Metabolite Profiling of Hydroxycinnamate Derivatives in Plasma and Urine after the Ingestion of Coffee by Humans: Identification of Biomarkers of Coffee Consumption
Human subjects drank coffee containing 412 μmol of chlorogenic acids, and plasma and urine were collected 0 to 24 h after ingestion and were analyzed by high-performance liquid chromatography-mass spectrometry. Within 1 h, some of the components in the coffee reached nanomole peak plasma concentrati...
Saved in:
Published in | Drug metabolism and disposition Vol. 37; no. 8; pp. 1749 - 1758 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Bethesda, MD
Elsevier Inc
01.08.2009
American Society for Pharmacology and Experimental Therapeutics |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Human subjects drank coffee containing 412 μmol of chlorogenic acids, and plasma and urine were collected 0 to 24 h after ingestion and were analyzed by high-performance liquid chromatography-mass spectrometry. Within 1 h, some of the components in the coffee reached nanomole peak plasma concentrations (Cmax), whereas chlorogenic acid metabolites, including caffeic acid-3-O-sulfate and ferulic acid-4-O-sulfate and sulfates of 3- and 4-caffeoylquinic acid lactones, had higher Cmax values. The short time to reach Cmax (Tmax) indicates absorption of these compounds in the small intestine. In contrast, dihydroferulic acid, its 4-O-sulfate, and dihydrocaffeic acid-3-O-sulfate exhibited much higher Cmax values (145–385 nM) with Tmax values in excess of 4 h, indicating absorption in the large intestine and the probable involvement of catabolism by colonic bacteria. These three compounds, along with ferulic acid-4-O-sulfate and dihydroferulic acid-4-O-glucuronide, were also major components to be excreted in urine (8.4–37.1 μmol) after coffee intake. Feruloylglycine, which is not detected in plasma, was also a major urinary component (20.7 μmol excreted). Other compounds, not accumulating in plasma but excreted in smaller quantities, included the 3-O-sulfate and 3-O-glucuronide of isoferulic acid, dihydro(iso)ferulic acid-3-O-glucuronide, and dihydrocaffeic acid-3-O-glucuronide. Overall, the 119.9 μmol excretion of the chlorogenic acid metabolites corresponded to 29.1% of intake, indicating that as well as being subject to extensive metabolism, chlorogenic acids in coffee are well absorbed. Pathways for the formation of the various metabolites within the body are proposed. Urinary dihydrocaffeic acid-3-O-sulfate and feruloylglycine are potentially very sensitive biomarkers for the consumption of relatively small amounts of coffee. |
---|---|
AbstractList | Human subjects drank coffee containing 412 μmol of chlorogenic acids, and plasma and urine were collected 0 to 24 h after
ingestion and were analyzed by high-performance liquid chromatography-mass spectrometry. Within 1 h, some of the components
in the coffee reached nanomole peak plasma concentrations ( C max ), whereas chlorogenic acid metabolites, including caffeic acid-3- O -sulfate and ferulic acid-4- O -sulfate and sulfates of 3- and 4-caffeoylquinic acid lactones, had higher C max values. The short time to reach C max ( T max ) indicates absorption of these compounds in the small intestine. In contrast, dihydroferulic acid, its 4- O -sulfate, and dihydrocaffeic acid-3- O -sulfate exhibited much higher C max values (145â385 nM) with T max values in excess of 4 h, indicating absorption in the large intestine and the probable involvement of catabolism by colonic
bacteria. These three compounds, along with ferulic acid-4- O -sulfate and dihydroferulic acid-4- O -glucuronide, were also major components to be excreted in urine (8.4â37.1 μmol) after coffee intake. Feruloylglycine, which
is not detected in plasma, was also a major urinary component (20.7 μmol excreted). Other compounds, not accumulating in plasma
but excreted in smaller quantities, included the 3- O -sulfate and 3- O -glucuronide of isoferulic acid, dihydro(iso)ferulic acid-3- O -glucuronide, and dihydrocaffeic acid-3- O -glucuronide. Overall, the 119.9 μmol excretion of the chlorogenic acid metabolites corresponded to 29.1% of intake, indicating
that as well as being subject to extensive metabolism, chlorogenic acids in coffee are well absorbed. Pathways for the formation
of the various metabolites within the body are proposed. Urinary dihydrocaffeic acid-3- O -sulfate and feruloylglycine are potentially very sensitive biomarkers for the consumption of relatively small amounts of
coffee. Human subjects drank coffee containing 412 mumol of chlorogenic acids, and plasma and urine were collected 0 to 24 h after ingestion and were analyzed by high-performance liquid chromatography-mass spectrometry. Within 1 h, some of the components in the coffee reached nanomole peak plasma concentrations (C(max)), whereas chlorogenic acid metabolites, including caffeic acid-3-O-sulfate and ferulic acid-4-O-sulfate and sulfates of 3- and 4-caffeoylquinic acid lactones, had higher C(max) values. The short time to reach C(max) (T(max)) indicates absorption of these compounds in the small intestine. In contrast, dihydroferulic acid, its 4-O-sulfate, and dihydrocaffeic acid-3-O-sulfate exhibited much higher C(max) values (145-385 nM) with T(max) values in excess of 4 h, indicating absorption in the large intestine and the probable involvement of catabolism by colonic bacteria. These three compounds, along with ferulic acid-4-O-sulfate and dihydroferulic acid-4-O-glucuronide, were also major components to be excreted in urine (8.4-37.1 mumol) after coffee intake. Feruloylglycine, which is not detected in plasma, was also a major urinary component (20.7 mumol excreted). Other compounds, not accumulating in plasma but excreted in smaller quantities, included the 3-O-sulfate and 3-O-glucuronide of isoferulic acid, dihydro(iso)ferulic acid-3-O-glucuronide, and dihydrocaffeic acid-3-O-glucuronide. Overall, the 119.9 mumol excretion of the chlorogenic acid metabolites corresponded to 29.1% of intake, indicating that as well as being subject to extensive metabolism, chlorogenic acids in coffee are well absorbed. Pathways for the formation of the various metabolites within the body are proposed. Urinary dihydrocaffeic acid-3-O-sulfate and feruloylglycine are potentially very sensitive biomarkers for the consumption of relatively small amounts of coffee. Human subjects drank coffee containing 412 mumol of chlorogenic acids, and plasma and urine were collected 0 to 24 h after ingestion and were analyzed by high-performance liquid chromatography-mass spectrometry. Within 1 h, some of the components in the coffee reached nanomole peak plasma concentrations (C(max)), whereas chlorogenic acid metabolites, including caffeic acid-3-O-sulfate and ferulic acid-4-O-sulfate and sulfates of 3- and 4-caffeoylquinic acid lactones, had higher C(max) values. The short time to reach C(max) (T(max)) indicates absorption of these compounds in the small intestine. In contrast, dihydroferulic acid, its 4-O-sulfate, and dihydrocaffeic acid-3-O-sulfate exhibited much higher C(max) values (145-385 nM) with T(max) values in excess of 4 h, indicating absorption in the large intestine and the probable involvement of catabolism by colonic bacteria. These three compounds, along with ferulic acid-4-O-sulfate and dihydroferulic acid-4-O-glucuronide, were also major components to be excreted in urine (8.4-37.1 mumol) after coffee intake. Feruloylglycine, which is not detected in plasma, was also a major urinary component (20.7 mumol excreted). Other compounds, not accumulating in plasma but excreted in smaller quantities, included the 3-O-sulfate and 3-O-glucuronide of isoferulic acid, dihydro(iso)ferulic acid-3-O-glucuronide, and dihydrocaffeic acid-3-O-glucuronide. Overall, the 119.9 mumol excretion of the chlorogenic acid metabolites corresponded to 29.1% of intake, indicating that as well as being subject to extensive metabolism, chlorogenic acids in coffee are well absorbed. Pathways for the formation of the various metabolites within the body are proposed. Urinary dihydrocaffeic acid-3-O-sulfate and feruloylglycine are potentially very sensitive biomarkers for the consumption of relatively small amounts of coffee.Human subjects drank coffee containing 412 mumol of chlorogenic acids, and plasma and urine were collected 0 to 24 h after ingestion and were analyzed by high-performance liquid chromatography-mass spectrometry. Within 1 h, some of the components in the coffee reached nanomole peak plasma concentrations (C(max)), whereas chlorogenic acid metabolites, including caffeic acid-3-O-sulfate and ferulic acid-4-O-sulfate and sulfates of 3- and 4-caffeoylquinic acid lactones, had higher C(max) values. The short time to reach C(max) (T(max)) indicates absorption of these compounds in the small intestine. In contrast, dihydroferulic acid, its 4-O-sulfate, and dihydrocaffeic acid-3-O-sulfate exhibited much higher C(max) values (145-385 nM) with T(max) values in excess of 4 h, indicating absorption in the large intestine and the probable involvement of catabolism by colonic bacteria. These three compounds, along with ferulic acid-4-O-sulfate and dihydroferulic acid-4-O-glucuronide, were also major components to be excreted in urine (8.4-37.1 mumol) after coffee intake. Feruloylglycine, which is not detected in plasma, was also a major urinary component (20.7 mumol excreted). Other compounds, not accumulating in plasma but excreted in smaller quantities, included the 3-O-sulfate and 3-O-glucuronide of isoferulic acid, dihydro(iso)ferulic acid-3-O-glucuronide, and dihydrocaffeic acid-3-O-glucuronide. Overall, the 119.9 mumol excretion of the chlorogenic acid metabolites corresponded to 29.1% of intake, indicating that as well as being subject to extensive metabolism, chlorogenic acids in coffee are well absorbed. Pathways for the formation of the various metabolites within the body are proposed. Urinary dihydrocaffeic acid-3-O-sulfate and feruloylglycine are potentially very sensitive biomarkers for the consumption of relatively small amounts of coffee. Human subjects drank coffee containing 412 μmol of chlorogenic acids, and plasma and urine were collected 0 to 24 h after ingestion and were analyzed by high-performance liquid chromatography-mass spectrometry. Within 1 h, some of the components in the coffee reached nanomole peak plasma concentrations (Cmax), whereas chlorogenic acid metabolites, including caffeic acid-3-O-sulfate and ferulic acid-4-O-sulfate and sulfates of 3- and 4-caffeoylquinic acid lactones, had higher Cmax values. The short time to reach Cmax (Tmax) indicates absorption of these compounds in the small intestine. In contrast, dihydroferulic acid, its 4-O-sulfate, and dihydrocaffeic acid-3-O-sulfate exhibited much higher Cmax values (145–385 nM) with Tmax values in excess of 4 h, indicating absorption in the large intestine and the probable involvement of catabolism by colonic bacteria. These three compounds, along with ferulic acid-4-O-sulfate and dihydroferulic acid-4-O-glucuronide, were also major components to be excreted in urine (8.4–37.1 μmol) after coffee intake. Feruloylglycine, which is not detected in plasma, was also a major urinary component (20.7 μmol excreted). Other compounds, not accumulating in plasma but excreted in smaller quantities, included the 3-O-sulfate and 3-O-glucuronide of isoferulic acid, dihydro(iso)ferulic acid-3-O-glucuronide, and dihydrocaffeic acid-3-O-glucuronide. Overall, the 119.9 μmol excretion of the chlorogenic acid metabolites corresponded to 29.1% of intake, indicating that as well as being subject to extensive metabolism, chlorogenic acids in coffee are well absorbed. Pathways for the formation of the various metabolites within the body are proposed. Urinary dihydrocaffeic acid-3-O-sulfate and feruloylglycine are potentially very sensitive biomarkers for the consumption of relatively small amounts of coffee. |
Author | Yokota, Takao Cavin, Christophe Steiling, Heike Mullen, William Uchida, Kenichi Stalmach, Angélique Crozier, Alan Barron, Denis Williamson, Gary |
Author_xml | – sequence: 1 givenname: Angélique surname: Stalmach fullname: Stalmach, Angélique – sequence: 2 givenname: William surname: Mullen fullname: Mullen, William – sequence: 3 givenname: Denis surname: Barron fullname: Barron, Denis – sequence: 4 givenname: Kenichi surname: Uchida fullname: Uchida, Kenichi – sequence: 5 givenname: Takao surname: Yokota fullname: Yokota, Takao – sequence: 6 givenname: Christophe surname: Cavin fullname: Cavin, Christophe – sequence: 7 givenname: Heike surname: Steiling fullname: Steiling, Heike – sequence: 8 givenname: Gary surname: Williamson fullname: Williamson, Gary – sequence: 9 givenname: Alan surname: Crozier fullname: Crozier, Alan email: a.crozier@bio.gla.ac.uk |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21790464$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/19460943$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kU9vEzEQxS1URNPClSPyBW4b7F1nd80Nwp9EKqIHKnGzZu1xYti1U3sTyPfhg-KQFBBSJUtjaX5vRu_NBTnzwSMhTzmbcl6Kl2YwU87klJUt4_IBmfBZyQvG5JczMsmFFXI2q8_JRUpfGeNCVPIROedS1EyKakJ-fsQRutC7Eel1DNb1zq9osHSxNzH82GvnPQyQu28xuh2MboeJOk-ve0gDUPCG3kTnkYIdMdJxjXTpV5hGF_xhzjxYi0i7PV1sB_DpFV0a9KOzTsMd88aFAeI3jOkfxTz4tB02B-YxeWihT_jkVC_Jzft3n-eL4urTh-X89VWhRS3HYsbBtqbhrUDWaKxkxYAhmLKsWWmFroHPgBkUEvLjHWtq0VnTdAK7RneiuiQvjnM3Mdxuswc1uKSx78Fj2CZVN0I2sq0z-OwEbrsBjdpElw3s1V2uGXh-AiBp6G0Er136w5W8kUzUh43TI6djSCmi_TuKqcOBVT5w_kt1PHAWiP8E2o2_gxwjuP5-2cnZ2q3W311EtVlDHECHPqz2qmpUq3h2l8H2CGLOeecwqqQdeo0mi_SoTHD37fgFHEvMpw |
CODEN | DMDSAI |
CitedBy_id | crossref_primary_10_1002_biof_1127 crossref_primary_10_1002_biof_1124 crossref_primary_10_1007_s00394_010_0157_0 crossref_primary_10_4018_IJKDB_2017070104 crossref_primary_10_2174_0929867329666220816154634 crossref_primary_10_1016_j_foodchem_2021_130620 crossref_primary_10_1021_jf904096v crossref_primary_10_1016_j_freeradbiomed_2015_10_400 crossref_primary_10_1111_1541_4337_12518 crossref_primary_10_1016_j_foodres_2014_05_035 crossref_primary_10_1016_j_foodres_2014_05_043 crossref_primary_10_1016_j_foodchem_2016_03_011 crossref_primary_10_1016_j_jff_2017_08_009 crossref_primary_10_1097_MCG_0b013e318264e82b crossref_primary_10_1016_j_ijbiomac_2015_07_031 crossref_primary_10_1002_mnfr_202000517 crossref_primary_10_1016_j_chroma_2011_05_050 crossref_primary_10_3390_nu12051349 crossref_primary_10_3390_nu2080820 crossref_primary_10_1177_030006051204000620 crossref_primary_10_1016_j_foodres_2014_04_002 crossref_primary_10_1016_j_foodres_2020_109815 crossref_primary_10_1039_C9FO00491B crossref_primary_10_1016_j_jarmap_2015_03_001 crossref_primary_10_1039_c2fo10288a crossref_primary_10_1002_mnfr_201900659 crossref_primary_10_1007_s00394_020_02201_8 crossref_primary_10_1002_mnfr_201000656 crossref_primary_10_1021_jf402394c crossref_primary_10_1016_j_foodchem_2021_130198 crossref_primary_10_1021_acs_jafc_0c05184 crossref_primary_10_1128_MMBR_00072_19 crossref_primary_10_1002_mnfr_201000652 crossref_primary_10_3390_app13042192 crossref_primary_10_1016_j_vibspec_2012_02_009 crossref_primary_10_1111_j_1365_2125_2012_04425_x crossref_primary_10_1007_s00394_021_02714_w crossref_primary_10_1016_j_clnu_2016_11_013 crossref_primary_10_1021_jf100315d crossref_primary_10_1016_j_jnutbio_2025_109869 crossref_primary_10_3945_ajcn_115_123869 crossref_primary_10_1111_1541_4337_12081 crossref_primary_10_1089_ars_2023_0254 crossref_primary_10_3945_ajcn_2009_28548 crossref_primary_10_1016_j_jpba_2011_03_023 crossref_primary_10_1080_07315724_2014_907756 crossref_primary_10_3390_molecules28186440 crossref_primary_10_5936_csbj_201301004 crossref_primary_10_1021_jf202624q crossref_primary_10_1002_biof_1101 crossref_primary_10_1039_D0FO01168A crossref_primary_10_1007_s13668_013_0052_4 crossref_primary_10_3390_biomedicines10092255 crossref_primary_10_1039_c3fo60024f crossref_primary_10_3390_molecules23102702 crossref_primary_10_1089_ars_2012_4581 crossref_primary_10_3390_nu11081805 crossref_primary_10_1016_j_biopha_2017_10_064 crossref_primary_10_3109_09637486_2015_1064874 crossref_primary_10_1002_mnfr_201000525 crossref_primary_10_1016_j_jpba_2023_115723 crossref_primary_10_1017_S0007114514003948 crossref_primary_10_1021_jf304076z crossref_primary_10_1177_1534735418801521 crossref_primary_10_1039_C6FO00652C crossref_primary_10_3390_ijms22010107 crossref_primary_10_3390_ijms222313138 crossref_primary_10_1002_elps_201300565 crossref_primary_10_1016_j_foodres_2020_109119 crossref_primary_10_1002_mnfr_201500940 crossref_primary_10_1016_j_abb_2016_01_014 crossref_primary_10_1017_S0007114510002709 crossref_primary_10_1002_mnfr_201000631 crossref_primary_10_1021_acs_jafc_6b04710 crossref_primary_10_1039_c3fo60691k crossref_primary_10_1002_ciuz_201300589 crossref_primary_10_1016_j_btre_2019_e00370 crossref_primary_10_1007_s00394_018_1683_4 crossref_primary_10_1111_1541_4337_12663 crossref_primary_10_1002_jms_4971 crossref_primary_10_1016_j_fct_2018_01_022 crossref_primary_10_1007_s00394_018_1770_6 crossref_primary_10_1016_j_fbio_2023_102926 crossref_primary_10_3390_nu9030194 crossref_primary_10_1080_09637486_2018_1505834 crossref_primary_10_1016_j_phrs_2022_106505 crossref_primary_10_1002_rcm_4537 crossref_primary_10_1039_D2FO01488B crossref_primary_10_1007_s12272_013_0320_2 crossref_primary_10_1111_jam_15009 crossref_primary_10_3390_foods7010008 crossref_primary_10_3390_antiox10060846 crossref_primary_10_1016_j_jpba_2012_12_016 crossref_primary_10_1016_j_nutres_2013_11_001 crossref_primary_10_1074_jbc_M115_645812 crossref_primary_10_1007_s00394_016_1290_1 crossref_primary_10_1039_C9FO00288J crossref_primary_10_1097_MOL_0000000000000143 crossref_primary_10_1002_jcb_28383 crossref_primary_10_1039_b907570d crossref_primary_10_3390_molecules23123309 crossref_primary_10_1016_j_foodres_2012_09_016 crossref_primary_10_1002_mnfr_202000031 crossref_primary_10_1038_s41598_017_01888_w crossref_primary_10_3945_ajcn_114_101881 crossref_primary_10_1111_jfbc_14254 crossref_primary_10_1021_acs_jafc_9b00522 crossref_primary_10_1080_10408398_2011_563880 crossref_primary_10_1111_1541_4337_13006 crossref_primary_10_1371_journal_pone_0093474 crossref_primary_10_3389_fphar_2023_1228030 crossref_primary_10_1021_ac500565a crossref_primary_10_1039_C4FO00670D crossref_primary_10_1021_acs_jafc_9b02155 crossref_primary_10_1007_s00216_013_7288_0 crossref_primary_10_2174_2210315509666190618094434 crossref_primary_10_3390_nu13113760 crossref_primary_10_1016_j_foodchem_2011_07_078 crossref_primary_10_1080_10408398_2018_1550384 crossref_primary_10_1002_biof_1152 crossref_primary_10_1093_ajcn_nqab299 crossref_primary_10_1017_S0007114520002275 crossref_primary_10_1016_j_indcrop_2023_116999 crossref_primary_10_3390_nu12082190 crossref_primary_10_1080_10408398_2024_2410874 crossref_primary_10_1016_j_foodres_2014_05_073 crossref_primary_10_1016_j_foodres_2016_07_020 crossref_primary_10_1016_j_jff_2015_12_010 crossref_primary_10_1039_c2fo30037k crossref_primary_10_1017_S0007114510003946 crossref_primary_10_3390_metabo14010031 crossref_primary_10_1016_j_arabjc_2015_06_026 crossref_primary_10_1093_nutrit_nuae034 crossref_primary_10_1017_S095442241300019X crossref_primary_10_1186_s13063_017_2271_2 crossref_primary_10_1002_biof_1268 crossref_primary_10_1016_j_fct_2019_110678 crossref_primary_10_1016_j_phymed_2013_05_007 crossref_primary_10_1017_S0029665113001237 crossref_primary_10_1016_j_foodres_2022_111702 crossref_primary_10_1007_s11130_023_01107_0 crossref_primary_10_1002_mnfr_201000048 crossref_primary_10_3390_molecules26164829 crossref_primary_10_1021_jf200122m crossref_primary_10_1016_j_chroma_2018_09_016 crossref_primary_10_3945_ajcn_114_088120 crossref_primary_10_1016_j_abb_2010_03_005 crossref_primary_10_1039_C5FO01412C crossref_primary_10_1021_jf3045236 crossref_primary_10_1002_mnfr_201600290 crossref_primary_10_1039_D0FO02629H crossref_primary_10_1021_acs_jafc_5b03040 crossref_primary_10_1373_clinchem_2017_272344 crossref_primary_10_1016_j_foodres_2016_06_011 crossref_primary_10_1007_s11101_017_9528_y crossref_primary_10_3109_00498254_2013_853848 crossref_primary_10_1002_mnfr_201200222 crossref_primary_10_3390_foods13223640 crossref_primary_10_3390_nu11051032 crossref_primary_10_1039_C6FO01475E crossref_primary_10_3390_foods11162464 crossref_primary_10_1016_j_freeradbiomed_2017_02_037 crossref_primary_10_1002_mnfr_201700499 crossref_primary_10_1002_mnfr_201400779 crossref_primary_10_1111_1541_4337_12620 crossref_primary_10_1111_bph_14821 crossref_primary_10_1039_C7FO01553D crossref_primary_10_1016_j_foodchem_2010_07_103 crossref_primary_10_1093_nutrit_nuw057 crossref_primary_10_1021_acs_jafc_0c01554 crossref_primary_10_1002_mnfr_201300441 crossref_primary_10_3109_09637486_2014_940287 crossref_primary_10_1002_cpdd_451 crossref_primary_10_1016_j_foodres_2014_03_031 crossref_primary_10_3390_cimb46070405 crossref_primary_10_1016_j_foodres_2016_03_038 crossref_primary_10_3390_molecules26134086 crossref_primary_10_1021_jf202185m crossref_primary_10_1039_c3fo60078e crossref_primary_10_1097_NT_0000000000000433 crossref_primary_10_1111_1541_4337_12351 crossref_primary_10_3109_09637486_2015_1007453 crossref_primary_10_1016_j_maturitas_2013_02_002 crossref_primary_10_1111_bph_12676 crossref_primary_10_1016_j_jnutbio_2023_109456 crossref_primary_10_1016_j_cofs_2017_02_012 crossref_primary_10_1096_fj_201801209R crossref_primary_10_2174_1568026622666220623114450 crossref_primary_10_3390_nu11051092 crossref_primary_10_1002_elps_201300066 crossref_primary_10_1002_jsfa_8607 crossref_primary_10_3390_molecules27031049 crossref_primary_10_1039_C8RA07972B crossref_primary_10_1007_s00394_013_0512_z crossref_primary_10_3390_nu16244257 crossref_primary_10_1016_j_foodchem_2017_03_005 crossref_primary_10_1016_j_foodres_2023_113612 crossref_primary_10_61117_ipsumtec_v6i4_266 crossref_primary_10_3390_antiox10081169 crossref_primary_10_1002_fsn3_2849 crossref_primary_10_1002_mnfr_201300349 crossref_primary_10_1016_j_ijms_2014_01_021 crossref_primary_10_3109_00498254_2011_603387 crossref_primary_10_1021_jf302694a crossref_primary_10_1002_mnfr_201100566 crossref_primary_10_1016_j_freeradbiomed_2024_10_289 crossref_primary_10_1007_s00216_012_6402_z crossref_primary_10_1038_hr_2011_195 crossref_primary_10_1002_bmc_3710 crossref_primary_10_1016_j_foodres_2018_06_016 crossref_primary_10_1021_jf401534d crossref_primary_10_1021_jf403846g crossref_primary_10_1080_87559129_2020_1854781 crossref_primary_10_1021_pr200132s crossref_primary_10_1146_annurev_food_032818_121715 crossref_primary_10_1021_jf201906p crossref_primary_10_1002_mnfr_201200021 crossref_primary_10_3390_molecules29010088 crossref_primary_10_1016_j_freeradbiomed_2020_09_007 crossref_primary_10_1021_acs_jafc_1c07179 crossref_primary_10_3389_fnut_2020_602515 crossref_primary_10_1021_jf200764d crossref_primary_10_1016_j_mam_2010_09_007 crossref_primary_10_1246_cl_230171 crossref_primary_10_3390_beverages10010012 crossref_primary_10_1021_jf2015039 crossref_primary_10_3390_ph12030110 crossref_primary_10_3390_cells9040827 crossref_primary_10_1016_j_jchromb_2020_122457 crossref_primary_10_1093_jn_nxy027 crossref_primary_10_1039_D1FO03327A crossref_primary_10_1002_mnfr_201800396 crossref_primary_10_1007_s00394_015_0988_9 crossref_primary_10_1007_s10389_019_01055_7 crossref_primary_10_1007_s00217_016_2793_y crossref_primary_10_1016_j_chroma_2013_07_020 crossref_primary_10_3390_ijms23116292 crossref_primary_10_1016_j_foodchem_2012_09_103 crossref_primary_10_1080_09637486_2020_1850650 crossref_primary_10_1007_s11306_021_01866_4 crossref_primary_10_3945_jn_111_147751 crossref_primary_10_3390_ijms24021440 crossref_primary_10_1016_j_jff_2017_02_033 crossref_primary_10_1186_1743_7075_11_1 crossref_primary_10_1007_s00044_016_1674_z crossref_primary_10_1016_j_jchromb_2021_122988 crossref_primary_10_1016_j_foodres_2013_09_028 crossref_primary_10_3390_biom12070875 crossref_primary_10_1016_j_apjtb_2016_06_005 crossref_primary_10_3390_antiox9050415 crossref_primary_10_3945_ajcn_116_149898 crossref_primary_10_1038_s41598_020_76558_5 crossref_primary_10_1016_j_chroma_2010_11_076 crossref_primary_10_1039_C4FO00316K crossref_primary_10_3945_ajcn_112_048033 crossref_primary_10_1002_mnfr_201900062 crossref_primary_10_1016_j_bcp_2017_03_012 crossref_primary_10_3390_molecules28176403 crossref_primary_10_1002_mnfr_201400231 crossref_primary_10_1021_jf303440j crossref_primary_10_1017_S0007114511002121 crossref_primary_10_1146_annurev_food_030216_025636 crossref_primary_10_1017_S0007114514003511 crossref_primary_10_1016_j_jff_2018_04_011 crossref_primary_10_1039_C6FO00248J crossref_primary_10_1186_s12263_018_0607_5 crossref_primary_10_1016_j_tifs_2018_11_026 crossref_primary_10_1016_j_foodchem_2016_02_140 crossref_primary_10_1002_mnfr_201300822 crossref_primary_10_1016_j_jnutbio_2017_02_018 crossref_primary_10_1093_advances_nmab054 crossref_primary_10_3945_ajcn_113_076133 crossref_primary_10_1002_mnfr_201500470 crossref_primary_10_3390_molecules21080979 crossref_primary_10_1002_mnfr_202100985 crossref_primary_10_3390_nu14010210 crossref_primary_10_1039_c3fo30385c crossref_primary_10_3390_antiox11020215 crossref_primary_10_1007_s11306_011_0307_2 crossref_primary_10_1021_acs_jafc_9b00467 crossref_primary_10_1002_mnfr_200900608 crossref_primary_10_1039_C7NP00030H crossref_primary_10_1002_mnfr_202400112 crossref_primary_10_1007_s11306_015_0935_z crossref_primary_10_1039_C4FO00042K crossref_primary_10_3390_ijms20040897 crossref_primary_10_1124_dmd_111_040147 crossref_primary_10_1021_jf3001185 crossref_primary_10_1002_biot_201200303 crossref_primary_10_1007_s00394_019_01987_6 crossref_primary_10_1016_j_foodres_2018_03_023 crossref_primary_10_3390_nu11112634 crossref_primary_10_1016_j_foodchem_2017_08_003 crossref_primary_10_1016_j_foodres_2019_05_029 crossref_primary_10_1039_C7FO00926G crossref_primary_10_1111_1541_4337_12342 crossref_primary_10_1016_j_foodres_2018_04_052 crossref_primary_10_1021_jf203136j crossref_primary_10_3390_beverages5010011 crossref_primary_10_1021_acs_jafc_1c01155 crossref_primary_10_1021_jf404965z crossref_primary_10_1002_mnfr_201400498 crossref_primary_10_3109_03602532_2013_868114 crossref_primary_10_1002_mnfr_200900611 |
Cites_doi | 10.1016/S0891-5849(99)00054-4 10.1002/(SICI)1097-0010(19990301)79:3<362::AID-JSFA256>3.0.CO;2-D 10.1124/dmd.107.017558 10.1093/jn/133.6.1853 10.1002/rcm.3038 10.1079/BJN20061809 10.1080/10715760600771400 10.1021/jf0257547 10.1590/S1677-04202006000100018 10.1021/jf010668c 10.3945/jn.108.095554 10.1016/S0891-5849(01)00506-8 10.1021/jf000483q 10.1021/jf050046h 10.1093/jn/136.5.1192 10.1021/jf026187q 10.1080/10715760100301441 10.1093/ajcn/81.1.230S 10.1093/jn/137.10.2196 10.1002/(SICI)1097-0010(199608)71:4<459::AID-JSFA602>3.0.CO;2-H |
ContentType | Journal Article |
Copyright | 2009 American Society for Pharmacology and Experimental Therapeutics 2009 INIST-CNRS |
Copyright_xml | – notice: 2009 American Society for Pharmacology and Experimental Therapeutics – notice: 2009 INIST-CNRS |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1124/dmd.109.028019 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1521-009X |
EndPage | 1758 |
ExternalDocumentID | 19460943 21790464 10_1124_dmd_109_028019 37_8_1749 S0090955624021421 |
Genre | Clinical Trial Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- .GJ 0R~ 18M 2WC 4.4 53G 5GY 5RE 5VS AAXUO ABJNI ABSQV ACGFO ACGFS ACIWK ACPRK ADBBV AENEX AERNN AFFNX AFOSN AFRAH AI. ALMA_UNASSIGNED_HOLDINGS BAWUL BTFSW CS3 DIK DU5 E3Z EBS EJD F5P F9R FDB GX1 H13 HZ~ IH2 INIJC KQ8 LSO M41 O9- OK1 P2P R0Z RHI ROL RPT SJN TR2 VH1 W8F WH7 WOQ YCJ YHG ZGI ZXP ~KM - 08R 0R AAPBV AAWZA ABFLS ABSGY ADACO FH7 FRP HZ KM O0- RHF W2D AALRI AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c469t-51af8d7184e07ce3930a0ead22602f4c6a15a0de49a49a1b0764bfd7b4eb7cb43 |
ISSN | 0090-9556 1521-009X |
IngestDate | Fri Jul 11 06:42:39 EDT 2025 Mon Jul 21 05:43:51 EDT 2025 Mon Jul 21 09:15:56 EDT 2025 Tue Jul 01 05:29:05 EDT 2025 Thu Apr 24 23:02:29 EDT 2025 Tue Jan 05 21:17:04 EST 2021 Sun Apr 06 06:53:03 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | Consumption Human Urine Biological fluid Metabolite Biological marker Identification Coffee Ingestion Blood plasma |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c469t-51af8d7184e07ce3930a0ead22602f4c6a15a0de49a49a1b0764bfd7b4eb7cb43 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PMID | 19460943 |
PQID | 67497986 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_67497986 pubmed_primary_19460943 pascalfrancis_primary_21790464 crossref_primary_10_1124_dmd_109_028019 crossref_citationtrail_10_1124_dmd_109_028019 highwire_pharmacology_37_8_1749 elsevier_sciencedirect_doi_10_1124_dmd_109_028019 |
ProviderPackageCode | RHF RHI CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2009-08-01 |
PublicationDateYYYYMMDD | 2009-08-01 |
PublicationDate_xml | – month: 08 year: 2009 text: 2009-08-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Bethesda, MD |
PublicationPlace_xml | – name: Bethesda, MD – name: United States |
PublicationTitle | Drug metabolism and disposition |
PublicationTitleAlternate | Drug Metab Dispos |
PublicationYear | 2009 |
Publisher | Elsevier Inc American Society for Pharmacology and Experimental Therapeutics |
Publisher_xml | – name: Elsevier Inc – name: American Society for Pharmacology and Experimental Therapeutics |
References | Lafay, Gil-Izquierdo, Manach, Morand, Besson, Scalbert (bib14) 2006; 136 Rechner, Spencer, Kuhnle, Hahn, Rice-Evans (bib20) 2001; 30 Crozier, Yokota, Jaganath, Marks, Saltmarsch, Clifford, Ashihara (bib9) 2006 Azuma, Ippoushi, Nakayama, Ito, Higashio, Terao (bib2) 2000; 48 Clifford, Knight, Kuhnert (bib7) 2005; 53 Nardini, Cirillo, Natella, Scaccini (bib18) 2002; 50 Clifford (bib5) 1999; 79 Gonthier, Verny, Besson, Rémésy, Scalbert (bib12) 2003; 133 Buchanan, Wallace, Fry (bib3) 1996; 71 Manach, Williamson, Morand, Scalbert, Rémésy (bib15) 2005; 81 Stalmach, Mullen, Nagai, Crozier (bib21) 2006; 18 Mullen, Edwards, Crozier (bib17) 2006; 96 Farah, Monteiro, Donangelo, Lafay (bib11) 2008; 138 Monteiro, Farah, Perrone, Trugo, Donangelo (bib16) 2007; 137 Poquet, Clifford, Williamson (bib19) 2008; 36 Andreasen, Kroon, Williamson, Garcia-Conesa (bib1) 2001; 49 Clifford, Johnston, Knight, Kuhnert (bib6) 2003; 51 Day, Mellon, Baron, Sarrazin, Morgan, Williamson (bib10) 2001; 35 Clifford, Lopez, Poquet, Williamson, Kuhnert (bib8) 2007; 21 Choudhury, Srai, Debnam, Rice-Evans (bib4) 1999; 27 Jaganath, Mullen, Edwards, Crozier (bib13) 2006; 40 Choudhury (10.1124/dmd.109.028019_bib4) 1999; 27 Clifford (10.1124/dmd.109.028019_bib7) 2005; 53 Andreasen (10.1124/dmd.109.028019_bib1) 2001; 49 Farah (10.1124/dmd.109.028019_bib11) 2008; 138 Clifford (10.1124/dmd.109.028019_bib5) 1999; 79 Clifford (10.1124/dmd.109.028019_bib8) 2007; 21 Monteiro (10.1124/dmd.109.028019_bib16) 2007; 137 Clifford (10.1124/dmd.109.028019_bib6) 2003; 51 Day (10.1124/dmd.109.028019_bib10) 2001; 35 Manach (10.1124/dmd.109.028019_bib15) 2005; 81 Nardini (10.1124/dmd.109.028019_bib18) 2002; 50 Rechner (10.1124/dmd.109.028019_bib20) 2001; 30 Poquet (10.1124/dmd.109.028019_bib19) 2008; 36 Buchanan (10.1124/dmd.109.028019_bib3) 1996; 71 Gonthier (10.1124/dmd.109.028019_bib12) 2003; 133 Crozier (10.1124/dmd.109.028019_bib9) 2006 Lafay (10.1124/dmd.109.028019_bib14) 2006; 136 Mullen (10.1124/dmd.109.028019_bib17) 2006; 96 Jaganath (10.1124/dmd.109.028019_bib13) 2006; 40 Azuma (10.1124/dmd.109.028019_bib2) 2000; 48 Stalmach (10.1124/dmd.109.028019_bib21) 2006; 18 |
References_xml | – volume: 51 start-page: 2900 year: 2003 end-page: 2911 ident: bib6 article-title: Hierarchical scheme for LC-MS publication-title: J Agric Food Chem – volume: 81 start-page: 230S year: 2005 end-page: 242S ident: bib15 article-title: Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies publication-title: Am J Clin Nutr – volume: 49 start-page: 5679 year: 2001 end-page: 5684 ident: bib1 article-title: Esterase activity able to hydrolyze dietary antioxidant hydroxycinnamates is distributed along the intestine of mammals publication-title: J Agric Food Chem – volume: 36 start-page: 190 year: 2008 end-page: 197 ident: bib19 article-title: Transport and metabolism of ferulic acid through the colonic epithelium publication-title: Drug Metab Dispos – volume: 48 start-page: 5496 year: 2000 end-page: 5500 ident: bib2 article-title: Absorption of chlorogenic acid and caffeic acid in rats after oral administration publication-title: J Agric Food Chem – volume: 18 start-page: 253 year: 2006 end-page: 262 ident: bib21 article-title: On-line HPLC analysis of the antioxidant activity of phenolic compounds in brewed paper-filtered coffee publication-title: Brasil J Plant Physiol – volume: 138 start-page: 2309 year: 2008 end-page: 2315 ident: bib11 article-title: Chlorogenic acids from green coffee extract are highly bioavailable in humans publication-title: J Nutr – volume: 35 start-page: 941 year: 2001 end-page: 952 ident: bib10 article-title: Human metabolism of dietary flavonoids: Identification of plasma metabolites of quercetin publication-title: Free Radic Res – volume: 21 start-page: 2014 year: 2007 end-page: 2018 ident: bib8 article-title: A systematic study of carboxylic acids in negative ion mode electrospray ionisation mass spectrometry providing a structural model for ion suppression publication-title: Rapid Commun Mass Spectrom – volume: 96 start-page: 107 year: 2006 end-page: 116 ident: bib17 article-title: Absorption, excretion and metabolite profiling of methyl-, glucuronyl-, glucosyl- and sulpho-conjugates of quercetin in human plasma and urine after ingestion of onions publication-title: Br J Nutr – volume: 27 start-page: 278 year: 1999 end-page: 286 ident: bib4 article-title: Urinary excretion of hydroxycinnamates and flavonoids after oral and intravenous administration publication-title: Free Radic Biol Med – volume: 79 start-page: 362 year: 1999 end-page: 372 ident: bib5 article-title: Chlorogenic acids and other cinnamates - nature, occurrence and dietary burden publication-title: J Sci Food Agric – volume: 137 start-page: 2196 year: 2007 end-page: 2201 ident: bib16 article-title: Chlorogenic acid compounds from coffee are differentially absorbed and metabolized in humans publication-title: J Nutr – volume: 133 start-page: 1853 year: 2003 end-page: 1859 ident: bib12 article-title: Chlorogenic acid bioavailability largely depends on its metabolism by the gut microflora in rats publication-title: J Nutr – volume: 30 start-page: 1213 year: 2001 end-page: 1222 ident: bib20 article-title: Novel biomarkers of the metabolism of caffeic acid derivatives in vivo publication-title: Free Radic Biol Med – start-page: 208 year: 2006 end-page: 302 ident: bib9 article-title: Secondary metabolites in fruits, vegetables, beverages and other plant-based dietary components publication-title: Plant Secondary Metabolites: Occurrence, Structure and Role in the Human Diet – volume: 40 start-page: 1035 year: 2006 end-page: 1046 ident: bib13 article-title: The relative contribution of the small and large intestine to the absorption and metabolism of rutin in man publication-title: Free Radic Res – volume: 136 start-page: 1192 year: 2006 end-page: 1197 ident: bib14 article-title: Chlorogenic acid is absorbed in its intact form in the stomach of rats publication-title: J Nutr – volume: 71 start-page: 459 year: 1996 end-page: 469 ident: bib3 article-title: In vivo release of publication-title: J Sci Food Agric – volume: 50 start-page: 5735 year: 2002 end-page: 5741 ident: bib18 article-title: Absorption of phenolic acids in humans after coffee consumption publication-title: J Agric Food Chem – volume: 53 start-page: 3821 year: 2005 end-page: 3832 ident: bib7 article-title: Discriminating between the six isomers of dicaffeoylquinic acid by LC-MS publication-title: J Agric Food Chem – volume: 27 start-page: 278 year: 1999 ident: 10.1124/dmd.109.028019_bib4 article-title: Urinary excretion of hydroxycinnamates and flavonoids after oral and intravenous administration publication-title: Free Radic Biol Med doi: 10.1016/S0891-5849(99)00054-4 – volume: 79 start-page: 362 year: 1999 ident: 10.1124/dmd.109.028019_bib5 article-title: Chlorogenic acids and other cinnamates - nature, occurrence and dietary burden publication-title: J Sci Food Agric doi: 10.1002/(SICI)1097-0010(19990301)79:3<362::AID-JSFA256>3.0.CO;2-D – volume: 36 start-page: 190 year: 2008 ident: 10.1124/dmd.109.028019_bib19 article-title: Transport and metabolism of ferulic acid through the colonic epithelium publication-title: Drug Metab Dispos doi: 10.1124/dmd.107.017558 – volume: 133 start-page: 1853 year: 2003 ident: 10.1124/dmd.109.028019_bib12 article-title: Chlorogenic acid bioavailability largely depends on its metabolism by the gut microflora in rats publication-title: J Nutr doi: 10.1093/jn/133.6.1853 – volume: 21 start-page: 2014 year: 2007 ident: 10.1124/dmd.109.028019_bib8 article-title: A systematic study of carboxylic acids in negative ion mode electrospray ionisation mass spectrometry providing a structural model for ion suppression publication-title: Rapid Commun Mass Spectrom doi: 10.1002/rcm.3038 – volume: 96 start-page: 107 year: 2006 ident: 10.1124/dmd.109.028019_bib17 article-title: Absorption, excretion and metabolite profiling of methyl-, glucuronyl-, glucosyl- and sulpho-conjugates of quercetin in human plasma and urine after ingestion of onions publication-title: Br J Nutr doi: 10.1079/BJN20061809 – start-page: 208 year: 2006 ident: 10.1124/dmd.109.028019_bib9 article-title: Secondary metabolites in fruits, vegetables, beverages and other plant-based dietary components – volume: 40 start-page: 1035 year: 2006 ident: 10.1124/dmd.109.028019_bib13 article-title: The relative contribution of the small and large intestine to the absorption and metabolism of rutin in man publication-title: Free Radic Res doi: 10.1080/10715760600771400 – volume: 50 start-page: 5735 year: 2002 ident: 10.1124/dmd.109.028019_bib18 article-title: Absorption of phenolic acids in humans after coffee consumption publication-title: J Agric Food Chem doi: 10.1021/jf0257547 – volume: 18 start-page: 253 year: 2006 ident: 10.1124/dmd.109.028019_bib21 article-title: On-line HPLC analysis of the antioxidant activity of phenolic compounds in brewed paper-filtered coffee publication-title: Brasil J Plant Physiol doi: 10.1590/S1677-04202006000100018 – volume: 49 start-page: 5679 year: 2001 ident: 10.1124/dmd.109.028019_bib1 article-title: Esterase activity able to hydrolyze dietary antioxidant hydroxycinnamates is distributed along the intestine of mammals publication-title: J Agric Food Chem doi: 10.1021/jf010668c – volume: 138 start-page: 2309 year: 2008 ident: 10.1124/dmd.109.028019_bib11 article-title: Chlorogenic acids from green coffee extract are highly bioavailable in humans publication-title: J Nutr doi: 10.3945/jn.108.095554 – volume: 30 start-page: 1213 year: 2001 ident: 10.1124/dmd.109.028019_bib20 article-title: Novel biomarkers of the metabolism of caffeic acid derivatives in vivo publication-title: Free Radic Biol Med doi: 10.1016/S0891-5849(01)00506-8 – volume: 48 start-page: 5496 year: 2000 ident: 10.1124/dmd.109.028019_bib2 article-title: Absorption of chlorogenic acid and caffeic acid in rats after oral administration publication-title: J Agric Food Chem doi: 10.1021/jf000483q – volume: 53 start-page: 3821 year: 2005 ident: 10.1124/dmd.109.028019_bib7 article-title: Discriminating between the six isomers of dicaffeoylquinic acid by LC-MSn publication-title: J Agric Food Chem doi: 10.1021/jf050046h – volume: 136 start-page: 1192 year: 2006 ident: 10.1124/dmd.109.028019_bib14 article-title: Chlorogenic acid is absorbed in its intact form in the stomach of rats publication-title: J Nutr doi: 10.1093/jn/136.5.1192 – volume: 51 start-page: 2900 year: 2003 ident: 10.1124/dmd.109.028019_bib6 article-title: Hierarchical scheme for LC-MSn identification of chlorogenic acids publication-title: J Agric Food Chem doi: 10.1021/jf026187q – volume: 35 start-page: 941 year: 2001 ident: 10.1124/dmd.109.028019_bib10 article-title: Human metabolism of dietary flavonoids: Identification of plasma metabolites of quercetin publication-title: Free Radic Res doi: 10.1080/10715760100301441 – volume: 81 start-page: 230S year: 2005 ident: 10.1124/dmd.109.028019_bib15 article-title: Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies publication-title: Am J Clin Nutr doi: 10.1093/ajcn/81.1.230S – volume: 137 start-page: 2196 year: 2007 ident: 10.1124/dmd.109.028019_bib16 article-title: Chlorogenic acid compounds from coffee are differentially absorbed and metabolized in humans publication-title: J Nutr doi: 10.1093/jn/137.10.2196 – volume: 71 start-page: 459 year: 1996 ident: 10.1124/dmd.109.028019_bib3 article-title: In vivo release of 14C-labelled phenolic groups from intact spinach cell walls during passage through the rat intestine publication-title: J Sci Food Agric doi: 10.1002/(SICI)1097-0010(199608)71:4<459::AID-JSFA602>3.0.CO;2-H |
SSID | ssj0014439 |
Score | 2.4579203 |
Snippet | Human subjects drank coffee containing 412 μmol of chlorogenic acids, and plasma and urine were collected 0 to 24 h after ingestion and were analyzed by... Human subjects drank coffee containing 412 μmol of chlorogenic acids, and plasma and urine were collected 0 to 24 h after ingestion and were analyzed by... Human subjects drank coffee containing 412 mumol of chlorogenic acids, and plasma and urine were collected 0 to 24 h after ingestion and were analyzed by... |
SourceID | proquest pubmed pascalfrancis crossref highwire elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1749 |
SubjectTerms | Beverages Biological and medical sciences Biomarkers - blood Biomarkers - urine Biotransformation Caffeic Acids - blood Caffeic Acids - urine Chromatography, High Pressure Liquid Cinnamates - blood Cinnamates - pharmacokinetics Cinnamates - urine Coffee - metabolism Coumaric Acids - blood Coumaric Acids - pharmacokinetics Coumaric Acids - urine Glucuronates - blood Glucuronates - urine Humans Hydroxylation Medical sciences Metabolomics - methods Pharmacology. Drug treatments Spectrometry, Mass, Electrospray Ionization Sulfates - blood Sulfates - urine |
Title | Metabolite Profiling of Hydroxycinnamate Derivatives in Plasma and Urine after the Ingestion of Coffee by Humans: Identification of Biomarkers of Coffee Consumption |
URI | https://dx.doi.org/10.1124/dmd.109.028019 http://dmd.aspetjournals.org/content/37/8/1749.abstract https://www.ncbi.nlm.nih.gov/pubmed/19460943 https://www.proquest.com/docview/67497986 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbGeOEFcadchh_QeNgycnHShLcJNk2wjSG1Ut-sOLZZpDWdekEqv4ffwO_jHNt1UrSKi1RFrRVbrs4X5zv2d84h5DWgKIp0xIJY6DxgWoogjyULQpVGQhc6SxKMRj47z06G7OMoHW1t_eyolhZzcVB9vzGu5H-sCm1gV4yS_QfL-kGhAb6DfeEKFobrX9n4TM3BhhhFvGdrbzsJ8-VSojqlqpumBEaKoVFTU8Xsm7KycaDMYxOMtYeb7cpVCkcOirt8sxWLrCZaK4UM1ZTyM-q5Wjp9keeaGMGPIp_prNOnMqGd197sjv9-mC6-YtVqM21XnkPWXjrm93vAJRiXtkrVIaxG5jT_qrYCcQcQrAFjFIJ2x6jdkp1OJ24ptVlTTPOwuqxl6SKRavixtt1ReLGdX6HjKID2kX2B3dDmlnWbS8bBN--s0eCDFTe_PGIGFpdjiTm2DvDM2a3ma1m6zz_z4-HpKR8cjQa3yO0Y3BOsnPHpS3t6xZipYOen5ZKFwvhv10ffRIZ8rmqU6pYzeFq1LbOy2Q8yfGhwj9x1jgw9tKi8T7ZU84DsXthM6Mt9OmgD-2b7dJdetDnSlw_Jjxa61EOXTjT9Hbq0A11aN9RClwJuqIEuNdClAF3qoYvjWBhSsaQWuu_oOnDxnha4nR4d4D4iw-OjwfuTwBUMCSqWFfMgjUqdS2BbTIX9SiVFEpYhLJXgYoSxZlVWRmkZSsWKEj6RCPsZE1r2BVOiXwmWPCbbzaRRTwmNSy2ZZEklUs3yRJUp-N2iAvKfqVRmUY8EK8vxymXTx6IuV9x41THjYGmUd3Br6R554--_tnlkNt4ZrYDAHQu27JYDTjf2ebVCDL_umJMnfZ5zBHyP7KwByU8ixhR9LGMwxApZHN4weGxYNmqymPEMuveLPOuRJxZw7R8oWIbK5Gd_7Puc3Gkf5hdkez5dqJfA5udixzw6vwBjKwEp |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metabolite+profiling+of+hydroxycinnamate+derivatives+in+plasma+and+urine+after+the+ingestion+of+coffee+by+humans%3A+identification+of+biomarkers+of+coffee+consumption&rft.jtitle=Drug+metabolism+and+disposition&rft.au=Stalmach%2C+Ang%C3%A9lique&rft.au=Mullen%2C+William&rft.au=Barron%2C+Denis&rft.au=Uchida%2C+Kenichi&rft.date=2009-08-01&rft.issn=1521-009X&rft.eissn=1521-009X&rft.volume=37&rft.issue=8&rft.spage=1749&rft_id=info:doi/10.1124%2Fdmd.109.028019&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0090-9556&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0090-9556&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0090-9556&client=summon |