Signature of pressure-induced topological phase transition in ZrTe5
The layered van der Waals material ZrTe 5 is known as a candidate topological insulator (TI), however its topological phase and the relation with other properties such as an apparent Dirac semimetallic state is still a subject of debate. We employ a semiclassical multicarrier transport (MCT) model t...
Saved in:
Published in | npj quantum materials Vol. 9; no. 1; pp. 76 - 8 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
05.10.2024
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
ISSN | 2397-4648 2397-4648 |
DOI | 10.1038/s41535-024-00679-7 |
Cover
Loading…
Abstract | The layered van der Waals material ZrTe
5
is known as a candidate topological insulator (TI), however its topological phase and the relation with other properties such as an apparent Dirac semimetallic state is still a subject of debate. We employ a semiclassical multicarrier transport (MCT) model to analyze the magnetotransport of ZrTe
5
nanodevices at hydrostatic pressures up to 2 GPa. The temperature dependence of the MCT results between 10 and 300 K is assessed in the context of thermal activation, and we obtain the positions of conduction and valence band edges in the vicinity of the chemical potential. We find evidence of the closing and re-opening of the band gap with increasing pressure, which is consistent with a phase transition from weak to strong TI. This matches expectations from ab initio band structure calculations, as well as previous observations that CVT-grown ZrTe
5
is a weak TI in ambient conditions. |
---|---|
AbstractList | The layered van der Waals material ZrTe5 is known as a candidate topological insulator (TI), however its topological phase and the relation with other properties such as an apparent Dirac semimetallic state is still a subject of debate. We employ a semiclassical multicarrier transport (MCT) model to analyze the magnetotransport of ZrTe5 nanodevices at hydrostatic pressures up to 2 GPa. The temperature dependence of the MCT results between 10 and 300 K is assessed in the context of thermal activation, and we obtain the positions of conduction and valence band edges in the vicinity of the chemical potential. We find evidence of the closing and re-opening of the band gap with increasing pressure, which is consistent with a phase transition from weak to strong TI. This matches expectations from ab initio band structure calculations, as well as previous observations that CVT-grown ZrTe5 is a weak TI in ambient conditions.The layered van der Waals material ZrTe5 is known as a candidate topological insulator (TI), however its topological phase and the relation with other properties such as an apparent Dirac semimetallic state is still a subject of debate. We employ a semiclassical multicarrier transport (MCT) model to analyze the magnetotransport of ZrTe5 nanodevices at hydrostatic pressures up to 2 GPa. The temperature dependence of the MCT results between 10 and 300 K is assessed in the context of thermal activation, and we obtain the positions of conduction and valence band edges in the vicinity of the chemical potential. We find evidence of the closing and re-opening of the band gap with increasing pressure, which is consistent with a phase transition from weak to strong TI. This matches expectations from ab initio band structure calculations, as well as previous observations that CVT-grown ZrTe5 is a weak TI in ambient conditions. The layered van der Waals material ZrTe 5 is known as a candidate topological insulator (TI), however its topological phase and the relation with other properties such as an apparent Dirac semimetallic state is still a subject of debate. We employ a semiclassical multicarrier transport (MCT) model to analyze the magnetotransport of ZrTe 5 nanodevices at hydrostatic pressures up to 2 GPa. The temperature dependence of the MCT results between 10 and 300 K is assessed in the context of thermal activation, and we obtain the positions of conduction and valence band edges in the vicinity of the chemical potential. We find evidence of the closing and re-opening of the band gap with increasing pressure, which is consistent with a phase transition from weak to strong TI. This matches expectations from ab initio band structure calculations, as well as previous observations that CVT-grown ZrTe 5 is a weak TI in ambient conditions. The layered van der Waals material ZrTe5 is known as a candidate topological insulator (TI), however its topological phase and the relation with other properties such as an apparent Dirac semimetallic state is still a subject of debate. We employ a semiclassical multicarrier transport (MCT) model to analyze the magnetotransport of ZrTe5 nanodevices at hydrostatic pressures up to 2 GPa. The temperature dependence of the MCT results between 10 and 300 K is assessed in the context of thermal activation, and we obtain the positions of conduction and valence band edges in the vicinity of the chemical potential. We find evidence of the closing and re-opening of the band gap with increasing pressure, which is consistent with a phase transition from weak to strong TI. This matches expectations from ab initio band structure calculations, as well as previous observations that CVT-grown ZrTe5 is a weak TI in ambient conditions. Abstract The layered van der Waals material ZrTe5 is known as a candidate topological insulator (TI), however its topological phase and the relation with other properties such as an apparent Dirac semimetallic state is still a subject of debate. We employ a semiclassical multicarrier transport (MCT) model to analyze the magnetotransport of ZrTe5 nanodevices at hydrostatic pressures up to 2 GPa. The temperature dependence of the MCT results between 10 and 300 K is assessed in the context of thermal activation, and we obtain the positions of conduction and valence band edges in the vicinity of the chemical potential. We find evidence of the closing and re-opening of the band gap with increasing pressure, which is consistent with a phase transition from weak to strong TI. This matches expectations from ab initio band structure calculations, as well as previous observations that CVT-grown ZrTe5 is a weak TI in ambient conditions. |
ArticleNumber | 76 |
Author | Nagy, Dániel Dash, Saroj P. Márffy, Albin Tajkov, Zoltán Nemes-Incze, Péter Makk, Péter Kovács-Krausz, Zoltán Csonka, Szabolcs Oroszlány, László Koltai, János Karpiak, Bogdan Tóvári, Endre |
Author_xml | – sequence: 1 givenname: Zoltán orcidid: 0000-0001-5821-6195 surname: Kovács-Krausz fullname: Kovács-Krausz, Zoltán organization: Department of Physics, Institute of Physics, Budapest University of Technology and Economics, MTA-BME Superconducting Nanoelectronics Momentum Research Group – sequence: 2 givenname: Dániel surname: Nagy fullname: Nagy, Dániel organization: Department of Physics of Complex Systems, ELTE Eötvös Loránd University – sequence: 3 givenname: Albin surname: Márffy fullname: Márffy, Albin organization: Department of Physics, Institute of Physics, Budapest University of Technology and Economics, MTA-BME Superconducting Nanoelectronics Momentum Research Group – sequence: 4 givenname: Bogdan surname: Karpiak fullname: Karpiak, Bogdan organization: Department of Microtechnology and Nanoscience, Chalmers University of Technology – sequence: 5 givenname: Zoltán orcidid: 0000-0001-9733-0361 surname: Tajkov fullname: Tajkov, Zoltán organization: Hungarian Research Network, Centre for Energy Research, Institute of Technical Physics and Materials Science, Centre of Low Temperature Physics, Institute of Experimental Physics, Slovak Academy of Sciences – sequence: 6 givenname: László surname: Oroszlány fullname: Oroszlány, László organization: Department of Physics of Complex Systems, ELTE Eötvös Loránd University, MTA-BME Lendület Topology and Correlation Research Group, Budapest University of Technology and Economics – sequence: 7 givenname: János orcidid: 0000-0003-2576-9740 surname: Koltai fullname: Koltai, János organization: Department of Biological Physics, ELTE Eötvös Loránd University – sequence: 8 givenname: Péter surname: Nemes-Incze fullname: Nemes-Incze, Péter organization: Hungarian Research Network, Centre for Energy Research, Institute of Technical Physics and Materials Science – sequence: 9 givenname: Saroj P. orcidid: 0000-0001-7931-4843 surname: Dash fullname: Dash, Saroj P. organization: Department of Microtechnology and Nanoscience, Chalmers University of Technology – sequence: 10 givenname: Péter surname: Makk fullname: Makk, Péter email: makk.peter@ttk.bme.hu organization: Department of Physics, Institute of Physics, Budapest University of Technology and Economics, MTA-BME Correlated van der Waals Structures Momentum Research Group – sequence: 11 givenname: Szabolcs surname: Csonka fullname: Csonka, Szabolcs organization: Department of Physics, Institute of Physics, Budapest University of Technology and Economics, MTA-BME Superconducting Nanoelectronics Momentum Research Group – sequence: 12 givenname: Endre orcidid: 0000-0002-0000-3805 surname: Tóvári fullname: Tóvári, Endre organization: Department of Physics, Institute of Physics, Budapest University of Technology and Economics, MTA-BME Correlated van der Waals Structures Momentum Research Group |
BookMark | eNp9kUtv1TAQhSPUSpS2f4BVJDZsAn7HWSF0xaNSJRYtGzbWxBmnvsq1g50g9d_j21RAWXTlkX3ON545r6qTEANW1WtK3lHC9fssqOSyIUw0hKi2a9oX1RnjXdsIJfTJP_XL6jLnPSGEUaqFUmfV7saPAZY1YR1dPSfMudSND8NqcaiXOMcpjt7CVM93kLFeEoTsFx9D7UP9I92ivKhOHUwZLx_P8-r750-3u6_N9bcvV7uP140VqlsawdBp0jsGoPpBEC6Zxa5rBToEEKxjxGnRWmsVb0FxIp0YrCIUuXS67fl5dbVxhwh7Myd_gHRvInjzcBHTaCAt3k5opCQdWGWxbKbMyXvCe9CDAoVWaeIK68PGmtf-gIPFUAabnkCfvgR_Z8b4y1AqpFRSF8LbR0KKP1fMizn4bHGaIGBcs-FFWbqzjhbpm_-k-7imUHZ1VHGqJdNHINtUNsWcE7o_v6HEHIM2W9CmBG0egjZtMfHNlIs4jJj-op9x_Qa5_609 |
Cites_doi | 10.1038/srep45667 10.1126/sciadv.aav9771 10.1103/PhysRevB.93.235443 10.1103/PhysRevB.24.2935 10.1038/s41535-020-00280-8 10.1088/1674-1056/27/8/087307 10.1038/s41467-021-27119-5 10.1063/1.5064732 10.1016/j.elspec.2016.09.006 10.1038/s41699-021-00262-9 10.1088/0953-8984/20/6/064208 10.1038/s41567-018-0078-z 10.1103/PhysRevB.87.144105 10.1038/nphys1270 10.1038/s41535-020-0239-z 10.1021/acs.nanolett.6b00167 10.1038/s41467-020-20564-8 10.1039/C9NR04519H 10.1103/PhysRevLett.128.176602 10.1103/PhysRevB.13.5188 10.1103/PhysRevLett.77.3865 10.1021/acs.nanolett.6b02629 10.1038/s41524-022-00854-z 10.1126/science.1133734 10.1103/PhysRevLett.115.176404 10.1126/science.aav1910 10.1073/pnas.1613110114 10.1063/5.0058583 10.1038/s41535-022-00451-9 10.1038/npjqi.2015.1 10.1103/PhysRevLett.95.226801 10.1038/nmat3305 10.1016/j.ssc.2014.04.005 10.1016/0038-1098(82)91016-X 10.1103/PhysRevB.101.125205 10.1063/5.0005077 10.1038/s41586-018-0107-1 10.1103/PhysRevLett.116.176803 10.1103/PhysRevLett.118.206601 10.1038/s41467-020-17481-1 10.1021/acs.nanolett.3c01528 10.1038/am.2016.166 10.1103/PhysRevLett.96.106802 10.1126/science.1148047 10.1103/PhysRevB.92.075107 10.1103/PhysRevB.102.155138 10.1038/s41535-022-00468-0 10.1103/PhysRevB.98.085144 10.1103/PhysRevB.107.075152 10.1038/nphys1274 10.1038/ncomms15512 10.1063/1.1148145 10.1016/j.commatsci.2014.11.026 10.1073/pnas.1601262113 10.1103/PhysRevB.95.125135 10.1103/RevModPhys.83.1057 10.1021/acs.nanolett.3c03029 10.1103/PhysRevB.93.115414 10.1038/s41565-018-0195-y 10.1016/0038-1098(86)90536-3 10.1088/0953-8984/18/34/012 10.1021/acs.nanolett.1c03066 10.1038/ncomms12516 10.1038/s41563-019-0506-1 10.1103/RevModPhys.82.3045 10.1103/PhysRevLett.117.237601 10.1038/s41535-022-00478-y 10.1103/PhysRevB.95.035420 10.1088/0953-8984/14/11/302 10.1143/JPSJ.77.031007 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2024. The Author(s) 2024 2024 |
Copyright_xml | – notice: The Author(s) 2024 – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2024. – notice: The Author(s) 2024 2024 |
DBID | C6C AAYXX CITATION 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ KB. P5Z P62 PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.1038/s41535-024-00679-7 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central SciTech Premium Collection Materials Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea Materials Science Database ProQuest Central (New) ProQuest Materials Science Collection Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 2397-4648 |
EndPage | 8 |
ExternalDocumentID | oai_doaj_org_article_5509ac6ce1534663b03ba8d6a6ec680f PMC11455658 10_1038_s41535_024_00679_7 |
GrantInformation_xml | – fundername: FLAG-ERA / Graphene Flagship - MultiSpin European Research Council - Twistrain Nemzeti Kutatási, Fejlesztési és Innovációs Hivatal - OTKA K-138433, K-134437, K-131938, FK-124723, PD-134758, K-142179. Versenyképes Közép-magyarországi Operatív Program (VEKOP) - 2.3.3-15-2017-00015 – fundername: FLAG-ERA - 2DSOTECH 2021-05925 – fundername: European Cooperation in Science and Technology (COST) grantid: CA21144 funderid: 501100000921 – fundername: National Research, Development and Innovation Office (HU) - 2022-2.1.1-NL-2022-00004 – fundername: Slovenská Akadémia Vied (Slovak Academy of Sciences) grantid: IMPULZ IM-2021-42 funderid: 100010783 – fundername: Hungarian Academy of Sciences | Magyar Tudományos Akadémia Számítástechnikai és Automatizálási Kutatóintézet (Számítástechnikai és Automatizálási Kutatóintézet) grantid: BO/00242/20/11 funderid: 100007626 |
GroupedDBID | 0R~ AAJSJ ABJCF ACSMW ADBBV ADMLS AFKRA AFPKN AJTQC ALMA_UNASSIGNED_HOLDINGS ARAPS ARCSS BCNDV BENPR BGLVJ C6C CCPQU EBLON EBS GROUPED_DOAJ HCIFZ KB. KQ8 M~E NAO NO~ OK1 PDBOC PIMPY RNT SNYQT AAFWJ AASML AAYXX CITATION PHGZM PHGZT 8FE 8FG AARCD ABUWG AZQEC D1I DWQXO P62 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c469t-42ef80bf2aa6bd40352ce9974efeaa42920f847ccc637a6305f4dc601e35f87b3 |
IEDL.DBID | AAJSJ |
ISSN | 2397-4648 |
IngestDate | Wed Aug 27 01:30:46 EDT 2025 Thu Aug 21 18:35:52 EDT 2025 Fri Sep 05 05:35:46 EDT 2025 Wed Aug 13 03:18:57 EDT 2025 Tue Jul 01 02:29:19 EDT 2025 Fri Feb 21 02:40:17 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c469t-42ef80bf2aa6bd40352ce9974efeaa42920f847ccc637a6305f4dc601e35f87b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-5821-6195 0000-0003-2576-9740 0000-0001-9733-0361 0000-0002-0000-3805 0000-0001-7931-4843 |
OpenAccessLink | https://www.nature.com/articles/s41535-024-00679-7 |
PQID | 3113185288 |
PQPubID | 4669713 |
PageCount | 8 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_5509ac6ce1534663b03ba8d6a6ec680f pubmedcentral_primary_oai_pubmedcentral_nih_gov_11455658 proquest_miscellaneous_3114153291 proquest_journals_3113185288 crossref_primary_10_1038_s41535_024_00679_7 springer_journals_10_1038_s41535_024_00679_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-10-05 |
PublicationDateYYYYMMDD | 2024-10-05 |
PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-05 day: 05 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | npj quantum materials |
PublicationTitleAbbrev | npj Quantum Mater |
PublicationYear | 2024 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Qiu (CR61) 2016; 16 Cha (CR14) 2018; 13 Bi (CR57) 2022; 7 Tian (CR12) 2014; 191 Kane, Mele (CR1) 2005; 95 König (CR6) 2007; 318 König (CR7) 2008; 77 Shahi (CR22) 2018; 8 Du (CR56) 2022; 7 Weng, Dai, Fang (CR25) 2014; 4 Liang (CR36) 2018; 14 Yankowitz (CR45) 2018; 557 Wu (CR35) 2016; 6 Tajkov (CR44) 2022; 8 Bernevig, Zhang (CR4) 2006; 96 Szentpéteri (CR52) 2021; 21 Tajkov, Visontai, Oroszlány, Koltai (CR50) 2019; 11 Hasan, Kane (CR2) 2010; 82 Monkhorst, Pack (CR73) 1976; 13 Chen (CR41) 2015; 92 Santos-Cottin (CR23) 2020; 101 Bernevig, Hughes, Zhang (CR5) 2006; 314 Liu (CR39) 2023; 23 Li (CR55) 2019; 18 Zhang (CR19) 2017; 8 Zheng (CR21) 2016; 93 Tang (CR66) 2018; 27 Vaklinova, Hoyer, Burghard, Kern (CR13) 2016; 16 Murata, Yoshino, Yadav, Honda, Shirakawa (CR62) 1997; 68 Sun (CR37) 2020; 5 Chen (CR43) 2017; 114 Zhang (CR59) 2017; 118 Manzoni (CR30) 2017; 219 Sarma, Freedman, Nayak (CR3) 2015; 1 Hromadová, Martoňák, Tosatti (CR47) 2013; 87 Rivero (CR72) 2015; 98 Fjellvåg, Kjekshus (CR16) 1986; 60 Carr, Fang, Jarillo-Herrero, Kaxiras (CR49) 2018; 98 Artacho (CR67) 2008; 20 Soler (CR68) 2002; 14 Zhou (CR58) 2016; 113 Kovács-Krausz (CR60) 2023; 107 Chen (CR40) 2015; 115 Wang (CR28) 2022; 128 Skelton (CR18) 1982; 42 Mutch (CR27) 2019; 5 Fülöp (CR46) 2021; 130 Zhang (CR9) 2009; 5 Perdew, Burke, Ernzerhof (CR71) 1996; 77 Morice, Lettl, Kopp, Kampf (CR24) 2020; 102 Li (CR34) 2016; 116 Yankowitz (CR51) 2019; 363 Pesin, Macdonald (CR11) 2012; 11 Wang (CR20) 2018; 8 Fernández-Seivane, Oliveira, Sanvito, Ferrer (CR70) 2006; 18 Lu (CR64) 2017; 95 Fan, Liang, Chen, Yao, Zhou (CR26) 2017; 7 Konstantinova (CR32) 2020; 5 DiSalvo, Fleming, Waszczak (CR17) 1981; 24 Munoz, Collado, Usaj, Sofo, Balseiro (CR48) 2016; 93 Wang (CR31) 2021; 12 Gourgout (CR38) 2022; 7 Manzoni (CR29) 2016; 117 Zhang (CR33) 2021; 12 Fülöp (CR53) 2021; 5 Yuan (CR42) 2016; 8 Kedves (CR54) 2023; 23 Khokhriakov, Hoque, Karpiak, Dash (CR15) 2020; 11 Xia (CR8) 2009; 5 Qi, Zhang (CR10) 2011; 83 García (CR69) 2020; 152 Liu (CR63) 2016; 7 Niu (CR65) 2017; 95 Z Sun (679_CR37) 2020; 5 Z Tajkov (679_CR44) 2022; 8 M Kedves (679_CR54) 2023; 23 D Pesin (679_CR11) 2012; 11 D Khokhriakov (679_CR15) 2020; 11 X-L Qi (679_CR10) 2011; 83 M König (679_CR7) 2008; 77 P Shahi (679_CR22) 2018; 8 P Rivero (679_CR72) 2015; 98 SD Sarma (679_CR3) 2015; 1 Z Kovács-Krausz (679_CR60) 2023; 107 RY Chen (679_CR40) 2015; 115 T Li (679_CR55) 2019; 18 Y Xia (679_CR8) 2009; 5 C Morice (679_CR24) 2020; 102 L Hromadová (679_CR47) 2013; 87 B Szentpéteri (679_CR52) 2021; 21 W Bi (679_CR57) 2022; 7 J Mutch (679_CR27) 2019; 5 L Fernández-Seivane (679_CR70) 2006; 18 HJ Monkhorst (679_CR73) 1976; 13 J Niu (679_CR65) 2017; 95 X-B Li (679_CR34) 2016; 116 J Tian (679_CR12) 2014; 191 BA Bernevig (679_CR4) 2006; 96 G Zheng (679_CR21) 2016; 93 Z Fan (679_CR26) 2017; 7 J Wang (679_CR31) 2021; 12 E Artacho (679_CR67) 2008; 20 Z-G Chen (679_CR43) 2017; 114 Y Zhang (679_CR19) 2017; 8 M Yankowitz (679_CR45) 2018; 557 W Wang (679_CR20) 2018; 8 H Fjellvåg (679_CR16) 1986; 60 F Munoz (679_CR48) 2016; 93 Y Liu (679_CR63) 2016; 7 A García (679_CR69) 2020; 152 Y Wang (679_CR28) 2022; 128 FJ DiSalvo (679_CR17) 1981; 24 E Skelton (679_CR18) 1982; 42 M König (679_CR6) 2007; 318 MZ Hasan (679_CR2) 2010; 82 B Fülöp (679_CR46) 2021; 130 S Cha (679_CR14) 2018; 13 CL Kane (679_CR1) 2005; 95 F Du (679_CR56) 2022; 7 X Yuan (679_CR42) 2016; 8 H Zhang (679_CR9) 2009; 5 R Wu (679_CR35) 2016; 6 JP Perdew (679_CR71) 1996; 77 RY Chen (679_CR41) 2015; 92 Y Zhou (679_CR58) 2016; 113 JM Soler (679_CR68) 2002; 14 S Carr (679_CR49) 2018; 98 K Vaklinova (679_CR13) 2016; 16 JL Zhang (679_CR59) 2017; 118 H Weng (679_CR25) 2014; 4 P Zhang (679_CR33) 2021; 12 T Konstantinova (679_CR32) 2020; 5 A Gourgout (679_CR38) 2022; 7 Z Tajkov (679_CR50) 2019; 11 K Murata (679_CR62) 1997; 68 M Yankowitz (679_CR51) 2019; 363 F Tang (679_CR66) 2018; 27 T Liang (679_CR36) 2018; 14 Y Liu (679_CR39) 2023; 23 D Santos-Cottin (679_CR23) 2020; 101 J Lu (679_CR64) 2017; 95 G Manzoni (679_CR30) 2017; 219 G Qiu (679_CR61) 2016; 16 BA Bernevig (679_CR5) 2006; 314 G Manzoni (679_CR29) 2016; 117 B Fülöp (679_CR53) 2021; 5 |
References_xml | – volume: 7 year: 2017 ident: CR26 article-title: Transition between strong and weak topological insulator in ZrTe and HfTe publication-title: Sci. Rep. doi: 10.1038/srep45667 – volume: 5 start-page: eaav9771 year: 2019 ident: CR27 article-title: Evidence for a strain-tuned topological phase transition in ZrTe publication-title: Sci. Adv. doi: 10.1126/sciadv.aav9771 – volume: 93 start-page: 235443 year: 2016 ident: CR48 article-title: Bilayer graphene under pressure: electron-hole symmetry breaking, valley Hall effect, and Landau levels publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.93.235443 – volume: 24 start-page: 2935 year: 1981 ident: CR17 article-title: Possible phase transition in the quasi-one-dimensional materials ZrTe or HfTe publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.24.2935 – volume: 5 year: 2020 ident: CR32 article-title: Photoinduced Dirac semimetal in ZrTe publication-title: npj Quantum Mater. doi: 10.1038/s41535-020-00280-8 – volume: 27 start-page: 087307 year: 2018 ident: CR66 article-title: Multi-carrier transport in ZrTe film publication-title: Chin. Phys. B doi: 10.1088/1674-1056/27/8/087307 – volume: 12 year: 2021 ident: CR31 article-title: Magneto-transport evidence for strong topological insulator phase in ZrTe publication-title: Nat. Commun. doi: 10.1038/s41467-021-27119-5 – volume: 8 start-page: 125110 year: 2018 ident: CR20 article-title: The metal-insulator transition in ZrTe induced by temperature publication-title: AIP Adv. doi: 10.1063/1.5064732 – volume: 219 start-page: 9 year: 2017 ident: CR30 article-title: Temperature dependent non-monotonic bands shift in ZrTe publication-title: J. Electron Spectrosc. Relat. Phenom. doi: 10.1016/j.elspec.2016.09.006 – volume: 5 year: 2021 ident: CR53 article-title: Boosting proximity spin–orbit coupling in graphene/WSe heterostructures via hydrostatic pressure publication-title: npj 2D Mater. Appl. doi: 10.1038/s41699-021-00262-9 – volume: 20 start-page: 064208 year: 2008 ident: CR67 article-title: The SIESTA method; developments and applicability publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/20/6/064208 – volume: 14 start-page: 451 year: 2018 end-page: 455 ident: CR36 article-title: Anomalous hall effect in ZrTe publication-title: Nat. Phys. doi: 10.1038/s41567-018-0078-z – volume: 87 start-page: 144105 year: 2013 ident: CR47 article-title: Structure change, layer sliding, and metallization in high-pressure MoS publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.87.144105 – volume: 5 start-page: 438 year: 2009 ident: CR9 article-title: Topological insulators in Bi Se , Bi Te and Sb Te with a single Dirac cone on the surface publication-title: Nat. Phys. doi: 10.1038/nphys1270 – volume: 5 year: 2020 ident: CR37 article-title: Large Zeeman splitting induced anomalous hall effect in ZrTe publication-title: npj Quantum Mater. doi: 10.1038/s41535-020-0239-z – volume: 16 start-page: 2595 year: 2016 end-page: 2602 ident: CR13 article-title: Current-induced spin polarization in topological insulator-graphene heterostructures publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b00167 – volume: 12 year: 2021 ident: CR33 article-title: Observation and control of the weak topological insulator state in ZrTe5 publication-title: Nat. Commun. doi: 10.1038/s41467-020-20564-8 – volume: 11 start-page: 12704 year: 2019 ident: CR50 article-title: Uniaxial strain induced topological phase transition in bismuth-tellurohalide-graphene heterostructures publication-title: Nanoscale doi: 10.1039/C9NR04519H – volume: 128 start-page: 176602 year: 2022 ident: CR28 article-title: Gigantic magnetochiral anisotropy in the topological semimetal ZrTe publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.128.176602 – volume: 8 start-page: 021055 year: 2018 ident: CR22 article-title: Bipolar conduction as the possible origin of the electronic transition in pentatellurides: metallic vs semiconducting behavior publication-title: Phys. Rev. X – volume: 13 start-page: 5188 year: 1976 ident: CR73 article-title: Special points for Brillouin-zone integrations publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.13.5188 – volume: 77 start-page: 3865 year: 1996 ident: CR71 article-title: Generalized gradient approximation made simple publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 16 start-page: 7364 year: 2016 ident: CR61 article-title: Observation of optical and electrical in-plane anisotropy in high-mobility few-layer ZrTe publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b02629 – volume: 8 start-page: 177 year: 2022 ident: CR44 article-title: Revealing the topological phase diagram of ZrTe using the complex strain fields of microbubbles publication-title: npj Comput. Mater. doi: 10.1038/s41524-022-00854-z – volume: 314 start-page: 1757 year: 2006 ident: CR5 article-title: Quantum spin hall effect and topological phase transition in HgTe quantum wells publication-title: Science doi: 10.1126/science.1133734 – volume: 115 start-page: 176404 year: 2015 ident: CR40 article-title: Magnetoinfrared spectroscopy of Landau Levels and Zeeman splitting of three-dimensional massless dirac fermions in ZrTe publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.115.176404 – volume: 363 start-page: 1059 year: 2019 ident: CR51 article-title: Tuning superconductivity in twisted bilayer graphene publication-title: Science doi: 10.1126/science.aav1910 – volume: 114 start-page: 816 year: 2017 ident: CR43 article-title: Spectroscopic evidence for bulk-band inversion and three-dimensional massive Dirac fermions in ZrTe publication-title: Proc. Natl Acad. Sci. doi: 10.1073/pnas.1613110114 – volume: 130 start-page: 064303 year: 2021 ident: CR46 article-title: New method of transport measurements on van der Waals heterostructures under pressure publication-title: J. Appl. Phys. doi: 10.1063/5.0058583 – volume: 7 year: 2022 ident: CR57 article-title: Drastic enhancement of magnetic critical temperature and amorphization in topological magnet EuSn P under pressure publication-title: npj Quantum Mater. doi: 10.1038/s41535-022-00451-9 – volume: 1 year: 2015 ident: CR3 article-title: Majorana zero modes and topological quantum computation publication-title: npj Quantum Inf. doi: 10.1038/npjqi.2015.1 – volume: 95 start-page: 226801 year: 2005 ident: CR1 article-title: Quantum spin hall effect in graphene publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.95.226801 – volume: 11 start-page: 409 year: 2012 ident: CR11 article-title: Spintronics and pseudospintronics in graphene and topological insulators publication-title: Nat. Mater. doi: 10.1038/nmat3305 – volume: 191 start-page: 1 year: 2014 ident: CR12 article-title: Topological insulator based spin valve devices: evidence for spin polarized transport of spin-momentum-locked topological surface states publication-title: Solid State Commun. doi: 10.1016/j.ssc.2014.04.005 – volume: 42 start-page: 1 year: 1982 ident: CR18 article-title: Giant resistivity and X-ray diffraction anomalies in low-dimensional ZrTe and HfTe publication-title: Solid State Commun. doi: 10.1016/0038-1098(82)91016-X – volume: 101 start-page: 125205 year: 2020 ident: CR23 article-title: Probing intraband excitations in ZrTe : a high-pressure infrared and transport study publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.101.125205 – volume: 152 start-page: 204108 year: 2020 ident: CR69 article-title: Siesta: recent developments and applications publication-title: J. Chem. Phys. doi: 10.1063/5.0005077 – volume: 557 start-page: 404 year: 2018 ident: CR45 article-title: Dynamic band-structure tuning of graphene moiré superlattices with pressure publication-title: Nature doi: 10.1038/s41586-018-0107-1 – volume: 116 start-page: 176803 year: 2016 ident: CR34 article-title: Experimental observation of topological edge states at the surface step edge of the topological insulator ZrTe publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.116.176803 – volume: 118 start-page: 206601 year: 2017 ident: CR59 article-title: Disruption of the accidental dirac semimetal state in ZrTe under hydrostatic pressure publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.118.206601 – volume: 11 year: 2020 ident: CR15 article-title: Gate-tunable spin-galvanic effect in graphene topological insulator van der waals heterostructures at room temperature publication-title: Nat. Commun. doi: 10.1038/s41467-020-17481-1 – volume: 23 start-page: 5334 year: 2023 ident: CR39 article-title: Gate-tunable multiband transport in ZrTe thin devices publication-title: Nano Lett. doi: 10.1021/acs.nanolett.3c01528 – volume: 8 year: 2016 ident: CR42 article-title: Observation of quasi-two-dimensional Dirac fermions in ZrTe publication-title: NPG Asia Mater. doi: 10.1038/am.2016.166 – volume: 96 start-page: 106802 year: 2006 ident: CR4 article-title: Quantum spin hall effect publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.96.106802 – volume: 318 start-page: 766 year: 2007 ident: CR6 article-title: Quantum spin hall insulator state in HgTe quantum wells publication-title: Science doi: 10.1126/science.1148047 – volume: 92 start-page: 075107 year: 2015 ident: CR41 article-title: Optical spectroscopy study of the three-dimensional Dirac semimetal ZrTe publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.92.075107 – volume: 6 start-page: 021017 year: 2016 ident: CR35 article-title: Evidence for topological edge states in a large energy gap near the step edges on the surface of ZrTe publication-title: Phys. Rev. X – volume: 102 start-page: 155138 year: 2020 ident: CR24 article-title: Optical conductivity and resistivity in a four-band model for ZrTe from ab initio calculations publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.102.155138 – volume: 7 year: 2022 ident: CR56 article-title: Consecutive topological phase transitions and colossal magnetoresistance in a magnetic topological semimetal publication-title: npj Quantum Mater. doi: 10.1038/s41535-022-00468-0 – volume: 98 start-page: 085144 year: 2018 ident: CR49 article-title: Pressure dependence of the magic twist angle in graphene superlattices publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.98.085144 – volume: 107 start-page: 075152 year: 2023 ident: CR60 article-title: Revealing the band structure of ZrTe using multicarrier transport publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.107.075152 – volume: 5 start-page: 398 year: 2009 ident: CR8 article-title: Observation of a large-gap topological-insulator class with a single Dirac cone on the surface publication-title: Nat. Phys. doi: 10.1038/nphys1274 – volume: 8 year: 2017 ident: CR19 article-title: Electronic evidence of temperature-induced Lifshitz transition and topological nature in ZrTe publication-title: Nat. Commun. doi: 10.1038/ncomms15512 – volume: 68 start-page: 2490 year: 1997 ident: CR62 article-title: Pt resistor thermometry and pressure calibration in a clamped pressure cell with the medium, daphne 7373 publication-title: Rev. Sci. Instrum. doi: 10.1063/1.1148145 – volume: 98 start-page: 372 year: 2015 ident: CR72 article-title: Systematic pseudopotentials from reference eigenvalue sets for DFT calculations publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2014.11.026 – volume: 113 start-page: 2904 year: 2016 ident: CR58 article-title: Pressure-induced superconductivity in a three-dimensional topological material ZrTe publication-title: Proc. Natl Acad. Sci. doi: 10.1073/pnas.1601262113 – volume: 95 start-page: 125135 year: 2017 ident: CR64 article-title: Thickness-tuned transition of band topology in ZrTe nanosheets publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.95.125135 – volume: 83 start-page: 1057 year: 2011 ident: CR10 article-title: Topological insulators and superconductors publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.83.1057 – volume: 23 start-page: 9508 year: 2023 ident: CR54 article-title: Stabilizing the inverted phase of a WSe /BLG/WSe heterostructure via hydrostatic pressure publication-title: Nano Lett. doi: 10.1021/acs.nanolett.3c03029 – volume: 93 start-page: 115414 year: 2016 ident: CR21 article-title: Transport evidence for the three-dimensional Dirac semimetal phase in ZrTe publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.93.115414 – volume: 13 start-page: 910 year: 2018 end-page: 914 ident: CR14 article-title: Generation, transport and detection of valley-locked spin photocurrent in WSe -graphene-Bi Se heterostructures publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-018-0195-y – volume: 60 start-page: 91 year: 1986 ident: CR16 article-title: Structural properties of ZrTe and HfTe as seen by powder diffraction publication-title: Solid State Commun. doi: 10.1016/0038-1098(86)90536-3 – volume: 18 start-page: 7999 year: 2006 ident: CR70 article-title: On-site approximation for spin–orbit coupling in linear combination of atomic orbitals density functional methods publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/18/34/012 – volume: 4 start-page: 011002 year: 2014 ident: CR25 article-title: Transition-metal pentatelluride ZrTe and HfTe : a paradigm for large-gap quantum spin hall insulators publication-title: Phys. Rev. X – volume: 21 start-page: 8777 year: 2021 ident: CR52 article-title: Tailoring the band structure of twisted double bilayer graphene with pressure publication-title: Nano Lett. doi: 10.1021/acs.nanolett.1c03066 – volume: 7 year: 2016 ident: CR63 article-title: Zeeman splitting and dynamical mass generation in Dirac semimetal ZrTe publication-title: Nat. Commun. doi: 10.1038/ncomms12516 – volume: 18 start-page: 1303 year: 2019 ident: CR55 article-title: Pressure-controlled interlayer magnetism in atomically thin CrI publication-title: Nat. Mater. doi: 10.1038/s41563-019-0506-1 – volume: 82 start-page: 3045 year: 2010 ident: CR2 article-title: Colloquium: topological insulators publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.82.3045 – volume: 117 start-page: 237601 year: 2016 ident: CR29 article-title: Evidence for a strong topological insulator phase in ZrTe publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.117.237601 – volume: 7 year: 2022 ident: CR38 article-title: Magnetic freeze-out and anomalous hall effect in ZrTe publication-title: npj Quantum Mater. doi: 10.1038/s41535-022-00478-y – volume: 95 start-page: 035420 year: 2017 ident: CR65 article-title: Electrical transport in nanothick ZrTe sheets: From three to two dimensions publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.95.035420 – volume: 14 start-page: 2745 year: 2002 ident: CR68 article-title: The SIESTA method for ab initio order-N materials simulation publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/14/11/302 – volume: 77 start-page: 031007 year: 2008 ident: CR7 article-title: The quantum spin hall effect: theory and experiment publication-title: J. Phys. Soc. Jpn. doi: 10.1143/JPSJ.77.031007 – volume: 7 year: 2016 ident: 679_CR63 publication-title: Nat. Commun. doi: 10.1038/ncomms12516 – volume: 77 start-page: 031007 year: 2008 ident: 679_CR7 publication-title: J. Phys. Soc. Jpn. doi: 10.1143/JPSJ.77.031007 – volume: 219 start-page: 9 year: 2017 ident: 679_CR30 publication-title: J. Electron Spectrosc. Relat. Phenom. doi: 10.1016/j.elspec.2016.09.006 – volume: 11 year: 2020 ident: 679_CR15 publication-title: Nat. Commun. doi: 10.1038/s41467-020-17481-1 – volume: 8 year: 2017 ident: 679_CR19 publication-title: Nat. Commun. doi: 10.1038/ncomms15512 – volume: 116 start-page: 176803 year: 2016 ident: 679_CR34 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.116.176803 – volume: 5 start-page: eaav9771 year: 2019 ident: 679_CR27 publication-title: Sci. Adv. doi: 10.1126/sciadv.aav9771 – volume: 5 year: 2021 ident: 679_CR53 publication-title: npj 2D Mater. Appl. doi: 10.1038/s41699-021-00262-9 – volume: 98 start-page: 372 year: 2015 ident: 679_CR72 publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2014.11.026 – volume: 42 start-page: 1 year: 1982 ident: 679_CR18 publication-title: Solid State Commun. doi: 10.1016/0038-1098(82)91016-X – volume: 1 year: 2015 ident: 679_CR3 publication-title: npj Quantum Inf. doi: 10.1038/npjqi.2015.1 – volume: 23 start-page: 5334 year: 2023 ident: 679_CR39 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.3c01528 – volume: 7 year: 2017 ident: 679_CR26 publication-title: Sci. Rep. doi: 10.1038/srep45667 – volume: 82 start-page: 3045 year: 2010 ident: 679_CR2 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.82.3045 – volume: 102 start-page: 155138 year: 2020 ident: 679_CR24 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.102.155138 – volume: 98 start-page: 085144 year: 2018 ident: 679_CR49 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.98.085144 – volume: 87 start-page: 144105 year: 2013 ident: 679_CR47 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.87.144105 – volume: 113 start-page: 2904 year: 2016 ident: 679_CR58 publication-title: Proc. Natl Acad. Sci. doi: 10.1073/pnas.1601262113 – volume: 16 start-page: 7364 year: 2016 ident: 679_CR61 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b02629 – volume: 14 start-page: 2745 year: 2002 ident: 679_CR68 publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/14/11/302 – volume: 117 start-page: 237601 year: 2016 ident: 679_CR29 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.117.237601 – volume: 7 year: 2022 ident: 679_CR56 publication-title: npj Quantum Mater. doi: 10.1038/s41535-022-00468-0 – volume: 93 start-page: 115414 year: 2016 ident: 679_CR21 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.93.115414 – volume: 7 year: 2022 ident: 679_CR57 publication-title: npj Quantum Mater. doi: 10.1038/s41535-022-00451-9 – volume: 20 start-page: 064208 year: 2008 ident: 679_CR67 publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/20/6/064208 – volume: 96 start-page: 106802 year: 2006 ident: 679_CR4 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.96.106802 – volume: 11 start-page: 409 year: 2012 ident: 679_CR11 publication-title: Nat. Mater. doi: 10.1038/nmat3305 – volume: 77 start-page: 3865 year: 1996 ident: 679_CR71 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 115 start-page: 176404 year: 2015 ident: 679_CR40 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.115.176404 – volume: 107 start-page: 075152 year: 2023 ident: 679_CR60 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.107.075152 – volume: 27 start-page: 087307 year: 2018 ident: 679_CR66 publication-title: Chin. Phys. B doi: 10.1088/1674-1056/27/8/087307 – volume: 18 start-page: 7999 year: 2006 ident: 679_CR70 publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/18/34/012 – volume: 314 start-page: 1757 year: 2006 ident: 679_CR5 publication-title: Science doi: 10.1126/science.1133734 – volume: 6 start-page: 021017 year: 2016 ident: 679_CR35 publication-title: Phys. Rev. X – volume: 5 year: 2020 ident: 679_CR37 publication-title: npj Quantum Mater. doi: 10.1038/s41535-020-0239-z – volume: 83 start-page: 1057 year: 2011 ident: 679_CR10 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.83.1057 – volume: 92 start-page: 075107 year: 2015 ident: 679_CR41 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.92.075107 – volume: 5 start-page: 398 year: 2009 ident: 679_CR8 publication-title: Nat. Phys. doi: 10.1038/nphys1274 – volume: 13 start-page: 910 year: 2018 ident: 679_CR14 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-018-0195-y – volume: 5 start-page: 438 year: 2009 ident: 679_CR9 publication-title: Nat. Phys. doi: 10.1038/nphys1270 – volume: 191 start-page: 1 year: 2014 ident: 679_CR12 publication-title: Solid State Commun. doi: 10.1016/j.ssc.2014.04.005 – volume: 5 year: 2020 ident: 679_CR32 publication-title: npj Quantum Mater. doi: 10.1038/s41535-020-00280-8 – volume: 101 start-page: 125205 year: 2020 ident: 679_CR23 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.101.125205 – volume: 14 start-page: 451 year: 2018 ident: 679_CR36 publication-title: Nat. Phys. doi: 10.1038/s41567-018-0078-z – volume: 130 start-page: 064303 year: 2021 ident: 679_CR46 publication-title: J. Appl. Phys. doi: 10.1063/5.0058583 – volume: 18 start-page: 1303 year: 2019 ident: 679_CR55 publication-title: Nat. Mater. doi: 10.1038/s41563-019-0506-1 – volume: 318 start-page: 766 year: 2007 ident: 679_CR6 publication-title: Science doi: 10.1126/science.1148047 – volume: 95 start-page: 125135 year: 2017 ident: 679_CR64 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.95.125135 – volume: 152 start-page: 204108 year: 2020 ident: 679_CR69 publication-title: J. Chem. Phys. doi: 10.1063/5.0005077 – volume: 21 start-page: 8777 year: 2021 ident: 679_CR52 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.1c03066 – volume: 8 year: 2016 ident: 679_CR42 publication-title: NPG Asia Mater. doi: 10.1038/am.2016.166 – volume: 12 year: 2021 ident: 679_CR31 publication-title: Nat. Commun. doi: 10.1038/s41467-021-27119-5 – volume: 8 start-page: 125110 year: 2018 ident: 679_CR20 publication-title: AIP Adv. doi: 10.1063/1.5064732 – volume: 7 year: 2022 ident: 679_CR38 publication-title: npj Quantum Mater. doi: 10.1038/s41535-022-00478-y – volume: 118 start-page: 206601 year: 2017 ident: 679_CR59 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.118.206601 – volume: 95 start-page: 226801 year: 2005 ident: 679_CR1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.95.226801 – volume: 24 start-page: 2935 year: 1981 ident: 679_CR17 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.24.2935 – volume: 4 start-page: 011002 year: 2014 ident: 679_CR25 publication-title: Phys. Rev. X – volume: 16 start-page: 2595 year: 2016 ident: 679_CR13 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b00167 – volume: 93 start-page: 235443 year: 2016 ident: 679_CR48 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.93.235443 – volume: 95 start-page: 035420 year: 2017 ident: 679_CR65 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.95.035420 – volume: 13 start-page: 5188 year: 1976 ident: 679_CR73 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.13.5188 – volume: 60 start-page: 91 year: 1986 ident: 679_CR16 publication-title: Solid State Commun. doi: 10.1016/0038-1098(86)90536-3 – volume: 114 start-page: 816 year: 2017 ident: 679_CR43 publication-title: Proc. Natl Acad. Sci. doi: 10.1073/pnas.1613110114 – volume: 11 start-page: 12704 year: 2019 ident: 679_CR50 publication-title: Nanoscale doi: 10.1039/C9NR04519H – volume: 8 start-page: 177 year: 2022 ident: 679_CR44 publication-title: npj Comput. Mater. doi: 10.1038/s41524-022-00854-z – volume: 363 start-page: 1059 year: 2019 ident: 679_CR51 publication-title: Science doi: 10.1126/science.aav1910 – volume: 8 start-page: 021055 year: 2018 ident: 679_CR22 publication-title: Phys. Rev. X – volume: 557 start-page: 404 year: 2018 ident: 679_CR45 publication-title: Nature doi: 10.1038/s41586-018-0107-1 – volume: 12 year: 2021 ident: 679_CR33 publication-title: Nat. Commun. doi: 10.1038/s41467-020-20564-8 – volume: 128 start-page: 176602 year: 2022 ident: 679_CR28 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.128.176602 – volume: 23 start-page: 9508 year: 2023 ident: 679_CR54 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.3c03029 – volume: 68 start-page: 2490 year: 1997 ident: 679_CR62 publication-title: Rev. Sci. Instrum. doi: 10.1063/1.1148145 |
SSID | ssj0002118466 |
Score | 2.284087 |
Snippet | The layered van der Waals material ZrTe
5
is known as a candidate topological insulator (TI), however its topological phase and the relation with other... The layered van der Waals material ZrTe5 is known as a candidate topological insulator (TI), however its topological phase and the relation with other... Abstract The layered van der Waals material ZrTe5 is known as a candidate topological insulator (TI), however its topological phase and the relation with other... |
SourceID | doaj pubmedcentral proquest crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 76 |
SubjectTerms | 639/301/119/2795 639/766/119/2792/4128 639/766/119/995 639/925/357/1018 Chemical potential Condensed Matter Physics Conduction bands Electrons Magnetic properties Nanotechnology devices Phase transitions Physics Physics and Astronomy Quantum Physics Structural Materials Surfaces and Interfaces Temperature dependence Thin Films Topological insulators Valence band |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8QwEB3Ekx7ET6yuEsGbBtsmzaZHFUUEvbgL4iUkaaJ76Yrb_f9O0q5uBfHirTQpTWYyeTNk8gbg1Gmji8oa6pjxlHvhqMzSinpcHzoX1vlYpvPhUdyN-f1z8bxU6ivkhLX0wK3gLtCDLrXFj9A0OcKjSZnRshJaOCtk6sPum5bpUjAV9mAMaxBYRXdLJmXyYoZIxcJlZE7DDl3SYQ-JImF_z8v8mSP546A04s_tJmx0jiO5bAe8BSuu3ob1JTrBHbh-mry2RJ1k6knMcMVnilE36q8iTVsPIWiFvL8hepEmAFXM2SKTmrx8jFyxC-Pbm9H1He2KJFCLkW1Dee68TI3PtRam4oHe1LoSowTnndaxGJVHBLLWCjbUAs3b88piGOZY4eXQsD1Yrae12weSMuZ14L-RxnKmMXblxvCSYa_CmEwncLYQmHpvuTBUPMNmUrXiVSheFcWrhglcBZl-9Qw81vEFald12lV_aTeBwUIjqjOumWJZFu98S5nAyVczmkU469C1m85jnzCivMwSkD1N9gbUb6knb5FgOwvs7eiaJXC-UPr333-f8cF_zPgQ1vKwSGOOwgBWm4-5O0K_pzHHcYl_AmJhAAg priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB7Bokr0ULW0iACtjMSNWiSx43VOFUXdrpDgAkiIi2U7NuwlWXbD_-_YyS4Eid6ixFGceXhmPONvAI6dNrqorKGOGU-5F47KLK2oR_nQubDOxzadl1diessv7oq7fsNt2ZdVrtbEuFBXjQ175Kcsy-JBXyl_zZ9o6BoVsqt9C41N2MrQ0gQ5l5O_6z0WDG7QvIr-rEzK5OkS7RULR5I5Det0SccDexRh-we-5ttKyTfp0miFJp_hU-8-krOO319gw9U78PEVqOAOfIhFnXb5Fc6vZw8dcCdpPIkVr3hNMQpHflak7fojBC6R-SNaM9IGwxVruMisJveLG1d8g9vJn5vzKe2bJlCLkW5Lee68TI3PtRam4gHu1LoSowbnndaxOZVHi2StFWysBaq755XFsMyxwsuxYbswqpva7QFJGfM64OFIYznTGMtyY3jJcFRhTKYTOFmRTs07bAwVc9pMqo7QCgmtIqHVOIHfgbrrkQHXOt5oFg-qVxOF8VKpLYoIvo2cYyZlRstKaOGskKlP4HDFG9Ur21K9iEYCR-vHqCYh96Fr1zzHMWFGeZklIAc8HUxo-KSePUbA7SyguaOrlsDPFftfvv7-H-__f7IHsJ0HQYzVCIcwahfP7jt6OK35EcX4H32s-l4 priority: 102 providerName: ProQuest |
Title | Signature of pressure-induced topological phase transition in ZrTe5 |
URI | https://link.springer.com/article/10.1038/s41535-024-00679-7 https://www.proquest.com/docview/3113185288 https://www.proquest.com/docview/3114153291 https://pubmed.ncbi.nlm.nih.gov/PMC11455658 https://doaj.org/article/5509ac6ce1534663b03ba8d6a6ec680f |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1RT9swED5B0aTtYRpsEwFWedLeNmtJ7LjOY6koqBJoGiChvVi2Y0NfUtSG_7-zk3QL2h54ShTbin1n--7su-8AvjhtdFFZQx0znnIvHJVZWlGP80Pnwjof03ReXomLW764K-52IO9jYaLTfoS0jNt07x32fYOChoVYYk7DBlvSyS7sSRR_-Qj2ptPF9WJ7soImDQpV0UXIpEz-o_FACkWw_oGG-dw_8tklaZQ983fwtlMaybTt5j7suPoA3vwFJXgAr6Irp928h9n18r4dG1l5Ev1c8Z2i7Y1crEjTZkUIvCGPDyjDSBPEVfTcIsua_FrfuOID3M7PbmYXtEuVQC3atw3lufMyNT7XWpiKB5BT60q0FZx3WseUVB7lkLVWsIkWuMg9rywaY44VXk4M-wijelW7QyApY14HFBxpLGcaLVhuDC8Z1iqMyXQCX3vSqccWEUPFm2wmVUtohYRWkdBqksBpoO62ZkCzjh9W63vVcVehlVRqixMDWyPnmEmZ0bISWjgrZOoTOOl5o7oltlEsy2Lkt5QJfN4W4-IINx66dqunWCf0KC-zBOSAp4MODUvq5UOE2c4ChjsqaAl869n_5-__H_HRy6ofw-s8TMzok3ACo2b95D6hntOYMezK-fm4m974PD27-vETv87EbBzPDn4D_8z93w |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VrRDlgKCACBQwEpzAahI7WeeAEC2ttrRdIdhKFRdjO3a7l2S7mwrxUjwjYyfZspXg1luUOIkz841nJp4fgNdWaZWVRlPLtKPc5ZaKJC6pQ3yoNDfWhTadx-N8dMI_n2ana_C7z4XxYZX9mhgW6rI2_h_5NkuSkOgrxIfZBfVdo_zuat9Co4XFof31E122xfuDT8jfN2m6vzfZHdGuqwA16Ao2lKfWiVi7VKlcl9zXAzW2QLPaOqtU6N7kcMk2xuRsqHKUB8dLg36LZZkTQ83wubdgnfuM1gGs7-yNv3xd_tVBdwoVet5l58RMbC9QQzKfBM2p1wwFHa5owNAoYMW6vR6beW2DNui9_ftwrzNYyccWYQ9gzVabcPevMoabcDuEkZrFQ9j9Nj1rS4WS2pEQY4vHFP1-RFBJmrYjg8cFmZ2j_iSNV5UhaoxMK_J9PrHZIzi5EYI-hkFVV_YJkJgxp3wFHqENZwq9Z641LxiOyrROVARve9LJWVuNQ4ZddCZkS2iJhJaB0HIYwY6n7nKkr6QdTtTzM9kJpkQPrVAGQYl3I-eYjplWosxVbk0uYhfBVs8b2Yn3Ql6BMYJXy8somH63RVW2vgxj_IzSIolArPB0ZUKrV6rpeSjxnfj68WgcRvCuZ__V2__9xU__P9mXcGc0OT6SRwfjw2ewkXpQhliILRg080v7HO2rRr_oQE3gx03L0R_d1jlS |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Rb9QwDLbGJtB4QDBA69ggSLxBoG3SNH08BqdxwIS0TZp4iZI02e6ld7rr_v-ctD3oBA97qxq3TWwnthv7C8A7p40uamuoY8ZT7oWjMktr6lE_dC6s8_GYzp-n4uSCzy6Lyy0QQy1MTNqPkJZxmR6ywz6t0dCwUEvMaVhgK1p-XNb-AezIkleo3zuTyexstvm7gmENGlbRV8mkTP7jBSNLFAH7R17m3RzJOxul0f5Mn8KT3nEkk66rz2DLNXvw-C84wT14GNM57fo5HJ_Nr7rxkYUnMdcVrynG3yjJmrTdyQhBPmR5jXaMtMFkxewtMm_I79W5K17AxfTr-fEJ7Y9LoBZj3Jby3HmZGp9rLUzNA9CpdRXGC847reOxVB5tkbVWsFILnOie1xYDMscKL0vDXsJ2s2jcPpCUMa8DEo40ljONUSw3BvmMVIUxmU7g_cA6texQMVTczWZSdYxWyGgVGa3KBD4H7m4oA6J1vLFYXalewgojpUpbVA58GiXHTMqMlrXQwlkhU5_A4SAb1U-ztWJZFqu_pUzg7aYZJ0jY9dCNW9xEmtCjvMoSkCOZjjo0bmnm1xFqOws47uikJfBhEP-fr_9_xAf3I38Dj359maof306_v4LdPOhoTFE4hO12deOO0O1pzetex28BBQ_9jg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Signature+of+pressure-induced+topological+phase+transition+in+ZrTe5&rft.jtitle=npj+quantum+materials&rft.au=Kov%C3%A1cs-Krausz%2C+Zolt%C3%A1n&rft.au=Nagy%2C+D%C3%A1niel&rft.au=M%C3%A1rffy%2C+Albin&rft.au=Karpiak%2C+Bogdan&rft.date=2024-10-05&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2397-4648&rft.volume=9&rft.issue=1&rft_id=info:doi/10.1038%2Fs41535-024-00679-7&rft.externalDocID=10_1038_s41535_024_00679_7 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2397-4648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2397-4648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2397-4648&client=summon |