Affective Computing on Machine Learning-Based Emotion Recognition Using a Self-Made EEG Device

In this research, we develop an affective computing method based on machine learning for emotion recognition using a wireless protocol and a wearable electroencephalography (EEG) custom-designed device. The system collects EEG signals using an eight-electrode placement on the scalp; two of these ele...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 21; no. 15; p. 5135
Main Authors Mai, Ngoc-Dau, Lee, Boon-Giin, Chung, Wan-Young
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 29.07.2021
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this research, we develop an affective computing method based on machine learning for emotion recognition using a wireless protocol and a wearable electroencephalography (EEG) custom-designed device. The system collects EEG signals using an eight-electrode placement on the scalp; two of these electrodes were placed in the frontal lobe, and the other six electrodes were placed in the temporal lobe. We performed experiments on eight subjects while they watched emotive videos. Six entropy measures were employed for extracting suitable features from the EEG signals. Next, we evaluated our proposed models using three popular classifiers: a support vector machine (SVM), multi-layer perceptron (MLP), and one-dimensional convolutional neural network (1D-CNN) for emotion classification; both subject-dependent and subject-independent strategies were used. Our experiment results showed that the highest average accuracies achieved in the subject-dependent and subject-independent cases were 85.81% and 78.52%, respectively; these accuracies were achieved using a combination of the sample entropy measure and 1D-CNN. Moreover, our study investigates the T8 position (above the right ear) in the temporal lobe as the most critical channel among the proposed measurement positions for emotion classification through electrode selection. Our results prove the feasibility and efficiency of our proposed EEG-based affective computing method for emotion recognition in real-world applications.
AbstractList In this research, we develop an affective computing method based on machine learning for emotion recognition using a wireless protocol and a wearable electroencephalography (EEG) custom-designed device. The system collects EEG signals using an eight-electrode placement on the scalp; two of these electrodes were placed in the frontal lobe, and the other six electrodes were placed in the temporal lobe. We performed experiments on eight subjects while they watched emotive videos. Six entropy measures were employed for extracting suitable features from the EEG signals. Next, we evaluated our proposed models using three popular classifiers: a support vector machine (SVM), multi-layer perceptron (MLP), and one-dimensional convolutional neural network (1D-CNN) for emotion classification; both subject-dependent and subject-independent strategies were used. Our experiment results showed that the highest average accuracies achieved in the subject-dependent and subject-independent cases were 85.81% and 78.52%, respectively; these accuracies were achieved using a combination of the sample entropy measure and 1D-CNN. Moreover, our study investigates the T8 position (above the right ear) in the temporal lobe as the most critical channel among the proposed measurement positions for emotion classification through electrode selection. Our results prove the feasibility and efficiency of our proposed EEG-based affective computing method for emotion recognition in real-world applications.
In this research, we develop an affective computing method based on machine learning for emotion recognition using a wireless protocol and a wearable electroencephalography (EEG) custom-designed device. The system collects EEG signals using an eight-electrode placement on the scalp; two of these electrodes were placed in the frontal lobe, and the other six electrodes were placed in the temporal lobe. We performed experiments on eight subjects while they watched emotive videos. Six entropy measures were employed for extracting suitable features from the EEG signals. Next, we evaluated our proposed models using three popular classifiers: a support vector machine (SVM), multi-layer perceptron (MLP), and one-dimensional convolutional neural network (1D-CNN) for emotion classification; both subject-dependent and subject-independent strategies were used. Our experiment results showed that the highest average accuracies achieved in the subject-dependent and subject-independent cases were 85.81% and 78.52%, respectively; these accuracies were achieved using a combination of the sample entropy measure and 1D-CNN. Moreover, our study investigates the T8 position (above the right ear) in the temporal lobe as the most critical channel among the proposed measurement positions for emotion classification through electrode selection. Our results prove the feasibility and efficiency of our proposed EEG-based affective computing method for emotion recognition in real-world applications.In this research, we develop an affective computing method based on machine learning for emotion recognition using a wireless protocol and a wearable electroencephalography (EEG) custom-designed device. The system collects EEG signals using an eight-electrode placement on the scalp; two of these electrodes were placed in the frontal lobe, and the other six electrodes were placed in the temporal lobe. We performed experiments on eight subjects while they watched emotive videos. Six entropy measures were employed for extracting suitable features from the EEG signals. Next, we evaluated our proposed models using three popular classifiers: a support vector machine (SVM), multi-layer perceptron (MLP), and one-dimensional convolutional neural network (1D-CNN) for emotion classification; both subject-dependent and subject-independent strategies were used. Our experiment results showed that the highest average accuracies achieved in the subject-dependent and subject-independent cases were 85.81% and 78.52%, respectively; these accuracies were achieved using a combination of the sample entropy measure and 1D-CNN. Moreover, our study investigates the T8 position (above the right ear) in the temporal lobe as the most critical channel among the proposed measurement positions for emotion classification through electrode selection. Our results prove the feasibility and efficiency of our proposed EEG-based affective computing method for emotion recognition in real-world applications.
Author Lee, Boon-Giin
Chung, Wan-Young
Mai, Ngoc-Dau
AuthorAffiliation 2 School of Computer Science, The University of Nottingham Ningbo China, Ningbo 315100, China; boon-giin.lee@nottingham.edu.cn
1 Department of Artificial Intelligence Convergence, Pukyong National University, Busan 48513, Korea; ngocdaumai95@pukyong.ac.kr
AuthorAffiliation_xml – name: 1 Department of Artificial Intelligence Convergence, Pukyong National University, Busan 48513, Korea; ngocdaumai95@pukyong.ac.kr
– name: 2 School of Computer Science, The University of Nottingham Ningbo China, Ningbo 315100, China; boon-giin.lee@nottingham.edu.cn
Author_xml – sequence: 1
  givenname: Ngoc-Dau
  surname: Mai
  fullname: Mai, Ngoc-Dau
– sequence: 2
  givenname: Boon-Giin
  orcidid: 0000-0001-5743-1010
  surname: Lee
  fullname: Lee, Boon-Giin
– sequence: 3
  givenname: Wan-Young
  orcidid: 0000-0002-0121-855X
  surname: Chung
  fullname: Chung, Wan-Young
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34372370$$D View this record in MEDLINE/PubMed
BookMark eNptkk1v1DAQhiNURD_gwB9AkbjAIdT22IlzQSrLUipthQTliuU4461XWXuxk5X493i7ZdVWnGY088yr-TotjnzwWBSvKfkA0JLzxCgVgoJ4VpxQznglGSNHD_zj4jSlFSEMAOSL4hg4NAwaclL8urAWzei2WM7CejONzi_L4MtrbW6dx3KBOvocqz7phH05X4fR5fR3NGHp3Z3_M-1qdPkDB1td6x7L-fyy_IxbZ_Bl8dzqIeGre3tW3HyZ38y-Votvl1ezi0VleN2OleANAWCCg2jarq9bC9CZltWC2-xgTYDlWWSvewm9kMzYFpoGGmls37dwVlztZfugV2oT3VrHPypop-4CIS6VjqMzAypCGZU1tbSTljcdlyDR6LrmAnjLBWatj3utzdStsTfox6iHR6KPM97dqmXYKglcctpkgXf3AjH8njCNau2SwWHQHsOUFBM1ITXL-8_o2yfoKkzR501lSsiWySyZqTcPOzq08u-KGXi_B0wMKUW0B4QStfsQdfiQzJ4_YY0b9e6QeRg3_KfiL77VuWQ
CitedBy_id crossref_primary_10_1016_j_bspc_2025_107674
crossref_primary_10_3390_app13084896
crossref_primary_10_1016_j_heliyon_2024_e38681
crossref_primary_10_3390_math10173159
crossref_primary_10_1007_s00034_024_02961_2
crossref_primary_10_1016_j_bspc_2023_105447
crossref_primary_10_1155_2022_6836223
crossref_primary_10_1186_s13677_025_00737_w
crossref_primary_10_3390_s24206508
crossref_primary_10_1145_3699732
crossref_primary_10_17350_HJSE19030000277
crossref_primary_10_1145_3572915
crossref_primary_10_2478_jsiot_2022_0003
crossref_primary_10_1145_3712259
crossref_primary_10_3390_s22218467
crossref_primary_10_3390_s23073654
Cites_doi 10.1007/s10660-017-9265-8
10.1038/nbt0308-303
10.1007/b95439
10.1016/j.ijpsycho.2012.08.012
10.1016/0013-4694(87)90206-9
10.1007/11848035_70
10.1109/ISSBES.2015.7435922
10.2307/3341257
10.1016/j.neuroimage.2005.12.050
10.1007/11573548
10.1109/ACCESS.2019.2941251
10.1109/TITB.2006.884369
10.1016/S0019-9958(72)90199-4
10.3758/s13428-013-0379-1
10.1016/j.bj.2017.11.001
10.7717/peerj.1746
10.1007/978-3-319-19387-8_288
10.7551/mitpress/1140.001.0001
10.1007/s10862-011-9271-4
10.1007/978-3-642-24571-8_26
10.3390/electronics8091039
10.1038/s41467-019-13055-y
10.1108/JBIM-10-2018-0295
10.1109/TAFFC.2017.2712143
10.1109/ACCESS.2019.2922047
10.1016/j.brainres.2009.08.056
10.3758/BF03192732
10.1007/s11031-019-09780-y
10.1007/s12517-012-0610-x
10.1016/j.neuroimage.2009.02.028
10.1109/TBME.2015.2468589
10.1016/j.eplepsyres.2012.11.003
10.1136/jnnp.57.12.1518
10.3390/ani10081406
10.1109/T-AFFC.2011.15
10.1186/s13634-015-0251-9
10.1007/978-94-017-9130-4
10.1177/070674370705200210
10.1109/TAFFC.2014.2339834
10.1016/0028-3932(85)90081-8
10.1016/S0165-0270(02)00340-0
10.1109/TAMD.2015.2431497
10.1080/00913367.2016.1185982
10.1111/j.1399-6576.2005.00654.x
10.1016/j.paid.2014.01.028
10.3233/BME-130919
10.1109/TBME.2010.2048568
10.1038/s41598-021-86345-5
10.1016/0169-7439(89)80095-4
10.3758/s13428-011-0064-1
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 by the authors. 2021
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s21155135
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE

Publicly Available Content Database

MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_0121861f1b8f47b4838eca664534945e
PMC8348417
34372370
10_3390_s21155135
Genre Journal Article
GrantInformation_xml – fundername: National Research Foundation of Korea
  grantid: 2019R1A2C1089139
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c469t-5470332543579bd69f33bc92654f3bce60324248dad83d582cf9377378cfdd93
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:27:13 EDT 2025
Thu Aug 21 18:32:59 EDT 2025
Thu Jul 10 22:45:08 EDT 2025
Fri Jul 25 22:41:40 EDT 2025
Mon Jul 21 05:25:14 EDT 2025
Thu Apr 24 23:08:19 EDT 2025
Tue Jul 01 03:56:17 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Keywords one-dimensional convolutional neural network (1D-CNN)
affective computing
support vector machine (SVM)
entropy measures
emotion recognition
multi-layer perceptron (MLP)
electroencephalogram (EEG)
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c469t-5470332543579bd69f33bc92654f3bce60324248dad83d582cf9377378cfdd93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0121-855X
0000-0001-5743-1010
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s21155135
PMID 34372370
PQID 2558928484
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_0121861f1b8f47b4838eca664534945e
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8348417
proquest_miscellaneous_2560062237
proquest_journals_2558928484
pubmed_primary_34372370
crossref_primary_10_3390_s21155135
crossref_citationtrail_10_3390_s21155135
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210729
PublicationDateYYYYMMDD 2021-07-29
PublicationDate_xml – month: 7
  year: 2021
  text: 20210729
  day: 29
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2021
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Paschen (ref_6) 2019; 34
Zare (ref_54) 2012; 6
Kiranyaz (ref_55) 2015; 63
ref_14
Belkina (ref_51) 2019; 10
ref_13
ref_10
ref_53
ref_52
Jie (ref_45) 2014; 24
(ref_50) 2008; 26
Maskeliunas (ref_31) 2016; 4
Koelstra (ref_33) 2011; 3
Streiner (ref_56) 2007; 52
Marchewka (ref_35) 2014; 46
Quintana (ref_11) 2012; 86
Tandle (ref_18) 2015; 975
Srinivasan (ref_44) 2007; 11
ref_25
Ellard (ref_37) 2011; 34
Balconi (ref_28) 2009; 1296
Zheng (ref_27) 2015; 7
Jenke (ref_21) 2014; 5
ref_26
Choi (ref_38) 2016; 45
Krishna (ref_8) 2019; 7
St (ref_23) 1989; 6
Rolls (ref_29) 1994; 57
Seitsonen (ref_46) 2005; 49
Tolegenova (ref_41) 2014; 65
Zheng (ref_1) 2017; 10
Termini (ref_20) 1972; 20
Goshvarpour (ref_12) 2017; 40
Ouyang (ref_42) 2013; 104
Gannouni (ref_48) 2021; 11
Adeli (ref_47) 2003; 123
Alotaiby (ref_22) 2015; 2015
Ball (ref_16) 2009; 46
Homan (ref_30) 1987; 66
Ahern (ref_15) 1985; 23
Lin (ref_17) 2010; 57
Scherer (ref_34) 2011; 43
Mikels (ref_39) 2005; 37
Isajiw (ref_49) 1993; 18
Zhou (ref_4) 2017; 18
ref_43
ref_40
ref_3
ref_2
Zhang (ref_19) 2017; 1028
ref_9
Abdi (ref_24) 2010; 3
ref_5
Nguyen (ref_7) 2019; 7
Britton (ref_32) 2006; 31
Tapia (ref_36) 2019; 43
References_xml – volume: 18
  start-page: 109
  year: 2017
  ident: ref_4
  article-title: Multi-layer affective computing model based on emotional psychology
  publication-title: Electron. Commer. Res.
  doi: 10.1007/s10660-017-9265-8
– volume: 26
  start-page: 303
  year: 2008
  ident: ref_50
  article-title: What is principal component analysis?
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt0308-303
– ident: ref_53
  doi: 10.1007/b95439
– volume: 86
  start-page: 168
  year: 2012
  ident: ref_11
  article-title: Heart rate variability is associated with emotion recognition: Direct evidence for a relationship between the autonomic nervous system and social cognition
  publication-title: Int. J. Psychophysiol.
  doi: 10.1016/j.ijpsycho.2012.08.012
– ident: ref_26
– volume: 66
  start-page: 376
  year: 1987
  ident: ref_30
  article-title: Cerebral location of international 10–20 system electrode placement
  publication-title: Electroencephalogr. Clin. Neurophysiol.
  doi: 10.1016/0013-4694(87)90206-9
– ident: ref_13
  doi: 10.1007/11848035_70
– volume: 1028
  start-page: 39
  year: 2017
  ident: ref_19
  article-title: Entropy for the Complexity of Physiological Signal Dynamics
  publication-title: Healthc. Big Data Manag.
– ident: ref_43
  doi: 10.1109/ISSBES.2015.7435922
– volume: 18
  start-page: 177
  year: 1993
  ident: ref_49
  article-title: Ethnic Identity and Social Mobility: A Test of the ‘Drawback Model’
  publication-title: Can. J. Sociol. Cah. Can. Sociol.
  doi: 10.2307/3341257
– volume: 31
  start-page: 906
  year: 2006
  ident: ref_32
  article-title: Facial expressions and complex IAPS pictures: Common and differential networks
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2005.12.050
– ident: ref_5
  doi: 10.1007/11573548
– volume: 7
  start-page: 133227
  year: 2019
  ident: ref_7
  article-title: Negative News Recognition during Social Media News Consumption Using EEG
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2941251
– volume: 975
  start-page: 8887
  year: 2015
  ident: ref_18
  article-title: Classification of artefacts in EEG signal recordings and overview of removing techniques
  publication-title: Int. J. Comput. Appl.
– volume: 11
  start-page: 288
  year: 2007
  ident: ref_44
  article-title: Approximate Entropy-Based Epileptic EEG Detection Using Artificial Neural Networks
  publication-title: IEEE Trans. Inf. Technol. Biomed.
  doi: 10.1109/TITB.2006.884369
– volume: 20
  start-page: 301
  year: 1972
  ident: ref_20
  article-title: A definition of a nonprobabilistic entropy in the setting of fuzzy sets theory
  publication-title: Inf. Control
  doi: 10.1016/S0019-9958(72)90199-4
– volume: 46
  start-page: 596
  year: 2014
  ident: ref_35
  article-title: The Nencki Affective Picture System (NAPS): Introduction to a novel, standardized, wide-range, high-quality, realistic picture database
  publication-title: Behav. Res. Methods
  doi: 10.3758/s13428-013-0379-1
– volume: 40
  start-page: 355
  year: 2017
  ident: ref_12
  article-title: An accurate emotion recognition system using ECGand GSR signals and matching pursuit method
  publication-title: Biomed. J.
  doi: 10.1016/j.bj.2017.11.001
– volume: 4
  start-page: e1746
  year: 2016
  ident: ref_31
  article-title: Consumer grade EEG devices: Are they usable for control tasks?
  publication-title: PeerJ
  doi: 10.7717/peerj.1746
– ident: ref_40
  doi: 10.1007/978-3-319-19387-8_288
– ident: ref_3
  doi: 10.7551/mitpress/1140.001.0001
– volume: 34
  start-page: 232
  year: 2011
  ident: ref_37
  article-title: Relative Effectiveness of Emotion Induction Procedures and the Role of Personal Relevance in a Clinical Sample: A Comparison of Film, Images, and Music
  publication-title: J. Psychopathol. Behav. Assess.
  doi: 10.1007/s10862-011-9271-4
– ident: ref_10
– ident: ref_14
  doi: 10.1007/978-3-642-24571-8_26
– ident: ref_9
  doi: 10.3390/electronics8091039
– volume: 10
  start-page: 1
  year: 2019
  ident: ref_51
  article-title: Automated optimized parameters for T-distributed stochastic neighbor embedding improve visualization and analysis of large datasets
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-13055-y
– volume: 34
  start-page: 1410
  year: 2019
  ident: ref_6
  article-title: Artificial intelligence (AI) and its implications for market knowledge in B2B marketing
  publication-title: J. Bus. Ind. Mark.
  doi: 10.1108/JBIM-10-2018-0295
– volume: 10
  start-page: 417
  year: 2017
  ident: ref_1
  article-title: Identifying Stable Patterns over Time for Emotion Recognition from EEG
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/TAFFC.2017.2712143
– volume: 7
  start-page: 77905
  year: 2019
  ident: ref_8
  article-title: An efficient mixture model approach in brain-machine interface systems for extracting the psychological status of mentally impaired persons using EEG signals
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2922047
– volume: 1296
  start-page: 72
  year: 2009
  ident: ref_28
  article-title: Appetitive vs. defensive responses to emotional cues. Autonomic measures and brain oscillation modulation
  publication-title: Brain Res.
  doi: 10.1016/j.brainres.2009.08.056
– volume: 3
  start-page: 1
  year: 2010
  ident: ref_24
  article-title: Tukey’s honestly significant difference (HSD) test
  publication-title: Encycl. Res. Des.
– volume: 37
  start-page: 626
  year: 2005
  ident: ref_39
  article-title: Emotional category data on images from the international affective picture system
  publication-title: Behav. Res. Methods
  doi: 10.3758/BF03192732
– volume: 43
  start-page: 929
  year: 2019
  ident: ref_36
  article-title: EmoMadrid: An emotional pictures database for affect research
  publication-title: Motiv. Emot.
  doi: 10.1007/s11031-019-09780-y
– volume: 6
  start-page: 2873
  year: 2012
  ident: ref_54
  article-title: Landslide susceptibility mapping at Vaz Watershed (Iran) using an artificial neural network model: A comparison between multilayer perceptron (MLP) and radial basic function (RBF) algorithms
  publication-title: Arab. J. Geosci.
  doi: 10.1007/s12517-012-0610-x
– volume: 46
  start-page: 708
  year: 2009
  ident: ref_16
  article-title: Signal quality of simultaneously recorded invasive and non-invasive EEG
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.02.028
– volume: 63
  start-page: 664
  year: 2015
  ident: ref_55
  article-title: Real-Time Patient-Specific ECG Classification by 1-D Convolutional Neural Networks
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2015.2468589
– volume: 104
  start-page: 246
  year: 2013
  ident: ref_42
  article-title: Dynamic characteristics of absence EEG recordings with multiscale permutation entropy analysis
  publication-title: Epilepsy Res.
  doi: 10.1016/j.eplepsyres.2012.11.003
– volume: 57
  start-page: 1518
  year: 1994
  ident: ref_29
  article-title: Emotion-related learning in patients with social and emotional changes associated with frontal lobe damage
  publication-title: J. Neurol. Neurosurg. Psychiatry
  doi: 10.1136/jnnp.57.12.1518
– ident: ref_52
  doi: 10.3390/ani10081406
– volume: 3
  start-page: 18
  year: 2011
  ident: ref_33
  article-title: DEAP: A database for amotion analysis; using physiological signals
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/T-AFFC.2011.15
– volume: 2015
  start-page: 66
  year: 2015
  ident: ref_22
  article-title: A review of channel selection algorithms for EEG signal processing
  publication-title: EURASIP J. Adv. Signal Process.
  doi: 10.1186/s13634-015-0251-9
– ident: ref_2
  doi: 10.1007/978-94-017-9130-4
– volume: 52
  start-page: 121
  year: 2007
  ident: ref_56
  article-title: What’s under the ROC? An introduction to receiver operating characteristics curves
  publication-title: Can. J. Psychiatry
  doi: 10.1177/070674370705200210
– volume: 5
  start-page: 327
  year: 2014
  ident: ref_21
  article-title: Feature Extraction and Selection for Emotion Recognition from EEG
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/TAFFC.2014.2339834
– volume: 23
  start-page: 745
  year: 1985
  ident: ref_15
  article-title: Differential lateralization for positive and negative emotion in the human brain: EEG spectral analysis
  publication-title: Neuropsychologia
  doi: 10.1016/0028-3932(85)90081-8
– volume: 123
  start-page: 69
  year: 2003
  ident: ref_47
  article-title: Analysis of EEG records in an epileptic patient using wavelet transform
  publication-title: J. Neurosci. Methods
  doi: 10.1016/S0165-0270(02)00340-0
– ident: ref_25
– volume: 7
  start-page: 162
  year: 2015
  ident: ref_27
  article-title: Investiating Critical Frequency Bands and Channels for EEG-Based Emotion Recognition
  publication-title: IEEE Trans. Auton. Ment. Dev.
  doi: 10.1109/TAMD.2015.2431497
– volume: 45
  start-page: 417
  year: 2016
  ident: ref_38
  article-title: Do Cold Images Cause Cold-Heartedness? The Impact of Visual Stimuli on the Effectiveness of Negative Emotional Charity Appeals
  publication-title: J. Advert.
  doi: 10.1080/00913367.2016.1185982
– volume: 49
  start-page: 284
  year: 2005
  ident: ref_46
  article-title: EEG spectral entropy, heart rate, photoplethysmography and motor responses to skin incision during sevoflurane anaesthesia
  publication-title: Acta Anaesthesiol. Scand.
  doi: 10.1111/j.1399-6576.2005.00654.x
– volume: 65
  start-page: 75
  year: 2014
  ident: ref_41
  article-title: Trait meta-mood, gender and EEG response during emotion-regulation
  publication-title: Personal. Individ. Differ.
  doi: 10.1016/j.paid.2014.01.028
– volume: 24
  start-page: 1185
  year: 2014
  ident: ref_45
  article-title: Emotion recognition based on the sample entropy of EEG
  publication-title: Bio-Med. Mater. Eng.
  doi: 10.3233/BME-130919
– volume: 57
  start-page: 1798
  year: 2010
  ident: ref_17
  article-title: EEG-Based Emotion Recognition in Music Listening
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2010.2048568
– volume: 11
  start-page: 1
  year: 2021
  ident: ref_48
  article-title: Emotion detection using electroencephalography signals and a zero-time windowing-based epoch estimation and relevant electrode identification
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-86345-5
– volume: 6
  start-page: 259
  year: 1989
  ident: ref_23
  article-title: Analysis of variance (ANOVA)
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/0169-7439(89)80095-4
– volume: 43
  start-page: 468
  year: 2011
  ident: ref_34
  article-title: The Geneva affective picture database (GAPED): A new 730-picture database focusing on valence and normative significance
  publication-title: Behav. Res. Methods
  doi: 10.3758/s13428-011-0064-1
SSID ssj0023338
Score 2.4860144
Snippet In this research, we develop an affective computing method based on machine learning for emotion recognition using a wireless protocol and a wearable...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 5135
SubjectTerms affective computing
Brain research
Datasets
Electrodes
electroencephalogram (EEG)
Electroencephalography
emotion recognition
Emotions
entropy measures
Experiments
Humans
Machine Learning
multi-layer perceptron (MLP)
Neural Networks, Computer
Physiology
Principal components analysis
Skin
Social networks
Software
Support Vector Machine
support vector machine (SVM)
Variance analysis
Wavelet transforms
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB4hTuVQ0QIllCIXceBikY2fOUK7FCEtBx4Sp0aOH4C0ylZl-f-dSbLRboXEhZtljxTHM_bMJ4-_AThyPiafdEINFIHLwilee-V5YdEZGBGsd_TeeXKlL-7k5b26Xyr1RTlhHT1wt3AnxDlm9SiNapukqaUVNnqntVRErKIinb7o8xZgqodaApFXxyMkENSfPCPMoUomasX7tCT9r0WW_ydILnmc80342IeK7LSb4idYi81n2FgiENyC36dtOgaeWKwrz4C9bNawSZsiGVnPnvrAz9BZBTbuavaw60XWELbbnAHm2E2cJj5xIbLx-Bf7GekE2Ybb8_HtjwveV0zgHmHunCuJG1jQ-3ZlyjroMglR-7LQSiZsRJ1T_CRtcMGKoGzhE4YnRhjrUwil2IH1ZtbEXWC19z6PwSpriN9m5HKdlAvKmBQSxlwZHC8WsvI9mzgVtZhWiCpozathzTM4HET_dBQarwmdkTYGAWK9bjvQFqreFqq3bCGD_YUuq34rPleImWyJTtjKDL4Pw7iJ6GbENXH2QjKaHpMWwmTwpVP9MBNBN5vC5BmYFaNYmerqSPP02BJ1W4FfHZm99_i3r_ChoHSa3PCi3If1-d-X-A3joXl90Jr-PzdMBro
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BucAB8SalIIM4cLGajZ85oRa2VEjLAYq0JyLHj4JUJW13-_-ZSbxpF1XcLGekWB7PeMb-_A3Ae-dj8kkn1EAVuKyc4q1XnlcWNwMjgvWO3jsvvunjn_LrUi3zgdsqwyo3PnFw1KH3dEa-j6GvrdGXWvnx_IJT1Si6Xc0lNO7CPaIuI0iXWV4nXALzr5FNSGBqv7_CZIfqmaitPWig6r8tvvwXJnlj3zl6BA9zwMgORg0_hjuxewIPbtAIPoVfBwMoA_0WG4s0YC_rO7YYgJKRZQ7VU36IW1Zg87FyD_u-wQ5he0AOMMd-xLPEFy5ENp9_YZ8j-ZFncHI0P_l0zHPdBO4x2V1zJdGMBb1yV6Zug66TEK2vK61kwkbUJUVR0gYXrAjKVj5hkGKEsT6FUIvnsNP1XXwJrPXelzFYZQ2x3MxcqZNyQRmTQsLIq4APm4lsfOYUp9IWZw3mFjTnzTTnBbybRM9HIo3bhA5JG5MAcV8PHf3laZNNqSEWOqtnadbaJE0rrbDRO62lIqodFQvY2-iyyQa5aq6XTwFvp89oSnQ_4rrYX5GMpiellTAFvBhVP41E0P2mMGUBZmtRbA11-0v35_dA120F_nVmdv8_rFdwvyK4TGl4Ve_BzvryKr7GeGfdvhkW9V-dKP-g
  priority: 102
  providerName: ProQuest
Title Affective Computing on Machine Learning-Based Emotion Recognition Using a Self-Made EEG Device
URI https://www.ncbi.nlm.nih.gov/pubmed/34372370
https://www.proquest.com/docview/2558928484
https://www.proquest.com/docview/2560062237
https://pubmed.ncbi.nlm.nih.gov/PMC8348417
https://doaj.org/article/0121861f1b8f47b4838eca664534945e
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB71IaFyQDyLoUQL4sDFkHifPiDUgNMKKRUqrZQTlr2PghQ5bZpK8O-Z8UsJyomLtdody6uZnZ0Z7-w3AG8L64MNKqAEEheLpJBxaaWNE4PGQHNnbEH3nadn6vRSfJ3J2Q50NTZbBt5uDe2ontTlcv7-982fT6jwHynixJD9wy0GMVSnRO7CPhokTfo5Ff1hQsIxDGtAhTbJD-Aep2MrTpWK16xSDd6_zeP8N3FyzRJNHsKD1oVkx43MH8GOrx7D_TVgwSfw47hO08CdjDVlG7CXLSo2rVMnPWtRVa_iMRoxx7Kmlg8777KJsF3nErCCfffzEE8L51mWnbAvnnaWp3AxyS4-n8ZtJYXYYvi7iqVAxeZ0713qtHQqDZyXNk2UFAEbXg3JrxLGFc5wJ01iA7otmmtjg3MpfwZ71aLyz4GV1tqhd0YaTbg3o2Kogiyc1Dq4gL5YBO86Rua2RRmnYhfzHKMNYn_esz-CNz3pdQOtsY1oTNLoCQgNu-5YLK_yVrlywqUzahRGpQlCl8Jw422hlJAEviN9BEedLPNuheUYS5kUjbMREbzuh1G56MSkqPzijmgUXTLFFRLBYSP6fibd0olAbyyKjalujlS_ftYA3objV0f6xX-_-RIOEsqtGeo4SY9gb7W886_QOVqVA9jVM41PMzkZwP44O_t2Pqh_NAxqpfgL3B0Sow
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqcgAOiHcDBQwCiYvVrB0_ckCopVu2tNsDLNKeiBw_ClKVlO5WiB_Ff2Qmr3ZRxa03yx4plucdj78h5LV1IbqoInCAe5ZxK1nppGPcgDPQwhtn8b3z9EhNvmaf5nK-Rv70b2GwrLK3iY2h9rXDf-RbEPqaHGypyd6f_mTYNQpvV_sWGq1YHITfvyBlW7zb3wX-vuF8bzz7MGFdVwHmIBVcMpmBkAt8Ay51XnqVRyFKl3MlswiDoFKMMTLjrTfCS8NdBBeuhTYueo_YS2Dxb4DfTVGh9PwivxOQ7rXgRULk6dYCcitsnyJXXF7TGeCqcPbfqsxLbm7vLrnTxad0uxWoe2QtVPfJ7UuohQ_It-2mBgTMJG17QsAsrSs6beoyA-0gW4_ZDnhIT8dtoyD6uS9VgnFTqEAt_RJOIptaH-h4_JHuBjRbD8nsOg70EVmv6ipsEFo659LgjTQaQXVGNlVRWi-1jj5CoJeQt_1BFq6DMMdOGicFpDJ45sVw5gl5NZCetrgdVxHtIDcGAoTabibqs-Oi09wCQe-MGsVRaWKmy8wIE5xVKpOI7CNDQjZ7Xhad_i-KC2lNyMthGTQXr2NsFepzpFH4gpULnZDHLeuHnQi8ThU6TYheEYqVra6uVD--N-jgRsBXR_rJ_7f1gtyczKaHxeH-0cFTcotjpU6qGc83yfry7Dw8g1BrWT5vBJyS4poV6i-hfjpO
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1baxQxFA6lguiDeHdq1SgKvgw7k0wu8yDSuru21i2iFfapQyaXKpSZtrtF_Gn-O8-ZW7tSfOtbSA5MyLlPTr5DyGtjfbBBBuAAc3HGjIhLK2zMNDgDxZ22Bt87z_blzvfs01zM18if_i0MllX2NrEx1K62-I98BKGvzsGW6mwUurKIL-Pp-5PTGDtI4U1r306jFZE9__sXpG-Ld7tj4PUbxqaTgw87cddhILaQFi5jkYHAc3wPLlReOpkHzkubMymyAAMvE4w3Mu2M09wJzWwAd6640jY4hzhMYP1vKC5SVDE1v8j1OKR-LZAR53kyWkCeha1UxIr7a7oEXBXa_luhecnlTe-SO12sSrda4bpH1nx1n9y-hGD4gBxuNfUgYDJp2x8CZmld0VlTo-lpB996FG-Dt3R00jYNol_7siUYN0UL1NBv_jjEM-M8nUw-0rFHE_aQHFzHgT4i61Vd-SeEltbaxDsttEKAndQkMgjjhFLBBQj6IvK2P8jCdnDm2FXjuIC0Bs-8GM48Iq8G0pMWw-Mqom3kxkCAsNvNRH12VHRaXCAAnpZpSEsdMlVmmmtvjZSZQJQf4SOy2fOy6GzBoriQ3Ii8HJZBi_FqxlS-Pkcaia9ZGVcRedyyftgJx6tVrpKIqBWhWNnq6kr180eDFK45fDVVG__f1gtyE1Sp-Ly7v_eU3GJYtJOomOWbZH15du6fQdS1LJ838k1Jcc369BdCwj6E
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Affective+Computing+on+Machine+Learning-Based+Emotion+Recognition+Using+a+Self-Made+EEG+Device&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Mai%2C+Ngoc-Dau&rft.au=Lee%2C+Boon-Giin&rft.au=Chung%2C+Wan-Young&rft.date=2021-07-29&rft.pub=MDPI&rft.eissn=1424-8220&rft.volume=21&rft.issue=15&rft_id=info:doi/10.3390%2Fs21155135&rft_id=info%3Apmid%2F34372370&rft.externalDocID=PMC8348417
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon