Metabolite Profiling of Hydroxycinnamate Derivatives in Plasma and Urine after the Ingestion of Coffee by Humans: Identification of Biomarkers of Coffee Consumption

Human subjects drank coffee containing 412 μmol of chlorogenic acids, and plasma and urine were collected 0 to 24 h after ingestion and were analyzed by high-performance liquid chromatography-mass spectrometry. Within 1 h, some of the components in the coffee reached nanomole peak plasma concentrati...

Full description

Saved in:
Bibliographic Details
Published inDrug metabolism and disposition Vol. 37; no. 8; pp. 1749 - 1758
Main Authors Stalmach, Angélique, Mullen, William, Barron, Denis, Uchida, Kenichi, Yokota, Takao, Cavin, Christophe, Steiling, Heike, Williamson, Gary, Crozier, Alan
Format Journal Article
LanguageEnglish
Published Bethesda, MD Elsevier Inc 01.08.2009
American Society for Pharmacology and Experimental Therapeutics
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Human subjects drank coffee containing 412 μmol of chlorogenic acids, and plasma and urine were collected 0 to 24 h after ingestion and were analyzed by high-performance liquid chromatography-mass spectrometry. Within 1 h, some of the components in the coffee reached nanomole peak plasma concentrations (Cmax), whereas chlorogenic acid metabolites, including caffeic acid-3-O-sulfate and ferulic acid-4-O-sulfate and sulfates of 3- and 4-caffeoylquinic acid lactones, had higher Cmax values. The short time to reach Cmax (Tmax) indicates absorption of these compounds in the small intestine. In contrast, dihydroferulic acid, its 4-O-sulfate, and dihydrocaffeic acid-3-O-sulfate exhibited much higher Cmax values (145–385 nM) with Tmax values in excess of 4 h, indicating absorption in the large intestine and the probable involvement of catabolism by colonic bacteria. These three compounds, along with ferulic acid-4-O-sulfate and dihydroferulic acid-4-O-glucuronide, were also major components to be excreted in urine (8.4–37.1 μmol) after coffee intake. Feruloylglycine, which is not detected in plasma, was also a major urinary component (20.7 μmol excreted). Other compounds, not accumulating in plasma but excreted in smaller quantities, included the 3-O-sulfate and 3-O-glucuronide of isoferulic acid, dihydro(iso)ferulic acid-3-O-glucuronide, and dihydrocaffeic acid-3-O-glucuronide. Overall, the 119.9 μmol excretion of the chlorogenic acid metabolites corresponded to 29.1% of intake, indicating that as well as being subject to extensive metabolism, chlorogenic acids in coffee are well absorbed. Pathways for the formation of the various metabolites within the body are proposed. Urinary dihydrocaffeic acid-3-O-sulfate and feruloylglycine are potentially very sensitive biomarkers for the consumption of relatively small amounts of coffee.
AbstractList Human subjects drank coffee containing 412 μmol of chlorogenic acids, and plasma and urine were collected 0 to 24 h after ingestion and were analyzed by high-performance liquid chromatography-mass spectrometry. Within 1 h, some of the components in the coffee reached nanomole peak plasma concentrations ( C max ), whereas chlorogenic acid metabolites, including caffeic acid-3- O -sulfate and ferulic acid-4- O -sulfate and sulfates of 3- and 4-caffeoylquinic acid lactones, had higher C max values. The short time to reach C max ( T max ) indicates absorption of these compounds in the small intestine. In contrast, dihydroferulic acid, its 4- O -sulfate, and dihydrocaffeic acid-3- O -sulfate exhibited much higher C max values (145–385 nM) with T max values in excess of 4 h, indicating absorption in the large intestine and the probable involvement of catabolism by colonic bacteria. These three compounds, along with ferulic acid-4- O -sulfate and dihydroferulic acid-4- O -glucuronide, were also major components to be excreted in urine (8.4–37.1 μmol) after coffee intake. Feruloylglycine, which is not detected in plasma, was also a major urinary component (20.7 μmol excreted). Other compounds, not accumulating in plasma but excreted in smaller quantities, included the 3- O -sulfate and 3- O -glucuronide of isoferulic acid, dihydro(iso)ferulic acid-3- O -glucuronide, and dihydrocaffeic acid-3- O -glucuronide. Overall, the 119.9 μmol excretion of the chlorogenic acid metabolites corresponded to 29.1% of intake, indicating that as well as being subject to extensive metabolism, chlorogenic acids in coffee are well absorbed. Pathways for the formation of the various metabolites within the body are proposed. Urinary dihydrocaffeic acid-3- O -sulfate and feruloylglycine are potentially very sensitive biomarkers for the consumption of relatively small amounts of coffee.
Human subjects drank coffee containing 412 mumol of chlorogenic acids, and plasma and urine were collected 0 to 24 h after ingestion and were analyzed by high-performance liquid chromatography-mass spectrometry. Within 1 h, some of the components in the coffee reached nanomole peak plasma concentrations (C(max)), whereas chlorogenic acid metabolites, including caffeic acid-3-O-sulfate and ferulic acid-4-O-sulfate and sulfates of 3- and 4-caffeoylquinic acid lactones, had higher C(max) values. The short time to reach C(max) (T(max)) indicates absorption of these compounds in the small intestine. In contrast, dihydroferulic acid, its 4-O-sulfate, and dihydrocaffeic acid-3-O-sulfate exhibited much higher C(max) values (145-385 nM) with T(max) values in excess of 4 h, indicating absorption in the large intestine and the probable involvement of catabolism by colonic bacteria. These three compounds, along with ferulic acid-4-O-sulfate and dihydroferulic acid-4-O-glucuronide, were also major components to be excreted in urine (8.4-37.1 mumol) after coffee intake. Feruloylglycine, which is not detected in plasma, was also a major urinary component (20.7 mumol excreted). Other compounds, not accumulating in plasma but excreted in smaller quantities, included the 3-O-sulfate and 3-O-glucuronide of isoferulic acid, dihydro(iso)ferulic acid-3-O-glucuronide, and dihydrocaffeic acid-3-O-glucuronide. Overall, the 119.9 mumol excretion of the chlorogenic acid metabolites corresponded to 29.1% of intake, indicating that as well as being subject to extensive metabolism, chlorogenic acids in coffee are well absorbed. Pathways for the formation of the various metabolites within the body are proposed. Urinary dihydrocaffeic acid-3-O-sulfate and feruloylglycine are potentially very sensitive biomarkers for the consumption of relatively small amounts of coffee.
Human subjects drank coffee containing 412 mumol of chlorogenic acids, and plasma and urine were collected 0 to 24 h after ingestion and were analyzed by high-performance liquid chromatography-mass spectrometry. Within 1 h, some of the components in the coffee reached nanomole peak plasma concentrations (C(max)), whereas chlorogenic acid metabolites, including caffeic acid-3-O-sulfate and ferulic acid-4-O-sulfate and sulfates of 3- and 4-caffeoylquinic acid lactones, had higher C(max) values. The short time to reach C(max) (T(max)) indicates absorption of these compounds in the small intestine. In contrast, dihydroferulic acid, its 4-O-sulfate, and dihydrocaffeic acid-3-O-sulfate exhibited much higher C(max) values (145-385 nM) with T(max) values in excess of 4 h, indicating absorption in the large intestine and the probable involvement of catabolism by colonic bacteria. These three compounds, along with ferulic acid-4-O-sulfate and dihydroferulic acid-4-O-glucuronide, were also major components to be excreted in urine (8.4-37.1 mumol) after coffee intake. Feruloylglycine, which is not detected in plasma, was also a major urinary component (20.7 mumol excreted). Other compounds, not accumulating in plasma but excreted in smaller quantities, included the 3-O-sulfate and 3-O-glucuronide of isoferulic acid, dihydro(iso)ferulic acid-3-O-glucuronide, and dihydrocaffeic acid-3-O-glucuronide. Overall, the 119.9 mumol excretion of the chlorogenic acid metabolites corresponded to 29.1% of intake, indicating that as well as being subject to extensive metabolism, chlorogenic acids in coffee are well absorbed. Pathways for the formation of the various metabolites within the body are proposed. Urinary dihydrocaffeic acid-3-O-sulfate and feruloylglycine are potentially very sensitive biomarkers for the consumption of relatively small amounts of coffee.Human subjects drank coffee containing 412 mumol of chlorogenic acids, and plasma and urine were collected 0 to 24 h after ingestion and were analyzed by high-performance liquid chromatography-mass spectrometry. Within 1 h, some of the components in the coffee reached nanomole peak plasma concentrations (C(max)), whereas chlorogenic acid metabolites, including caffeic acid-3-O-sulfate and ferulic acid-4-O-sulfate and sulfates of 3- and 4-caffeoylquinic acid lactones, had higher C(max) values. The short time to reach C(max) (T(max)) indicates absorption of these compounds in the small intestine. In contrast, dihydroferulic acid, its 4-O-sulfate, and dihydrocaffeic acid-3-O-sulfate exhibited much higher C(max) values (145-385 nM) with T(max) values in excess of 4 h, indicating absorption in the large intestine and the probable involvement of catabolism by colonic bacteria. These three compounds, along with ferulic acid-4-O-sulfate and dihydroferulic acid-4-O-glucuronide, were also major components to be excreted in urine (8.4-37.1 mumol) after coffee intake. Feruloylglycine, which is not detected in plasma, was also a major urinary component (20.7 mumol excreted). Other compounds, not accumulating in plasma but excreted in smaller quantities, included the 3-O-sulfate and 3-O-glucuronide of isoferulic acid, dihydro(iso)ferulic acid-3-O-glucuronide, and dihydrocaffeic acid-3-O-glucuronide. Overall, the 119.9 mumol excretion of the chlorogenic acid metabolites corresponded to 29.1% of intake, indicating that as well as being subject to extensive metabolism, chlorogenic acids in coffee are well absorbed. Pathways for the formation of the various metabolites within the body are proposed. Urinary dihydrocaffeic acid-3-O-sulfate and feruloylglycine are potentially very sensitive biomarkers for the consumption of relatively small amounts of coffee.
Human subjects drank coffee containing 412 μmol of chlorogenic acids, and plasma and urine were collected 0 to 24 h after ingestion and were analyzed by high-performance liquid chromatography-mass spectrometry. Within 1 h, some of the components in the coffee reached nanomole peak plasma concentrations (Cmax), whereas chlorogenic acid metabolites, including caffeic acid-3-O-sulfate and ferulic acid-4-O-sulfate and sulfates of 3- and 4-caffeoylquinic acid lactones, had higher Cmax values. The short time to reach Cmax (Tmax) indicates absorption of these compounds in the small intestine. In contrast, dihydroferulic acid, its 4-O-sulfate, and dihydrocaffeic acid-3-O-sulfate exhibited much higher Cmax values (145–385 nM) with Tmax values in excess of 4 h, indicating absorption in the large intestine and the probable involvement of catabolism by colonic bacteria. These three compounds, along with ferulic acid-4-O-sulfate and dihydroferulic acid-4-O-glucuronide, were also major components to be excreted in urine (8.4–37.1 μmol) after coffee intake. Feruloylglycine, which is not detected in plasma, was also a major urinary component (20.7 μmol excreted). Other compounds, not accumulating in plasma but excreted in smaller quantities, included the 3-O-sulfate and 3-O-glucuronide of isoferulic acid, dihydro(iso)ferulic acid-3-O-glucuronide, and dihydrocaffeic acid-3-O-glucuronide. Overall, the 119.9 μmol excretion of the chlorogenic acid metabolites corresponded to 29.1% of intake, indicating that as well as being subject to extensive metabolism, chlorogenic acids in coffee are well absorbed. Pathways for the formation of the various metabolites within the body are proposed. Urinary dihydrocaffeic acid-3-O-sulfate and feruloylglycine are potentially very sensitive biomarkers for the consumption of relatively small amounts of coffee.
Author Yokota, Takao
Cavin, Christophe
Steiling, Heike
Mullen, William
Uchida, Kenichi
Stalmach, Angélique
Crozier, Alan
Barron, Denis
Williamson, Gary
Author_xml – sequence: 1
  givenname: Angélique
  surname: Stalmach
  fullname: Stalmach, Angélique
– sequence: 2
  givenname: William
  surname: Mullen
  fullname: Mullen, William
– sequence: 3
  givenname: Denis
  surname: Barron
  fullname: Barron, Denis
– sequence: 4
  givenname: Kenichi
  surname: Uchida
  fullname: Uchida, Kenichi
– sequence: 5
  givenname: Takao
  surname: Yokota
  fullname: Yokota, Takao
– sequence: 6
  givenname: Christophe
  surname: Cavin
  fullname: Cavin, Christophe
– sequence: 7
  givenname: Heike
  surname: Steiling
  fullname: Steiling, Heike
– sequence: 8
  givenname: Gary
  surname: Williamson
  fullname: Williamson, Gary
– sequence: 9
  givenname: Alan
  surname: Crozier
  fullname: Crozier, Alan
  email: a.crozier@bio.gla.ac.uk
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21790464$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/19460943$$D View this record in MEDLINE/PubMed
BookMark eNp1kU9vEzEQxS1URNPClSPyBW4b7F1nd80Nwp9EKqIHKnGzZu1xYti1U3sTyPfhg-KQFBBSJUtjaX5vRu_NBTnzwSMhTzmbcl6Kl2YwU87klJUt4_IBmfBZyQvG5JczMsmFFXI2q8_JRUpfGeNCVPIROedS1EyKakJ-fsQRutC7Eel1DNb1zq9osHSxNzH82GvnPQyQu28xuh2MboeJOk-ve0gDUPCG3kTnkYIdMdJxjXTpV5hGF_xhzjxYi0i7PV1sB_DpFV0a9KOzTsMd88aFAeI3jOkfxTz4tB02B-YxeWihT_jkVC_Jzft3n-eL4urTh-X89VWhRS3HYsbBtqbhrUDWaKxkxYAhmLKsWWmFroHPgBkUEvLjHWtq0VnTdAK7RneiuiQvjnM3Mdxuswc1uKSx78Fj2CZVN0I2sq0z-OwEbrsBjdpElw3s1V2uGXh-AiBp6G0Er136w5W8kUzUh43TI6djSCmi_TuKqcOBVT5w_kt1PHAWiP8E2o2_gxwjuP5-2cnZ2q3W311EtVlDHECHPqz2qmpUq3h2l8H2CGLOeecwqqQdeo0mi_SoTHD37fgFHEvMpw
CODEN DMDSAI
CitedBy_id crossref_primary_10_1002_biof_1127
crossref_primary_10_1002_biof_1124
crossref_primary_10_1007_s00394_010_0157_0
crossref_primary_10_4018_IJKDB_2017070104
crossref_primary_10_2174_0929867329666220816154634
crossref_primary_10_1016_j_foodchem_2021_130620
crossref_primary_10_1021_jf904096v
crossref_primary_10_1016_j_freeradbiomed_2015_10_400
crossref_primary_10_1111_1541_4337_12518
crossref_primary_10_1016_j_foodres_2014_05_035
crossref_primary_10_1016_j_foodres_2014_05_043
crossref_primary_10_1016_j_foodchem_2016_03_011
crossref_primary_10_1016_j_jff_2017_08_009
crossref_primary_10_1097_MCG_0b013e318264e82b
crossref_primary_10_1016_j_ijbiomac_2015_07_031
crossref_primary_10_1002_mnfr_202000517
crossref_primary_10_1016_j_chroma_2011_05_050
crossref_primary_10_3390_nu12051349
crossref_primary_10_3390_nu2080820
crossref_primary_10_1177_030006051204000620
crossref_primary_10_1016_j_foodres_2014_04_002
crossref_primary_10_1016_j_foodres_2020_109815
crossref_primary_10_1039_C9FO00491B
crossref_primary_10_1016_j_jarmap_2015_03_001
crossref_primary_10_1039_c2fo10288a
crossref_primary_10_1002_mnfr_201900659
crossref_primary_10_1007_s00394_020_02201_8
crossref_primary_10_1002_mnfr_201000656
crossref_primary_10_1021_jf402394c
crossref_primary_10_1016_j_foodchem_2021_130198
crossref_primary_10_1021_acs_jafc_0c05184
crossref_primary_10_1128_MMBR_00072_19
crossref_primary_10_1002_mnfr_201000652
crossref_primary_10_3390_app13042192
crossref_primary_10_1016_j_vibspec_2012_02_009
crossref_primary_10_1111_j_1365_2125_2012_04425_x
crossref_primary_10_1007_s00394_021_02714_w
crossref_primary_10_1016_j_clnu_2016_11_013
crossref_primary_10_1021_jf100315d
crossref_primary_10_1016_j_jnutbio_2025_109869
crossref_primary_10_3945_ajcn_115_123869
crossref_primary_10_1111_1541_4337_12081
crossref_primary_10_1089_ars_2023_0254
crossref_primary_10_3945_ajcn_2009_28548
crossref_primary_10_1016_j_jpba_2011_03_023
crossref_primary_10_1080_07315724_2014_907756
crossref_primary_10_3390_molecules28186440
crossref_primary_10_5936_csbj_201301004
crossref_primary_10_1021_jf202624q
crossref_primary_10_1002_biof_1101
crossref_primary_10_1039_D0FO01168A
crossref_primary_10_1007_s13668_013_0052_4
crossref_primary_10_3390_biomedicines10092255
crossref_primary_10_1039_c3fo60024f
crossref_primary_10_3390_molecules23102702
crossref_primary_10_1089_ars_2012_4581
crossref_primary_10_3390_nu11081805
crossref_primary_10_1016_j_biopha_2017_10_064
crossref_primary_10_3109_09637486_2015_1064874
crossref_primary_10_1002_mnfr_201000525
crossref_primary_10_1016_j_jpba_2023_115723
crossref_primary_10_1017_S0007114514003948
crossref_primary_10_1021_jf304076z
crossref_primary_10_1177_1534735418801521
crossref_primary_10_1039_C6FO00652C
crossref_primary_10_3390_ijms22010107
crossref_primary_10_3390_ijms222313138
crossref_primary_10_1002_elps_201300565
crossref_primary_10_1016_j_foodres_2020_109119
crossref_primary_10_1002_mnfr_201500940
crossref_primary_10_1016_j_abb_2016_01_014
crossref_primary_10_1017_S0007114510002709
crossref_primary_10_1002_mnfr_201000631
crossref_primary_10_1021_acs_jafc_6b04710
crossref_primary_10_1039_c3fo60691k
crossref_primary_10_1002_ciuz_201300589
crossref_primary_10_1016_j_btre_2019_e00370
crossref_primary_10_1007_s00394_018_1683_4
crossref_primary_10_1111_1541_4337_12663
crossref_primary_10_1002_jms_4971
crossref_primary_10_1016_j_fct_2018_01_022
crossref_primary_10_1007_s00394_018_1770_6
crossref_primary_10_1016_j_fbio_2023_102926
crossref_primary_10_3390_nu9030194
crossref_primary_10_1080_09637486_2018_1505834
crossref_primary_10_1016_j_phrs_2022_106505
crossref_primary_10_1002_rcm_4537
crossref_primary_10_1039_D2FO01488B
crossref_primary_10_1007_s12272_013_0320_2
crossref_primary_10_1111_jam_15009
crossref_primary_10_3390_foods7010008
crossref_primary_10_3390_antiox10060846
crossref_primary_10_1016_j_jpba_2012_12_016
crossref_primary_10_1016_j_nutres_2013_11_001
crossref_primary_10_1074_jbc_M115_645812
crossref_primary_10_1007_s00394_016_1290_1
crossref_primary_10_1039_C9FO00288J
crossref_primary_10_1097_MOL_0000000000000143
crossref_primary_10_1002_jcb_28383
crossref_primary_10_1039_b907570d
crossref_primary_10_3390_molecules23123309
crossref_primary_10_1016_j_foodres_2012_09_016
crossref_primary_10_1002_mnfr_202000031
crossref_primary_10_1038_s41598_017_01888_w
crossref_primary_10_3945_ajcn_114_101881
crossref_primary_10_1111_jfbc_14254
crossref_primary_10_1021_acs_jafc_9b00522
crossref_primary_10_1080_10408398_2011_563880
crossref_primary_10_1111_1541_4337_13006
crossref_primary_10_1371_journal_pone_0093474
crossref_primary_10_3389_fphar_2023_1228030
crossref_primary_10_1021_ac500565a
crossref_primary_10_1039_C4FO00670D
crossref_primary_10_1021_acs_jafc_9b02155
crossref_primary_10_1007_s00216_013_7288_0
crossref_primary_10_2174_2210315509666190618094434
crossref_primary_10_3390_nu13113760
crossref_primary_10_1016_j_foodchem_2011_07_078
crossref_primary_10_1080_10408398_2018_1550384
crossref_primary_10_1002_biof_1152
crossref_primary_10_1093_ajcn_nqab299
crossref_primary_10_1017_S0007114520002275
crossref_primary_10_1016_j_indcrop_2023_116999
crossref_primary_10_3390_nu12082190
crossref_primary_10_1080_10408398_2024_2410874
crossref_primary_10_1016_j_foodres_2014_05_073
crossref_primary_10_1016_j_foodres_2016_07_020
crossref_primary_10_1016_j_jff_2015_12_010
crossref_primary_10_1039_c2fo30037k
crossref_primary_10_1017_S0007114510003946
crossref_primary_10_3390_metabo14010031
crossref_primary_10_1016_j_arabjc_2015_06_026
crossref_primary_10_1093_nutrit_nuae034
crossref_primary_10_1017_S095442241300019X
crossref_primary_10_1186_s13063_017_2271_2
crossref_primary_10_1002_biof_1268
crossref_primary_10_1016_j_fct_2019_110678
crossref_primary_10_1016_j_phymed_2013_05_007
crossref_primary_10_1017_S0029665113001237
crossref_primary_10_1016_j_foodres_2022_111702
crossref_primary_10_1007_s11130_023_01107_0
crossref_primary_10_1002_mnfr_201000048
crossref_primary_10_3390_molecules26164829
crossref_primary_10_1021_jf200122m
crossref_primary_10_1016_j_chroma_2018_09_016
crossref_primary_10_3945_ajcn_114_088120
crossref_primary_10_1016_j_abb_2010_03_005
crossref_primary_10_1039_C5FO01412C
crossref_primary_10_1021_jf3045236
crossref_primary_10_1002_mnfr_201600290
crossref_primary_10_1039_D0FO02629H
crossref_primary_10_1021_acs_jafc_5b03040
crossref_primary_10_1373_clinchem_2017_272344
crossref_primary_10_1016_j_foodres_2016_06_011
crossref_primary_10_1007_s11101_017_9528_y
crossref_primary_10_3109_00498254_2013_853848
crossref_primary_10_1002_mnfr_201200222
crossref_primary_10_3390_foods13223640
crossref_primary_10_3390_nu11051032
crossref_primary_10_1039_C6FO01475E
crossref_primary_10_3390_foods11162464
crossref_primary_10_1016_j_freeradbiomed_2017_02_037
crossref_primary_10_1002_mnfr_201700499
crossref_primary_10_1002_mnfr_201400779
crossref_primary_10_1111_1541_4337_12620
crossref_primary_10_1111_bph_14821
crossref_primary_10_1039_C7FO01553D
crossref_primary_10_1016_j_foodchem_2010_07_103
crossref_primary_10_1093_nutrit_nuw057
crossref_primary_10_1021_acs_jafc_0c01554
crossref_primary_10_1002_mnfr_201300441
crossref_primary_10_3109_09637486_2014_940287
crossref_primary_10_1002_cpdd_451
crossref_primary_10_1016_j_foodres_2014_03_031
crossref_primary_10_3390_cimb46070405
crossref_primary_10_1016_j_foodres_2016_03_038
crossref_primary_10_3390_molecules26134086
crossref_primary_10_1021_jf202185m
crossref_primary_10_1039_c3fo60078e
crossref_primary_10_1097_NT_0000000000000433
crossref_primary_10_1111_1541_4337_12351
crossref_primary_10_3109_09637486_2015_1007453
crossref_primary_10_1016_j_maturitas_2013_02_002
crossref_primary_10_1111_bph_12676
crossref_primary_10_1016_j_jnutbio_2023_109456
crossref_primary_10_1016_j_cofs_2017_02_012
crossref_primary_10_1096_fj_201801209R
crossref_primary_10_2174_1568026622666220623114450
crossref_primary_10_3390_nu11051092
crossref_primary_10_1002_elps_201300066
crossref_primary_10_1002_jsfa_8607
crossref_primary_10_3390_molecules27031049
crossref_primary_10_1039_C8RA07972B
crossref_primary_10_1007_s00394_013_0512_z
crossref_primary_10_3390_nu16244257
crossref_primary_10_1016_j_foodchem_2017_03_005
crossref_primary_10_1016_j_foodres_2023_113612
crossref_primary_10_61117_ipsumtec_v6i4_266
crossref_primary_10_3390_antiox10081169
crossref_primary_10_1002_fsn3_2849
crossref_primary_10_1002_mnfr_201300349
crossref_primary_10_1016_j_ijms_2014_01_021
crossref_primary_10_3109_00498254_2011_603387
crossref_primary_10_1021_jf302694a
crossref_primary_10_1002_mnfr_201100566
crossref_primary_10_1016_j_freeradbiomed_2024_10_289
crossref_primary_10_1007_s00216_012_6402_z
crossref_primary_10_1038_hr_2011_195
crossref_primary_10_1002_bmc_3710
crossref_primary_10_1016_j_foodres_2018_06_016
crossref_primary_10_1021_jf401534d
crossref_primary_10_1021_jf403846g
crossref_primary_10_1080_87559129_2020_1854781
crossref_primary_10_1021_pr200132s
crossref_primary_10_1146_annurev_food_032818_121715
crossref_primary_10_1021_jf201906p
crossref_primary_10_1002_mnfr_201200021
crossref_primary_10_3390_molecules29010088
crossref_primary_10_1016_j_freeradbiomed_2020_09_007
crossref_primary_10_1021_acs_jafc_1c07179
crossref_primary_10_3389_fnut_2020_602515
crossref_primary_10_1021_jf200764d
crossref_primary_10_1016_j_mam_2010_09_007
crossref_primary_10_1246_cl_230171
crossref_primary_10_3390_beverages10010012
crossref_primary_10_1021_jf2015039
crossref_primary_10_3390_ph12030110
crossref_primary_10_3390_cells9040827
crossref_primary_10_1016_j_jchromb_2020_122457
crossref_primary_10_1093_jn_nxy027
crossref_primary_10_1039_D1FO03327A
crossref_primary_10_1002_mnfr_201800396
crossref_primary_10_1007_s00394_015_0988_9
crossref_primary_10_1007_s10389_019_01055_7
crossref_primary_10_1007_s00217_016_2793_y
crossref_primary_10_1016_j_chroma_2013_07_020
crossref_primary_10_3390_ijms23116292
crossref_primary_10_1016_j_foodchem_2012_09_103
crossref_primary_10_1080_09637486_2020_1850650
crossref_primary_10_1007_s11306_021_01866_4
crossref_primary_10_3945_jn_111_147751
crossref_primary_10_3390_ijms24021440
crossref_primary_10_1016_j_jff_2017_02_033
crossref_primary_10_1186_1743_7075_11_1
crossref_primary_10_1007_s00044_016_1674_z
crossref_primary_10_1016_j_jchromb_2021_122988
crossref_primary_10_1016_j_foodres_2013_09_028
crossref_primary_10_3390_biom12070875
crossref_primary_10_1016_j_apjtb_2016_06_005
crossref_primary_10_3390_antiox9050415
crossref_primary_10_3945_ajcn_116_149898
crossref_primary_10_1038_s41598_020_76558_5
crossref_primary_10_1016_j_chroma_2010_11_076
crossref_primary_10_1039_C4FO00316K
crossref_primary_10_3945_ajcn_112_048033
crossref_primary_10_1002_mnfr_201900062
crossref_primary_10_1016_j_bcp_2017_03_012
crossref_primary_10_3390_molecules28176403
crossref_primary_10_1002_mnfr_201400231
crossref_primary_10_1021_jf303440j
crossref_primary_10_1017_S0007114511002121
crossref_primary_10_1146_annurev_food_030216_025636
crossref_primary_10_1017_S0007114514003511
crossref_primary_10_1016_j_jff_2018_04_011
crossref_primary_10_1039_C6FO00248J
crossref_primary_10_1186_s12263_018_0607_5
crossref_primary_10_1016_j_tifs_2018_11_026
crossref_primary_10_1016_j_foodchem_2016_02_140
crossref_primary_10_1002_mnfr_201300822
crossref_primary_10_1016_j_jnutbio_2017_02_018
crossref_primary_10_1093_advances_nmab054
crossref_primary_10_3945_ajcn_113_076133
crossref_primary_10_1002_mnfr_201500470
crossref_primary_10_3390_molecules21080979
crossref_primary_10_1002_mnfr_202100985
crossref_primary_10_3390_nu14010210
crossref_primary_10_1039_c3fo30385c
crossref_primary_10_3390_antiox11020215
crossref_primary_10_1007_s11306_011_0307_2
crossref_primary_10_1021_acs_jafc_9b00467
crossref_primary_10_1002_mnfr_200900608
crossref_primary_10_1039_C7NP00030H
crossref_primary_10_1002_mnfr_202400112
crossref_primary_10_1007_s11306_015_0935_z
crossref_primary_10_1039_C4FO00042K
crossref_primary_10_3390_ijms20040897
crossref_primary_10_1124_dmd_111_040147
crossref_primary_10_1021_jf3001185
crossref_primary_10_1002_biot_201200303
crossref_primary_10_1007_s00394_019_01987_6
crossref_primary_10_1016_j_foodres_2018_03_023
crossref_primary_10_3390_nu11112634
crossref_primary_10_1016_j_foodchem_2017_08_003
crossref_primary_10_1016_j_foodres_2019_05_029
crossref_primary_10_1039_C7FO00926G
crossref_primary_10_1111_1541_4337_12342
crossref_primary_10_1016_j_foodres_2018_04_052
crossref_primary_10_1021_jf203136j
crossref_primary_10_3390_beverages5010011
crossref_primary_10_1021_acs_jafc_1c01155
crossref_primary_10_1021_jf404965z
crossref_primary_10_1002_mnfr_201400498
crossref_primary_10_3109_03602532_2013_868114
crossref_primary_10_1002_mnfr_200900611
Cites_doi 10.1016/S0891-5849(99)00054-4
10.1002/(SICI)1097-0010(19990301)79:3<362::AID-JSFA256>3.0.CO;2-D
10.1124/dmd.107.017558
10.1093/jn/133.6.1853
10.1002/rcm.3038
10.1079/BJN20061809
10.1080/10715760600771400
10.1021/jf0257547
10.1590/S1677-04202006000100018
10.1021/jf010668c
10.3945/jn.108.095554
10.1016/S0891-5849(01)00506-8
10.1021/jf000483q
10.1021/jf050046h
10.1093/jn/136.5.1192
10.1021/jf026187q
10.1080/10715760100301441
10.1093/ajcn/81.1.230S
10.1093/jn/137.10.2196
10.1002/(SICI)1097-0010(199608)71:4<459::AID-JSFA602>3.0.CO;2-H
ContentType Journal Article
Copyright 2009 American Society for Pharmacology and Experimental Therapeutics
2009 INIST-CNRS
Copyright_xml – notice: 2009 American Society for Pharmacology and Experimental Therapeutics
– notice: 2009 INIST-CNRS
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1124/dmd.109.028019
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1521-009X
EndPage 1758
ExternalDocumentID 19460943
21790464
10_1124_dmd_109_028019
37_8_1749
S0090955624021421
Genre Clinical Trial
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
.GJ
0R~
18M
2WC
4.4
53G
5GY
5RE
5VS
AAXUO
ABJNI
ABSQV
ACGFO
ACGFS
ACIWK
ACPRK
ADBBV
AENEX
AERNN
AFFNX
AFOSN
AFRAH
AI.
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BTFSW
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
F9R
FDB
GX1
H13
HZ~
IH2
INIJC
KQ8
LSO
M41
O9-
OK1
P2P
R0Z
RHI
ROL
RPT
SJN
TR2
VH1
W8F
WH7
WOQ
YCJ
YHG
ZGI
ZXP
~KM
-
08R
0R
AAPBV
AAWZA
ABFLS
ABSGY
ADACO
FH7
FRP
HZ
KM
O0-
RHF
W2D
AALRI
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c469t-51af8d7184e07ce3930a0ead22602f4c6a15a0de49a49a1b0764bfd7b4eb7cb43
ISSN 0090-9556
1521-009X
IngestDate Fri Jul 11 06:42:39 EDT 2025
Mon Jul 21 05:43:51 EDT 2025
Mon Jul 21 09:15:56 EDT 2025
Tue Jul 01 05:29:05 EDT 2025
Thu Apr 24 23:02:29 EDT 2025
Tue Jan 05 21:17:04 EST 2021
Sun Apr 06 06:53:03 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Consumption
Human
Urine
Biological fluid
Metabolite
Biological marker
Identification
Coffee
Ingestion
Blood plasma
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c469t-51af8d7184e07ce3930a0ead22602f4c6a15a0de49a49a1b0764bfd7b4eb7cb43
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PMID 19460943
PQID 67497986
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_67497986
pubmed_primary_19460943
pascalfrancis_primary_21790464
crossref_primary_10_1124_dmd_109_028019
crossref_citationtrail_10_1124_dmd_109_028019
highwire_pharmacology_37_8_1749
elsevier_sciencedirect_doi_10_1124_dmd_109_028019
ProviderPackageCode RHF
RHI
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-08-01
PublicationDateYYYYMMDD 2009-08-01
PublicationDate_xml – month: 08
  year: 2009
  text: 2009-08-01
  day: 01
PublicationDecade 2000
PublicationPlace Bethesda, MD
PublicationPlace_xml – name: Bethesda, MD
– name: United States
PublicationTitle Drug metabolism and disposition
PublicationTitleAlternate Drug Metab Dispos
PublicationYear 2009
Publisher Elsevier Inc
American Society for Pharmacology and Experimental Therapeutics
Publisher_xml – name: Elsevier Inc
– name: American Society for Pharmacology and Experimental Therapeutics
References Lafay, Gil-Izquierdo, Manach, Morand, Besson, Scalbert (bib14) 2006; 136
Rechner, Spencer, Kuhnle, Hahn, Rice-Evans (bib20) 2001; 30
Crozier, Yokota, Jaganath, Marks, Saltmarsch, Clifford, Ashihara (bib9) 2006
Azuma, Ippoushi, Nakayama, Ito, Higashio, Terao (bib2) 2000; 48
Clifford, Knight, Kuhnert (bib7) 2005; 53
Nardini, Cirillo, Natella, Scaccini (bib18) 2002; 50
Clifford (bib5) 1999; 79
Gonthier, Verny, Besson, Rémésy, Scalbert (bib12) 2003; 133
Buchanan, Wallace, Fry (bib3) 1996; 71
Manach, Williamson, Morand, Scalbert, Rémésy (bib15) 2005; 81
Stalmach, Mullen, Nagai, Crozier (bib21) 2006; 18
Mullen, Edwards, Crozier (bib17) 2006; 96
Farah, Monteiro, Donangelo, Lafay (bib11) 2008; 138
Monteiro, Farah, Perrone, Trugo, Donangelo (bib16) 2007; 137
Poquet, Clifford, Williamson (bib19) 2008; 36
Andreasen, Kroon, Williamson, Garcia-Conesa (bib1) 2001; 49
Clifford, Johnston, Knight, Kuhnert (bib6) 2003; 51
Day, Mellon, Baron, Sarrazin, Morgan, Williamson (bib10) 2001; 35
Clifford, Lopez, Poquet, Williamson, Kuhnert (bib8) 2007; 21
Choudhury, Srai, Debnam, Rice-Evans (bib4) 1999; 27
Jaganath, Mullen, Edwards, Crozier (bib13) 2006; 40
Choudhury (10.1124/dmd.109.028019_bib4) 1999; 27
Clifford (10.1124/dmd.109.028019_bib7) 2005; 53
Andreasen (10.1124/dmd.109.028019_bib1) 2001; 49
Farah (10.1124/dmd.109.028019_bib11) 2008; 138
Clifford (10.1124/dmd.109.028019_bib5) 1999; 79
Clifford (10.1124/dmd.109.028019_bib8) 2007; 21
Monteiro (10.1124/dmd.109.028019_bib16) 2007; 137
Clifford (10.1124/dmd.109.028019_bib6) 2003; 51
Day (10.1124/dmd.109.028019_bib10) 2001; 35
Manach (10.1124/dmd.109.028019_bib15) 2005; 81
Nardini (10.1124/dmd.109.028019_bib18) 2002; 50
Rechner (10.1124/dmd.109.028019_bib20) 2001; 30
Poquet (10.1124/dmd.109.028019_bib19) 2008; 36
Buchanan (10.1124/dmd.109.028019_bib3) 1996; 71
Gonthier (10.1124/dmd.109.028019_bib12) 2003; 133
Crozier (10.1124/dmd.109.028019_bib9) 2006
Lafay (10.1124/dmd.109.028019_bib14) 2006; 136
Mullen (10.1124/dmd.109.028019_bib17) 2006; 96
Jaganath (10.1124/dmd.109.028019_bib13) 2006; 40
Azuma (10.1124/dmd.109.028019_bib2) 2000; 48
Stalmach (10.1124/dmd.109.028019_bib21) 2006; 18
References_xml – volume: 51
  start-page: 2900
  year: 2003
  end-page: 2911
  ident: bib6
  article-title: Hierarchical scheme for LC-MS
  publication-title: J Agric Food Chem
– volume: 81
  start-page: 230S
  year: 2005
  end-page: 242S
  ident: bib15
  article-title: Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies
  publication-title: Am J Clin Nutr
– volume: 49
  start-page: 5679
  year: 2001
  end-page: 5684
  ident: bib1
  article-title: Esterase activity able to hydrolyze dietary antioxidant hydroxycinnamates is distributed along the intestine of mammals
  publication-title: J Agric Food Chem
– volume: 36
  start-page: 190
  year: 2008
  end-page: 197
  ident: bib19
  article-title: Transport and metabolism of ferulic acid through the colonic epithelium
  publication-title: Drug Metab Dispos
– volume: 48
  start-page: 5496
  year: 2000
  end-page: 5500
  ident: bib2
  article-title: Absorption of chlorogenic acid and caffeic acid in rats after oral administration
  publication-title: J Agric Food Chem
– volume: 18
  start-page: 253
  year: 2006
  end-page: 262
  ident: bib21
  article-title: On-line HPLC analysis of the antioxidant activity of phenolic compounds in brewed paper-filtered coffee
  publication-title: Brasil J Plant Physiol
– volume: 138
  start-page: 2309
  year: 2008
  end-page: 2315
  ident: bib11
  article-title: Chlorogenic acids from green coffee extract are highly bioavailable in humans
  publication-title: J Nutr
– volume: 35
  start-page: 941
  year: 2001
  end-page: 952
  ident: bib10
  article-title: Human metabolism of dietary flavonoids: Identification of plasma metabolites of quercetin
  publication-title: Free Radic Res
– volume: 21
  start-page: 2014
  year: 2007
  end-page: 2018
  ident: bib8
  article-title: A systematic study of carboxylic acids in negative ion mode electrospray ionisation mass spectrometry providing a structural model for ion suppression
  publication-title: Rapid Commun Mass Spectrom
– volume: 96
  start-page: 107
  year: 2006
  end-page: 116
  ident: bib17
  article-title: Absorption, excretion and metabolite profiling of methyl-, glucuronyl-, glucosyl- and sulpho-conjugates of quercetin in human plasma and urine after ingestion of onions
  publication-title: Br J Nutr
– volume: 27
  start-page: 278
  year: 1999
  end-page: 286
  ident: bib4
  article-title: Urinary excretion of hydroxycinnamates and flavonoids after oral and intravenous administration
  publication-title: Free Radic Biol Med
– volume: 79
  start-page: 362
  year: 1999
  end-page: 372
  ident: bib5
  article-title: Chlorogenic acids and other cinnamates - nature, occurrence and dietary burden
  publication-title: J Sci Food Agric
– volume: 137
  start-page: 2196
  year: 2007
  end-page: 2201
  ident: bib16
  article-title: Chlorogenic acid compounds from coffee are differentially absorbed and metabolized in humans
  publication-title: J Nutr
– volume: 133
  start-page: 1853
  year: 2003
  end-page: 1859
  ident: bib12
  article-title: Chlorogenic acid bioavailability largely depends on its metabolism by the gut microflora in rats
  publication-title: J Nutr
– volume: 30
  start-page: 1213
  year: 2001
  end-page: 1222
  ident: bib20
  article-title: Novel biomarkers of the metabolism of caffeic acid derivatives in vivo
  publication-title: Free Radic Biol Med
– start-page: 208
  year: 2006
  end-page: 302
  ident: bib9
  article-title: Secondary metabolites in fruits, vegetables, beverages and other plant-based dietary components
  publication-title: Plant Secondary Metabolites: Occurrence, Structure and Role in the Human Diet
– volume: 40
  start-page: 1035
  year: 2006
  end-page: 1046
  ident: bib13
  article-title: The relative contribution of the small and large intestine to the absorption and metabolism of rutin in man
  publication-title: Free Radic Res
– volume: 136
  start-page: 1192
  year: 2006
  end-page: 1197
  ident: bib14
  article-title: Chlorogenic acid is absorbed in its intact form in the stomach of rats
  publication-title: J Nutr
– volume: 71
  start-page: 459
  year: 1996
  end-page: 469
  ident: bib3
  article-title: In vivo release of
  publication-title: J Sci Food Agric
– volume: 50
  start-page: 5735
  year: 2002
  end-page: 5741
  ident: bib18
  article-title: Absorption of phenolic acids in humans after coffee consumption
  publication-title: J Agric Food Chem
– volume: 53
  start-page: 3821
  year: 2005
  end-page: 3832
  ident: bib7
  article-title: Discriminating between the six isomers of dicaffeoylquinic acid by LC-MS
  publication-title: J Agric Food Chem
– volume: 27
  start-page: 278
  year: 1999
  ident: 10.1124/dmd.109.028019_bib4
  article-title: Urinary excretion of hydroxycinnamates and flavonoids after oral and intravenous administration
  publication-title: Free Radic Biol Med
  doi: 10.1016/S0891-5849(99)00054-4
– volume: 79
  start-page: 362
  year: 1999
  ident: 10.1124/dmd.109.028019_bib5
  article-title: Chlorogenic acids and other cinnamates - nature, occurrence and dietary burden
  publication-title: J Sci Food Agric
  doi: 10.1002/(SICI)1097-0010(19990301)79:3<362::AID-JSFA256>3.0.CO;2-D
– volume: 36
  start-page: 190
  year: 2008
  ident: 10.1124/dmd.109.028019_bib19
  article-title: Transport and metabolism of ferulic acid through the colonic epithelium
  publication-title: Drug Metab Dispos
  doi: 10.1124/dmd.107.017558
– volume: 133
  start-page: 1853
  year: 2003
  ident: 10.1124/dmd.109.028019_bib12
  article-title: Chlorogenic acid bioavailability largely depends on its metabolism by the gut microflora in rats
  publication-title: J Nutr
  doi: 10.1093/jn/133.6.1853
– volume: 21
  start-page: 2014
  year: 2007
  ident: 10.1124/dmd.109.028019_bib8
  article-title: A systematic study of carboxylic acids in negative ion mode electrospray ionisation mass spectrometry providing a structural model for ion suppression
  publication-title: Rapid Commun Mass Spectrom
  doi: 10.1002/rcm.3038
– volume: 96
  start-page: 107
  year: 2006
  ident: 10.1124/dmd.109.028019_bib17
  article-title: Absorption, excretion and metabolite profiling of methyl-, glucuronyl-, glucosyl- and sulpho-conjugates of quercetin in human plasma and urine after ingestion of onions
  publication-title: Br J Nutr
  doi: 10.1079/BJN20061809
– start-page: 208
  year: 2006
  ident: 10.1124/dmd.109.028019_bib9
  article-title: Secondary metabolites in fruits, vegetables, beverages and other plant-based dietary components
– volume: 40
  start-page: 1035
  year: 2006
  ident: 10.1124/dmd.109.028019_bib13
  article-title: The relative contribution of the small and large intestine to the absorption and metabolism of rutin in man
  publication-title: Free Radic Res
  doi: 10.1080/10715760600771400
– volume: 50
  start-page: 5735
  year: 2002
  ident: 10.1124/dmd.109.028019_bib18
  article-title: Absorption of phenolic acids in humans after coffee consumption
  publication-title: J Agric Food Chem
  doi: 10.1021/jf0257547
– volume: 18
  start-page: 253
  year: 2006
  ident: 10.1124/dmd.109.028019_bib21
  article-title: On-line HPLC analysis of the antioxidant activity of phenolic compounds in brewed paper-filtered coffee
  publication-title: Brasil J Plant Physiol
  doi: 10.1590/S1677-04202006000100018
– volume: 49
  start-page: 5679
  year: 2001
  ident: 10.1124/dmd.109.028019_bib1
  article-title: Esterase activity able to hydrolyze dietary antioxidant hydroxycinnamates is distributed along the intestine of mammals
  publication-title: J Agric Food Chem
  doi: 10.1021/jf010668c
– volume: 138
  start-page: 2309
  year: 2008
  ident: 10.1124/dmd.109.028019_bib11
  article-title: Chlorogenic acids from green coffee extract are highly bioavailable in humans
  publication-title: J Nutr
  doi: 10.3945/jn.108.095554
– volume: 30
  start-page: 1213
  year: 2001
  ident: 10.1124/dmd.109.028019_bib20
  article-title: Novel biomarkers of the metabolism of caffeic acid derivatives in vivo
  publication-title: Free Radic Biol Med
  doi: 10.1016/S0891-5849(01)00506-8
– volume: 48
  start-page: 5496
  year: 2000
  ident: 10.1124/dmd.109.028019_bib2
  article-title: Absorption of chlorogenic acid and caffeic acid in rats after oral administration
  publication-title: J Agric Food Chem
  doi: 10.1021/jf000483q
– volume: 53
  start-page: 3821
  year: 2005
  ident: 10.1124/dmd.109.028019_bib7
  article-title: Discriminating between the six isomers of dicaffeoylquinic acid by LC-MSn
  publication-title: J Agric Food Chem
  doi: 10.1021/jf050046h
– volume: 136
  start-page: 1192
  year: 2006
  ident: 10.1124/dmd.109.028019_bib14
  article-title: Chlorogenic acid is absorbed in its intact form in the stomach of rats
  publication-title: J Nutr
  doi: 10.1093/jn/136.5.1192
– volume: 51
  start-page: 2900
  year: 2003
  ident: 10.1124/dmd.109.028019_bib6
  article-title: Hierarchical scheme for LC-MSn identification of chlorogenic acids
  publication-title: J Agric Food Chem
  doi: 10.1021/jf026187q
– volume: 35
  start-page: 941
  year: 2001
  ident: 10.1124/dmd.109.028019_bib10
  article-title: Human metabolism of dietary flavonoids: Identification of plasma metabolites of quercetin
  publication-title: Free Radic Res
  doi: 10.1080/10715760100301441
– volume: 81
  start-page: 230S
  year: 2005
  ident: 10.1124/dmd.109.028019_bib15
  article-title: Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies
  publication-title: Am J Clin Nutr
  doi: 10.1093/ajcn/81.1.230S
– volume: 137
  start-page: 2196
  year: 2007
  ident: 10.1124/dmd.109.028019_bib16
  article-title: Chlorogenic acid compounds from coffee are differentially absorbed and metabolized in humans
  publication-title: J Nutr
  doi: 10.1093/jn/137.10.2196
– volume: 71
  start-page: 459
  year: 1996
  ident: 10.1124/dmd.109.028019_bib3
  article-title: In vivo release of 14C-labelled phenolic groups from intact spinach cell walls during passage through the rat intestine
  publication-title: J Sci Food Agric
  doi: 10.1002/(SICI)1097-0010(199608)71:4<459::AID-JSFA602>3.0.CO;2-H
SSID ssj0014439
Score 2.4579203
Snippet Human subjects drank coffee containing 412 μmol of chlorogenic acids, and plasma and urine were collected 0 to 24 h after ingestion and were analyzed by...
Human subjects drank coffee containing 412 μmol of chlorogenic acids, and plasma and urine were collected 0 to 24 h after ingestion and were analyzed by...
Human subjects drank coffee containing 412 mumol of chlorogenic acids, and plasma and urine were collected 0 to 24 h after ingestion and were analyzed by...
SourceID proquest
pubmed
pascalfrancis
crossref
highwire
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1749
SubjectTerms Beverages
Biological and medical sciences
Biomarkers - blood
Biomarkers - urine
Biotransformation
Caffeic Acids - blood
Caffeic Acids - urine
Chromatography, High Pressure Liquid
Cinnamates - blood
Cinnamates - pharmacokinetics
Cinnamates - urine
Coffee - metabolism
Coumaric Acids - blood
Coumaric Acids - pharmacokinetics
Coumaric Acids - urine
Glucuronates - blood
Glucuronates - urine
Humans
Hydroxylation
Medical sciences
Metabolomics - methods
Pharmacology. Drug treatments
Spectrometry, Mass, Electrospray Ionization
Sulfates - blood
Sulfates - urine
Title Metabolite Profiling of Hydroxycinnamate Derivatives in Plasma and Urine after the Ingestion of Coffee by Humans: Identification of Biomarkers of Coffee Consumption
URI https://dx.doi.org/10.1124/dmd.109.028019
http://dmd.aspetjournals.org/content/37/8/1749.abstract
https://www.ncbi.nlm.nih.gov/pubmed/19460943
https://www.proquest.com/docview/67497986
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbGeOEFcadchh_QeNgycnHShLcJNk2wjSG1Ut-sOLZZpDWdekEqv4ffwO_jHNt1UrSKi1RFrRVbrs4X5zv2d84h5DWgKIp0xIJY6DxgWoogjyULQpVGQhc6SxKMRj47z06G7OMoHW1t_eyolhZzcVB9vzGu5H-sCm1gV4yS_QfL-kGhAb6DfeEKFobrX9n4TM3BhhhFvGdrbzsJ8-VSojqlqpumBEaKoVFTU8Xsm7KycaDMYxOMtYeb7cpVCkcOirt8sxWLrCZaK4UM1ZTyM-q5Wjp9keeaGMGPIp_prNOnMqGd197sjv9-mC6-YtVqM21XnkPWXjrm93vAJRiXtkrVIaxG5jT_qrYCcQcQrAFjFIJ2x6jdkp1OJ24ptVlTTPOwuqxl6SKRavixtt1ReLGdX6HjKID2kX2B3dDmlnWbS8bBN--s0eCDFTe_PGIGFpdjiTm2DvDM2a3ma1m6zz_z4-HpKR8cjQa3yO0Y3BOsnPHpS3t6xZipYOen5ZKFwvhv10ffRIZ8rmqU6pYzeFq1LbOy2Q8yfGhwj9x1jgw9tKi8T7ZU84DsXthM6Mt9OmgD-2b7dJdetDnSlw_Jjxa61EOXTjT9Hbq0A11aN9RClwJuqIEuNdClAF3qoYvjWBhSsaQWuu_oOnDxnha4nR4d4D4iw-OjwfuTwBUMCSqWFfMgjUqdS2BbTIX9SiVFEpYhLJXgYoSxZlVWRmkZSsWKEj6RCPsZE1r2BVOiXwmWPCbbzaRRTwmNSy2ZZEklUs3yRJUp-N2iAvKfqVRmUY8EK8vxymXTx6IuV9x41THjYGmUd3Br6R554--_tnlkNt4ZrYDAHQu27JYDTjf2ebVCDL_umJMnfZ5zBHyP7KwByU8ixhR9LGMwxApZHN4weGxYNmqymPEMuveLPOuRJxZw7R8oWIbK5Gd_7Puc3Gkf5hdkez5dqJfA5udixzw6vwBjKwEp
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metabolite+profiling+of+hydroxycinnamate+derivatives+in+plasma+and+urine+after+the+ingestion+of+coffee+by+humans%3A+identification+of+biomarkers+of+coffee+consumption&rft.jtitle=Drug+metabolism+and+disposition&rft.au=Stalmach%2C+Ang%C3%A9lique&rft.au=Mullen%2C+William&rft.au=Barron%2C+Denis&rft.au=Uchida%2C+Kenichi&rft.date=2009-08-01&rft.issn=1521-009X&rft.eissn=1521-009X&rft.volume=37&rft.issue=8&rft.spage=1749&rft_id=info:doi/10.1124%2Fdmd.109.028019&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0090-9556&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0090-9556&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0090-9556&client=summon