Affective Computing on Machine Learning-Based Emotion Recognition Using a Self-Made EEG Device
In this research, we develop an affective computing method based on machine learning for emotion recognition using a wireless protocol and a wearable electroencephalography (EEG) custom-designed device. The system collects EEG signals using an eight-electrode placement on the scalp; two of these ele...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 21; no. 15; p. 5135 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
29.07.2021
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this research, we develop an affective computing method based on machine learning for emotion recognition using a wireless protocol and a wearable electroencephalography (EEG) custom-designed device. The system collects EEG signals using an eight-electrode placement on the scalp; two of these electrodes were placed in the frontal lobe, and the other six electrodes were placed in the temporal lobe. We performed experiments on eight subjects while they watched emotive videos. Six entropy measures were employed for extracting suitable features from the EEG signals. Next, we evaluated our proposed models using three popular classifiers: a support vector machine (SVM), multi-layer perceptron (MLP), and one-dimensional convolutional neural network (1D-CNN) for emotion classification; both subject-dependent and subject-independent strategies were used. Our experiment results showed that the highest average accuracies achieved in the subject-dependent and subject-independent cases were 85.81% and 78.52%, respectively; these accuracies were achieved using a combination of the sample entropy measure and 1D-CNN. Moreover, our study investigates the T8 position (above the right ear) in the temporal lobe as the most critical channel among the proposed measurement positions for emotion classification through electrode selection. Our results prove the feasibility and efficiency of our proposed EEG-based affective computing method for emotion recognition in real-world applications. |
---|---|
AbstractList | In this research, we develop an affective computing method based on machine learning for emotion recognition using a wireless protocol and a wearable electroencephalography (EEG) custom-designed device. The system collects EEG signals using an eight-electrode placement on the scalp; two of these electrodes were placed in the frontal lobe, and the other six electrodes were placed in the temporal lobe. We performed experiments on eight subjects while they watched emotive videos. Six entropy measures were employed for extracting suitable features from the EEG signals. Next, we evaluated our proposed models using three popular classifiers: a support vector machine (SVM), multi-layer perceptron (MLP), and one-dimensional convolutional neural network (1D-CNN) for emotion classification; both subject-dependent and subject-independent strategies were used. Our experiment results showed that the highest average accuracies achieved in the subject-dependent and subject-independent cases were 85.81% and 78.52%, respectively; these accuracies were achieved using a combination of the sample entropy measure and 1D-CNN. Moreover, our study investigates the T8 position (above the right ear) in the temporal lobe as the most critical channel among the proposed measurement positions for emotion classification through electrode selection. Our results prove the feasibility and efficiency of our proposed EEG-based affective computing method for emotion recognition in real-world applications. In this research, we develop an affective computing method based on machine learning for emotion recognition using a wireless protocol and a wearable electroencephalography (EEG) custom-designed device. The system collects EEG signals using an eight-electrode placement on the scalp; two of these electrodes were placed in the frontal lobe, and the other six electrodes were placed in the temporal lobe. We performed experiments on eight subjects while they watched emotive videos. Six entropy measures were employed for extracting suitable features from the EEG signals. Next, we evaluated our proposed models using three popular classifiers: a support vector machine (SVM), multi-layer perceptron (MLP), and one-dimensional convolutional neural network (1D-CNN) for emotion classification; both subject-dependent and subject-independent strategies were used. Our experiment results showed that the highest average accuracies achieved in the subject-dependent and subject-independent cases were 85.81% and 78.52%, respectively; these accuracies were achieved using a combination of the sample entropy measure and 1D-CNN. Moreover, our study investigates the T8 position (above the right ear) in the temporal lobe as the most critical channel among the proposed measurement positions for emotion classification through electrode selection. Our results prove the feasibility and efficiency of our proposed EEG-based affective computing method for emotion recognition in real-world applications.In this research, we develop an affective computing method based on machine learning for emotion recognition using a wireless protocol and a wearable electroencephalography (EEG) custom-designed device. The system collects EEG signals using an eight-electrode placement on the scalp; two of these electrodes were placed in the frontal lobe, and the other six electrodes were placed in the temporal lobe. We performed experiments on eight subjects while they watched emotive videos. Six entropy measures were employed for extracting suitable features from the EEG signals. Next, we evaluated our proposed models using three popular classifiers: a support vector machine (SVM), multi-layer perceptron (MLP), and one-dimensional convolutional neural network (1D-CNN) for emotion classification; both subject-dependent and subject-independent strategies were used. Our experiment results showed that the highest average accuracies achieved in the subject-dependent and subject-independent cases were 85.81% and 78.52%, respectively; these accuracies were achieved using a combination of the sample entropy measure and 1D-CNN. Moreover, our study investigates the T8 position (above the right ear) in the temporal lobe as the most critical channel among the proposed measurement positions for emotion classification through electrode selection. Our results prove the feasibility and efficiency of our proposed EEG-based affective computing method for emotion recognition in real-world applications. |
Author | Lee, Boon-Giin Chung, Wan-Young Mai, Ngoc-Dau |
AuthorAffiliation | 2 School of Computer Science, The University of Nottingham Ningbo China, Ningbo 315100, China; boon-giin.lee@nottingham.edu.cn 1 Department of Artificial Intelligence Convergence, Pukyong National University, Busan 48513, Korea; ngocdaumai95@pukyong.ac.kr |
AuthorAffiliation_xml | – name: 1 Department of Artificial Intelligence Convergence, Pukyong National University, Busan 48513, Korea; ngocdaumai95@pukyong.ac.kr – name: 2 School of Computer Science, The University of Nottingham Ningbo China, Ningbo 315100, China; boon-giin.lee@nottingham.edu.cn |
Author_xml | – sequence: 1 givenname: Ngoc-Dau surname: Mai fullname: Mai, Ngoc-Dau – sequence: 2 givenname: Boon-Giin orcidid: 0000-0001-5743-1010 surname: Lee fullname: Lee, Boon-Giin – sequence: 3 givenname: Wan-Young orcidid: 0000-0002-0121-855X surname: Chung fullname: Chung, Wan-Young |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34372370$$D View this record in MEDLINE/PubMed |
BookMark | eNptkk1v1DAQhiNURD_gwB9AkbjAIdT22IlzQSrLUipthQTliuU4461XWXuxk5X493i7ZdVWnGY088yr-TotjnzwWBSvKfkA0JLzxCgVgoJ4VpxQznglGSNHD_zj4jSlFSEMAOSL4hg4NAwaclL8urAWzei2WM7CejONzi_L4MtrbW6dx3KBOvocqz7phH05X4fR5fR3NGHp3Z3_M-1qdPkDB1td6x7L-fyy_IxbZ_Bl8dzqIeGre3tW3HyZ38y-Votvl1ezi0VleN2OleANAWCCg2jarq9bC9CZltWC2-xgTYDlWWSvewm9kMzYFpoGGmls37dwVlztZfugV2oT3VrHPypop-4CIS6VjqMzAypCGZU1tbSTljcdlyDR6LrmAnjLBWatj3utzdStsTfox6iHR6KPM97dqmXYKglcctpkgXf3AjH8njCNau2SwWHQHsOUFBM1ITXL-8_o2yfoKkzR501lSsiWySyZqTcPOzq08u-KGXi_B0wMKUW0B4QStfsQdfiQzJ4_YY0b9e6QeRg3_KfiL77VuWQ |
CitedBy_id | crossref_primary_10_1016_j_bspc_2025_107674 crossref_primary_10_3390_app13084896 crossref_primary_10_1016_j_heliyon_2024_e38681 crossref_primary_10_3390_math10173159 crossref_primary_10_1007_s00034_024_02961_2 crossref_primary_10_1016_j_bspc_2023_105447 crossref_primary_10_1155_2022_6836223 crossref_primary_10_1186_s13677_025_00737_w crossref_primary_10_3390_s24206508 crossref_primary_10_1145_3699732 crossref_primary_10_17350_HJSE19030000277 crossref_primary_10_1145_3572915 crossref_primary_10_2478_jsiot_2022_0003 crossref_primary_10_1145_3712259 crossref_primary_10_3390_s22218467 crossref_primary_10_3390_s23073654 |
Cites_doi | 10.1007/s10660-017-9265-8 10.1038/nbt0308-303 10.1007/b95439 10.1016/j.ijpsycho.2012.08.012 10.1016/0013-4694(87)90206-9 10.1007/11848035_70 10.1109/ISSBES.2015.7435922 10.2307/3341257 10.1016/j.neuroimage.2005.12.050 10.1007/11573548 10.1109/ACCESS.2019.2941251 10.1109/TITB.2006.884369 10.1016/S0019-9958(72)90199-4 10.3758/s13428-013-0379-1 10.1016/j.bj.2017.11.001 10.7717/peerj.1746 10.1007/978-3-319-19387-8_288 10.7551/mitpress/1140.001.0001 10.1007/s10862-011-9271-4 10.1007/978-3-642-24571-8_26 10.3390/electronics8091039 10.1038/s41467-019-13055-y 10.1108/JBIM-10-2018-0295 10.1109/TAFFC.2017.2712143 10.1109/ACCESS.2019.2922047 10.1016/j.brainres.2009.08.056 10.3758/BF03192732 10.1007/s11031-019-09780-y 10.1007/s12517-012-0610-x 10.1016/j.neuroimage.2009.02.028 10.1109/TBME.2015.2468589 10.1016/j.eplepsyres.2012.11.003 10.1136/jnnp.57.12.1518 10.3390/ani10081406 10.1109/T-AFFC.2011.15 10.1186/s13634-015-0251-9 10.1007/978-94-017-9130-4 10.1177/070674370705200210 10.1109/TAFFC.2014.2339834 10.1016/0028-3932(85)90081-8 10.1016/S0165-0270(02)00340-0 10.1109/TAMD.2015.2431497 10.1080/00913367.2016.1185982 10.1111/j.1399-6576.2005.00654.x 10.1016/j.paid.2014.01.028 10.3233/BME-130919 10.1109/TBME.2010.2048568 10.1038/s41598-021-86345-5 10.1016/0169-7439(89)80095-4 10.3758/s13428-011-0064-1 |
ContentType | Journal Article |
Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 by the authors. 2021 |
Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 by the authors. 2021 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/s21155135 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE Publicly Available Content Database MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_0121861f1b8f47b4838eca664534945e PMC8348417 34372370 10_3390_s21155135 |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Research Foundation of Korea grantid: 2019R1A2C1089139 |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M CGR CUY CVF ECM EIF NPM PJZUB PPXIY 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c469t-5470332543579bd69f33bc92654f3bce60324248dad83d582cf9377378cfdd93 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:27:13 EDT 2025 Thu Aug 21 18:32:59 EDT 2025 Thu Jul 10 22:45:08 EDT 2025 Fri Jul 25 22:41:40 EDT 2025 Mon Jul 21 05:25:14 EDT 2025 Thu Apr 24 23:08:19 EDT 2025 Tue Jul 01 03:56:17 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Keywords | one-dimensional convolutional neural network (1D-CNN) affective computing support vector machine (SVM) entropy measures emotion recognition multi-layer perceptron (MLP) electroencephalogram (EEG) |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c469t-5470332543579bd69f33bc92654f3bce60324248dad83d582cf9377378cfdd93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-0121-855X 0000-0001-5743-1010 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s21155135 |
PMID | 34372370 |
PQID | 2558928484 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_0121861f1b8f47b4838eca664534945e pubmedcentral_primary_oai_pubmedcentral_nih_gov_8348417 proquest_miscellaneous_2560062237 proquest_journals_2558928484 pubmed_primary_34372370 crossref_primary_10_3390_s21155135 crossref_citationtrail_10_3390_s21155135 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210729 |
PublicationDateYYYYMMDD | 2021-07-29 |
PublicationDate_xml | – month: 7 year: 2021 text: 20210729 day: 29 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2021 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Paschen (ref_6) 2019; 34 Zare (ref_54) 2012; 6 Kiranyaz (ref_55) 2015; 63 ref_14 Belkina (ref_51) 2019; 10 ref_13 ref_10 ref_53 ref_52 Jie (ref_45) 2014; 24 (ref_50) 2008; 26 Maskeliunas (ref_31) 2016; 4 Koelstra (ref_33) 2011; 3 Streiner (ref_56) 2007; 52 Marchewka (ref_35) 2014; 46 Quintana (ref_11) 2012; 86 Tandle (ref_18) 2015; 975 Srinivasan (ref_44) 2007; 11 ref_25 Ellard (ref_37) 2011; 34 Balconi (ref_28) 2009; 1296 Zheng (ref_27) 2015; 7 Jenke (ref_21) 2014; 5 ref_26 Choi (ref_38) 2016; 45 Krishna (ref_8) 2019; 7 St (ref_23) 1989; 6 Rolls (ref_29) 1994; 57 Seitsonen (ref_46) 2005; 49 Tolegenova (ref_41) 2014; 65 Zheng (ref_1) 2017; 10 Termini (ref_20) 1972; 20 Goshvarpour (ref_12) 2017; 40 Ouyang (ref_42) 2013; 104 Gannouni (ref_48) 2021; 11 Adeli (ref_47) 2003; 123 Alotaiby (ref_22) 2015; 2015 Ball (ref_16) 2009; 46 Homan (ref_30) 1987; 66 Ahern (ref_15) 1985; 23 Lin (ref_17) 2010; 57 Scherer (ref_34) 2011; 43 Mikels (ref_39) 2005; 37 Isajiw (ref_49) 1993; 18 Zhou (ref_4) 2017; 18 ref_43 ref_40 ref_3 ref_2 Zhang (ref_19) 2017; 1028 ref_9 Abdi (ref_24) 2010; 3 ref_5 Nguyen (ref_7) 2019; 7 Britton (ref_32) 2006; 31 Tapia (ref_36) 2019; 43 |
References_xml | – volume: 18 start-page: 109 year: 2017 ident: ref_4 article-title: Multi-layer affective computing model based on emotional psychology publication-title: Electron. Commer. Res. doi: 10.1007/s10660-017-9265-8 – volume: 26 start-page: 303 year: 2008 ident: ref_50 article-title: What is principal component analysis? publication-title: Nat. Biotechnol. doi: 10.1038/nbt0308-303 – ident: ref_53 doi: 10.1007/b95439 – volume: 86 start-page: 168 year: 2012 ident: ref_11 article-title: Heart rate variability is associated with emotion recognition: Direct evidence for a relationship between the autonomic nervous system and social cognition publication-title: Int. J. Psychophysiol. doi: 10.1016/j.ijpsycho.2012.08.012 – ident: ref_26 – volume: 66 start-page: 376 year: 1987 ident: ref_30 article-title: Cerebral location of international 10–20 system electrode placement publication-title: Electroencephalogr. Clin. Neurophysiol. doi: 10.1016/0013-4694(87)90206-9 – ident: ref_13 doi: 10.1007/11848035_70 – volume: 1028 start-page: 39 year: 2017 ident: ref_19 article-title: Entropy for the Complexity of Physiological Signal Dynamics publication-title: Healthc. Big Data Manag. – ident: ref_43 doi: 10.1109/ISSBES.2015.7435922 – volume: 18 start-page: 177 year: 1993 ident: ref_49 article-title: Ethnic Identity and Social Mobility: A Test of the ‘Drawback Model’ publication-title: Can. J. Sociol. Cah. Can. Sociol. doi: 10.2307/3341257 – volume: 31 start-page: 906 year: 2006 ident: ref_32 article-title: Facial expressions and complex IAPS pictures: Common and differential networks publication-title: NeuroImage doi: 10.1016/j.neuroimage.2005.12.050 – ident: ref_5 doi: 10.1007/11573548 – volume: 7 start-page: 133227 year: 2019 ident: ref_7 article-title: Negative News Recognition during Social Media News Consumption Using EEG publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2941251 – volume: 975 start-page: 8887 year: 2015 ident: ref_18 article-title: Classification of artefacts in EEG signal recordings and overview of removing techniques publication-title: Int. J. Comput. Appl. – volume: 11 start-page: 288 year: 2007 ident: ref_44 article-title: Approximate Entropy-Based Epileptic EEG Detection Using Artificial Neural Networks publication-title: IEEE Trans. Inf. Technol. Biomed. doi: 10.1109/TITB.2006.884369 – volume: 20 start-page: 301 year: 1972 ident: ref_20 article-title: A definition of a nonprobabilistic entropy in the setting of fuzzy sets theory publication-title: Inf. Control doi: 10.1016/S0019-9958(72)90199-4 – volume: 46 start-page: 596 year: 2014 ident: ref_35 article-title: The Nencki Affective Picture System (NAPS): Introduction to a novel, standardized, wide-range, high-quality, realistic picture database publication-title: Behav. Res. Methods doi: 10.3758/s13428-013-0379-1 – volume: 40 start-page: 355 year: 2017 ident: ref_12 article-title: An accurate emotion recognition system using ECGand GSR signals and matching pursuit method publication-title: Biomed. J. doi: 10.1016/j.bj.2017.11.001 – volume: 4 start-page: e1746 year: 2016 ident: ref_31 article-title: Consumer grade EEG devices: Are they usable for control tasks? publication-title: PeerJ doi: 10.7717/peerj.1746 – ident: ref_40 doi: 10.1007/978-3-319-19387-8_288 – ident: ref_3 doi: 10.7551/mitpress/1140.001.0001 – volume: 34 start-page: 232 year: 2011 ident: ref_37 article-title: Relative Effectiveness of Emotion Induction Procedures and the Role of Personal Relevance in a Clinical Sample: A Comparison of Film, Images, and Music publication-title: J. Psychopathol. Behav. Assess. doi: 10.1007/s10862-011-9271-4 – ident: ref_10 – ident: ref_14 doi: 10.1007/978-3-642-24571-8_26 – ident: ref_9 doi: 10.3390/electronics8091039 – volume: 10 start-page: 1 year: 2019 ident: ref_51 article-title: Automated optimized parameters for T-distributed stochastic neighbor embedding improve visualization and analysis of large datasets publication-title: Nat. Commun. doi: 10.1038/s41467-019-13055-y – volume: 34 start-page: 1410 year: 2019 ident: ref_6 article-title: Artificial intelligence (AI) and its implications for market knowledge in B2B marketing publication-title: J. Bus. Ind. Mark. doi: 10.1108/JBIM-10-2018-0295 – volume: 10 start-page: 417 year: 2017 ident: ref_1 article-title: Identifying Stable Patterns over Time for Emotion Recognition from EEG publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/TAFFC.2017.2712143 – volume: 7 start-page: 77905 year: 2019 ident: ref_8 article-title: An efficient mixture model approach in brain-machine interface systems for extracting the psychological status of mentally impaired persons using EEG signals publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2922047 – volume: 1296 start-page: 72 year: 2009 ident: ref_28 article-title: Appetitive vs. defensive responses to emotional cues. Autonomic measures and brain oscillation modulation publication-title: Brain Res. doi: 10.1016/j.brainres.2009.08.056 – volume: 3 start-page: 1 year: 2010 ident: ref_24 article-title: Tukey’s honestly significant difference (HSD) test publication-title: Encycl. Res. Des. – volume: 37 start-page: 626 year: 2005 ident: ref_39 article-title: Emotional category data on images from the international affective picture system publication-title: Behav. Res. Methods doi: 10.3758/BF03192732 – volume: 43 start-page: 929 year: 2019 ident: ref_36 article-title: EmoMadrid: An emotional pictures database for affect research publication-title: Motiv. Emot. doi: 10.1007/s11031-019-09780-y – volume: 6 start-page: 2873 year: 2012 ident: ref_54 article-title: Landslide susceptibility mapping at Vaz Watershed (Iran) using an artificial neural network model: A comparison between multilayer perceptron (MLP) and radial basic function (RBF) algorithms publication-title: Arab. J. Geosci. doi: 10.1007/s12517-012-0610-x – volume: 46 start-page: 708 year: 2009 ident: ref_16 article-title: Signal quality of simultaneously recorded invasive and non-invasive EEG publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.02.028 – volume: 63 start-page: 664 year: 2015 ident: ref_55 article-title: Real-Time Patient-Specific ECG Classification by 1-D Convolutional Neural Networks publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2015.2468589 – volume: 104 start-page: 246 year: 2013 ident: ref_42 article-title: Dynamic characteristics of absence EEG recordings with multiscale permutation entropy analysis publication-title: Epilepsy Res. doi: 10.1016/j.eplepsyres.2012.11.003 – volume: 57 start-page: 1518 year: 1994 ident: ref_29 article-title: Emotion-related learning in patients with social and emotional changes associated with frontal lobe damage publication-title: J. Neurol. Neurosurg. Psychiatry doi: 10.1136/jnnp.57.12.1518 – ident: ref_52 doi: 10.3390/ani10081406 – volume: 3 start-page: 18 year: 2011 ident: ref_33 article-title: DEAP: A database for amotion analysis; using physiological signals publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/T-AFFC.2011.15 – volume: 2015 start-page: 66 year: 2015 ident: ref_22 article-title: A review of channel selection algorithms for EEG signal processing publication-title: EURASIP J. Adv. Signal Process. doi: 10.1186/s13634-015-0251-9 – ident: ref_2 doi: 10.1007/978-94-017-9130-4 – volume: 52 start-page: 121 year: 2007 ident: ref_56 article-title: What’s under the ROC? An introduction to receiver operating characteristics curves publication-title: Can. J. Psychiatry doi: 10.1177/070674370705200210 – volume: 5 start-page: 327 year: 2014 ident: ref_21 article-title: Feature Extraction and Selection for Emotion Recognition from EEG publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/TAFFC.2014.2339834 – volume: 23 start-page: 745 year: 1985 ident: ref_15 article-title: Differential lateralization for positive and negative emotion in the human brain: EEG spectral analysis publication-title: Neuropsychologia doi: 10.1016/0028-3932(85)90081-8 – volume: 123 start-page: 69 year: 2003 ident: ref_47 article-title: Analysis of EEG records in an epileptic patient using wavelet transform publication-title: J. Neurosci. Methods doi: 10.1016/S0165-0270(02)00340-0 – ident: ref_25 – volume: 7 start-page: 162 year: 2015 ident: ref_27 article-title: Investiating Critical Frequency Bands and Channels for EEG-Based Emotion Recognition publication-title: IEEE Trans. Auton. Ment. Dev. doi: 10.1109/TAMD.2015.2431497 – volume: 45 start-page: 417 year: 2016 ident: ref_38 article-title: Do Cold Images Cause Cold-Heartedness? The Impact of Visual Stimuli on the Effectiveness of Negative Emotional Charity Appeals publication-title: J. Advert. doi: 10.1080/00913367.2016.1185982 – volume: 49 start-page: 284 year: 2005 ident: ref_46 article-title: EEG spectral entropy, heart rate, photoplethysmography and motor responses to skin incision during sevoflurane anaesthesia publication-title: Acta Anaesthesiol. Scand. doi: 10.1111/j.1399-6576.2005.00654.x – volume: 65 start-page: 75 year: 2014 ident: ref_41 article-title: Trait meta-mood, gender and EEG response during emotion-regulation publication-title: Personal. Individ. Differ. doi: 10.1016/j.paid.2014.01.028 – volume: 24 start-page: 1185 year: 2014 ident: ref_45 article-title: Emotion recognition based on the sample entropy of EEG publication-title: Bio-Med. Mater. Eng. doi: 10.3233/BME-130919 – volume: 57 start-page: 1798 year: 2010 ident: ref_17 article-title: EEG-Based Emotion Recognition in Music Listening publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2010.2048568 – volume: 11 start-page: 1 year: 2021 ident: ref_48 article-title: Emotion detection using electroencephalography signals and a zero-time windowing-based epoch estimation and relevant electrode identification publication-title: Sci. Rep. doi: 10.1038/s41598-021-86345-5 – volume: 6 start-page: 259 year: 1989 ident: ref_23 article-title: Analysis of variance (ANOVA) publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/0169-7439(89)80095-4 – volume: 43 start-page: 468 year: 2011 ident: ref_34 article-title: The Geneva affective picture database (GAPED): A new 730-picture database focusing on valence and normative significance publication-title: Behav. Res. Methods doi: 10.3758/s13428-011-0064-1 |
SSID | ssj0023338 |
Score | 2.4860144 |
Snippet | In this research, we develop an affective computing method based on machine learning for emotion recognition using a wireless protocol and a wearable... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 5135 |
SubjectTerms | affective computing Brain research Datasets Electrodes electroencephalogram (EEG) Electroencephalography emotion recognition Emotions entropy measures Experiments Humans Machine Learning multi-layer perceptron (MLP) Neural Networks, Computer Physiology Principal components analysis Skin Social networks Software Support Vector Machine support vector machine (SVM) Variance analysis Wavelet transforms |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB4hTuVQ0QIllCIXceBikY2fOUK7FCEtBx4Sp0aOH4C0ylZl-f-dSbLRboXEhZtljxTHM_bMJ4-_AThyPiafdEINFIHLwilee-V5YdEZGBGsd_TeeXKlL-7k5b26Xyr1RTlhHT1wt3AnxDlm9SiNapukqaUVNnqntVRErKIinb7o8xZgqodaApFXxyMkENSfPCPMoUomasX7tCT9r0WW_ydILnmc80342IeK7LSb4idYi81n2FgiENyC36dtOgaeWKwrz4C9bNawSZsiGVnPnvrAz9BZBTbuavaw60XWELbbnAHm2E2cJj5xIbLx-Bf7GekE2Ybb8_HtjwveV0zgHmHunCuJG1jQ-3ZlyjroMglR-7LQSiZsRJ1T_CRtcMGKoGzhE4YnRhjrUwil2IH1ZtbEXWC19z6PwSpriN9m5HKdlAvKmBQSxlwZHC8WsvI9mzgVtZhWiCpozathzTM4HET_dBQarwmdkTYGAWK9bjvQFqreFqq3bCGD_YUuq34rPleImWyJTtjKDL4Pw7iJ6GbENXH2QjKaHpMWwmTwpVP9MBNBN5vC5BmYFaNYmerqSPP02BJ1W4FfHZm99_i3r_ChoHSa3PCi3If1-d-X-A3joXl90Jr-PzdMBro priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BucAB8SalIIM4cLGajZ85oRa2VEjLAYq0JyLHj4JUJW13-_-ZSbxpF1XcLGekWB7PeMb-_A3Ae-dj8kkn1EAVuKyc4q1XnlcWNwMjgvWO3jsvvunjn_LrUi3zgdsqwyo3PnFw1KH3dEa-j6GvrdGXWvnx_IJT1Si6Xc0lNO7CPaIuI0iXWV4nXALzr5FNSGBqv7_CZIfqmaitPWig6r8tvvwXJnlj3zl6BA9zwMgORg0_hjuxewIPbtAIPoVfBwMoA_0WG4s0YC_rO7YYgJKRZQ7VU36IW1Zg87FyD_u-wQ5he0AOMMd-xLPEFy5ENp9_YZ8j-ZFncHI0P_l0zHPdBO4x2V1zJdGMBb1yV6Zug66TEK2vK61kwkbUJUVR0gYXrAjKVj5hkGKEsT6FUIvnsNP1XXwJrPXelzFYZQ2x3MxcqZNyQRmTQsLIq4APm4lsfOYUp9IWZw3mFjTnzTTnBbybRM9HIo3bhA5JG5MAcV8PHf3laZNNqSEWOqtnadbaJE0rrbDRO62lIqodFQvY2-iyyQa5aq6XTwFvp89oSnQ_4rrYX5GMpiellTAFvBhVP41E0P2mMGUBZmtRbA11-0v35_dA120F_nVmdv8_rFdwvyK4TGl4Ve_BzvryKr7GeGfdvhkW9V-dKP-g priority: 102 providerName: ProQuest |
Title | Affective Computing on Machine Learning-Based Emotion Recognition Using a Self-Made EEG Device |
URI | https://www.ncbi.nlm.nih.gov/pubmed/34372370 https://www.proquest.com/docview/2558928484 https://www.proquest.com/docview/2560062237 https://pubmed.ncbi.nlm.nih.gov/PMC8348417 https://doaj.org/article/0121861f1b8f47b4838eca664534945e |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB71IaFyQDyLoUQL4sDFkHifPiDUgNMKKRUqrZQTlr2PghQ5bZpK8O-Z8UsJyomLtdody6uZnZ0Z7-w3AG8L64MNKqAEEheLpJBxaaWNE4PGQHNnbEH3nadn6vRSfJ3J2Q50NTZbBt5uDe2ontTlcv7-982fT6jwHynixJD9wy0GMVSnRO7CPhokTfo5Ff1hQsIxDGtAhTbJD-Aep2MrTpWK16xSDd6_zeP8N3FyzRJNHsKD1oVkx43MH8GOrx7D_TVgwSfw47hO08CdjDVlG7CXLSo2rVMnPWtRVa_iMRoxx7Kmlg8777KJsF3nErCCfffzEE8L51mWnbAvnnaWp3AxyS4-n8ZtJYXYYvi7iqVAxeZ0713qtHQqDZyXNk2UFAEbXg3JrxLGFc5wJ01iA7otmmtjg3MpfwZ71aLyz4GV1tqhd0YaTbg3o2Kogiyc1Dq4gL5YBO86Rua2RRmnYhfzHKMNYn_esz-CNz3pdQOtsY1oTNLoCQgNu-5YLK_yVrlywqUzahRGpQlCl8Jw422hlJAEviN9BEedLPNuheUYS5kUjbMREbzuh1G56MSkqPzijmgUXTLFFRLBYSP6fibd0olAbyyKjalujlS_ftYA3objV0f6xX-_-RIOEsqtGeo4SY9gb7W886_QOVqVA9jVM41PMzkZwP44O_t2Pqh_NAxqpfgL3B0Sow |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqcgAOiHcDBQwCiYvVrB0_ckCopVu2tNsDLNKeiBw_ClKVlO5WiB_Ff2Qmr3ZRxa03yx4plucdj78h5LV1IbqoInCAe5ZxK1nppGPcgDPQwhtn8b3z9EhNvmaf5nK-Rv70b2GwrLK3iY2h9rXDf-RbEPqaHGypyd6f_mTYNQpvV_sWGq1YHITfvyBlW7zb3wX-vuF8bzz7MGFdVwHmIBVcMpmBkAt8Ay51XnqVRyFKl3MlswiDoFKMMTLjrTfCS8NdBBeuhTYueo_YS2Dxb4DfTVGh9PwivxOQ7rXgRULk6dYCcitsnyJXXF7TGeCqcPbfqsxLbm7vLrnTxad0uxWoe2QtVPfJ7UuohQ_It-2mBgTMJG17QsAsrSs6beoyA-0gW4_ZDnhIT8dtoyD6uS9VgnFTqEAt_RJOIptaH-h4_JHuBjRbD8nsOg70EVmv6ipsEFo659LgjTQaQXVGNlVRWi-1jj5CoJeQt_1BFq6DMMdOGicFpDJ45sVw5gl5NZCetrgdVxHtIDcGAoTabibqs-Oi09wCQe-MGsVRaWKmy8wIE5xVKpOI7CNDQjZ7Xhad_i-KC2lNyMthGTQXr2NsFepzpFH4gpULnZDHLeuHnQi8ThU6TYheEYqVra6uVD--N-jgRsBXR_rJ_7f1gtyczKaHxeH-0cFTcotjpU6qGc83yfry7Dw8g1BrWT5vBJyS4poV6i-hfjpO |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1baxQxFA6lguiDeHdq1SgKvgw7k0wu8yDSuru21i2iFfapQyaXKpSZtrtF_Gn-O8-ZW7tSfOtbSA5MyLlPTr5DyGtjfbBBBuAAc3HGjIhLK2zMNDgDxZ22Bt87z_blzvfs01zM18if_i0MllX2NrEx1K62-I98BKGvzsGW6mwUurKIL-Pp-5PTGDtI4U1r306jFZE9__sXpG-Ld7tj4PUbxqaTgw87cddhILaQFi5jkYHAc3wPLlReOpkHzkubMymyAAMvE4w3Mu2M09wJzWwAd6640jY4hzhMYP1vKC5SVDE1v8j1OKR-LZAR53kyWkCeha1UxIr7a7oEXBXa_luhecnlTe-SO12sSrda4bpH1nx1n9y-hGD4gBxuNfUgYDJp2x8CZmld0VlTo-lpB996FG-Dt3R00jYNol_7siUYN0UL1NBv_jjEM-M8nUw-0rFHE_aQHFzHgT4i61Vd-SeEltbaxDsttEKAndQkMgjjhFLBBQj6IvK2P8jCdnDm2FXjuIC0Bs-8GM48Iq8G0pMWw-Mqom3kxkCAsNvNRH12VHRaXCAAnpZpSEsdMlVmmmtvjZSZQJQf4SOy2fOy6GzBoriQ3Ii8HJZBi_FqxlS-Pkcaia9ZGVcRedyyftgJx6tVrpKIqBWhWNnq6kr180eDFK45fDVVG__f1gtyE1Sp-Ly7v_eU3GJYtJOomOWbZH15du6fQdS1LJ838k1Jcc369BdCwj6E |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Affective+Computing+on+Machine+Learning-Based+Emotion+Recognition+Using+a+Self-Made+EEG+Device&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Mai%2C+Ngoc-Dau&rft.au=Lee%2C+Boon-Giin&rft.au=Chung%2C+Wan-Young&rft.date=2021-07-29&rft.pub=MDPI&rft.eissn=1424-8220&rft.volume=21&rft.issue=15&rft_id=info:doi/10.3390%2Fs21155135&rft_id=info%3Apmid%2F34372370&rft.externalDocID=PMC8348417 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |