Novel Mechanisms of Resistance to Endocrine Therapy: Genomic and Nongenomic Considerations
Selective estrogen receptor (ER) modulators have been the most commonly used neoadjuvant therapy for hormone-dependent breast cancer. However, resistance to endocrine therapy, either inherent or acquired during treatment, presents a major challenge in disease management. The causes of resistance to...
Saved in:
Published in | Clinical cancer research Vol. 12; no. 3; pp. 1001s - 1007s |
---|---|
Main Authors | , , , |
Format | Journal Article Conference Proceeding |
Language | English |
Published |
Philadelphia, PA
American Association for Cancer Research
01.02.2006
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Selective estrogen receptor (ER) modulators have been the most commonly used neoadjuvant therapy for hormone-dependent breast
cancer. However, resistance to endocrine therapy, either inherent or acquired during treatment, presents a major challenge
in disease management. The causes of resistance to hormone therapy are not well understood and are the subject of active investigation.
It is increasingly clear that decreasing sensitivity of ER-positive breast cancer cells to antiestrogens is caused by several
factors. Cross talk between ER and growth factor signaling has emerged as a critical factor in endocrine resistance. Here,
we present evidence that receptor tyrosine kinase signaling also plays a role in resistance by controlling the subcellular
localization of ER signaling components. Localization of ER in either the nuclear or cytoplasmic compartments has functional
implications. Recent work suggests that dynein light chain 1, a recently identified substrate of p21-activated kinase 1, modulates
ER transactivation functions through a novel ER coactivator function. Likewise, receptor tyrosine kinase signaling can also
alter the expression of ER coregulators such as metastasis-associated antigen 1, leading to hormonal independence. Furthermore,
proline-, glutamic acid-, leucine-rich protein 1, an ER coactivator involved in both genomic and nongenomic signaling pathways,
is activated by epidermal growth factor receptor and plays a prominent role in resistance to tamoxifen. These recent advances
suggest new targeted therapeutic approaches that may lead to either reversion or prevention of endocrine resistance in breast
tumors. |
---|---|
AbstractList | Selective estrogen receptor (ER) modulators have been the most commonly used neoadjuvant therapy for hormone-dependent breast
cancer. However, resistance to endocrine therapy, either inherent or acquired during treatment, presents a major challenge
in disease management. The causes of resistance to hormone therapy are not well understood and are the subject of active investigation.
It is increasingly clear that decreasing sensitivity of ER-positive breast cancer cells to antiestrogens is caused by several
factors. Cross talk between ER and growth factor signaling has emerged as a critical factor in endocrine resistance. Here,
we present evidence that receptor tyrosine kinase signaling also plays a role in resistance by controlling the subcellular
localization of ER signaling components. Localization of ER in either the nuclear or cytoplasmic compartments has functional
implications. Recent work suggests that dynein light chain 1, a recently identified substrate of p21-activated kinase 1, modulates
ER transactivation functions through a novel ER coactivator function. Likewise, receptor tyrosine kinase signaling can also
alter the expression of ER coregulators such as metastasis-associated antigen 1, leading to hormonal independence. Furthermore,
proline-, glutamic acid-, leucine-rich protein 1, an ER coactivator involved in both genomic and nongenomic signaling pathways,
is activated by epidermal growth factor receptor and plays a prominent role in resistance to tamoxifen. These recent advances
suggest new targeted therapeutic approaches that may lead to either reversion or prevention of endocrine resistance in breast
tumors. Selective estrogen receptor (ER) modulators have been the most commonly used neoadjuvant therapy for hormone-dependent breast cancer. However, resistance to endocrine therapy, either inherent or acquired during treatment, presents a major challenge in disease management. The causes of resistance to hormone therapy are not well understood and are the subject of active investigation. It is increasingly clear that decreasing sensitivity of ER-positive breast cancer cells to antiestrogens is caused by several factors. Cross talk between ER and growth factor signaling has emerged as a critical factor in endocrine resistance. Here, we present evidence that receptor tyrosine kinase signaling also plays a role in resistance by controlling the subcellular localization of ER signaling components. Localization of ER in either the nuclear or cytoplasmic compartments has functional implications. Recent work suggests that dynein light chain 1, a recently identified substrate of p21-activated kinase 1, modulates ER transactivation functions through a novel ER coactivator function. Likewise, receptor tyrosine kinase signaling can also alter the expression of ER coregulators such as metastasis-associated antigen 1, leading to hormonal independence. Furthermore, proline-, glutamic acid-, leucine-rich protein 1, an ER coactivator involved in both genomic and nongenomic signaling pathways, is activated by epidermal growth factor receptor and plays a prominent role in resistance to tamoxifen. These recent advances suggest new targeted therapeutic approaches that may lead to either reversion or prevention of endocrine resistance in breast tumors. Selective estrogen receptor (ER) modulators have been the most commonly used neoadjuvant therapy for hormone-dependent breast cancer. However, resistance to endocrine therapy, either inherent or acquired during treatment, presents a major challenge in disease management. The causes of resistance to hormone therapy are not well understood and are the subject of active investigation. It is increasingly clear that decreasing sensitivity of ER-positive breast cancer cells to antiestrogens is caused by several factors. Cross talk between ER and growth factor signaling has emerged as a critical factor in endocrine resistance. Here, we present evidence that receptor tyrosine kinase signaling also plays a role in resistance by controlling the subcellular localization of ER signaling components. Localization of ER in either the nuclear or cytoplasmic compartments has functional implications. Recent work suggests that dynein light chain 1, a recently identified substrate of p21-activated kinase 1, modulates ER transactivation functions through a novel ER coactivator function. Likewise, receptor tyrosine kinase signaling can also alter the expression of ER coregulators such as metastasis-associated antigen 1, leading to hormonal independence. Furthermore, proline-, glutamic acid-, leucine-rich protein 1, an ER coactivator involved in both genomic and nongenomic signaling pathways, is activated by epidermal growth factor receptor and plays a prominent role in resistance to tamoxifen. These recent advances suggest new targeted therapeutic approaches that may lead to either reversion or prevention of endocrine resistance in breast tumors.Selective estrogen receptor (ER) modulators have been the most commonly used neoadjuvant therapy for hormone-dependent breast cancer. However, resistance to endocrine therapy, either inherent or acquired during treatment, presents a major challenge in disease management. The causes of resistance to hormone therapy are not well understood and are the subject of active investigation. It is increasingly clear that decreasing sensitivity of ER-positive breast cancer cells to antiestrogens is caused by several factors. Cross talk between ER and growth factor signaling has emerged as a critical factor in endocrine resistance. Here, we present evidence that receptor tyrosine kinase signaling also plays a role in resistance by controlling the subcellular localization of ER signaling components. Localization of ER in either the nuclear or cytoplasmic compartments has functional implications. Recent work suggests that dynein light chain 1, a recently identified substrate of p21-activated kinase 1, modulates ER transactivation functions through a novel ER coactivator function. Likewise, receptor tyrosine kinase signaling can also alter the expression of ER coregulators such as metastasis-associated antigen 1, leading to hormonal independence. Furthermore, proline-, glutamic acid-, leucine-rich protein 1, an ER coactivator involved in both genomic and nongenomic signaling pathways, is activated by epidermal growth factor receptor and plays a prominent role in resistance to tamoxifen. These recent advances suggest new targeted therapeutic approaches that may lead to either reversion or prevention of endocrine resistance in breast tumors. |
Author | Rakesh Kumar Suresh K. Rayala Ratna K. Vadlamudi Anupama E. Gururaj |
Author_xml | – sequence: 1 givenname: Anupama E. surname: Gururaj fullname: Gururaj, Anupama E. – sequence: 2 givenname: Suresh K. surname: Rayala fullname: Rayala, Suresh K. – sequence: 3 givenname: Ratna K. surname: Vadlamudi fullname: Vadlamudi, Ratna K. – sequence: 4 givenname: Rakesh surname: Kumar fullname: Kumar, Rakesh |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18344446$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/16467116$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1v1DAQhi1URD_gJ4ByAcQhxRPbkyycUFQKUilSVS5cLK8zaYwSe2tnQf33OOxWlTiALx5Lz2uN3ueYHfjgibHnwE8BVPMWeN2UXIrqtG2vSq7KCoA_YkegVF2KCtVBnu-ZQ3ac0g_OQQKXT9ghoMQaAI_Y98vwk8biC9nBeJemVIS-uKLk0my8pWIOxZnvgo3OU3E9UDSbu3fFOfkwOVsY3xWXwd_sn23wyXWZmV2enrLHvRkTPdvfJ-zbx7Pr9lN58fX8c_vhorQSV3MpqTcKVmjz_mLdY4fCWgmyWfGqUcQtdkLZBhAFrHENqkfohCCUvbT1CsQJe737dxPD7ZbSrCeXLI2j8RS2SddKNqgqbDL56p8k1ihrqeoMvtiD2_VEnd5EN5l4p-97y8DLPWCSNWMfc1kuPXCNkPksnNpxNoaUIvUPCNeLR7040osjnT1qrvTiMefe_5Wzbv5T6xyNG_-bfrNLD-5m-OUiabvIjJESmWgHDZUWOcshid-gLK9o |
CitedBy_id | crossref_primary_10_1158_0008_5472_CAN_07_1917 crossref_primary_10_1177_1040638714527289 crossref_primary_10_1016_j_jsbmb_2009_09_009 crossref_primary_10_1007_s12020_021_02907_7 crossref_primary_10_1177_172460080602100207 crossref_primary_10_1016_j_mce_2009_01_006 crossref_primary_10_1016_j_isci_2023_106714 crossref_primary_10_1093_annonc_mdm117 crossref_primary_10_1007_s10585_006_9019_9 crossref_primary_10_1016_j_bbamcr_2009_11_012 crossref_primary_10_3892_or_2013_2237 crossref_primary_10_1021_acs_jmedchem_0c00913 crossref_primary_10_1038_sj_onc_1210340 crossref_primary_10_1093_annonc_mdl945 crossref_primary_10_1200_JCO_2008_17_2254 crossref_primary_10_1371_journal_pone_0052380 crossref_primary_10_1621_nrs_05004 crossref_primary_10_1016_j_canlet_2014_07_031 crossref_primary_10_1016_j_molonc_2014_05_004 crossref_primary_10_1016_S0960_9776_11_70293_4 crossref_primary_10_1158_1535_7163_MCT_07_0374 crossref_primary_10_1002_iub_287 crossref_primary_10_1074_jbc_M110_143271 crossref_primary_10_1186_s13058_014_0447_1 crossref_primary_10_1158_0008_5472_CAN_21_1155 crossref_primary_10_11131_2014_101094 crossref_primary_10_1007_s12672_011_0075_5 crossref_primary_10_4137_BCBCR_S787 crossref_primary_10_1007_s12192_019_00978_0 crossref_primary_10_1186_1471_2407_8_158 crossref_primary_10_3390_ijms23169008 crossref_primary_10_1016_j_steroids_2009_10_007 crossref_primary_10_1158_1078_0432_CCR_08_2347 crossref_primary_10_4137_BCBCR_S2291 crossref_primary_10_1002_jcb_21205 crossref_primary_10_1161_01_HYP_0000259797_48382_b2 crossref_primary_10_1074_jbc_M611395200 crossref_primary_10_1002_cncr_23875 crossref_primary_10_1210_me_2007_0350 crossref_primary_10_1007_s10549_010_1312_2 crossref_primary_10_1016_j_cellsig_2018_07_010 crossref_primary_10_1371_journal_pone_0067326 crossref_primary_10_1083_jcb_200712125 crossref_primary_10_1038_sj_onc_1210487 crossref_primary_10_1016_j_bcp_2023_115552 crossref_primary_10_3390_cancers3021691 crossref_primary_10_1007_s10549_007_9552_5 crossref_primary_10_3892_or_2014_2982 crossref_primary_10_1128_MCB_00162_07 crossref_primary_10_1155_2014_390618 crossref_primary_10_1093_nar_gkp500 crossref_primary_10_1371_journal_pone_0060889 crossref_primary_10_1038_sj_onc_1209935 crossref_primary_10_1093_jncics_pkx008 crossref_primary_10_1136_jcp_2006_041616 crossref_primary_10_1158_0008_5472_CAN_06_3647 crossref_primary_10_3390_biomedicines12122700 crossref_primary_10_1016_j_breast_2013_07_043 crossref_primary_10_1186_bcr2098 crossref_primary_10_1158_0008_5472_CAN_07_5875 crossref_primary_10_1158_0008_5472_CAN_06_1666 crossref_primary_10_1186_bcr3144 crossref_primary_10_1158_1078_0432_CCR_11_1236 crossref_primary_10_3892_ol_2019_10405 crossref_primary_10_1038_nrc2713 crossref_primary_10_1177_1933719107309062 crossref_primary_10_1158_0008_5472_CAN_06_3043 crossref_primary_10_1038_oncsis_2015_32 |
Cites_doi | 10.1210/edrv.19.1.0322 10.1016/j.critrevonc.2003.09.003 10.1158/0008-5472.CAN-04-1786 10.1210/me.2004-0531 10.1210/mend.9.1.7539106 10.1074/jbc.275.16.12041 10.1158/0008-5472.CAN-05-0614 10.1074/jbc.M406831200 10.1053/sonc.2001.23495 10.1093/jnci/djh166 10.1016/j.ccr.2004.05.022 10.1074/jbc.M212822200 10.1002/1097-4644(20001101)79:2<202::AID-JCB40>3.0.CO;2-L 10.1038/sj.embor.7400417 10.1016/S0960-0760(00)00193-X 10.1074/jbc.M103783200 10.1002/jcp.10167 10.1073/pnas.93.12.5991 10.1210/me.2004-0390 10.1074/jbc.M309937200 10.1158/0008-5472.CAN-04-1121 10.1210/jc.2004-0909 10.1210/me.2004-0486 10.1016/S0039-128X(00)00116-1 10.1016/j.ccr.2004.05.016 10.1158/1078-0432.CCR-031206 10.1210/me.2003-0335 10.1074/jbc.M402942200 10.1158/0008-5472.CAN-04-4664 10.1007/s00441-005-1090-z 10.1038/35050532 10.1023/A:1022534217769 10.1093/emboj/cdf543 10.1016/j.canlet.2005.06.018 10.1016/j.molcel.2004.08.019 10.1073/pnas.192569699 10.1074/jbc.M103129200 10.1146/annurev.biochem.72.121801.161742 10.1038/nature00889 10.1074/jbc.M002138200 10.1023/A:1025484908380 10.1016/j.jsbmb.2004.12.002 |
ContentType | Journal Article Conference Proceeding |
Copyright | 2007 INIST-CNRS |
Copyright_xml | – notice: 2007 INIST-CNRS |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 8FD FR3 P64 RC3 |
DOI | 10.1158/1078-0432.CCR-05-2110 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Genetics Abstracts Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef Genetics Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1557-3265 |
EndPage | 1007s |
ExternalDocumentID | 16467116 18344446 10_1158_1078_0432_CCR_05_2110 12_3_1001s |
Genre | Journal Article Review Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: CA 80066 – fundername: NCI NIH HHS grantid: CA 898823 – fundername: NCI NIH HHS grantid: CA 109379 |
GroupedDBID | - 08R 29B 2WC 34G 39C 3O- 4H- 53G 55 5GY 5RE 5VS AAPBV ABFLS ABOCM ACIWK ACPRK ADACO ADBBV ADBIT AENEX AETEA AFFNX AFRAH ALMA_UNASSIGNED_HOLDINGS BAWUL C1A CS3 DIK DU5 E3Z EBS EJD F5P FH7 FRP GJ GX1 H13 H~9 IH2 KQ8 L7B LSO MVM O0- OHT OK1 P0W P2P RCR RHF RHI RNS SJN UDS VH1 W2D WOQ X7M XFK XJT ZA5 ZCG ZGI --- .55 .GJ 18M 2FS 6J9 AAFWJ AAJMC AAYXX ACGFO ACSVP ADCOW AFHIN AFOSN AFUMD AI. BR6 BTFSW CITATION QTD TR2 W8F WHG YKV 1CY ADNWM IQODW J5H CGR CUY CVF ECM EIF NPM VXZ 7X8 8FD FR3 P64 RC3 |
ID | FETCH-LOGICAL-c469t-4efa5196c1103bf6d63cc414890285e0c6d35c816631b6b15f61d33e64f4c7913 |
ISSN | 1078-0432 |
IngestDate | Thu Jul 10 18:33:47 EDT 2025 Thu Aug 07 15:20:04 EDT 2025 Wed Feb 19 01:43:46 EST 2025 Wed Apr 02 07:22:51 EDT 2025 Tue Jul 01 03:05:57 EDT 2025 Thu Apr 24 22:58:22 EDT 2025 Fri Jan 15 20:06:57 EST 2021 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Hormone therapy Genome Mechanism of action Genomics |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MeetingName | Recent advances and future directions in endocrine manipulation of breast cancer: proceedings of the fifth international conference |
MergedId | FETCHMERGED-LOGICAL-c469t-4efa5196c1103bf6d63cc414890285e0c6d35c816631b6b15f61d33e64f4c7913 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
PMID | 16467116 |
PQID | 67647457 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_754865268 proquest_miscellaneous_67647457 pubmed_primary_16467116 pascalfrancis_primary_18344446 crossref_primary_10_1158_1078_0432_CCR_05_2110 crossref_citationtrail_10_1158_1078_0432_CCR_05_2110 highwire_cancerresearch_12_3_1001s |
ProviderPackageCode | RHF RHI CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2006-02-01 |
PublicationDateYYYYMMDD | 2006-02-01 |
PublicationDate_xml | – month: 02 year: 2006 text: 2006-02-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Philadelphia, PA |
PublicationPlace_xml | – name: Philadelphia, PA – name: United States |
PublicationTitle | Clinical cancer research |
PublicationTitleAlternate | Clin Cancer Res |
PublicationYear | 2006 |
Publisher | American Association for Cancer Research |
Publisher_xml | – name: American Association for Cancer Research |
References | 2022061105223463400_B41 2022061105223463400_B40 2022061105223463400_B21 2022061105223463400_B43 2022061105223463400_B20 2022061105223463400_B42 2022061105223463400_B9 2022061105223463400_B23 2022061105223463400_B8 2022061105223463400_B22 2022061105223463400_B25 2022061105223463400_B24 2022061105223463400_B27 2022061105223463400_B26 2022061105223463400_B29 2022061105223463400_B28 2022061105223463400_B1 2022061105223463400_B3 2022061105223463400_B2 2022061105223463400_B5 2022061105223463400_B4 2022061105223463400_B7 2022061105223463400_B6 2022061105223463400_B30 2022061105223463400_B10 2022061105223463400_B32 2022061105223463400_B31 2022061105223463400_B12 2022061105223463400_B34 2022061105223463400_B11 2022061105223463400_B33 2022061105223463400_B14 2022061105223463400_B36 2022061105223463400_B13 2022061105223463400_B35 2022061105223463400_B16 2022061105223463400_B38 2022061105223463400_B15 2022061105223463400_B37 2022061105223463400_B18 2022061105223463400_B17 2022061105223463400_B39 2022061105223463400_B19 |
References_xml | – ident: 2022061105223463400_B9 doi: 10.1210/edrv.19.1.0322 – ident: 2022061105223463400_B36 doi: 10.1016/j.critrevonc.2003.09.003 – ident: 2022061105223463400_B29 doi: 10.1158/0008-5472.CAN-04-1786 – ident: 2022061105223463400_B34 doi: 10.1210/me.2004-0531 – ident: 2022061105223463400_B37 doi: 10.1210/mend.9.1.7539106 – ident: 2022061105223463400_B13 doi: 10.1074/jbc.275.16.12041 – ident: 2022061105223463400_B33 doi: 10.1158/0008-5472.CAN-05-0614 – ident: 2022061105223463400_B30 doi: 10.1074/jbc.M406831200 – ident: 2022061105223463400_B1 doi: 10.1053/sonc.2001.23495 – ident: 2022061105223463400_B12 doi: 10.1093/jnci/djh166 – ident: 2022061105223463400_B20 doi: 10.1016/j.ccr.2004.05.022 – ident: 2022061105223463400_B25 doi: 10.1074/jbc.M212822200 – ident: 2022061105223463400_B42 doi: 10.1002/1097-4644(20001101)79:2<202::AID-JCB40>3.0.CO;2-L – ident: 2022061105223463400_B21 doi: 10.1038/sj.embor.7400417 – ident: 2022061105223463400_B2 doi: 10.1016/S0960-0760(00)00193-X – ident: 2022061105223463400_B22 doi: 10.1074/jbc.M103783200 – ident: 2022061105223463400_B16 doi: 10.1002/jcp.10167 – ident: 2022061105223463400_B24 doi: 10.1073/pnas.93.12.5991 – ident: 2022061105223463400_B5 doi: 10.1210/me.2004-0390 – ident: 2022061105223463400_B19 doi: 10.1074/jbc.M309937200 – ident: 2022061105223463400_B35 doi: 10.1158/0008-5472.CAN-04-1121 – ident: 2022061105223463400_B27 doi: 10.1210/jc.2004-0909 – ident: 2022061105223463400_B6 doi: 10.1210/me.2004-0486 – ident: 2022061105223463400_B10 – ident: 2022061105223463400_B11 doi: 10.1016/S0039-128X(00)00116-1 – ident: 2022061105223463400_B8 doi: 10.1016/j.ccr.2004.05.016 – ident: 2022061105223463400_B4 doi: 10.1158/1078-0432.CCR-031206 – ident: 2022061105223463400_B28 doi: 10.1210/me.2003-0335 – ident: 2022061105223463400_B31 doi: 10.1074/jbc.M402942200 – ident: 2022061105223463400_B32 doi: 10.1158/0008-5472.CAN-04-4664 – ident: 2022061105223463400_B26 doi: 10.1007/s00441-005-1090-z – ident: 2022061105223463400_B40 doi: 10.1038/35050532 – ident: 2022061105223463400_B41 doi: 10.1023/A:1022534217769 – ident: 2022061105223463400_B18 doi: 10.1093/emboj/cdf543 – ident: 2022061105223463400_B7 doi: 10.1016/j.canlet.2005.06.018 – ident: 2022061105223463400_B38 doi: 10.1016/j.molcel.2004.08.019 – ident: 2022061105223463400_B23 doi: 10.1073/pnas.192569699 – ident: 2022061105223463400_B15 doi: 10.1074/jbc.M103129200 – ident: 2022061105223463400_B17 doi: 10.1146/annurev.biochem.72.121801.161742 – ident: 2022061105223463400_B43 doi: 10.1038/nature00889 – ident: 2022061105223463400_B14 doi: 10.1074/jbc.M002138200 – ident: 2022061105223463400_B39 doi: 10.1023/A:1025484908380 – ident: 2022061105223463400_B3 doi: 10.1016/j.jsbmb.2004.12.002 |
SSID | ssj0014104 |
Score | 2.1534605 |
SecondaryResourceType | review_article |
Snippet | Selective estrogen receptor (ER) modulators have been the most commonly used neoadjuvant therapy for hormone-dependent breast
cancer. However, resistance to... Selective estrogen receptor (ER) modulators have been the most commonly used neoadjuvant therapy for hormone-dependent breast cancer. However, resistance to... |
SourceID | proquest pubmed pascalfrancis crossref highwire |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1001s |
SubjectTerms | Animals Antineoplastic agents Antineoplastic Agents, Hormonal - therapeutic use Biological and medical sciences Breast Neoplasms - drug therapy Coregulator location Drug Resistance, Neoplasm Estrogen receptor Female Growth factor signaling Humans Medical sciences Neoplasms, Hormone-Dependent - drug therapy PELP1/MNAR Pharmacology. Drug treatments Receptor Cross-Talk - physiology Receptor Protein-Tyrosine Kinases - metabolism Receptors, Estrogen - metabolism selective estrogen receptor modulator Signal Transduction - physiology |
Title | Novel Mechanisms of Resistance to Endocrine Therapy: Genomic and Nongenomic Considerations |
URI | http://clincancerres.aacrjournals.org/content/12/3/1001s.abstract https://www.ncbi.nlm.nih.gov/pubmed/16467116 https://www.proquest.com/docview/67647457 https://www.proquest.com/docview/754865268 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKkBBvXAaEy7AQb1NKEztOxlvUAWNbJ1StaIgHy3YcbYI105oiwZ_gL3OOc-3oNMFL1KZxrPr7bJ_jcyPkNQuZzpXVPoiyI5_nCfdVFCpf65GOM6VUmGE08uRI7M34_kl0Mhj87nktLUs9NL_WxpX8D6pwD3DFKNl_QLZ9KdyAz4AvXAFhuP6N8dqtZtwENhpE73K7zt1z2mfCUfHDYogIxvieLc6d7wY8h4IjzmoQPu08KwyGAW5X4Vg_3UHBB-tClp15YV5gDJb7auoSn72jPvTfmU1n03S_8pFcXqhz1cU4TNMv6WFa-QBBx6fd0erndPcwnYBM6pBW5Vx1vx3MJmnlpaG-QaOrxxOrrh6N3anHNudAOa6GZdoflmoJHmHOX85W1-iwx0W2fumPEncKUbcejsdTtPKjgtvtdY19_8oW2DomBlh2BDTkW-R2yOIEizHsfjxozVI8cPUo207qkDDo-s3ajleFnSYBNfrfqgVwI69qp1yv3Dgh5_ge2ezCP-mnlm33ycDOH5A7k9oL4yH56hhFO0bRIqcdo2hZ0JZRtGYUfUtrPlHgE-34RFf5tElm798dj_f8ukiHb7jYKX1ucwVagDDwd2Hai0wwYzgo2ZgWKLIjIzIWGbROs0ALHUS5CDLGrOA5N_FOwB6RDejTPiEUmoYZNM20ETDSKuEcXYgSoW1ktOIe4c1oSlNnsMdCKt-l02SjRCIIEkGQAIIcRRJB8MiwbXZRpXC5qcGrBipZzd5m8soglAzTfAcLj2ytgNi9uqaQR142qEpYstEOp-a2WC6kiAWPeRR7hF7zRBzxRGAiJo88rvjQvV6AaBME4ulN_T8jd7v5-JxslJdL-wIE6FJvOVL_AcHGw4Y |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Clinical+cancer+research&rft.atitle=Novel+mechanisms+of+resistance+to+endocrine+therapy+%3A+Genomic+and+nongenomic+considerations&rft.au=GURURAJ%2C+Anupama+E&rft.au=RAYALA%2C+Suresh+K&rft.au=VADLAMUDI%2C+Ratna+K&rft.au=KUMAR%2C+Rakesh&rft.date=2006-02-01&rft.pub=American+Association+for+Cancer+Research&rft.issn=1078-0432&rft.volume=12&rft.issue=3&rft_id=info:doi/10.1158%2F1078-0432.CCR-05-2110&rft.externalDBID=n%2Fa&rft.externalDocID=18344446 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1078-0432&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1078-0432&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1078-0432&client=summon |