/JSEN.2015.2416651 10.1109/HSI.2017.8005016 10.1016/S0140-6736(14)61462-8 10.1007/978-981-10-3737-5_13 10.3390/s140202756 10.1155/2016/3754918 10.1109/JBHI.2014.2319372 10.1109/JSEN.2018.2829815 10.1201/9781420026856 10.1109/MeMeA.2016.7533763 10.1109/IDAACS.2015.7341395 10.1109/ACCESS.2017.2711495 10.1007/978-3-540-88682-2_42 10.1109/CVPR.2015.7298628 10.3233/AIS-170423 10.1109/CISP.2015.7407906 10.1109/JSEN.2017.2778742 |
ContentType | Journal Article |
Copyright | 2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2018 by the authors. 2018 |
Copyright_xml | – notice: 2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2018 by the authors. 2018 |
DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/s18061754 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection (ProQuest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic CrossRef PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_59230cc6bf4b4027907d9ed6a3473d50 PMC6021973 29844298 10_3390_s18061754 |
Genre | Journal Article |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS ADRAZ AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IPNFZ KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RIG RNS RPM TUS UKHRP XSB ~8M NPM 3V. 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c469t-58ad8187fea97f7e17821df0d774402408814ba3884f240132df43374ce8a7863 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:17:23 EDT 2025 Thu Aug 21 14:38:10 EDT 2025 Fri Jul 11 11:42:03 EDT 2025 Fri Jul 25 20:45:09 EDT 2025 Thu Apr 03 07:04:14 EDT 2025 Thu Apr 24 23:02:52 EDT 2025 Tue Jul 01 01:36:55 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Kinect ADLs fall detection elderly people privacy machine learning depth frame |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c469t-58ad8187fea97f7e17821df0d774402408814ba3884f240132df43374ce8a7863 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-4870-0914 0000-0002-7323-4030 0000-0001-6852-8483 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s18061754 |
PMID | 29844298 |
PQID | 2108718599 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_59230cc6bf4b4027907d9ed6a3473d50 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6021973 proquest_miscellaneous_2047247891 proquest_journals_2108718599 pubmed_primary_29844298 crossref_primary_10_3390_s18061754 crossref_citationtrail_10_3390_s18061754 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20180529 |
PublicationDateYYYYMMDD | 2018-05-29 |
PublicationDate_xml | – month: 5 year: 2018 text: 20180529 day: 29 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2018 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Feng (ref_18) 2014; 8 ref_14 Landau (ref_27) 2016; 46 ref_11 ref_19 Shrivakshan (ref_12) 2012; 9 ref_16 ref_15 Bian (ref_25) 2015; 19 Gasparrini (ref_10) 2014; 14 Yang (ref_26) 2015; 15 Tan (ref_6) 2017; 5 Kepski (ref_17) 2014; Volume 2 ref_24 Kwolek (ref_20) 2014; 117 ref_23 ref_22 ref_21 Chatterji (ref_2) 2015; 385 ref_1 Rosales (ref_4) 2017; 9 ref_3 Stone (ref_13) 2015; 19 ref_9 ref_8 ref_5 ref_7 |
References_xml | – volume: 19 start-page: 290 year: 2015 ident: ref_13 article-title: Fall detection in homes of older adults using the Microsoft Kinect publication-title: IEEE J. Biomed. Health Inf. doi: 10.1109/JBHI.2014.2312180 – volume: 117 start-page: 489 year: 2014 ident: ref_20 article-title: Human fall detection on embedded platform using depth maps and wireless accelerometer publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2014.09.005 – volume: 8 start-page: 1129 year: 2014 ident: ref_18 article-title: Fall detection for elderly person care in a vision-based home surveillance environment using a monocular camera publication-title: Signal Image Video Process. doi: 10.1007/s11760-014-0645-4 – ident: ref_21 doi: 10.1371/journal.pone.0180318 – volume: 46 start-page: 3018 year: 2016 ident: ref_27 article-title: Simulating Kinect Infrared and Depth Images publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2015.2494877 – ident: ref_5 – ident: ref_3 doi: 10.3390/s17092096 – volume: 15 start-page: 4275 year: 2015 ident: ref_26 article-title: Evaluating and Improving the Depth Accuracy of Kinect for Windows v2 publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2015.2416651 – ident: ref_19 doi: 10.1109/HSI.2017.8005016 – volume: 385 start-page: 563 year: 2015 ident: ref_2 article-title: Health, functioning, and disability in older adults—Present status and future implications publication-title: Lancet doi: 10.1016/S0140-6736(14)61462-8 – ident: ref_22 doi: 10.1007/978-981-10-3737-5_13 – ident: ref_1 – volume: 14 start-page: 2756 year: 2014 ident: ref_10 article-title: A Depth-Based Fall Detection System Using a Kinect® Sensor publication-title: Sensors doi: 10.3390/s140202756 – ident: ref_15 doi: 10.1155/2016/3754918 – volume: 19 start-page: 430 year: 2015 ident: ref_25 article-title: Fall detection based on body part tracking using a depth camera publication-title: IEEE J. Biomed. Health Inf. doi: 10.1109/JBHI.2014.2319372 – ident: ref_23 doi: 10.1109/JSEN.2018.2829815 – ident: ref_7 doi: 10.1201/9781420026856 – ident: ref_16 doi: 10.1109/MeMeA.2016.7533763 – ident: ref_8 doi: 10.1109/IDAACS.2015.7341395 – volume: 5 start-page: 10734 year: 2017 ident: ref_6 article-title: Front-Door Event Classification Algorithm for Elderly People Living Alone in Smart House Using Wireless Binary Sensors publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2711495 – ident: ref_11 doi: 10.1007/978-3-540-88682-2_42 – volume: Volume 2 start-page: 640 year: 2014 ident: ref_17 article-title: Fall detection using ceiling-mounted 3D depth camera publication-title: Proceedings of the 2014 International Conference on Computer Vision Theory and Applications (VISAPP) – ident: ref_9 doi: 10.1109/CVPR.2015.7298628 – volume: 9 start-page: 272 year: 2012 ident: ref_12 article-title: A comparison of various edge detection techniques used in image processing publication-title: IJCSI Int. J. Comput. Sci. Issues – volume: 9 start-page: 193 year: 2017 ident: ref_4 article-title: Heart rate monitoring using hydraulic bed sensor ballistocardiogram publication-title: J. Ambient Intell. Smart Environ. doi: 10.3233/AIS-170423 – ident: ref_14 doi: 10.1109/CISP.2015.7407906 – ident: ref_24 doi: 10.1109/JSEN.2017.2778742 |
SSID | ssj0023338 |
Score | 2.2828093 |
Snippet | Fall detection is one of the most investigated themes in the research on assistive solutions for aged people. In particular, a false-alarm-free discrimination... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1754 |
SubjectTerms | ADLs depth frame elderly people fall detection Kinect machine learning Privacy |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELUQEwyIb8KXDGJgiZrETmyP5aOqkEAMgNgix3ZKpCqtSgvi33OXpFGLkFhYkxsu9-K8e8r5mZCLOI8jqR33baiUz13AfRVo52dBhmbgAVM57ka-f0j6z_zuNX5dOOoLZ8Jqe-C6cJ0YOpDAmCTLeQZaR4CYs8rZRDMumK3VOnDeXEw1UouB8qp9hBiI-s57KJGqY77EPpVJ_2-d5c8ByQXG6W2SjaZVpN06xS2y4sptsr5gILhDel1jZmj2QHt6OKQ3blpNVpW0KKmmT6MxfSncJ32cFB_afFGct8BvQzmguNOvGMxq_HfJc-_26brvNycj-Abk7NSPpbbAtCJ3WolcuBB4PrR5YAX6_aFrmQx5ppmUPI9QQUU254wJbpzUQiZsj6yWo9IdEJoBXwvNZYK-PIlRysQmZDrJlBVA_sojl_OKpaaxDcfTK4YpyAcsbtoW1yPnbei49sr4LegKy94GoL11dQFATxvQ079A98jxHLS0WXPvKYhXUH8yVpDzWXsbVgv-AtGlG80gBs0xuZAq9Mh-jXGbSaQkB3aWHhFL6C-lunynLN4qR-4EOiUl2OF_PNsRWYOmTOKEQqSOyep0MnMn0PhMs9PqHf8Ghz7-Pw priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB6V9gKHCsorpSCDOHCJmsR2bJ9QWwhVJRCHFvUWObazXWmVLPuo1H_PTJINXVRxjedgz4w93zjjbwA-ylpm2gYR-9SYWIRExCaxIa6SisjAE25qeo38_Ud-fiUuruX1cOG2HMoqN2did1D71tEd-TGmJojttTTm8_x3TF2j6O_q0ELjEeylGGnIw3XxbUy4OOZfPZsQx9T-eJlqCthSbMWgjqr_IXz5b5nkvbhTPIX9ATCyk97Cz2AnNAfw5B6N4HMoTpxbE-UDK-xsxr6EVVdf1bBpwyy7bOfsF66N_VxMb627Y1R1QSdEM2H03m86Wfde8AKuiq-XZ-fx0B8hdpjUrmKprcd4q-pgjapVSDHap75OvCLWP-Iu06moLNda1BnlUZmvBedKuKCt0jl_CbtN24TXwCqM2soKnRM7T-6McdKl3OaV8QohgIng00ZjpRvIw6mHxazEJIKUW47KjeDDKDrvGTMeEjoltY8CRHLdfWgXk3LYM6VE8Jk4l1e1qHA9CvN4b4LPLReKe5lEcLQxWjnsvGX5108ieD8O456hHyG2Ce0aZYgiUyht0ghe9TYeZ5IZLTBG6wjUlvW3pro90kxvOl7uHPGSUfzw_9N6A48RdGmqQMjMEeyuFuvwFoHNqnrXee8fkpf2dw priority: 102 providerName: ProQuest |
Title | Accurate Fall Detection in a Top View Privacy Preserving Configuration |
URI | https://www.ncbi.nlm.nih.gov/pubmed/29844298 https://www.proquest.com/docview/2108718599 https://www.proquest.com/docview/2047247891 https://pubmed.ncbi.nlm.nih.gov/PMC6021973 https://doaj.org/article/59230cc6bf4b4027907d9ed6a3473d50 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB71cYED4k1KWRnEgUsgiZ3YPiDUQkOF1KpCXbS3yHGcJdIqW7a7hf57ZvJSg_bEJYdkIjkzY8988fgbgLdxGUfKOOEXoda-cIHwdWCcnwc5kYEHXJd0GvnsPDmdim-zeLYDfY_NToHXW6Ed9ZOarhbv__y6_YQT_iMhToTsH65DRYE4FruwjwFJUgeHMzFsJkQcYVhLKjQWJyJgrQSuyGoUlRry_m0Z57-Fk3ciUfoQHnQpJDtqbf4Idlz9GO7fIRZ8AumRtRsigWCpWSzYF7duKq5qVtXMsMvlFftRud_sYlXdGHvLqA6D1ox6zugEYDXftH7xFKbpyeXnU7_rmOBbhLlrP1amwAgsS2e0LKULMf6HRRkUkngAic1MhSI3XClRRoSsoqIUnEthnTJSJfwZ7NXL2r0AlmMcl0aohPh6Equ1jW3ITZLrQmJSoD1412sssx2dOHW1WGQIK0jP2aBnD94Molcth8Y2oWNS-yBAtNfNjeVqnnWzKIsxHQ2sTfJS5Pg9EpF9oV2RGC4kL-LAg8PeaFnvShmCWkSFKtY45tfDY5xFtDViarfcoAyRZgqpdOjB89bGw0h6H_FAjqw_Gur4SV39bJi6E8ygtOQH__3mS7iHGZqicoVIH8LeerVxrzALWucT2JUziVeVfp3A_vHJ-cX3SfNHYdJ4_1_6uAmb |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiDeBAgaBxCVqEjuxfUCoUFZb-hCHLdpb6jjOstIqWfYB6p_iNzKTV7uo4tZrbEXOPDzfxONvAN7GRRwp44Sfh1r7wgXC14FxfhZkRAYecF3QbeTjk2R4Kr6O4_EW_OnuwlBZZbcn1ht1Xln6R76LqQliexVr_XH-06euUXS62rXQaMzi0J3_xpRt-eFgH_X7LooGX0afh37bVcC3mAqu_FiZHKOULJzRspAuxBgZ5kWQS-LKI8YvFYrMcKVEEVH2EeWF4FwK65SRKuH43htwEwNvQCWEcnyR4HHM9xr2Is51sLsMFQGEWGzEvLo1wFV49t-yzEtxbnAP7rYAle01FnUftlz5AO5coi18CIM9a9dEMcEGZjZj-25V13OVbFoyw0bVnH1HWbJvi-kvY88ZVXnQjlROGN0vnE7WjdU9gtNrkdxj2C6r0j0FliFKkEaohNiAEqu1jW3ITZLpXCLk0B687ySW2pasnHpmzFJMWki4aS9cD970U-cNQ8dVkz6R2PsJRKpdP6gWk7T10TRGsBtYm2SFyPB7pA5krl2eGC4kz-PAg51OaWnr6cv0wi49eN0Po4_SwYspXbXGOUTJKaTSoQdPGh33K4m0EogJlAdyQ_sbS90cKac_ah7wBPGZlvzZ_5f1Cm4NR8dH6dHByeFzuI2AT1H1Q6R3YHu1WLsXCKpW2cvakhmcXbfr_AUhfzEj |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiE4IN4EChgEEpdok9iJ7QNChSVqKVQ9tGhvwXGc7Uqr7HYfoP41fh0zebWLKm69xlbkzMPzTTz-BuBtXMaRMk74Rai1L1wgfB0Y5-dBTmTgAdcl3Ub-fpjsnYivo3i0BX-6uzBUVtntifVGXcws_SMfYGqC2F7FWg_KtiziaJh-nJ_51EGKTlq7dhqNiRy489-Yvi0_7A9R1--iKP1y_HnPbzsM-BbTwpUfK1NgxJKlM1qW0oUYL8OiDApJvHnE_qVCkRuulCgjykSiohScS2GdMlIlHN97A25KjmETfUmOLpI9jrlfw2TEuQ4Gy1ARWIjFRvyr2wRchW3_LdG8FPPSe3C3Batst7Gu-7Dlqgdw5xKF4UNId61dE90ES810yoZuVdd2VWxSMcOOZ3P2A-XKjhaTX8aeM6r4oN2pGjO6azgZrxsLfAQn1yK5x7BdzSr3FFiOiEEaoRJiBkqs1ja2ITdJrguJ8EN78L6TWGZb4nLqnzHNMIEh4Wa9cD1400-dN2wdV036RGLvJxDBdv1gthhnrb9mMQLfwNokL0WO3yN1IAvtisRwIXkRBx7sdErLWq9fZhc26sHrfhj9lQ5hTOVma5xD9JxCKh168KTRcb-SSCuB-EB5IDe0v7HUzZFqclpzgieI1bTkz_6_rFdwC50m-7Z_ePAcbiP2U1QIEekd2F4t1u4F4qtV_rI2ZAY_r9tz_gJg1TVZ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accurate+Fall+Detection+in+a+Top+View+Privacy+Preserving+Configuration&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Ricciuti%2C+Manola&rft.au=Spinsante%2C+Susanna&rft.au=Gambi%2C+Ennio&rft.date=2018-05-29&rft.pub=MDPI&rft.eissn=1424-8220&rft.volume=18&rft.issue=6&rft_id=info:doi/10.3390%2Fs18061754&rft_id=info%3Apmid%2F29844298&rft.externalDocID=PMC6021973 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |