CT-based machine learning model to predict the Fuhrman nuclear grade of clear cell renal cell carcinoma
Purpose To predict the Fuhrman grade of clear cell renal cell carcinoma (ccRCC) with a machine learning classifier based on single- or three-phase computed tomography (CT) images. Materials and methods Patients with pathologically proven ccRCC from February 1, 2009 to September 31, 2018 who were not...
Saved in:
Published in | Abdominal imaging Vol. 44; no. 7; pp. 2528 - 2534 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.07.2019
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Purpose
To predict the Fuhrman grade of clear cell renal cell carcinoma (ccRCC) with a machine learning classifier based on single- or three-phase computed tomography (CT) images.
Materials and methods
Patients with pathologically proven ccRCC from February 1, 2009 to September 31, 2018 who were not treated were retrospectively collected for machine learning-based analysis. The texture features were extracted and ranked from precontrast phase (PCP), corticomedullary phase (CMP), nephrographic phase (NP) and three-phase CT images, and open-source gradient boosting from the decision tree library of CatBoost was used to establish a machine learning classifier to differentiate low- from high-grade ccRCC. The performances of machine learning classifiers based on features from single- and three-phase CT images were compared with each other.
Results
A total of 231 patients with 232 pathologically proven ccRCC lesions were retrospectively collected. 35, 36, 41, and 22 Features were extracted and ranked from PCP, CMP, NP, and three-phase CT images, respectively. The machine learning model based on three-phase CT images [area under the ROC curve (AUC) = 0.87] achieved the best diagnostic performance for differentiating low- from high-grade ccRCC, followed by single-phase NP (AUC = 0.84), CMP (AUC = 0.80), and PCP images (AUC = 0.82).
Conclusion
Machine learning classifiers can be promising noninvasive techniques to differentiate low- and high-Fuhrman nuclear grade ccRCC, and classifiers based on three-phase CT images are superior to those based on features from each single phase. |
---|---|
AbstractList | To predict the Fuhrman grade of clear cell renal cell carcinoma (ccRCC) with a machine learning classifier based on single- or three-phase computed tomography (CT) images.
Patients with pathologically proven ccRCC from February 1, 2009 to September 31, 2018 who were not treated were retrospectively collected for machine learning-based analysis. The texture features were extracted and ranked from precontrast phase (PCP), corticomedullary phase (CMP), nephrographic phase (NP) and three-phase CT images, and open-source gradient boosting from the decision tree library of CatBoost was used to establish a machine learning classifier to differentiate low- from high-grade ccRCC. The performances of machine learning classifiers based on features from single- and three-phase CT images were compared with each other.
A total of 231 patients with 232 pathologically proven ccRCC lesions were retrospectively collected. 35, 36, 41, and 22 Features were extracted and ranked from PCP, CMP, NP, and three-phase CT images, respectively. The machine learning model based on three-phase CT images [area under the ROC curve (AUC) = 0.87] achieved the best diagnostic performance for differentiating low- from high-grade ccRCC, followed by single-phase NP (AUC = 0.84), CMP (AUC = 0.80), and PCP images (AUC = 0.82).
Machine learning classifiers can be promising noninvasive techniques to differentiate low- and high-Fuhrman nuclear grade ccRCC, and classifiers based on three-phase CT images are superior to those based on features from each single phase. PurposeTo predict the Fuhrman grade of clear cell renal cell carcinoma (ccRCC) with a machine learning classifier based on single- or three-phase computed tomography (CT) images.Materials and methodsPatients with pathologically proven ccRCC from February 1, 2009 to September 31, 2018 who were not treated were retrospectively collected for machine learning-based analysis. The texture features were extracted and ranked from precontrast phase (PCP), corticomedullary phase (CMP), nephrographic phase (NP) and three-phase CT images, and open-source gradient boosting from the decision tree library of CatBoost was used to establish a machine learning classifier to differentiate low- from high-grade ccRCC. The performances of machine learning classifiers based on features from single- and three-phase CT images were compared with each other.ResultsA total of 231 patients with 232 pathologically proven ccRCC lesions were retrospectively collected. 35, 36, 41, and 22 Features were extracted and ranked from PCP, CMP, NP, and three-phase CT images, respectively. The machine learning model based on three-phase CT images [area under the ROC curve (AUC) = 0.87] achieved the best diagnostic performance for differentiating low- from high-grade ccRCC, followed by single-phase NP (AUC = 0.84), CMP (AUC = 0.80), and PCP images (AUC = 0.82).ConclusionMachine learning classifiers can be promising noninvasive techniques to differentiate low- and high-Fuhrman nuclear grade ccRCC, and classifiers based on three-phase CT images are superior to those based on features from each single phase. Purpose: To predict the Fuhrman grade of clear cell renal cell carcinoma (ccRCC) with a machine learning classifier based on single- or three-phase computed tomography (CT) images. Materials and methods: Patients with pathologically proven ccRCC from February 1, 2009 to September 31, 2018 who were not treated were retrospectively collected for machine learning-based analysis. The texture features were extracted and ranked from precontrast phase (PCP), corticomedullary phase (CMP), nephrographic phase (NP) and three-phase CT images, and open-source gradient boosting from the decision tree library of CatBoost was used to establish a machine learning classifier to differentiate low- from high-grade ccRCC. The performances of machine learning classifiers based on features from single- and three-phase CT images were compared with each other. Results: A total of 231 patients with 232 pathologically proven ccRCC lesions were retrospectively collected. 35, 36, 41, and 22 Features were extracted and ranked from PCP, CMP, NP, and three-phase CT images, respectively. The machine learning model based on three-phase CT images [area under the ROC curve (AUC) = 0.87] achieved the best diagnostic performance for differentiating low- from high-grade ccRCC, followed by single-phase NP (AUC = 0.84), CMP (AUC = 0.80), and PCP images (AUC = 0.82). Conclusion: Machine learning classifiers can be promising noninvasive techniques to differentiate low- and high-Fuhrman nuclear grade ccRCC, and classifiers based on three-phase CT images are superior to those based on features from each single phase. Purpose To predict the Fuhrman grade of clear cell renal cell carcinoma (ccRCC) with a machine learning classifier based on single- or three-phase computed tomography (CT) images. Materials and methods Patients with pathologically proven ccRCC from February 1, 2009 to September 31, 2018 who were not treated were retrospectively collected for machine learning-based analysis. The texture features were extracted and ranked from precontrast phase (PCP), corticomedullary phase (CMP), nephrographic phase (NP) and three-phase CT images, and open-source gradient boosting from the decision tree library of CatBoost was used to establish a machine learning classifier to differentiate low- from high-grade ccRCC. The performances of machine learning classifiers based on features from single- and three-phase CT images were compared with each other. Results A total of 231 patients with 232 pathologically proven ccRCC lesions were retrospectively collected. 35, 36, 41, and 22 Features were extracted and ranked from PCP, CMP, NP, and three-phase CT images, respectively. The machine learning model based on three-phase CT images [area under the ROC curve (AUC) = 0.87] achieved the best diagnostic performance for differentiating low- from high-grade ccRCC, followed by single-phase NP (AUC = 0.84), CMP (AUC = 0.80), and PCP images (AUC = 0.82). Conclusion Machine learning classifiers can be promising noninvasive techniques to differentiate low- and high-Fuhrman nuclear grade ccRCC, and classifiers based on three-phase CT images are superior to those based on features from each single phase. |
Author | Cui, En-Ming Luo, Liang-ping Lei, Yi Lin, Fan |
Author_xml | – sequence: 1 givenname: Fan surname: Lin fullname: Lin, Fan organization: Medical Imaging Center, The First Affiliated Hospital of Jinan University, Department of Radiology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People’s Hospital – sequence: 2 givenname: En-Ming surname: Cui fullname: Cui, En-Ming organization: Department of Radiology, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun YAT-SEN University – sequence: 3 givenname: Yi surname: Lei fullname: Lei, Yi organization: Department of Radiology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People’s Hospital – sequence: 4 givenname: Liang-ping surname: Luo fullname: Luo, Liang-ping email: tluolp@jnu.edu.cn organization: Medical Imaging Center, The First Affiliated Hospital of Jinan University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30919041$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/22922979$$D View this record in Osti.gov |
BookMark | eNp9kU1v3CAQhlGVqvlo_kAPEVIuvbgdsDHLsVpl20iRekml3tAYj3cd2bAB-9B_H3adbm6RQAyaZ94ZeC_ZmQ-eGPsi4JsA0N8TgKxFAcIctpGF_sAuZFnXBYBanZ3i6u85u07pCQBErYSQ6hM7L8EIA5W4YNv1Y9FgopaP6Ha9Jz4QRt_7LR9DSwOfAt9Hans38WlHfDPv4oie-9kdQL6N2BIPHV-ujoaBR_I4LKHD6HofRvzMPnY4JLp-Pa_Yn83d4_pX8fD75_36x0PhqtpMhdKNrLpSKikaalrqXB7VYC1BGaOUxlK7nKhWIHTXgdMoOhTodNtUpmqwvGK3i25IU2-T6ydyOxe8JzdZKU1e2mTq60LtY3ieKU127NNhYPQU5mRl_lGxUlJWb4In9CnMMT_wSK1KodSRkgvlYkgpUmf3sR8x_rMC7MEvu_hls1f26JfVuejmVXpuRmpPJf_dyUC5ACmn_JbiW-93ZF8Ac_egow |
CitedBy_id | crossref_primary_10_3390_app11093941 crossref_primary_10_3390_ijms24054615 crossref_primary_10_3389_fonc_2022_961779 crossref_primary_10_1007_s00330_021_08322_w crossref_primary_10_1016_j_knosys_2022_109369 crossref_primary_10_1007_s00261_020_02832_9 crossref_primary_10_1007_s10278_020_00336_y crossref_primary_10_1016_j_crad_2021_02_033 crossref_primary_10_1155_2022_3212738 crossref_primary_10_3390_diagnostics13172743 crossref_primary_10_19127_mbsjohs_889492 crossref_primary_10_3389_fonc_2021_591502 crossref_primary_10_1016_j_urolonc_2021_03_012 crossref_primary_10_1259_bjr_20200131 crossref_primary_10_1016_j_heliyon_2022_e10578 crossref_primary_10_1117_1_JMI_9_5_054501 crossref_primary_10_3390_jpm11010008 crossref_primary_10_3390_cancers15102835 crossref_primary_10_2214_AJR_19_22608 crossref_primary_10_1016_j_compmedimag_2021_101924 crossref_primary_10_1016_j_ucl_2023_01_006 crossref_primary_10_1007_s00345_019_03000_5 crossref_primary_10_1007_s00261_020_02637_w crossref_primary_10_1016_j_crad_2023_07_003 crossref_primary_10_1016_j_ejrad_2020_109079 crossref_primary_10_1016_j_ajur_2022_05_003 crossref_primary_10_1097_MOU_0000000000000816 crossref_primary_10_1007_s00261_021_03083_y crossref_primary_10_3390_cancers12061387 crossref_primary_10_1038_s41585_023_00848_6 crossref_primary_10_1097_MOU_0000000000000881 crossref_primary_10_2214_AJR_20_22847 crossref_primary_10_1155_2022_5478908 crossref_primary_10_1200_EDBK_350862 crossref_primary_10_22328_2079_5343_2023_14_4_7_18 crossref_primary_10_3390_cancers15123189 crossref_primary_10_23940_ijpe_20_02_p9_255264 crossref_primary_10_3389_fonc_2023_1167328 crossref_primary_10_1186_s40537_020_00369_8 crossref_primary_10_2147_CMAR_S290327 crossref_primary_10_1016_j_humpath_2022_11_004 crossref_primary_10_1007_s00345_021_03602_y crossref_primary_10_1007_s11548_022_02587_2 crossref_primary_10_1136_bmjopen_2021_051470 |
Cites_doi | 10.1097/00000478-200305000-00005 10.1097/00000478-198210000-00007 10.1007/s00261-016-0732-9 10.3171/2018.8.FOCUS18191 10.1214/07-AOAS148 10.1016/j.drudis.2017.08.010 10.1016/j.ejrad.2018.04.013 10.1001/jamaoncol.2015.0735 10.1016/j.juro.2008.01.018 10.1016/j.clinimag.2017.06.010 10.1016/j.nicl.2017.10.030 10.1148/rg.2017160130 10.5152/dir.2016.15519 10.1109/ACCESS.2017.2788044 10.2214/AJR.14.13802 10.1177/0284185116649795 10.1016/j.acra.2015.04.004 10.1158/0008-5472.CAN-17-0339 10.1007/s00330-018-5830-3 10.1016/j.eururo.2015.07.072 10.1016/S0140-6736(04)15590-6 10.1007/s00330-014-3380-x 10.1007/s00330-018-5698-2 10.1007/s00261-018-1688-8 10.1016/S0022-5347(05)64153-5 10.1016/j.neuroimage.2006.01.015 10.12688/f1000research.9419.1 10.1007/s00261-017-1144-1 10.1016/j.tranon.2017.08.007 10.1097/RLI.0000000000000515 10.1016/j.acra.2017.10.016 10.1016/j.ejrad.2018.08.014 10.3322/caac.21332 10.1097/01.ju.0000158154.28845.c9 10.1161/CIRCULATIONAHA.115.001593 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2019 Abdominal Radiology is a copyright of Springer, (2019). All Rights Reserved. |
Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019 – notice: Abdominal Radiology is a copyright of Springer, (2019). All Rights Reserved. |
DBID | NPM AAYXX CITATION 3V. 7RV 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ JQ2 K7- K9. KB0 LK8 M0S M1P M7P M7Z NAPCQ P5Z P62 P64 PQEST PQQKQ PQUKI PRINS 7X8 OTOTI |
DOI | 10.1007/s00261-019-01992-7 |
DatabaseName | PubMed CrossRef ProQuest Central (Corporate) Nursing & Allied Health Database PHMC-Proquest健康医学期刊库 ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Biological Sciences Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Biological Science Database Biochemistry Abstracts 1 Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic OSTI.GOV |
DatabaseTitle | PubMed CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Nursing & Allied Health Source ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Advanced Technologies & Aerospace Database Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Biochemistry Abstracts 1 ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed Computer Science Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2366-0058 |
EndPage | 2534 |
ExternalDocumentID | 22922979 10_1007_s00261_019_01992_7 30919041 |
Genre | Journal Article |
GroupedDBID | -EM 04C 29~ 2J2 2JN 2JY 2KG 2KM 2LR 406 53G 5VS 7RV 7X7 88E 8AO 8FH 8FI 8FJ 95- AABHQ AAFGU AAHNG AAIAL AAJKR AANZL AAPBV AARTL AATNV AATVU AAUYE AAYFA AAYIU ABDZT ABECU ABFGW ABFTV ABHLI ABHQN ABIPD ABJNI ABJOX ABKAS ABKCH ABKTR ABLJU ABMQK ABNWP ABPLI ABQBU ABSXP ABTEG ABTKH ABTMW ABUWG ABWNU ABXPI ACBMV ACBRV ACBYP ACGFS ACHSB ACHVE ACIGE ACIPQ ACIWK ACKNC ACMDZ ACMLO ACOKC ACPRK ACTTH ACVWB ACWMK ADBBV ADINQ ADJJI ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADZKW AEFTE AEGNC AEJHL AEJRE AEOHA AESKC AESTI AEVLU AEVTX AEXYK AFJLC AFKRA AFLOW AFNRJ AFQWF AFRAH AFZKB AGAYW AGDGC AGGBP AGJBK AGMZJ AGQMX AGWZB AGYKE AHBYD AHIZS AHKAY AHMBA AHSBF AHYZX AIAKS AILAN AIMYW AITGF AJDOV AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AOCGG ARAPS ARMRJ AXYYD AZFZN B-. BBNVY BDATZ BENPR BGLVJ BGNMA BHPHI BMSDO CCPQU CSCUP DDRTE DNIVK DPUIP EBLON EBS EIHBH EIOEI EJD EMB EMOBN FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA GGCAI GNWQR HCIFZ HG6 HMCUK IKXTQ IMOTQ ITM IWAJR J-C JZLTJ K7- KOV LK8 LLZTM M1P M4Y M7P NAPCQ NPVJJ NQJWS NU0 O9J PQQKQ PROAC PSQYO PT4 QOR R89 ROL RSV S16 SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZ9 SZN TSG UG4 UKHRP UNUBA UOJIU UTJUX W23 YLTOR Z7U Z7X Z81 Z82 Z83 Z87 Z8O Z8U Z8V Z8W Z91 ZMTXR 0R~ AAAVM AACDK AAEOY AAJBT AANXM AARHV AASML AAYTO AAYZH ABAKF ACAOD ACDTI ACUDM ACZOJ AEBTG AEFQL AEKMD AEMSY AFBBN AFEXP AGQEE AGRTI AIGIU AJBLW AJOOF ALIPV GRRUI H13 NPM SCLPG SDE UZXMN VFIZW AAYXX CITATION --- .86 .VR 06C 06D 0VY 1N0 23M 2~H 30V 36B 3V. 4.4 408 409 40D 40E 5GY 5RE 67Z 6NX 7XB 8FD 8FE 8FG 8FK 8TC 95. 95~ 96X AAWCG AAWTL AAYQN ABBXA ABOCM ACOMO ADHIR ADIMF AEGAL AENEX AEPYU AETLH AFWTZ AHAVH AIIXL AKMHD ALWAN AZQEC BA0 BKEYQ BPHCQ BVXVI CS3 DL5 DWQXO ESBYG EX3 F5P FEDTE FR3 G-Y G-Z GGRSB GJIRD GNUQQ GQ7 GQ8 GXS HF~ HG5 HMJXF HQYDN HRMNR HVGLF I09 IHE IJ- IXC IZIGR IZQ I~Z J0Z JQ2 K6V K9. KDC KPH LAS M7Z MA- N9A NB0 O93 O9I OAM OVD P19 P62 P64 P9S PF0 PQEST PQUKI PRINS Q2X QOK QOS R9I RHV RPX RRX S27 S37 S3B SAP SDH SHX SMD T13 TSV TT1 TUC U2A U9L VC2 WH7 WJK WK8 WOW Z45 ZOVNA 7X8 OTOTI |
ID | FETCH-LOGICAL-c469t-57b24f32521bebdefc3099a620599557a37cbeb48017ff0c7a1fa1ac7db494ba3 |
IEDL.DBID | AGYKE |
ISSN | 2366-004X 2366-0058 |
IngestDate | Thu May 18 22:44:09 EDT 2023 Fri Oct 25 22:06:43 EDT 2024 Thu Oct 10 22:47:13 EDT 2024 Thu Sep 12 18:13:28 EDT 2024 Wed Oct 16 00:47:01 EDT 2024 Sat Dec 16 12:01:33 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | Texture analysis Clear cell carcinoma Fuhrman nuclear grade Machine learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c469t-57b24f32521bebdefc3099a620599557a37cbeb48017ff0c7a1fa1ac7db494ba3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 30919041 |
PQID | 2198315524 |
PQPubID | 31175 |
PageCount | 7 |
ParticipantIDs | osti_scitechconnect_22922979 proquest_miscellaneous_2199185224 proquest_journals_2198315524 crossref_primary_10_1007_s00261_019_01992_7 pubmed_primary_30919041 springer_journals_10_1007_s00261_019_01992_7 |
PublicationCentury | 2000 |
PublicationDate | 2019-07-01 |
PublicationDateYYYYMMDD | 2019-07-01 |
PublicationDate_xml | – month: 07 year: 2019 text: 2019-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States |
PublicationTitle | Abdominal imaging |
PublicationTitleAbbrev | Abdom Radiol |
PublicationTitleAlternate | Abdom Radiol (NY) |
PublicationYear | 2019 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | ShenLZhouLLiuXComparison of biexponential and monoexponential DWI in evaluation of Fuhrman grading of clear cell renal cell carcinomaDiagn Interv Radiol.201723210010510.5152/dir.2016.15519280509505338574 EricksonBJKorfiatisPAkkusZMachine Learning for Medical ImagingRadiographics.201737250551510.1148/rg.2017160130282120545375621 ZhangLTanJHanDFrom machine learning to deep learning: progress in machine intelligence for rational drug discoveryDrug Discov Today.201722111680168510.1016/j.drudis.2017.08.01028881183 DingJXingZJiangZCT-based radiomic model predicts high grade of clear cell renal cell carcinomaEur J Radiol.2018103515610.1016/j.ejrad.2018.04.01329803385 KerJWangLRaoJDeep learning applications in medical image analysisIEEE Access.201869375938910.1109/ACCESS.2017.2788044 ZhangYDWuCJWangQComparison of Utility of Histogram Apparent Diffusion Coefficient and R2* for Differentiation of Low-Grade From High-Grade Clear Cell Renal Cell CarcinomaAJR Am J Roentgenol.20152052W193W20110.2214/AJR.14.1380226204307 C. T. Bektas, B. Kocak, A. H. Yardimci, et al. Clear Cell Renal Cell Carcinoma: Machine Learning-Based Quantitative Computed Tomography Texture Analysis for Prediction of Fuhrman Nuclear Grade. Eur Radiol. 2018. FriedmanJHPopescuBEPredictive Learning via Rule EnsemblesThe Annals of Applied Statistics.20082391695410.1214/07-AOAS148 JochamDRichterAHoffmannLAdjuvant autologous renal tumour cell vaccine and risk of tumour progression in patients with renal-cell carcinoma after radical nephrectomy: phase III, randomised controlled trialLancet.2004363940959459910.1016/S0140-6736(04)15590-61:CAS:528:DC%2BD2cXhsVOnsLg%3D14987883 OhSSungDJYangKSCorrelation of CT imaging features and tumor size with Fuhrman grade of clear cell renal cell carcinomaActa Radiol.201758337638410.1177/028418511664979527235451 CornelisFTricaudELasserreASMultiparametric magnetic resonance imaging for the differentiation of low and high grade clear cell renal carcinomaEur Radiol.2015251243110.1007/s00330-014-3380-x1:STN:280:DC%2BC2M%2Fhtlaquw%3D%3D25117747 C. Global Burden of Disease Cancer, C. Fitzmaurice, D. Dicker, et al. The Global Burden of Cancer 2013. JAMA Oncol. 2015;1(4):505–527. GillISRemerEMHasanWARenal cryoablation: outcome at 3 yearsJ Urol.200517361903190710.1097/01.ju.0000158154.28845.c915879772 FrankIBluteMLChevilleJCAn outcome prediction model for patients with clear cell renal cell carcinoma treated with radical nephrectomy based on tumor stage, size, grade and necrosis: the SSIGN scoreJ Urol.200216862395240010.1016/S0022-5347(05)64153-512441925 van GriethuysenJJMFedorovAParmarCComputational Radiomics System to Decode the Radiographic PhenotypeCancer Res.20177721e104e10710.1158/0008-5472.CAN-17-03391:CAS:528:DC%2BC2sXhslOltbnL290929515672828 A. V. Dorogush, A. Gulin, G. Gusev, et al. Fighting biases with dynamic boosting. arXiv preprint arXiv:1706.09516. 2017. HaleATStonkoDPWangLMachine learning analyses can differentiate meningioma grade by features on magnetic resonance imagingNeurosurg Focus.2018455E410.3171/2018.8.FOCUS1819130453458 WuGZhaoZYaoQThe Study of Clear Cell Renal Cell Carcinoma with MR Diffusion Kurtosis Tensor Imaging and Its Histopathologic CorrelationAcad Radiol.201825443043810.1016/j.acra.2017.10.01629198944 A. V. Dorogush, V. Ershov and A. Gulin. CatBoost: gradient boosting with categorical features support. arXiv preprint arXiv:1810.11363. 2018. FuhrmanSALaskyLCLimasCPrognostic significance of morphologic parameters in renal cell carcinomaAm J Surg Pathol.19826765566310.1097/00000478-198210000-000071:STN:280:DyaL3s%2FpvVWhtg%3D%3D7180965 ChevilleJCLohseCMZinckeHComparisons of outcome and prognostic features among histologic subtypes of renal cell carcinomaAm J Surg Pathol.200327561262410.1097/00000478-200305000-0000512717246 KlatteTPatardJJde MartinoMTumor size does not predict risk of metastatic disease or prognosis of small renal cell carcinomasJ Urol.200817951719172610.1016/j.juro.2008.01.01818343437 YuHScaleraJKhalidMTexture analysis as a radiomic marker for differentiating renal tumorsAbdom Radiol (NY).201742102470247810.1007/s00261-017-1144-128421244 L. C. Adams, B. Ralla, P. Jurmeister, et al. Native T1 Mapping as an In Vivo Biomarker for the Identification of Higher-Grade Renal Cell Carcinoma: Correlation With Histopathological Findings. Invest Radiol. 2018. Y. W. Park, J. Oh, S. C. You, et al. Radiomics and machine learning may accurately predict the grade and histological subtype in meningiomas using conventional and diffusion tensor imaging. Eur Radiol. 2018. YushkevichPAPivenJHazlettHCUser-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliabilityNeuroimage.20063131116112810.1016/j.neuroimage.2006.01.01516545965 LiYQianZXuKMRI features predict p53 status in lower-grade gliomas via a machine-learning approachNeuroimage Clin.20181730631110.1016/j.nicl.2017.10.03029527478 SiegelRLMillerKDJemalACancer statistics, 2016CA Cancer J Clin.201666173010.3322/caac.2133226742998 MarconiLDabestaniSLamTBSystematic Review and Meta-analysis of Diagnostic Accuracy of Percutaneous Renal Tumour BiopsyEur Urol.201669466067310.1016/j.eururo.2015.07.07226323946 R. Guarch, J. M. Cortes, C. H. Lawrie, et al. Multi-site tumor sampling (MSTS) improves the performance of histological detection of intratumor heterogeneity in clear cell renal cell carcinoma (CCRCC). F1000Res. 2016;5:2020. DeoRCMachine Learning in MedicineCirculation.2015132201920193010.1161/CIRCULATIONAHA.115.001593265726685831252 H. Coy, J. R. Young, M. L. Douek, et al. Association of qualitative and quantitative imaging features on multiphasic multidetector CT with tumor grade in clear cell renal cell carcinoma. Abdom Radiol (NY). 2018. ShenCLiuZGuanM2D and 3D CT Radiomics Features Prognostic Performance Comparison in Non-Small Cell Lung CancerTransl Oncol.201710688689410.1016/j.tranon.2017.08.007289306985605492 KocakBYardimciAHBektasCTTextural differences between renal cell carcinoma subtypes: Machine learning-based quantitative computed tomography texture analysis with independent external validationEur J Radiol.201810714915710.1016/j.ejrad.2018.08.01430292260 A. Zwanenburg, S. Leger, M. Vallières, et al. Image biomarker standardisation initiative. arXiv preprint arXiv:1612.07003. 2016. ChenCKangQXuBDifferentiation of low- and high-grade clear cell renal cell carcinoma: Tumor size versus CT perfusion parametersClin Imaging.201746141910.1016/j.clinimag.2017.06.010 ChoiSYSungDJYangKSSmall (< 4 cm) clear cell renal cell carcinoma: correlation between CT findings and histologic gradeAbdom Radiol (NY).20164161160116910.1007/s00261-016-0732-927040407 YanLLiuZWangGAngiomyolipoma with minimal fat: differentiation from clear cell renal cell carcinoma and papillary renal cell carcinoma by texture analysis on CT imagesAcad Radiol.20152291115112110.1016/j.acra.2015.04.00426031228 1992_CR21 Y Li (1992_CR28) 2018; 17 1992_CR22 1992_CR23 RC Deo (1992_CR12) 2015; 132 H Yu (1992_CR15) 2017; 42 1992_CR20 JJM Griethuysen van (1992_CR18) 2017; 77 AT Hale (1992_CR26) 2018; 45 I Frank (1992_CR33) 2002; 168 J Ker (1992_CR38) 2018; 6 BJ Erickson (1992_CR10) 2017; 37 B Kocak (1992_CR13) 2018; 107 IS Gill (1992_CR4) 2005; 173 JH Friedman (1992_CR32) 2008; 2 F Cornelis (1992_CR8) 2015; 25 1992_CR29 SA Fuhrman (1992_CR16) 1982; 6 C Shen (1992_CR37) 2017; 10 L Shen (1992_CR24) 2017; 23 1992_CR27 S Oh (1992_CR31) 2017; 58 JC Cheville (1992_CR3) 2003; 27 L Marconi (1992_CR35) 2016; 69 D Jocham (1992_CR5) 2004; 363 T Klatte (1992_CR34) 2008; 179 C Chen (1992_CR7) 2017; 46 L Zhang (1992_CR11) 2017; 22 1992_CR1 G Wu (1992_CR9) 2018; 25 PA Yushkevich (1992_CR17) 2006; 31 1992_CR19 RL Siegel (1992_CR2) 2016; 66 J Ding (1992_CR30) 2018; 103 SY Choi (1992_CR6) 2016; 41 1992_CR36 L Yan (1992_CR14) 2015; 22 YD Zhang (1992_CR25) 2015; 205 |
References_xml | – volume: 27 start-page: 612 issue: 5 year: 2003 ident: 1992_CR3 publication-title: Am J Surg Pathol. doi: 10.1097/00000478-200305000-00005 contributor: fullname: JC Cheville – volume: 6 start-page: 655 issue: 7 year: 1982 ident: 1992_CR16 publication-title: Am J Surg Pathol. doi: 10.1097/00000478-198210000-00007 contributor: fullname: SA Fuhrman – volume: 41 start-page: 1160 issue: 6 year: 2016 ident: 1992_CR6 publication-title: Abdom Radiol (NY). doi: 10.1007/s00261-016-0732-9 contributor: fullname: SY Choi – volume: 45 start-page: E4 issue: 5 year: 2018 ident: 1992_CR26 publication-title: Neurosurg Focus. doi: 10.3171/2018.8.FOCUS18191 contributor: fullname: AT Hale – volume: 2 start-page: 916 issue: 3 year: 2008 ident: 1992_CR32 publication-title: The Annals of Applied Statistics. doi: 10.1214/07-AOAS148 contributor: fullname: JH Friedman – volume: 22 start-page: 1680 issue: 11 year: 2017 ident: 1992_CR11 publication-title: Drug Discov Today. doi: 10.1016/j.drudis.2017.08.010 contributor: fullname: L Zhang – volume: 103 start-page: 51 year: 2018 ident: 1992_CR30 publication-title: Eur J Radiol. doi: 10.1016/j.ejrad.2018.04.013 contributor: fullname: J Ding – ident: 1992_CR1 doi: 10.1001/jamaoncol.2015.0735 – volume: 179 start-page: 1719 issue: 5 year: 2008 ident: 1992_CR34 publication-title: J Urol. doi: 10.1016/j.juro.2008.01.018 contributor: fullname: T Klatte – volume: 46 start-page: 14 year: 2017 ident: 1992_CR7 publication-title: Clin Imaging. doi: 10.1016/j.clinimag.2017.06.010 contributor: fullname: C Chen – volume: 17 start-page: 306 year: 2018 ident: 1992_CR28 publication-title: Neuroimage Clin. doi: 10.1016/j.nicl.2017.10.030 contributor: fullname: Y Li – volume: 37 start-page: 505 issue: 2 year: 2017 ident: 1992_CR10 publication-title: Radiographics. doi: 10.1148/rg.2017160130 contributor: fullname: BJ Erickson – ident: 1992_CR20 – volume: 23 start-page: 100 issue: 2 year: 2017 ident: 1992_CR24 publication-title: Diagn Interv Radiol. doi: 10.5152/dir.2016.15519 contributor: fullname: L Shen – volume: 6 start-page: 9375 year: 2018 ident: 1992_CR38 publication-title: IEEE Access. doi: 10.1109/ACCESS.2017.2788044 contributor: fullname: J Ker – volume: 205 start-page: W193 issue: 2 year: 2015 ident: 1992_CR25 publication-title: AJR Am J Roentgenol. doi: 10.2214/AJR.14.13802 contributor: fullname: YD Zhang – volume: 58 start-page: 376 issue: 3 year: 2017 ident: 1992_CR31 publication-title: Acta Radiol. doi: 10.1177/0284185116649795 contributor: fullname: S Oh – volume: 22 start-page: 1115 issue: 9 year: 2015 ident: 1992_CR14 publication-title: Acad Radiol. doi: 10.1016/j.acra.2015.04.004 contributor: fullname: L Yan – volume: 77 start-page: e104 issue: 21 year: 2017 ident: 1992_CR18 publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-17-0339 contributor: fullname: JJM Griethuysen van – ident: 1992_CR27 doi: 10.1007/s00330-018-5830-3 – volume: 69 start-page: 660 issue: 4 year: 2016 ident: 1992_CR35 publication-title: Eur Urol. doi: 10.1016/j.eururo.2015.07.072 contributor: fullname: L Marconi – volume: 363 start-page: 594 issue: 9409 year: 2004 ident: 1992_CR5 publication-title: Lancet. doi: 10.1016/S0140-6736(04)15590-6 contributor: fullname: D Jocham – volume: 25 start-page: 24 issue: 1 year: 2015 ident: 1992_CR8 publication-title: Eur Radiol. doi: 10.1007/s00330-014-3380-x contributor: fullname: F Cornelis – ident: 1992_CR29 doi: 10.1007/s00330-018-5698-2 – ident: 1992_CR22 doi: 10.1007/s00261-018-1688-8 – volume: 168 start-page: 2395 issue: 6 year: 2002 ident: 1992_CR33 publication-title: J Urol. doi: 10.1016/S0022-5347(05)64153-5 contributor: fullname: I Frank – volume: 31 start-page: 1116 issue: 3 year: 2006 ident: 1992_CR17 publication-title: Neuroimage. doi: 10.1016/j.neuroimage.2006.01.015 contributor: fullname: PA Yushkevich – ident: 1992_CR36 doi: 10.12688/f1000research.9419.1 – volume: 42 start-page: 2470 issue: 10 year: 2017 ident: 1992_CR15 publication-title: Abdom Radiol (NY). doi: 10.1007/s00261-017-1144-1 contributor: fullname: H Yu – volume: 10 start-page: 886 issue: 6 year: 2017 ident: 1992_CR37 publication-title: Transl Oncol. doi: 10.1016/j.tranon.2017.08.007 contributor: fullname: C Shen – ident: 1992_CR23 doi: 10.1097/RLI.0000000000000515 – ident: 1992_CR19 – volume: 25 start-page: 430 issue: 4 year: 2018 ident: 1992_CR9 publication-title: Acad Radiol. doi: 10.1016/j.acra.2017.10.016 contributor: fullname: G Wu – volume: 107 start-page: 149 year: 2018 ident: 1992_CR13 publication-title: Eur J Radiol. doi: 10.1016/j.ejrad.2018.08.014 contributor: fullname: B Kocak – volume: 66 start-page: 7 issue: 1 year: 2016 ident: 1992_CR2 publication-title: CA Cancer J Clin. doi: 10.3322/caac.21332 contributor: fullname: RL Siegel – ident: 1992_CR21 – volume: 173 start-page: 1903 issue: 6 year: 2005 ident: 1992_CR4 publication-title: J Urol. doi: 10.1097/01.ju.0000158154.28845.c9 contributor: fullname: IS Gill – volume: 132 start-page: 1920 issue: 20 year: 2015 ident: 1992_CR12 publication-title: Circulation. doi: 10.1161/CIRCULATIONAHA.115.001593 contributor: fullname: RC Deo |
SSID | ssj0001651125 ssj0008379 |
Score | 2.4636314 |
Snippet | Purpose
To predict the Fuhrman grade of clear cell renal cell carcinoma (ccRCC) with a machine learning classifier based on single- or three-phase computed... To predict the Fuhrman grade of clear cell renal cell carcinoma (ccRCC) with a machine learning classifier based on single- or three-phase computed tomography... PurposeTo predict the Fuhrman grade of clear cell renal cell carcinoma (ccRCC) with a machine learning classifier based on single- or three-phase computed... PURPOSETo predict the Fuhrman grade of clear cell renal cell carcinoma (ccRCC) with a machine learning classifier based on single- or three-phase computed... Purpose: To predict the Fuhrman grade of clear cell renal cell carcinoma (ccRCC) with a machine learning classifier based on single- or three-phase computed... |
SourceID | osti proquest crossref pubmed springer |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 2528 |
SubjectTerms | Artificial intelligence Bladder CARCINOMAS Classifiers Clear cell-type renal cell carcinoma Computed tomography COMPUTERIZED TOMOGRAPHY DECISION TREE ANALYSIS Decision trees DIAGNOSIS Diagnostic systems Feature extraction Gastroenterology Hepatology Imaging Kidney cancer KIDNEYS LEARNING Learning algorithms Lesions Machine learning Mathematical models Medical imaging Medicine Medicine & Public Health PATIENTS Quality Radiology RADIOLOGY AND NUCLEAR MEDICINE Retroperitoneum Tomography Ureters |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT9wwDLfGISFe0D4YO2BTJvE2qrVp2tw9TRvihCaBJgTSvUX5PF5ob6X3_2OnuUNoMKkP_Yja1I5jO7F_BjiRufChsHmm0dzNhLURAzJkhfbSEtyRi-nRl1f1xa34Pa_macHtIYVVrufEOFG71tIa-XeUrElJeGHix_JvRlWjaHc1ldDYgm2OnkI-gu1f51d_rjdz8WRA2-NljX5zLuYpbSYmz0X3A11piheiGEz5TDWNWhSxl8zOf7ZMoyaavYW9ZEKynwPP38Eb37yHncu0Sf4BFmc3GSknx-5jpKRnqTTEgsW6N6xv2bKj5j1D84_NVneUOcAagjbWHVt02nnWBjZc0tI-6zx9Mp5aqj7UtPd6H25n5zdnF1mqp5BZdIL7rJKGi1By1NjGG-eDLdE-1DUnjJaqkrpE9nhDgDIyhNxKXQRdaCudEVNhdPkRRk3b-E_ATO3LyoVqkptaaFejGBu8I2RuCqdLPoZva1Kq5QCboTYAyZHwComuIuGVHMMxUVuh0ifkWkshPrZXnE_xkFN8vOaCShL2oJ7Gwxi-bh6jbBApdOPbVWwzpeRwanMwcG_TG_x1tIVEMYbTNTufXv56Vw__35cj2OVxRFE87zGM-m7lP6PV0psvaWg-Anug5vc priority: 102 providerName: ProQuest |
Title | CT-based machine learning model to predict the Fuhrman nuclear grade of clear cell renal cell carcinoma |
URI | https://link.springer.com/article/10.1007/s00261-019-01992-7 https://www.ncbi.nlm.nih.gov/pubmed/30919041 https://www.proquest.com/docview/2198315524 https://search.proquest.com/docview/2199185224 https://www.osti.gov/biblio/22922979 |
Volume | 44 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS-QwFD7oCOKLu-t1Vley4JtWekmbmUcVR3FRREYYn0KSJiOIrdTOi7_ec9J23EX3QSi9JaRJTi5fmnO-A7AvQm5dZMJAIdwNuDGeA9IFkbLCEN1R7s2jr66zizt-OUkn73bcXtm925H0A_Xc1s2vFnDlS-o9pDIpFmGpNTxdOj6___PXr5WMUETq3cpluF4O-aQ1l_k8oX-mpF6JXeszuPlhq9TPQKNvMO7seBrFk8ejWa2PzOtHWsevFO47rLaIlB03TegHLNhiDZav2j33dZiejgOa63L25BUvLWs9TUyZd6PD6pI9VxS9Zogm2Wj2QIYIrCCmZFWxaaVyy0rHmkfaKWCVpU_6W0POjIrySW3A3ehsfHoRtO4ZAoNr6jpIhY65S2IUgrY6t84kCDdVFhPlS5oKlaC0rSZ-GuFcaISKnIqUEbnmQ65Vsgm9oizsNjCd2STNXToIdcZVnuGooPENF6GOcpXEfTjoJCSfGxYOOedb9nUnsd6krzsp-rBLQpSIIYgI15DGkKllHA_xEEMM7oQr2w77InHgHiRER8f78HsejF2NqkIVtpz5OEOyNac4W02jmOcGi47Qikd9OOwk_J74_7P682vRd2Al9o2E1IV3oVdXM_sLQVGt92BRTASeB6PzvbZD4PXk7Prm9g3lvAKh |
link.rule.ids | 230,315,783,787,888,12068,12777,21400,27936,27937,31731,31732,33385,33756,33757,41093,42162,43322,43612,43817,52123,74079,74369,74636 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9tAEB6VVIJeKsqjDeWxlXprLfxYe8kJIUSUAuEUpNxW-wwX7NQ4_5-ZzSaoKiD5YHtX9npmxzOzO_MNwE-RcuczkyYKzd2EGxMwIH2SKScMwR3ZkB49vqtG9_x6Wk7jgttTDKtc_RPDj9o2htbIT1GyzgrCC-Pn878JVY2i3dVYQmMDPhIOF1UwENO1w4XWRcDay4sKveaUT2PSTEidC84HOtIULUQRmOIfxdRrUMBeMzr_2zANemi4DZ-jAckulhz_Ah9cvQOb47hFvguzy0lCqsmyxxAn6VgsDDFjoeoN6xo2b6l7x9D4Y8PFA-UNsJqAjVXLZq2yjjWeLS9pYZ-1jl4ZTg3VHqqbR7UH98OryeUoidUUEoMucJeUQufcFznqa-20dd4UaB2qKieElrIUqkDmOE1wMsL71AiVeZUpI6zmA65VsQ-9uqndN2C6ckVpfXmW6oorW6EQa7zDRaozq4q8D79WpJTzJWiGXMMjB8JLJLoMhJeiD4dEbYkqn3BrDQX4mE7m-QAPMcDmFRdklK8n-TIb-vBj3YySQaRQtWsWoc-AUsOpz9cl99ajwU9HS4hnffi9YufLw98e6sH7YzmBrdFkfCtv_9zdfIdPeZhdFNl7CL2uXbgjtF86fRwm6TOJ5uiC |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7BIlW9IKCvhQKu1FsbNQ8n3j0hVAgF2qqHVtqb5ef20mRJs_-fGce7VUWLlEMeVuLMwzO2Z74BOBQpdz4zaaLQ3U24MQED0ieZcsIQ3JEN6dEXl9XZDf81K2cx_uk-hlWuxsQwUNvW0Br5CWrWpCC8MH7iY1jE1bf6y-JPQhWkaKc1ltN4Ca_QKlYk4ZP6x3pUngy4e3lR4Qw65bOYQBPS6MJEBCfVFDlE0ZjikZEatahsTzmg_2yeBptUv4HX0ZlkXwfuv4UXrnkHGxdxu3wL5qfXCZkpy-5CzKRjsUjEnIUKOKxv2aKj5j1DR5DVy1vKIWANgRyrjs07ZR1rPRsuaZGfdY4-GU4N1SFq2ju1DTf19-vTsyRWVkgMTof7pBQ6577I0XZrp63zpkBPUVU5obWUpVAFMsppgpYR3qdGqMyrTBlhNZ9yrYodGDVt4_aA6coVpfXlJNUVV7ZChdZ4h4tUZ1YV-RiOVqSUiwFAQ66hkgPhJRJdBsJLMYZ9orZE808YtoaCfUwv83yKh5ji4xUXZNS1e_kgGWM4WD9GLSFSqMa1y9BmSmni1GZ34N66N_jr6BXxbAzHK3Y-vPz5rr7_f18-wwbKpzz_efn7A2zmQbgoyHcfRn23dB_Rlen1pyCjfwHFdezA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CT-based+machine+learning+model+to+predict+the+Fuhrman+nuclear+grade+of+clear+cell+renal+cell+carcinoma&rft.jtitle=Abdominal+radiology+%28New+York%29&rft.au=Lin%2C+Fan&rft.au=Cui%2C+En-Ming&rft.au=Lei%2C+Yi&rft.au=Luo%2C+Liang-ping&rft.date=2019-07-01&rft.issn=2366-004X&rft.eissn=2366-0058&rft.volume=44&rft.issue=7&rft.spage=2528&rft.epage=2534&rft_id=info:doi/10.1007%2Fs00261-019-01992-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00261_019_01992_7 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2366-004X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2366-004X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2366-004X&client=summon |