CT-based machine learning model to predict the Fuhrman nuclear grade of clear cell renal cell carcinoma

Purpose To predict the Fuhrman grade of clear cell renal cell carcinoma (ccRCC) with a machine learning classifier based on single- or three-phase computed tomography (CT) images. Materials and methods Patients with pathologically proven ccRCC from February 1, 2009 to September 31, 2018 who were not...

Full description

Saved in:
Bibliographic Details
Published inAbdominal imaging Vol. 44; no. 7; pp. 2528 - 2534
Main Authors Lin, Fan, Cui, En-Ming, Lei, Yi, Luo, Liang-ping
Format Journal Article
LanguageEnglish
Published New York Springer US 01.07.2019
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Purpose To predict the Fuhrman grade of clear cell renal cell carcinoma (ccRCC) with a machine learning classifier based on single- or three-phase computed tomography (CT) images. Materials and methods Patients with pathologically proven ccRCC from February 1, 2009 to September 31, 2018 who were not treated were retrospectively collected for machine learning-based analysis. The texture features were extracted and ranked from precontrast phase (PCP), corticomedullary phase (CMP), nephrographic phase (NP) and three-phase CT images, and open-source gradient boosting from the decision tree library of CatBoost was used to establish a machine learning classifier to differentiate low- from high-grade ccRCC. The performances of machine learning classifiers based on features from single- and three-phase CT images were compared with each other. Results A total of 231 patients with 232 pathologically proven ccRCC lesions were retrospectively collected. 35, 36, 41, and 22 Features were extracted and ranked from PCP, CMP, NP, and three-phase CT images, respectively. The machine learning model based on three-phase CT images [area under the ROC curve (AUC) = 0.87] achieved the best diagnostic performance for differentiating low- from high-grade ccRCC, followed by single-phase NP (AUC = 0.84), CMP (AUC = 0.80), and PCP images (AUC = 0.82). Conclusion Machine learning classifiers can be promising noninvasive techniques to differentiate low- and high-Fuhrman nuclear grade ccRCC, and classifiers based on three-phase CT images are superior to those based on features from each single phase.
AbstractList To predict the Fuhrman grade of clear cell renal cell carcinoma (ccRCC) with a machine learning classifier based on single- or three-phase computed tomography (CT) images. Patients with pathologically proven ccRCC from February 1, 2009 to September 31, 2018 who were not treated were retrospectively collected for machine learning-based analysis. The texture features were extracted and ranked from precontrast phase (PCP), corticomedullary phase (CMP), nephrographic phase (NP) and three-phase CT images, and open-source gradient boosting from the decision tree library of CatBoost was used to establish a machine learning classifier to differentiate low- from high-grade ccRCC. The performances of machine learning classifiers based on features from single- and three-phase CT images were compared with each other. A total of 231 patients with 232 pathologically proven ccRCC lesions were retrospectively collected. 35, 36, 41, and 22 Features were extracted and ranked from PCP, CMP, NP, and three-phase CT images, respectively. The machine learning model based on three-phase CT images [area under the ROC curve (AUC) = 0.87] achieved the best diagnostic performance for differentiating low- from high-grade ccRCC, followed by single-phase NP (AUC = 0.84), CMP (AUC = 0.80), and PCP images (AUC = 0.82). Machine learning classifiers can be promising noninvasive techniques to differentiate low- and high-Fuhrman nuclear grade ccRCC, and classifiers based on three-phase CT images are superior to those based on features from each single phase.
PurposeTo predict the Fuhrman grade of clear cell renal cell carcinoma (ccRCC) with a machine learning classifier based on single- or three-phase computed tomography (CT) images.Materials and methodsPatients with pathologically proven ccRCC from February 1, 2009 to September 31, 2018 who were not treated were retrospectively collected for machine learning-based analysis. The texture features were extracted and ranked from precontrast phase (PCP), corticomedullary phase (CMP), nephrographic phase (NP) and three-phase CT images, and open-source gradient boosting from the decision tree library of CatBoost was used to establish a machine learning classifier to differentiate low- from high-grade ccRCC. The performances of machine learning classifiers based on features from single- and three-phase CT images were compared with each other.ResultsA total of 231 patients with 232 pathologically proven ccRCC lesions were retrospectively collected. 35, 36, 41, and 22 Features were extracted and ranked from PCP, CMP, NP, and three-phase CT images, respectively. The machine learning model based on three-phase CT images [area under the ROC curve (AUC) = 0.87] achieved the best diagnostic performance for differentiating low- from high-grade ccRCC, followed by single-phase NP (AUC = 0.84), CMP (AUC = 0.80), and PCP images (AUC = 0.82).ConclusionMachine learning classifiers can be promising noninvasive techniques to differentiate low- and high-Fuhrman nuclear grade ccRCC, and classifiers based on three-phase CT images are superior to those based on features from each single phase.
Purpose: To predict the Fuhrman grade of clear cell renal cell carcinoma (ccRCC) with a machine learning classifier based on single- or three-phase computed tomography (CT) images. Materials and methods: Patients with pathologically proven ccRCC from February 1, 2009 to September 31, 2018 who were not treated were retrospectively collected for machine learning-based analysis. The texture features were extracted and ranked from precontrast phase (PCP), corticomedullary phase (CMP), nephrographic phase (NP) and three-phase CT images, and open-source gradient boosting from the decision tree library of CatBoost was used to establish a machine learning classifier to differentiate low- from high-grade ccRCC. The performances of machine learning classifiers based on features from single- and three-phase CT images were compared with each other. Results: A total of 231 patients with 232 pathologically proven ccRCC lesions were retrospectively collected. 35, 36, 41, and 22 Features were extracted and ranked from PCP, CMP, NP, and three-phase CT images, respectively. The machine learning model based on three-phase CT images [area under the ROC curve (AUC) = 0.87] achieved the best diagnostic performance for differentiating low- from high-grade ccRCC, followed by single-phase NP (AUC = 0.84), CMP (AUC = 0.80), and PCP images (AUC = 0.82). Conclusion: Machine learning classifiers can be promising noninvasive techniques to differentiate low- and high-Fuhrman nuclear grade ccRCC, and classifiers based on three-phase CT images are superior to those based on features from each single phase.
Purpose To predict the Fuhrman grade of clear cell renal cell carcinoma (ccRCC) with a machine learning classifier based on single- or three-phase computed tomography (CT) images. Materials and methods Patients with pathologically proven ccRCC from February 1, 2009 to September 31, 2018 who were not treated were retrospectively collected for machine learning-based analysis. The texture features were extracted and ranked from precontrast phase (PCP), corticomedullary phase (CMP), nephrographic phase (NP) and three-phase CT images, and open-source gradient boosting from the decision tree library of CatBoost was used to establish a machine learning classifier to differentiate low- from high-grade ccRCC. The performances of machine learning classifiers based on features from single- and three-phase CT images were compared with each other. Results A total of 231 patients with 232 pathologically proven ccRCC lesions were retrospectively collected. 35, 36, 41, and 22 Features were extracted and ranked from PCP, CMP, NP, and three-phase CT images, respectively. The machine learning model based on three-phase CT images [area under the ROC curve (AUC) = 0.87] achieved the best diagnostic performance for differentiating low- from high-grade ccRCC, followed by single-phase NP (AUC = 0.84), CMP (AUC = 0.80), and PCP images (AUC = 0.82). Conclusion Machine learning classifiers can be promising noninvasive techniques to differentiate low- and high-Fuhrman nuclear grade ccRCC, and classifiers based on three-phase CT images are superior to those based on features from each single phase.
Author Cui, En-Ming
Luo, Liang-ping
Lei, Yi
Lin, Fan
Author_xml – sequence: 1
  givenname: Fan
  surname: Lin
  fullname: Lin, Fan
  organization: Medical Imaging Center, The First Affiliated Hospital of Jinan University, Department of Radiology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People’s Hospital
– sequence: 2
  givenname: En-Ming
  surname: Cui
  fullname: Cui, En-Ming
  organization: Department of Radiology, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun YAT-SEN University
– sequence: 3
  givenname: Yi
  surname: Lei
  fullname: Lei, Yi
  organization: Department of Radiology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People’s Hospital
– sequence: 4
  givenname: Liang-ping
  surname: Luo
  fullname: Luo, Liang-ping
  email: tluolp@jnu.edu.cn
  organization: Medical Imaging Center, The First Affiliated Hospital of Jinan University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30919041$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/22922979$$D View this record in Osti.gov
BookMark eNp9kU1v3CAQhlGVqvlo_kAPEVIuvbgdsDHLsVpl20iRekml3tAYj3cd2bAB-9B_H3adbm6RQAyaZ94ZeC_ZmQ-eGPsi4JsA0N8TgKxFAcIctpGF_sAuZFnXBYBanZ3i6u85u07pCQBErYSQ6hM7L8EIA5W4YNv1Y9FgopaP6Ha9Jz4QRt_7LR9DSwOfAt9Hans38WlHfDPv4oie-9kdQL6N2BIPHV-ujoaBR_I4LKHD6HofRvzMPnY4JLp-Pa_Yn83d4_pX8fD75_36x0PhqtpMhdKNrLpSKikaalrqXB7VYC1BGaOUxlK7nKhWIHTXgdMoOhTodNtUpmqwvGK3i25IU2-T6ydyOxe8JzdZKU1e2mTq60LtY3ieKU127NNhYPQU5mRl_lGxUlJWb4In9CnMMT_wSK1KodSRkgvlYkgpUmf3sR8x_rMC7MEvu_hls1f26JfVuejmVXpuRmpPJf_dyUC5ACmn_JbiW-93ZF8Ac_egow
CitedBy_id crossref_primary_10_3390_app11093941
crossref_primary_10_3390_ijms24054615
crossref_primary_10_3389_fonc_2022_961779
crossref_primary_10_1007_s00330_021_08322_w
crossref_primary_10_1016_j_knosys_2022_109369
crossref_primary_10_1007_s00261_020_02832_9
crossref_primary_10_1007_s10278_020_00336_y
crossref_primary_10_1016_j_crad_2021_02_033
crossref_primary_10_1155_2022_3212738
crossref_primary_10_3390_diagnostics13172743
crossref_primary_10_19127_mbsjohs_889492
crossref_primary_10_3389_fonc_2021_591502
crossref_primary_10_1016_j_urolonc_2021_03_012
crossref_primary_10_1259_bjr_20200131
crossref_primary_10_1016_j_heliyon_2022_e10578
crossref_primary_10_1117_1_JMI_9_5_054501
crossref_primary_10_3390_jpm11010008
crossref_primary_10_3390_cancers15102835
crossref_primary_10_2214_AJR_19_22608
crossref_primary_10_1016_j_compmedimag_2021_101924
crossref_primary_10_1016_j_ucl_2023_01_006
crossref_primary_10_1007_s00345_019_03000_5
crossref_primary_10_1007_s00261_020_02637_w
crossref_primary_10_1016_j_crad_2023_07_003
crossref_primary_10_1016_j_ejrad_2020_109079
crossref_primary_10_1016_j_ajur_2022_05_003
crossref_primary_10_1097_MOU_0000000000000816
crossref_primary_10_1007_s00261_021_03083_y
crossref_primary_10_3390_cancers12061387
crossref_primary_10_1038_s41585_023_00848_6
crossref_primary_10_1097_MOU_0000000000000881
crossref_primary_10_2214_AJR_20_22847
crossref_primary_10_1155_2022_5478908
crossref_primary_10_1200_EDBK_350862
crossref_primary_10_22328_2079_5343_2023_14_4_7_18
crossref_primary_10_3390_cancers15123189
crossref_primary_10_23940_ijpe_20_02_p9_255264
crossref_primary_10_3389_fonc_2023_1167328
crossref_primary_10_1186_s40537_020_00369_8
crossref_primary_10_2147_CMAR_S290327
crossref_primary_10_1016_j_humpath_2022_11_004
crossref_primary_10_1007_s00345_021_03602_y
crossref_primary_10_1007_s11548_022_02587_2
crossref_primary_10_1136_bmjopen_2021_051470
Cites_doi 10.1097/00000478-200305000-00005
10.1097/00000478-198210000-00007
10.1007/s00261-016-0732-9
10.3171/2018.8.FOCUS18191
10.1214/07-AOAS148
10.1016/j.drudis.2017.08.010
10.1016/j.ejrad.2018.04.013
10.1001/jamaoncol.2015.0735
10.1016/j.juro.2008.01.018
10.1016/j.clinimag.2017.06.010
10.1016/j.nicl.2017.10.030
10.1148/rg.2017160130
10.5152/dir.2016.15519
10.1109/ACCESS.2017.2788044
10.2214/AJR.14.13802
10.1177/0284185116649795
10.1016/j.acra.2015.04.004
10.1158/0008-5472.CAN-17-0339
10.1007/s00330-018-5830-3
10.1016/j.eururo.2015.07.072
10.1016/S0140-6736(04)15590-6
10.1007/s00330-014-3380-x
10.1007/s00330-018-5698-2
10.1007/s00261-018-1688-8
10.1016/S0022-5347(05)64153-5
10.1016/j.neuroimage.2006.01.015
10.12688/f1000research.9419.1
10.1007/s00261-017-1144-1
10.1016/j.tranon.2017.08.007
10.1097/RLI.0000000000000515
10.1016/j.acra.2017.10.016
10.1016/j.ejrad.2018.08.014
10.3322/caac.21332
10.1097/01.ju.0000158154.28845.c9
10.1161/CIRCULATIONAHA.115.001593
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2019
Abdominal Radiology is a copyright of Springer, (2019). All Rights Reserved.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019
– notice: Abdominal Radiology is a copyright of Springer, (2019). All Rights Reserved.
DBID NPM
AAYXX
CITATION
3V.
7RV
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
KB0
LK8
M0S
M1P
M7P
M7Z
NAPCQ
P5Z
P62
P64
PQEST
PQQKQ
PQUKI
PRINS
7X8
OTOTI
DOI 10.1007/s00261-019-01992-7
DatabaseName PubMed
CrossRef
ProQuest Central (Corporate)
Nursing & Allied Health Database
PHMC-Proquest健康医学期刊库
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Biological Sciences
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Biological Science Database
Biochemistry Abstracts 1
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
OSTI.GOV
DatabaseTitle PubMed
CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Advanced Technologies & Aerospace Database
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Biochemistry Abstracts 1
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed
Computer Science Database

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2366-0058
EndPage 2534
ExternalDocumentID 22922979
10_1007_s00261_019_01992_7
30919041
Genre Journal Article
GroupedDBID -EM
04C
29~
2J2
2JN
2JY
2KG
2KM
2LR
406
53G
5VS
7RV
7X7
88E
8AO
8FH
8FI
8FJ
95-
AABHQ
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AAPBV
AARTL
AATNV
AATVU
AAUYE
AAYFA
AAYIU
ABDZT
ABECU
ABFGW
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABLJU
ABMQK
ABNWP
ABPLI
ABQBU
ABSXP
ABTEG
ABTKH
ABTMW
ABUWG
ABWNU
ABXPI
ACBMV
ACBRV
ACBYP
ACGFS
ACHSB
ACHVE
ACIGE
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACPRK
ACTTH
ACVWB
ACWMK
ADBBV
ADINQ
ADJJI
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFTE
AEGNC
AEJHL
AEJRE
AEOHA
AESKC
AESTI
AEVLU
AEVTX
AEXYK
AFJLC
AFKRA
AFLOW
AFNRJ
AFQWF
AFRAH
AFZKB
AGAYW
AGDGC
AGGBP
AGJBK
AGMZJ
AGQMX
AGWZB
AGYKE
AHBYD
AHIZS
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AILAN
AIMYW
AITGF
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AOCGG
ARAPS
ARMRJ
AXYYD
AZFZN
B-.
BBNVY
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BMSDO
CCPQU
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIHBH
EIOEI
EJD
EMB
EMOBN
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
GGCAI
GNWQR
HCIFZ
HG6
HMCUK
IKXTQ
IMOTQ
ITM
IWAJR
J-C
JZLTJ
K7-
KOV
LK8
LLZTM
M1P
M4Y
M7P
NAPCQ
NPVJJ
NQJWS
NU0
O9J
PQQKQ
PROAC
PSQYO
PT4
QOR
R89
ROL
RSV
S16
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZ9
SZN
TSG
UG4
UKHRP
UNUBA
UOJIU
UTJUX
W23
YLTOR
Z7U
Z7X
Z81
Z82
Z83
Z87
Z8O
Z8U
Z8V
Z8W
Z91
ZMTXR
0R~
AAAVM
AACDK
AAEOY
AAJBT
AANXM
AARHV
AASML
AAYTO
AAYZH
ABAKF
ACAOD
ACDTI
ACUDM
ACZOJ
AEBTG
AEFQL
AEKMD
AEMSY
AFBBN
AFEXP
AGQEE
AGRTI
AIGIU
AJBLW
AJOOF
ALIPV
GRRUI
H13
NPM
SCLPG
SDE
UZXMN
VFIZW
AAYXX
CITATION
---
.86
.VR
06C
06D
0VY
1N0
23M
2~H
30V
36B
3V.
4.4
408
409
40D
40E
5GY
5RE
67Z
6NX
7XB
8FD
8FE
8FG
8FK
8TC
95.
95~
96X
AAWCG
AAWTL
AAYQN
ABBXA
ABOCM
ACOMO
ADHIR
ADIMF
AEGAL
AENEX
AEPYU
AETLH
AFWTZ
AHAVH
AIIXL
AKMHD
ALWAN
AZQEC
BA0
BKEYQ
BPHCQ
BVXVI
CS3
DL5
DWQXO
ESBYG
EX3
F5P
FEDTE
FR3
G-Y
G-Z
GGRSB
GJIRD
GNUQQ
GQ7
GQ8
GXS
HF~
HG5
HMJXF
HQYDN
HRMNR
HVGLF
I09
IHE
IJ-
IXC
IZIGR
IZQ
I~Z
J0Z
JQ2
K6V
K9.
KDC
KPH
LAS
M7Z
MA-
N9A
NB0
O93
O9I
OAM
OVD
P19
P62
P64
P9S
PF0
PQEST
PQUKI
PRINS
Q2X
QOK
QOS
R9I
RHV
RPX
RRX
S27
S37
S3B
SAP
SDH
SHX
SMD
T13
TSV
TT1
TUC
U2A
U9L
VC2
WH7
WJK
WK8
WOW
Z45
ZOVNA
7X8
OTOTI
ID FETCH-LOGICAL-c469t-57b24f32521bebdefc3099a620599557a37cbeb48017ff0c7a1fa1ac7db494ba3
IEDL.DBID AGYKE
ISSN 2366-004X
2366-0058
IngestDate Thu May 18 22:44:09 EDT 2023
Fri Oct 25 22:06:43 EDT 2024
Thu Oct 10 22:47:13 EDT 2024
Thu Sep 12 18:13:28 EDT 2024
Wed Oct 16 00:47:01 EDT 2024
Sat Dec 16 12:01:33 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Texture analysis
Clear cell carcinoma
Fuhrman nuclear grade
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c469t-57b24f32521bebdefc3099a620599557a37cbeb48017ff0c7a1fa1ac7db494ba3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 30919041
PQID 2198315524
PQPubID 31175
PageCount 7
ParticipantIDs osti_scitechconnect_22922979
proquest_miscellaneous_2199185224
proquest_journals_2198315524
crossref_primary_10_1007_s00261_019_01992_7
pubmed_primary_30919041
springer_journals_10_1007_s00261_019_01992_7
PublicationCentury 2000
PublicationDate 2019-07-01
PublicationDateYYYYMMDD 2019-07-01
PublicationDate_xml – month: 07
  year: 2019
  text: 2019-07-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle Abdominal imaging
PublicationTitleAbbrev Abdom Radiol
PublicationTitleAlternate Abdom Radiol (NY)
PublicationYear 2019
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References ShenLZhouLLiuXComparison of biexponential and monoexponential DWI in evaluation of Fuhrman grading of clear cell renal cell carcinomaDiagn Interv Radiol.201723210010510.5152/dir.2016.15519280509505338574
EricksonBJKorfiatisPAkkusZMachine Learning for Medical ImagingRadiographics.201737250551510.1148/rg.2017160130282120545375621
ZhangLTanJHanDFrom machine learning to deep learning: progress in machine intelligence for rational drug discoveryDrug Discov Today.201722111680168510.1016/j.drudis.2017.08.01028881183
DingJXingZJiangZCT-based radiomic model predicts high grade of clear cell renal cell carcinomaEur J Radiol.2018103515610.1016/j.ejrad.2018.04.01329803385
KerJWangLRaoJDeep learning applications in medical image analysisIEEE Access.201869375938910.1109/ACCESS.2017.2788044
ZhangYDWuCJWangQComparison of Utility of Histogram Apparent Diffusion Coefficient and R2* for Differentiation of Low-Grade From High-Grade Clear Cell Renal Cell CarcinomaAJR Am J Roentgenol.20152052W193W20110.2214/AJR.14.1380226204307
C. T. Bektas, B. Kocak, A. H. Yardimci, et al. Clear Cell Renal Cell Carcinoma: Machine Learning-Based Quantitative Computed Tomography Texture Analysis for Prediction of Fuhrman Nuclear Grade. Eur Radiol. 2018.
FriedmanJHPopescuBEPredictive Learning via Rule EnsemblesThe Annals of Applied Statistics.20082391695410.1214/07-AOAS148
JochamDRichterAHoffmannLAdjuvant autologous renal tumour cell vaccine and risk of tumour progression in patients with renal-cell carcinoma after radical nephrectomy: phase III, randomised controlled trialLancet.2004363940959459910.1016/S0140-6736(04)15590-61:CAS:528:DC%2BD2cXhsVOnsLg%3D14987883
OhSSungDJYangKSCorrelation of CT imaging features and tumor size with Fuhrman grade of clear cell renal cell carcinomaActa Radiol.201758337638410.1177/028418511664979527235451
CornelisFTricaudELasserreASMultiparametric magnetic resonance imaging for the differentiation of low and high grade clear cell renal carcinomaEur Radiol.2015251243110.1007/s00330-014-3380-x1:STN:280:DC%2BC2M%2Fhtlaquw%3D%3D25117747
C. Global Burden of Disease Cancer, C. Fitzmaurice, D. Dicker, et al. The Global Burden of Cancer 2013. JAMA Oncol. 2015;1(4):505–527.
GillISRemerEMHasanWARenal cryoablation: outcome at 3 yearsJ Urol.200517361903190710.1097/01.ju.0000158154.28845.c915879772
FrankIBluteMLChevilleJCAn outcome prediction model for patients with clear cell renal cell carcinoma treated with radical nephrectomy based on tumor stage, size, grade and necrosis: the SSIGN scoreJ Urol.200216862395240010.1016/S0022-5347(05)64153-512441925
van GriethuysenJJMFedorovAParmarCComputational Radiomics System to Decode the Radiographic PhenotypeCancer Res.20177721e104e10710.1158/0008-5472.CAN-17-03391:CAS:528:DC%2BC2sXhslOltbnL290929515672828
A. V. Dorogush, A. Gulin, G. Gusev, et al. Fighting biases with dynamic boosting. arXiv preprint arXiv:1706.09516. 2017.
HaleATStonkoDPWangLMachine learning analyses can differentiate meningioma grade by features on magnetic resonance imagingNeurosurg Focus.2018455E410.3171/2018.8.FOCUS1819130453458
WuGZhaoZYaoQThe Study of Clear Cell Renal Cell Carcinoma with MR Diffusion Kurtosis Tensor Imaging and Its Histopathologic CorrelationAcad Radiol.201825443043810.1016/j.acra.2017.10.01629198944
A. V. Dorogush, V. Ershov and A. Gulin. CatBoost: gradient boosting with categorical features support. arXiv preprint arXiv:1810.11363. 2018.
FuhrmanSALaskyLCLimasCPrognostic significance of morphologic parameters in renal cell carcinomaAm J Surg Pathol.19826765566310.1097/00000478-198210000-000071:STN:280:DyaL3s%2FpvVWhtg%3D%3D7180965
ChevilleJCLohseCMZinckeHComparisons of outcome and prognostic features among histologic subtypes of renal cell carcinomaAm J Surg Pathol.200327561262410.1097/00000478-200305000-0000512717246
KlatteTPatardJJde MartinoMTumor size does not predict risk of metastatic disease or prognosis of small renal cell carcinomasJ Urol.200817951719172610.1016/j.juro.2008.01.01818343437
YuHScaleraJKhalidMTexture analysis as a radiomic marker for differentiating renal tumorsAbdom Radiol (NY).201742102470247810.1007/s00261-017-1144-128421244
L. C. Adams, B. Ralla, P. Jurmeister, et al. Native T1 Mapping as an In Vivo Biomarker for the Identification of Higher-Grade Renal Cell Carcinoma: Correlation With Histopathological Findings. Invest Radiol. 2018.
Y. W. Park, J. Oh, S. C. You, et al. Radiomics and machine learning may accurately predict the grade and histological subtype in meningiomas using conventional and diffusion tensor imaging. Eur Radiol. 2018.
YushkevichPAPivenJHazlettHCUser-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliabilityNeuroimage.20063131116112810.1016/j.neuroimage.2006.01.01516545965
LiYQianZXuKMRI features predict p53 status in lower-grade gliomas via a machine-learning approachNeuroimage Clin.20181730631110.1016/j.nicl.2017.10.03029527478
SiegelRLMillerKDJemalACancer statistics, 2016CA Cancer J Clin.201666173010.3322/caac.2133226742998
MarconiLDabestaniSLamTBSystematic Review and Meta-analysis of Diagnostic Accuracy of Percutaneous Renal Tumour BiopsyEur Urol.201669466067310.1016/j.eururo.2015.07.07226323946
R. Guarch, J. M. Cortes, C. H. Lawrie, et al. Multi-site tumor sampling (MSTS) improves the performance of histological detection of intratumor heterogeneity in clear cell renal cell carcinoma (CCRCC). F1000Res. 2016;5:2020.
DeoRCMachine Learning in MedicineCirculation.2015132201920193010.1161/CIRCULATIONAHA.115.001593265726685831252
H. Coy, J. R. Young, M. L. Douek, et al. Association of qualitative and quantitative imaging features on multiphasic multidetector CT with tumor grade in clear cell renal cell carcinoma. Abdom Radiol (NY). 2018.
ShenCLiuZGuanM2D and 3D CT Radiomics Features Prognostic Performance Comparison in Non-Small Cell Lung CancerTransl Oncol.201710688689410.1016/j.tranon.2017.08.007289306985605492
KocakBYardimciAHBektasCTTextural differences between renal cell carcinoma subtypes: Machine learning-based quantitative computed tomography texture analysis with independent external validationEur J Radiol.201810714915710.1016/j.ejrad.2018.08.01430292260
A. Zwanenburg, S. Leger, M. Vallières, et al. Image biomarker standardisation initiative. arXiv preprint arXiv:1612.07003. 2016.
ChenCKangQXuBDifferentiation of low- and high-grade clear cell renal cell carcinoma: Tumor size versus CT perfusion parametersClin Imaging.201746141910.1016/j.clinimag.2017.06.010
ChoiSYSungDJYangKSSmall (< 4 cm) clear cell renal cell carcinoma: correlation between CT findings and histologic gradeAbdom Radiol (NY).20164161160116910.1007/s00261-016-0732-927040407
YanLLiuZWangGAngiomyolipoma with minimal fat: differentiation from clear cell renal cell carcinoma and papillary renal cell carcinoma by texture analysis on CT imagesAcad Radiol.20152291115112110.1016/j.acra.2015.04.00426031228
1992_CR21
Y Li (1992_CR28) 2018; 17
1992_CR22
1992_CR23
RC Deo (1992_CR12) 2015; 132
H Yu (1992_CR15) 2017; 42
1992_CR20
JJM Griethuysen van (1992_CR18) 2017; 77
AT Hale (1992_CR26) 2018; 45
I Frank (1992_CR33) 2002; 168
J Ker (1992_CR38) 2018; 6
BJ Erickson (1992_CR10) 2017; 37
B Kocak (1992_CR13) 2018; 107
IS Gill (1992_CR4) 2005; 173
JH Friedman (1992_CR32) 2008; 2
F Cornelis (1992_CR8) 2015; 25
1992_CR29
SA Fuhrman (1992_CR16) 1982; 6
C Shen (1992_CR37) 2017; 10
L Shen (1992_CR24) 2017; 23
1992_CR27
S Oh (1992_CR31) 2017; 58
JC Cheville (1992_CR3) 2003; 27
L Marconi (1992_CR35) 2016; 69
D Jocham (1992_CR5) 2004; 363
T Klatte (1992_CR34) 2008; 179
C Chen (1992_CR7) 2017; 46
L Zhang (1992_CR11) 2017; 22
1992_CR1
G Wu (1992_CR9) 2018; 25
PA Yushkevich (1992_CR17) 2006; 31
1992_CR19
RL Siegel (1992_CR2) 2016; 66
J Ding (1992_CR30) 2018; 103
SY Choi (1992_CR6) 2016; 41
1992_CR36
L Yan (1992_CR14) 2015; 22
YD Zhang (1992_CR25) 2015; 205
References_xml – volume: 27
  start-page: 612
  issue: 5
  year: 2003
  ident: 1992_CR3
  publication-title: Am J Surg Pathol.
  doi: 10.1097/00000478-200305000-00005
  contributor:
    fullname: JC Cheville
– volume: 6
  start-page: 655
  issue: 7
  year: 1982
  ident: 1992_CR16
  publication-title: Am J Surg Pathol.
  doi: 10.1097/00000478-198210000-00007
  contributor:
    fullname: SA Fuhrman
– volume: 41
  start-page: 1160
  issue: 6
  year: 2016
  ident: 1992_CR6
  publication-title: Abdom Radiol (NY).
  doi: 10.1007/s00261-016-0732-9
  contributor:
    fullname: SY Choi
– volume: 45
  start-page: E4
  issue: 5
  year: 2018
  ident: 1992_CR26
  publication-title: Neurosurg Focus.
  doi: 10.3171/2018.8.FOCUS18191
  contributor:
    fullname: AT Hale
– volume: 2
  start-page: 916
  issue: 3
  year: 2008
  ident: 1992_CR32
  publication-title: The Annals of Applied Statistics.
  doi: 10.1214/07-AOAS148
  contributor:
    fullname: JH Friedman
– volume: 22
  start-page: 1680
  issue: 11
  year: 2017
  ident: 1992_CR11
  publication-title: Drug Discov Today.
  doi: 10.1016/j.drudis.2017.08.010
  contributor:
    fullname: L Zhang
– volume: 103
  start-page: 51
  year: 2018
  ident: 1992_CR30
  publication-title: Eur J Radiol.
  doi: 10.1016/j.ejrad.2018.04.013
  contributor:
    fullname: J Ding
– ident: 1992_CR1
  doi: 10.1001/jamaoncol.2015.0735
– volume: 179
  start-page: 1719
  issue: 5
  year: 2008
  ident: 1992_CR34
  publication-title: J Urol.
  doi: 10.1016/j.juro.2008.01.018
  contributor:
    fullname: T Klatte
– volume: 46
  start-page: 14
  year: 2017
  ident: 1992_CR7
  publication-title: Clin Imaging.
  doi: 10.1016/j.clinimag.2017.06.010
  contributor:
    fullname: C Chen
– volume: 17
  start-page: 306
  year: 2018
  ident: 1992_CR28
  publication-title: Neuroimage Clin.
  doi: 10.1016/j.nicl.2017.10.030
  contributor:
    fullname: Y Li
– volume: 37
  start-page: 505
  issue: 2
  year: 2017
  ident: 1992_CR10
  publication-title: Radiographics.
  doi: 10.1148/rg.2017160130
  contributor:
    fullname: BJ Erickson
– ident: 1992_CR20
– volume: 23
  start-page: 100
  issue: 2
  year: 2017
  ident: 1992_CR24
  publication-title: Diagn Interv Radiol.
  doi: 10.5152/dir.2016.15519
  contributor:
    fullname: L Shen
– volume: 6
  start-page: 9375
  year: 2018
  ident: 1992_CR38
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2017.2788044
  contributor:
    fullname: J Ker
– volume: 205
  start-page: W193
  issue: 2
  year: 2015
  ident: 1992_CR25
  publication-title: AJR Am J Roentgenol.
  doi: 10.2214/AJR.14.13802
  contributor:
    fullname: YD Zhang
– volume: 58
  start-page: 376
  issue: 3
  year: 2017
  ident: 1992_CR31
  publication-title: Acta Radiol.
  doi: 10.1177/0284185116649795
  contributor:
    fullname: S Oh
– volume: 22
  start-page: 1115
  issue: 9
  year: 2015
  ident: 1992_CR14
  publication-title: Acad Radiol.
  doi: 10.1016/j.acra.2015.04.004
  contributor:
    fullname: L Yan
– volume: 77
  start-page: e104
  issue: 21
  year: 2017
  ident: 1992_CR18
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-17-0339
  contributor:
    fullname: JJM Griethuysen van
– ident: 1992_CR27
  doi: 10.1007/s00330-018-5830-3
– volume: 69
  start-page: 660
  issue: 4
  year: 2016
  ident: 1992_CR35
  publication-title: Eur Urol.
  doi: 10.1016/j.eururo.2015.07.072
  contributor:
    fullname: L Marconi
– volume: 363
  start-page: 594
  issue: 9409
  year: 2004
  ident: 1992_CR5
  publication-title: Lancet.
  doi: 10.1016/S0140-6736(04)15590-6
  contributor:
    fullname: D Jocham
– volume: 25
  start-page: 24
  issue: 1
  year: 2015
  ident: 1992_CR8
  publication-title: Eur Radiol.
  doi: 10.1007/s00330-014-3380-x
  contributor:
    fullname: F Cornelis
– ident: 1992_CR29
  doi: 10.1007/s00330-018-5698-2
– ident: 1992_CR22
  doi: 10.1007/s00261-018-1688-8
– volume: 168
  start-page: 2395
  issue: 6
  year: 2002
  ident: 1992_CR33
  publication-title: J Urol.
  doi: 10.1016/S0022-5347(05)64153-5
  contributor:
    fullname: I Frank
– volume: 31
  start-page: 1116
  issue: 3
  year: 2006
  ident: 1992_CR17
  publication-title: Neuroimage.
  doi: 10.1016/j.neuroimage.2006.01.015
  contributor:
    fullname: PA Yushkevich
– ident: 1992_CR36
  doi: 10.12688/f1000research.9419.1
– volume: 42
  start-page: 2470
  issue: 10
  year: 2017
  ident: 1992_CR15
  publication-title: Abdom Radiol (NY).
  doi: 10.1007/s00261-017-1144-1
  contributor:
    fullname: H Yu
– volume: 10
  start-page: 886
  issue: 6
  year: 2017
  ident: 1992_CR37
  publication-title: Transl Oncol.
  doi: 10.1016/j.tranon.2017.08.007
  contributor:
    fullname: C Shen
– ident: 1992_CR23
  doi: 10.1097/RLI.0000000000000515
– ident: 1992_CR19
– volume: 25
  start-page: 430
  issue: 4
  year: 2018
  ident: 1992_CR9
  publication-title: Acad Radiol.
  doi: 10.1016/j.acra.2017.10.016
  contributor:
    fullname: G Wu
– volume: 107
  start-page: 149
  year: 2018
  ident: 1992_CR13
  publication-title: Eur J Radiol.
  doi: 10.1016/j.ejrad.2018.08.014
  contributor:
    fullname: B Kocak
– volume: 66
  start-page: 7
  issue: 1
  year: 2016
  ident: 1992_CR2
  publication-title: CA Cancer J Clin.
  doi: 10.3322/caac.21332
  contributor:
    fullname: RL Siegel
– ident: 1992_CR21
– volume: 173
  start-page: 1903
  issue: 6
  year: 2005
  ident: 1992_CR4
  publication-title: J Urol.
  doi: 10.1097/01.ju.0000158154.28845.c9
  contributor:
    fullname: IS Gill
– volume: 132
  start-page: 1920
  issue: 20
  year: 2015
  ident: 1992_CR12
  publication-title: Circulation.
  doi: 10.1161/CIRCULATIONAHA.115.001593
  contributor:
    fullname: RC Deo
SSID ssj0001651125
ssj0008379
Score 2.4636314
Snippet Purpose To predict the Fuhrman grade of clear cell renal cell carcinoma (ccRCC) with a machine learning classifier based on single- or three-phase computed...
To predict the Fuhrman grade of clear cell renal cell carcinoma (ccRCC) with a machine learning classifier based on single- or three-phase computed tomography...
PurposeTo predict the Fuhrman grade of clear cell renal cell carcinoma (ccRCC) with a machine learning classifier based on single- or three-phase computed...
PURPOSETo predict the Fuhrman grade of clear cell renal cell carcinoma (ccRCC) with a machine learning classifier based on single- or three-phase computed...
Purpose: To predict the Fuhrman grade of clear cell renal cell carcinoma (ccRCC) with a machine learning classifier based on single- or three-phase computed...
SourceID osti
proquest
crossref
pubmed
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 2528
SubjectTerms Artificial intelligence
Bladder
CARCINOMAS
Classifiers
Clear cell-type renal cell carcinoma
Computed tomography
COMPUTERIZED TOMOGRAPHY
DECISION TREE ANALYSIS
Decision trees
DIAGNOSIS
Diagnostic systems
Feature extraction
Gastroenterology
Hepatology
Imaging
Kidney cancer
KIDNEYS
LEARNING
Learning algorithms
Lesions
Machine learning
Mathematical models
Medical imaging
Medicine
Medicine & Public Health
PATIENTS
Quality
Radiology
RADIOLOGY AND NUCLEAR MEDICINE
Retroperitoneum
Tomography
Ureters
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT9wwDLfGISFe0D4YO2BTJvE2qrVp2tw9TRvihCaBJgTSvUX5PF5ob6X3_2OnuUNoMKkP_Yja1I5jO7F_BjiRufChsHmm0dzNhLURAzJkhfbSEtyRi-nRl1f1xa34Pa_macHtIYVVrufEOFG71tIa-XeUrElJeGHix_JvRlWjaHc1ldDYgm2OnkI-gu1f51d_rjdz8WRA2-NljX5zLuYpbSYmz0X3A11piheiGEz5TDWNWhSxl8zOf7ZMoyaavYW9ZEKynwPP38Eb37yHncu0Sf4BFmc3GSknx-5jpKRnqTTEgsW6N6xv2bKj5j1D84_NVneUOcAagjbWHVt02nnWBjZc0tI-6zx9Mp5aqj7UtPd6H25n5zdnF1mqp5BZdIL7rJKGi1By1NjGG-eDLdE-1DUnjJaqkrpE9nhDgDIyhNxKXQRdaCudEVNhdPkRRk3b-E_ATO3LyoVqkptaaFejGBu8I2RuCqdLPoZva1Kq5QCboTYAyZHwComuIuGVHMMxUVuh0ifkWkshPrZXnE_xkFN8vOaCShL2oJ7Gwxi-bh6jbBApdOPbVWwzpeRwanMwcG_TG_x1tIVEMYbTNTufXv56Vw__35cj2OVxRFE87zGM-m7lP6PV0psvaWg-Anug5vc
  priority: 102
  providerName: ProQuest
Title CT-based machine learning model to predict the Fuhrman nuclear grade of clear cell renal cell carcinoma
URI https://link.springer.com/article/10.1007/s00261-019-01992-7
https://www.ncbi.nlm.nih.gov/pubmed/30919041
https://www.proquest.com/docview/2198315524
https://search.proquest.com/docview/2199185224
https://www.osti.gov/biblio/22922979
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS-QwFD7oCOKLu-t1Vley4JtWekmbmUcVR3FRREYYn0KSJiOIrdTOi7_ec9J23EX3QSi9JaRJTi5fmnO-A7AvQm5dZMJAIdwNuDGeA9IFkbLCEN1R7s2jr66zizt-OUkn73bcXtm925H0A_Xc1s2vFnDlS-o9pDIpFmGpNTxdOj6___PXr5WMUETq3cpluF4O-aQ1l_k8oX-mpF6JXeszuPlhq9TPQKNvMO7seBrFk8ejWa2PzOtHWsevFO47rLaIlB03TegHLNhiDZav2j33dZiejgOa63L25BUvLWs9TUyZd6PD6pI9VxS9Zogm2Wj2QIYIrCCmZFWxaaVyy0rHmkfaKWCVpU_6W0POjIrySW3A3ehsfHoRtO4ZAoNr6jpIhY65S2IUgrY6t84kCDdVFhPlS5oKlaC0rSZ-GuFcaISKnIqUEbnmQ65Vsgm9oizsNjCd2STNXToIdcZVnuGooPENF6GOcpXEfTjoJCSfGxYOOedb9nUnsd6krzsp-rBLQpSIIYgI15DGkKllHA_xEEMM7oQr2w77InHgHiRER8f78HsejF2NqkIVtpz5OEOyNac4W02jmOcGi47Qikd9OOwk_J74_7P682vRd2Al9o2E1IV3oVdXM_sLQVGt92BRTASeB6PzvbZD4PXk7Prm9g3lvAKh
link.rule.ids 230,315,783,787,888,12068,12777,21400,27936,27937,31731,31732,33385,33756,33757,41093,42162,43322,43612,43817,52123,74079,74369,74636
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9tAEB6VVIJeKsqjDeWxlXprLfxYe8kJIUSUAuEUpNxW-wwX7NQ4_5-ZzSaoKiD5YHtX9npmxzOzO_MNwE-RcuczkyYKzd2EGxMwIH2SKScMwR3ZkB49vqtG9_x6Wk7jgttTDKtc_RPDj9o2htbIT1GyzgrCC-Pn878JVY2i3dVYQmMDPhIOF1UwENO1w4XWRcDay4sKveaUT2PSTEidC84HOtIULUQRmOIfxdRrUMBeMzr_2zANemi4DZ-jAckulhz_Ah9cvQOb47hFvguzy0lCqsmyxxAn6VgsDDFjoeoN6xo2b6l7x9D4Y8PFA-UNsJqAjVXLZq2yjjWeLS9pYZ-1jl4ZTg3VHqqbR7UH98OryeUoidUUEoMucJeUQufcFznqa-20dd4UaB2qKieElrIUqkDmOE1wMsL71AiVeZUpI6zmA65VsQ-9uqndN2C6ckVpfXmW6oorW6EQa7zDRaozq4q8D79WpJTzJWiGXMMjB8JLJLoMhJeiD4dEbYkqn3BrDQX4mE7m-QAPMcDmFRdklK8n-TIb-vBj3YySQaRQtWsWoc-AUsOpz9cl99ajwU9HS4hnffi9YufLw98e6sH7YzmBrdFkfCtv_9zdfIdPeZhdFNl7CL2uXbgjtF86fRwm6TOJ5uiC
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7BIlW9IKCvhQKu1FsbNQ8n3j0hVAgF2qqHVtqb5ef20mRJs_-fGce7VUWLlEMeVuLMwzO2Z74BOBQpdz4zaaLQ3U24MQED0ieZcsIQ3JEN6dEXl9XZDf81K2cx_uk-hlWuxsQwUNvW0Br5CWrWpCC8MH7iY1jE1bf6y-JPQhWkaKc1ltN4Ca_QKlYk4ZP6x3pUngy4e3lR4Qw65bOYQBPS6MJEBCfVFDlE0ZjikZEatahsTzmg_2yeBptUv4HX0ZlkXwfuv4UXrnkHGxdxu3wL5qfXCZkpy-5CzKRjsUjEnIUKOKxv2aKj5j1DR5DVy1vKIWANgRyrjs07ZR1rPRsuaZGfdY4-GU4N1SFq2ju1DTf19-vTsyRWVkgMTof7pBQ6577I0XZrp63zpkBPUVU5obWUpVAFMsppgpYR3qdGqMyrTBlhNZ9yrYodGDVt4_aA6coVpfXlJNUVV7ZChdZ4h4tUZ1YV-RiOVqSUiwFAQ66hkgPhJRJdBsJLMYZ9orZE808YtoaCfUwv83yKh5ji4xUXZNS1e_kgGWM4WD9GLSFSqMa1y9BmSmni1GZ34N66N_jr6BXxbAzHK3Y-vPz5rr7_f18-wwbKpzz_efn7A2zmQbgoyHcfRn23dB_Rlen1pyCjfwHFdezA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CT-based+machine+learning+model+to+predict+the+Fuhrman+nuclear+grade+of+clear+cell+renal+cell+carcinoma&rft.jtitle=Abdominal+radiology+%28New+York%29&rft.au=Lin%2C+Fan&rft.au=Cui%2C+En-Ming&rft.au=Lei%2C+Yi&rft.au=Luo%2C+Liang-ping&rft.date=2019-07-01&rft.issn=2366-004X&rft.eissn=2366-0058&rft.volume=44&rft.issue=7&rft.spage=2528&rft.epage=2534&rft_id=info:doi/10.1007%2Fs00261-019-01992-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00261_019_01992_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2366-004X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2366-004X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2366-004X&client=summon