Machine learning: An effective technical method for future use in assessing the effectiveness of phosphorus-dissolving microbial agroremediation

The issue of agricultural pollution has become one of the most important environmental concerns worldwide because of its relevance to human survival and health. Microbial remediation is an effective method for treating heavy metal pollution in agriculture, but the evaluation of its effectiveness has...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in bioengineering and biotechnology Vol. 11; p. 1189166
Main Authors Wu, Juai, Zhao, Fangzhou
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 31.03.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The issue of agricultural pollution has become one of the most important environmental concerns worldwide because of its relevance to human survival and health. Microbial remediation is an effective method for treating heavy metal pollution in agriculture, but the evaluation of its effectiveness has been a difficult issue. Machine learning (ML), a widely used data processing technique, can improve the accuracy of assessments and predictions by analyzing and processing large amounts of data. In microbial remediation, ML can help identify the types of microbes, mechanisms of action and adapted environments, predict the effectiveness of microbial remediation and potential problems, and assess the ecological benefits and crop growth after remediation. In addition, ML can help optimize monitoring programs, improve the accuracy and effectiveness of heavy metal pollution monitoring, and provide a scientific basis for the development of treatment measures. Therefore, ML has important application prospects in assessing the effectiveness of microbial remediation of heavy metal pollution in agriculture and is expected to be an effective pollution management technology.
AbstractList The issue of agricultural pollution has become one of the most important environmental concerns worldwide because of its relevance to human survival and health. Microbial remediation is an effective method for treating heavy metal pollution in agriculture, but the evaluation of its effectiveness has been a difficult issue. Machine learning (ML), a widely used data processing technique, can improve the accuracy of assessments and predictions by analyzing and processing large amounts of data. In microbial remediation, ML can help identify the types of microbes, mechanisms of action and adapted environments, predict the effectiveness of microbial remediation and potential problems, and assess the ecological benefits and crop growth after remediation. In addition, ML can help optimize monitoring programs, improve the accuracy and effectiveness of heavy metal pollution monitoring, and provide a scientific basis for the development of treatment measures. Therefore, ML has important application prospects in assessing the effectiveness of microbial remediation of heavy metal pollution in agriculture and is expected to be an effective pollution management technology.The issue of agricultural pollution has become one of the most important environmental concerns worldwide because of its relevance to human survival and health. Microbial remediation is an effective method for treating heavy metal pollution in agriculture, but the evaluation of its effectiveness has been a difficult issue. Machine learning (ML), a widely used data processing technique, can improve the accuracy of assessments and predictions by analyzing and processing large amounts of data. In microbial remediation, ML can help identify the types of microbes, mechanisms of action and adapted environments, predict the effectiveness of microbial remediation and potential problems, and assess the ecological benefits and crop growth after remediation. In addition, ML can help optimize monitoring programs, improve the accuracy and effectiveness of heavy metal pollution monitoring, and provide a scientific basis for the development of treatment measures. Therefore, ML has important application prospects in assessing the effectiveness of microbial remediation of heavy metal pollution in agriculture and is expected to be an effective pollution management technology.
The issue of agricultural pollution has become one of the most important environmental concerns worldwide because of its relevance to human survival and health. Microbial remediation is an effective method for treating heavy metal pollution in agriculture, but the evaluation of its effectiveness has been a difficult issue. Machine learning (ML), a widely used data processing technique, can improve the accuracy of assessments and predictions by analyzing and processing large amounts of data. In microbial remediation, ML can help identify the types of microbes, mechanisms of action and adapted environments, predict the effectiveness of microbial remediation and potential problems, and assess the ecological benefits and crop growth after remediation. In addition, ML can help optimize monitoring programs, improve the accuracy and effectiveness of heavy metal pollution monitoring, and provide a scientific basis for the development of treatment measures. Therefore, ML has important application prospects in assessing the effectiveness of microbial remediation of heavy metal pollution in agriculture and is expected to be an effective pollution management technology.
Author Zhao, Fangzhou
Wu, Juai
AuthorAffiliation 1 College of Automation & College of Artificial Intelligence , Nanjing University of Posts and Telecommunications , Nanjing , China
2 School of Environmental and Biological Engineering , Nanjing University of Science and Technology , Nanjing , China
AuthorAffiliation_xml – name: 1 College of Automation & College of Artificial Intelligence , Nanjing University of Posts and Telecommunications , Nanjing , China
– name: 2 School of Environmental and Biological Engineering , Nanjing University of Science and Technology , Nanjing , China
Author_xml – sequence: 1
  givenname: Juai
  surname: Wu
  fullname: Wu, Juai
– sequence: 2
  givenname: Fangzhou
  surname: Zhao
  fullname: Zhao, Fangzhou
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37064244$$D View this record in MEDLINE/PubMed
BookMark eNp9UstuFDEQHKEg8iA_wAH5yGUXP8ceLiiKIEQK4pK75fG0dxzN2ovtWSl_wSfjfRASDki23GpXVbvddd6chBigad4RvGRMdR9d7yMsKaZsSYjqSNu-as4o7doFJ0qcPItPm8ucHzDGhAopFH3TnDKJW045P2t-fTd29AHQBCYFH1af0FVA4BzY4reACtgxeGsmtIYyxgG5mJCby5wAzRmQD8jkDDlXKioj_KWGmkTRoc0Yc91pzovB5xyn7Q669jbF3ldds0oxwRoGb4qP4W3z2pkpw-XxvGjuv365v_62uPtxc3t9dbewvO3KQkhiQFomahfUStv3UkmDDSNsGIh11hiMgWDpxNC2VgkGmCrGiZScA2cXze1BdojmQW-SX5v0qKPxep-IaaVNKt5OoEHQjvSWD4w6LnqjlOh6SSwxLa8Lqtbng9Zm7msfFkJJZnoh-vIm-FGv4lYTTDBtiawKH44KKf6cIRe99tnCNJkAcc6aKkw5VVzgCn3_vNhTlT8jrQB6ANQPzjmBe4IQrHfW0Xvr6J119NE6laT-IVlf9vOoD_bT_6i_AS2Nzbw
CitedBy_id crossref_primary_10_1007_s11274_024_04182_w
crossref_primary_10_3390_microorganisms11122904
crossref_primary_10_3390_agriculture13081622
Cites_doi 10.1007/s13205-014-0206-0
10.1109/tkde.2019.2915231
10.3390/agronomy12051003
10.1038/nature14539
10.1016/j.compenvurbsys.2022.101789
10.1016/j.scitotenv.2022.157850
10.1016/j.compbiomed.2021.104672
10.3390/agronomy12071639
10.1016/j.eng.2021.03.019
10.1016/j.envpol.2020.116281
10.1016/j.ecoenv.2014.07.001
10.1109/tits.2015.2466695
10.1016/j.ecoenv.2017.06.051
10.1016/j.envint.2019.03.068
10.1016/j.jhazmat.2023.131176
10.1016/j.jclepro.2022.130942
10.1016/j.procs.2023.01.241
10.1016/j.scitotenv.2020.140338
10.1016/j.chemosphere.2022.137623
10.1016/j.scitotenv.2020.142570
10.1016/j.geodrs.2022.e00569
10.1007/s42729-020-00342-7
10.1016/j.procs.2023.01.023
10.1016/j.ecolind.2021.107608
10.1016/j.aiig.2022.12.003
10.1016/j.chemosphere.2020.128626
10.1016/j.enmf.2022.07.005
10.1016/j.catena.2022.106798
10.1007/s11738-016-2133-7
10.3389/fbioe.2023.1127166
10.1016/j.envpol.2022.119248
10.3389/fmicb.2017.00971
10.1016/j.advengsoft.2022.103326
ContentType Journal Article
Copyright Copyright © 2023 Wu and Zhao.
Copyright © 2023 Wu and Zhao. 2023 Wu and Zhao
Copyright_xml – notice: Copyright © 2023 Wu and Zhao.
– notice: Copyright © 2023 Wu and Zhao. 2023 Wu and Zhao
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3389/fbioe.2023.1189166
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


PubMed
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitleAlternate Wu and Zhao
EISSN 2296-4185
ExternalDocumentID oai_doaj_org_article_e5291bc4d32f45ba8859b71c1a64a64e
PMC10102617
37064244
10_3389_fbioe_2023_1189166
Genre Journal Article
GroupedDBID 53G
5VS
9T4
AAFWJ
AAYXX
ACGFS
ACXDI
ADBBV
ADRAZ
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CITATION
DIK
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
OK1
PGMZT
RPM
IAO
IEA
IHR
IPNFZ
ISR
NPM
RIG
7X8
5PM
ID FETCH-LOGICAL-c469t-571ae7c352442c7cbb787a0a313dd1cfcaa00e107f5d66c853e0283417744e43
IEDL.DBID M48
ISSN 2296-4185
IngestDate Wed Aug 27 00:41:56 EDT 2025
Thu Aug 21 18:38:03 EDT 2025
Fri Jul 11 00:45:53 EDT 2025
Thu Jan 02 22:51:44 EST 2025
Thu Apr 24 22:56:56 EDT 2025
Tue Jul 01 03:36:24 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords microbial remediation
agricultural pollution
machine learning
assessment and prediction
crop yield
Language English
License Copyright © 2023 Wu and Zhao.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c469t-571ae7c352442c7cbb787a0a313dd1cfcaa00e107f5d66c853e0283417744e43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Edited by: Da Tian, Anhui Agricultural University, China
Pei Peng, Rutgers, The State University of New Jersey, United States
Reviewed by: Mengying Zhang, Shanghai Institute of Microsystem and Information Technology (CAS), China
Zhaoxia Duan, Hohai University, China
This article was submitted to Bioprocess Engineering, a section of the journal Frontiers in Bioengineering and Biotechnology
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fbioe.2023.1189166
PMID 37064244
PQID 2802428450
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_e5291bc4d32f45ba8859b71c1a64a64e
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10102617
proquest_miscellaneous_2802428450
pubmed_primary_37064244
crossref_primary_10_3389_fbioe_2023_1189166
crossref_citationtrail_10_3389_fbioe_2023_1189166
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-03-31
PublicationDateYYYYMMDD 2023-03-31
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-31
  day: 31
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in bioengineering and biotechnology
PublicationTitleAlternate Front Bioeng Biotechnol
PublicationYear 2023
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Saha (B23) 2022; 3
Yang (B32) 2023; 313
Veloso (B27) 2022; 30
Wang (B29) 2021; 125
Liu (B18) 2023; 222
Wang (B28) 2020; 32
Panigrahi (B20) 2023; 218
Tian (B26) 2022; 3
LeCun (B17) 2015; 521
Sharma (B24) 2022; 305
Ahemad (B1) 2015; 5
El Azhari (B9) 2017; 144
Lu (B19) 2021; 270
Tian (B25) 2021; 755
Jia (B15) 2021; 270
Chen (B5); 11
Wu (B30) 2020; 40
Fei (B10) 2022; 341
Alori (B3) 2017; 8
Feng (B11) 2022; 12
Lai (B16) 2022; 12
Zaidi (B33) 2016; 38
Chen (B6); 452
Zhang (B34) 2022; 94
Castaldo (B4) 2016; 17
Jhajharia (B14) 2023; 218
Roy (B22) 2022; 849
Chen (B7) 2019; 127
Xu (B31) 2014; 108
Hamrani (B12) 2020; 741
Ali (B2) 2021; 136
Rawat (B21) 2020; 21
Dobbelaere (B8) 2021; 7
Iniyan (B13) 2023; 175
References_xml – volume: 5
  start-page: 111
  year: 2015
  ident: B1
  article-title: Phosphate-solubilizing bacteria-assisted phytoremediation of metalliferous soils: A review
  publication-title: Biotech
  doi: 10.1007/s13205-014-0206-0
– volume: 32
  start-page: 2269
  year: 2020
  ident: B28
  article-title: Understanding urban dynamics via context-aware tensor factorization with neighboring regularization
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/tkde.2019.2915231
– volume: 12
  start-page: 1003
  year: 2022
  ident: B16
  article-title: Combination of biochar and phosphorus solubilizing bacteria to improve the stable form of toxic metal minerals and microbial abundance in lead/cadmium-contaminated soil
  publication-title: Agronomy
  doi: 10.3390/agronomy12051003
– volume: 521
  start-page: 436
  year: 2015
  ident: B17
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 94
  start-page: 101789
  year: 2022
  ident: B34
  article-title: Interpretable machine learning models for crime prediction
  publication-title: Comput. Environ. Urban Syst.
  doi: 10.1016/j.compenvurbsys.2022.101789
– volume: 849
  start-page: 157850
  year: 2022
  ident: B22
  article-title: Climate change and groundwater overdraft impacts on agricultural drought in India: Vulnerability assessment, food security measures and policy recommendation
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2022.157850
– volume: 136
  start-page: 104672
  year: 2021
  ident: B2
  article-title: Heart disease prediction using supervised machine learning algorithms: Performance analysis and comparison
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2021.104672
– volume: 12
  start-page: 1639
  year: 2022
  ident: B11
  article-title: Remediation of lead contamination by Aspergillus Niger and phosphate rocks under different nitrogen sources
  publication-title: Agronomy
  doi: 10.3390/agronomy12071639
– volume: 7
  start-page: 1201
  year: 2021
  ident: B8
  article-title: Machine learning in chemical engineering: Strengths, weaknesses, opportunities, and threats
  publication-title: Engineering
  doi: 10.1016/j.eng.2021.03.019
– volume: 270
  start-page: 116281
  year: 2021
  ident: B15
  article-title: Mapping soil pollution by using drone image recognition and machine learning at an arsenic-contaminated agricultural field
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2020.116281
– volume: 40
  start-page: 2116
  year: 2020
  ident: B30
  article-title: Data intelligence: Trends and challenges
  publication-title: Syst. Eng. - Theory and Pract.
– volume: 108
  start-page: 161
  year: 2014
  ident: B31
  article-title: Sources of heavy metal pollution in agricultural soils of a rapidly industrializing area in the Yangtze Delta of China
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2014.07.001
– volume: 17
  start-page: 313
  year: 2016
  ident: B4
  article-title: Bayesian analysis of behaviors and interactions for situation awareness in transportation systems
  publication-title: IEEE Trans. Intelligent Transp. Syst.
  doi: 10.1109/tits.2015.2466695
– volume: 144
  start-page: 464
  year: 2017
  ident: B9
  article-title: Pollution and ecological risk assessment of heavy metals in the soil-plant system and the sediment-water column around a former Pb/Zn-mining area in NE Morocco
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2017.06.051
– volume: 127
  start-page: 395
  year: 2019
  ident: B7
  article-title: Enhanced Pb immobilization via the combination of biochar and phosphate solubilizing bacteria
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2019.03.068
– volume: 452
  start-page: 131176
  ident: B6
  article-title: Biochar assists phosphate solubilizing bacteria to resist combined Pb and Cd stress by promoting acid secretion and extracellular electron transfer
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2023.131176
– volume: 341
  start-page: 130942
  year: 2022
  ident: B10
  article-title: Source analysis and source-oriented risk assessment of heavy metal pollution in agricultural soils of different cultivated land qualities
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2022.130942
– volume: 218
  start-page: 2684
  year: 2023
  ident: B20
  article-title: A machine learning-based comparative approach to predict the crop yield using supervised learning with regression models
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2023.01.241
– volume: 741
  start-page: 140338
  year: 2020
  ident: B12
  article-title: Machine learning for predicting greenhouse gas emissions from agricultural soils
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.140338
– volume: 313
  start-page: 137623
  year: 2023
  ident: B32
  article-title: Prediction of phosphorus concentrations in shallow groundwater in intensive agricultural regions based on machine learning
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2022.137623
– volume: 755
  start-page: 142570
  year: 2021
  ident: B25
  article-title: Influences of phosphate addition on fungal weathering of carbonate in the red soil from karst region
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.142570
– volume: 30
  start-page: e00569
  year: 2022
  ident: B27
  article-title: Evaluation of machine learning algorithms in the prediction of hydraulic conductivity and soil moisture at the Brazilian Savannah
  publication-title: Geoderma Reg.
  doi: 10.1016/j.geodrs.2022.e00569
– volume: 21
  start-page: 49
  year: 2020
  ident: B21
  article-title: Phosphate-solubilizing microorganisms: Mechanism and their role in phosphate solubilization and uptake
  publication-title: J. Soil Sci. Plant Nutr.
  doi: 10.1007/s42729-020-00342-7
– volume: 218
  start-page: 406
  year: 2023
  ident: B14
  article-title: Crop yield prediction using machine learning and deep learning techniques
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2023.01.023
– volume: 125
  start-page: 107608
  year: 2021
  ident: B29
  article-title: Assessment of soil fertility degradation affected by mining disturbance and land use in a coalfield via machine learning
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2021.107608
– volume: 3
  start-page: 179
  year: 2022
  ident: B23
  article-title: Estimation of the effectiveness of multi-criteria decision analysis and machine learning approaches for agricultural land capability in Gangarampur Subdivision, Eastern India
  publication-title: Artif. Intell. Geosciences
  doi: 10.1016/j.aiig.2022.12.003
– volume: 270
  start-page: 128626
  year: 2021
  ident: B19
  article-title: Risk assessment and hotspots identification of heavy metals in rice: A case study in longyan of fujian province, China
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2020.128626
– volume: 3
  start-page: 177
  year: 2022
  ident: B26
  article-title: Machine learning-guided property prediction of energetic materials: Recent advances, challenges, and perspectives
  publication-title: Energ. Mater. Front.
  doi: 10.1016/j.enmf.2022.07.005
– volume: 222
  start-page: 106798
  year: 2023
  ident: B18
  article-title: Gully erosion susceptibility assessment based on machine learning-A case study of watersheds in Tuquan County in the black soil region of Northeast China
  publication-title: Catena
  doi: 10.1016/j.catena.2022.106798
– volume: 38
  start-page: 117
  year: 2016
  ident: B33
  article-title: Growth stimulation and management of diseases of ornamental plants using phosphate solubilizing microorganisms: Current perspective
  publication-title: Acta Physiol. Plant.
  doi: 10.1007/s11738-016-2133-7
– volume: 11
  start-page: 1127166
  ident: B5
  article-title: Biochar: An effective measure to strengthen phosphorus solubilizing microorganisms for remediation of heavy metal pollution in soil
  publication-title: Front. Bioeng. Biotechnol.
  doi: 10.3389/fbioe.2023.1127166
– volume: 305
  start-page: 119248
  year: 2022
  ident: B24
  article-title: Role of microbes in bioaccumulation of heavy metals in municipal solid waste: Impacts on plant and human being
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2022.119248
– volume: 8
  start-page: 971
  year: 2017
  ident: B3
  article-title: Microbial phosphorus solubilization and its potential for use in sustainable agriculture
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2017.00971
– volume: 175
  start-page: 103326
  year: 2023
  ident: B13
  article-title: Crop yield prediction using machine learning techniques
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2022.103326
SSID ssj0001257582
Score 2.2800355
Snippet The issue of agricultural pollution has become one of the most important environmental concerns worldwide because of its relevance to human survival and...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1189166
SubjectTerms agricultural pollution
assessment and prediction
Bioengineering and Biotechnology
crop yield
machine learning
microbial remediation
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iSQ_i2_oigjcpbpppm3pTUUTQk4K3kKSpLmi77ON_-JOdaeq6K6IXoe2hadKQmWS-yeMbxo6tkQCuMLF0NouhEiK2Ji_iDB8KZOkM0Gnku_vs5hFun9KnmVBftCcs0AOHhjv1aVII66CUSQWpNUqlhc2FEyYDvDyNvmjzZpypMLuCMEQl4ZQMemHFaWX7DdFiJhJHCYWgKJuzRC1h_08o8_tmyRnrc73KVjrYyM9DddfYgq_X2fIMmeAGe79r90V63gWCeD7j5zUP-zVwSOOBrRVFwkPUaI5wlQdKET4Zed6vuWlXgDErR1j4lZVGQ95UfPDSjPAeTkYxLeM3rzQZwd_6LZcTlmuehw1NN5ZB3Jvs4frq4fIm7uItxA6d5HGc5sL43CEkA0hc7qzF3mx6RgpZlsJVzphez6O_WKVlljk09J7QCQiEkOBBbrHFuqn9DuNJVZVYjim8NZhirbIFQgOP5SfSli5i4rPpteu4yCkkxqtGn4TEpVtxaRKX7sQVsZNpnkFg4vj16wuS6PRLYtFuX6Bu6U639F-6FbGjT33Q2OtoKcXUvpmMdKII2yhIexHbDvox_ZXMyakDiJia05y5usyn1P2XltlbEMMfYsrd_6j9HluiFgkHKPfZ4ng48QeIoMb2sO0sH6r5Hp0
  priority: 102
  providerName: Directory of Open Access Journals
Title Machine learning: An effective technical method for future use in assessing the effectiveness of phosphorus-dissolving microbial agroremediation
URI https://www.ncbi.nlm.nih.gov/pubmed/37064244
https://www.proquest.com/docview/2802428450
https://pubmed.ncbi.nlm.nih.gov/PMC10102617
https://doaj.org/article/e5291bc4d32f45ba8859b71c1a64a64e
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VcoEDojzDozISNxRYx07iICHUIqoKaTm1Um-W7TjblbZJSXYl-Bf9yZ2xs0sXFQ5ISQ5Jxok8Hs83fnwD8NYaIaWrTCqcLVLZcJ5aU1ZpgRclRe2MpN3I0-_F8an8dpaf7cA63dFYgcOtoR3lkzrtF-9__vj1GQ3-E0Wc6G8_NHbeEeNlJrADUIh3ijtwFz1TSYY6HeF-HHNBcKKyuHfmL6Jb_inQ-N-GPf9cQnnDJx09hAcjmGQHUft7sOPbR3D_BsXgY7iahtWSno3pIWYf2UHL4ioO7OhY5HBFRbGYS5ohiGWRaIStBs_mLTNhXhhFGYLF36LUR7KuYZfn3YBnvxpSmtzvFjREwS7mgeEJyzWzvqNByDo2gidwcvT15MtxOmZhSB2Gzss0L7nxpUOgJmXmSmct2riZGMFFXXPXOGMmE49RZJPXReHQ_XvCLFj9pZReiqew23atfw4sa5oayzGVtwafWKtshYDBY_mZsLVLgK-rXruRoZwSZSw0RiqkLh3UpUldelRXAu82MpeRn-Ofbx-SRjdvErd2uNH1Mz2aqvZ5VnHrZC2yRubWKJVXtuSOm0Li4RN4s24PGm2RJlhM67vVoDNFiEfJfJLAs9g-Np8SJYV6UiagtlrO1r9sP2nn54HvmxPvHyLNF_8v-hLuUT3EzZSvYHfZr_xrRFNLux9GIfaDoVwDhQcmwQ
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning%3A+An+effective+technical+method+for+future+use+in+assessing+the+effectiveness+of+phosphorus-dissolving+microbial+agroremediation&rft.jtitle=Frontiers+in+bioengineering+and+biotechnology&rft.au=Wu%2C+Juai&rft.au=Zhao%2C+Fangzhou&rft.date=2023-03-31&rft.pub=Frontiers+Media+S.A&rft.eissn=2296-4185&rft.volume=11&rft_id=info:doi/10.3389%2Ffbioe.2023.1189166&rft.externalDocID=PMC10102617
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-4185&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-4185&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-4185&client=summon