Signature of pressure-induced topological phase transition in ZrTe5

The layered van der Waals material ZrTe 5 is known as a candidate topological insulator (TI), however its topological phase and the relation with other properties such as an apparent Dirac semimetallic state is still a subject of debate. We employ a semiclassical multicarrier transport (MCT) model t...

Full description

Saved in:
Bibliographic Details
Published innpj quantum materials Vol. 9; no. 1; pp. 76 - 8
Main Authors Kovács-Krausz, Zoltán, Nagy, Dániel, Márffy, Albin, Karpiak, Bogdan, Tajkov, Zoltán, Oroszlány, László, Koltai, János, Nemes-Incze, Péter, Dash, Saroj P., Makk, Péter, Csonka, Szabolcs, Tóvári, Endre
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 05.10.2024
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2397-4648
2397-4648
DOI10.1038/s41535-024-00679-7

Cover

Loading…
Abstract The layered van der Waals material ZrTe 5 is known as a candidate topological insulator (TI), however its topological phase and the relation with other properties such as an apparent Dirac semimetallic state is still a subject of debate. We employ a semiclassical multicarrier transport (MCT) model to analyze the magnetotransport of ZrTe 5 nanodevices at hydrostatic pressures up to 2 GPa. The temperature dependence of the MCT results between 10 and 300 K is assessed in the context of thermal activation, and we obtain the positions of conduction and valence band edges in the vicinity of the chemical potential. We find evidence of the closing and re-opening of the band gap with increasing pressure, which is consistent with a phase transition from weak to strong TI. This matches expectations from ab initio band structure calculations, as well as previous observations that CVT-grown ZrTe 5 is a weak TI in ambient conditions.
AbstractList The layered van der Waals material ZrTe5 is known as a candidate topological insulator (TI), however its topological phase and the relation with other properties such as an apparent Dirac semimetallic state is still a subject of debate. We employ a semiclassical multicarrier transport (MCT) model to analyze the magnetotransport of ZrTe5 nanodevices at hydrostatic pressures up to 2 GPa. The temperature dependence of the MCT results between 10 and 300 K is assessed in the context of thermal activation, and we obtain the positions of conduction and valence band edges in the vicinity of the chemical potential. We find evidence of the closing and re-opening of the band gap with increasing pressure, which is consistent with a phase transition from weak to strong TI. This matches expectations from ab initio band structure calculations, as well as previous observations that CVT-grown ZrTe5 is a weak TI in ambient conditions.The layered van der Waals material ZrTe5 is known as a candidate topological insulator (TI), however its topological phase and the relation with other properties such as an apparent Dirac semimetallic state is still a subject of debate. We employ a semiclassical multicarrier transport (MCT) model to analyze the magnetotransport of ZrTe5 nanodevices at hydrostatic pressures up to 2 GPa. The temperature dependence of the MCT results between 10 and 300 K is assessed in the context of thermal activation, and we obtain the positions of conduction and valence band edges in the vicinity of the chemical potential. We find evidence of the closing and re-opening of the band gap with increasing pressure, which is consistent with a phase transition from weak to strong TI. This matches expectations from ab initio band structure calculations, as well as previous observations that CVT-grown ZrTe5 is a weak TI in ambient conditions.
The layered van der Waals material ZrTe 5 is known as a candidate topological insulator (TI), however its topological phase and the relation with other properties such as an apparent Dirac semimetallic state is still a subject of debate. We employ a semiclassical multicarrier transport (MCT) model to analyze the magnetotransport of ZrTe 5 nanodevices at hydrostatic pressures up to 2 GPa. The temperature dependence of the MCT results between 10 and 300 K is assessed in the context of thermal activation, and we obtain the positions of conduction and valence band edges in the vicinity of the chemical potential. We find evidence of the closing and re-opening of the band gap with increasing pressure, which is consistent with a phase transition from weak to strong TI. This matches expectations from ab initio band structure calculations, as well as previous observations that CVT-grown ZrTe 5 is a weak TI in ambient conditions.
The layered van der Waals material ZrTe5 is known as a candidate topological insulator (TI), however its topological phase and the relation with other properties such as an apparent Dirac semimetallic state is still a subject of debate. We employ a semiclassical multicarrier transport (MCT) model to analyze the magnetotransport of ZrTe5 nanodevices at hydrostatic pressures up to 2 GPa. The temperature dependence of the MCT results between 10 and 300 K is assessed in the context of thermal activation, and we obtain the positions of conduction and valence band edges in the vicinity of the chemical potential. We find evidence of the closing and re-opening of the band gap with increasing pressure, which is consistent with a phase transition from weak to strong TI. This matches expectations from ab initio band structure calculations, as well as previous observations that CVT-grown ZrTe5 is a weak TI in ambient conditions.
Abstract The layered van der Waals material ZrTe5 is known as a candidate topological insulator (TI), however its topological phase and the relation with other properties such as an apparent Dirac semimetallic state is still a subject of debate. We employ a semiclassical multicarrier transport (MCT) model to analyze the magnetotransport of ZrTe5 nanodevices at hydrostatic pressures up to 2 GPa. The temperature dependence of the MCT results between 10 and 300 K is assessed in the context of thermal activation, and we obtain the positions of conduction and valence band edges in the vicinity of the chemical potential. We find evidence of the closing and re-opening of the band gap with increasing pressure, which is consistent with a phase transition from weak to strong TI. This matches expectations from ab initio band structure calculations, as well as previous observations that CVT-grown ZrTe5 is a weak TI in ambient conditions.
ArticleNumber 76
Author Nagy, Dániel
Dash, Saroj P.
Márffy, Albin
Tajkov, Zoltán
Nemes-Incze, Péter
Makk, Péter
Kovács-Krausz, Zoltán
Csonka, Szabolcs
Oroszlány, László
Koltai, János
Karpiak, Bogdan
Tóvári, Endre
Author_xml – sequence: 1
  givenname: Zoltán
  orcidid: 0000-0001-5821-6195
  surname: Kovács-Krausz
  fullname: Kovács-Krausz, Zoltán
  organization: Department of Physics, Institute of Physics, Budapest University of Technology and Economics, MTA-BME Superconducting Nanoelectronics Momentum Research Group
– sequence: 2
  givenname: Dániel
  surname: Nagy
  fullname: Nagy, Dániel
  organization: Department of Physics of Complex Systems, ELTE Eötvös Loránd University
– sequence: 3
  givenname: Albin
  surname: Márffy
  fullname: Márffy, Albin
  organization: Department of Physics, Institute of Physics, Budapest University of Technology and Economics, MTA-BME Superconducting Nanoelectronics Momentum Research Group
– sequence: 4
  givenname: Bogdan
  surname: Karpiak
  fullname: Karpiak, Bogdan
  organization: Department of Microtechnology and Nanoscience, Chalmers University of Technology
– sequence: 5
  givenname: Zoltán
  orcidid: 0000-0001-9733-0361
  surname: Tajkov
  fullname: Tajkov, Zoltán
  organization: Hungarian Research Network, Centre for Energy Research, Institute of Technical Physics and Materials Science, Centre of Low Temperature Physics, Institute of Experimental Physics, Slovak Academy of Sciences
– sequence: 6
  givenname: László
  surname: Oroszlány
  fullname: Oroszlány, László
  organization: Department of Physics of Complex Systems, ELTE Eötvös Loránd University, MTA-BME Lendület Topology and Correlation Research Group, Budapest University of Technology and Economics
– sequence: 7
  givenname: János
  orcidid: 0000-0003-2576-9740
  surname: Koltai
  fullname: Koltai, János
  organization: Department of Biological Physics, ELTE Eötvös Loránd University
– sequence: 8
  givenname: Péter
  surname: Nemes-Incze
  fullname: Nemes-Incze, Péter
  organization: Hungarian Research Network, Centre for Energy Research, Institute of Technical Physics and Materials Science
– sequence: 9
  givenname: Saroj P.
  orcidid: 0000-0001-7931-4843
  surname: Dash
  fullname: Dash, Saroj P.
  organization: Department of Microtechnology and Nanoscience, Chalmers University of Technology
– sequence: 10
  givenname: Péter
  surname: Makk
  fullname: Makk, Péter
  email: makk.peter@ttk.bme.hu
  organization: Department of Physics, Institute of Physics, Budapest University of Technology and Economics, MTA-BME Correlated van der Waals Structures Momentum Research Group
– sequence: 11
  givenname: Szabolcs
  surname: Csonka
  fullname: Csonka, Szabolcs
  organization: Department of Physics, Institute of Physics, Budapest University of Technology and Economics, MTA-BME Superconducting Nanoelectronics Momentum Research Group
– sequence: 12
  givenname: Endre
  orcidid: 0000-0002-0000-3805
  surname: Tóvári
  fullname: Tóvári, Endre
  organization: Department of Physics, Institute of Physics, Budapest University of Technology and Economics, MTA-BME Correlated van der Waals Structures Momentum Research Group
BookMark eNp9kUtv1TAQhSPUSpS2f4BVJDZsAn7HWSF0xaNSJRYtGzbWxBmnvsq1g50g9d_j21RAWXTlkX3ON545r6qTEANW1WtK3lHC9fssqOSyIUw0hKi2a9oX1RnjXdsIJfTJP_XL6jLnPSGEUaqFUmfV7saPAZY1YR1dPSfMudSND8NqcaiXOMcpjt7CVM93kLFeEoTsFx9D7UP9I92ivKhOHUwZLx_P8-r750-3u6_N9bcvV7uP140VqlsawdBp0jsGoPpBEC6Zxa5rBToEEKxjxGnRWmsVb0FxIp0YrCIUuXS67fl5dbVxhwh7Myd_gHRvInjzcBHTaCAt3k5opCQdWGWxbKbMyXvCe9CDAoVWaeIK68PGmtf-gIPFUAabnkCfvgR_Z8b4y1AqpFRSF8LbR0KKP1fMizn4bHGaIGBcs-FFWbqzjhbpm_-k-7imUHZ1VHGqJdNHINtUNsWcE7o_v6HEHIM2W9CmBG0egjZtMfHNlIs4jJj-op9x_Qa5_609
Cites_doi 10.1038/srep45667
10.1126/sciadv.aav9771
10.1103/PhysRevB.93.235443
10.1103/PhysRevB.24.2935
10.1038/s41535-020-00280-8
10.1088/1674-1056/27/8/087307
10.1038/s41467-021-27119-5
10.1063/1.5064732
10.1016/j.elspec.2016.09.006
10.1038/s41699-021-00262-9
10.1088/0953-8984/20/6/064208
10.1038/s41567-018-0078-z
10.1103/PhysRevB.87.144105
10.1038/nphys1270
10.1038/s41535-020-0239-z
10.1021/acs.nanolett.6b00167
10.1038/s41467-020-20564-8
10.1039/C9NR04519H
10.1103/PhysRevLett.128.176602
10.1103/PhysRevB.13.5188
10.1103/PhysRevLett.77.3865
10.1021/acs.nanolett.6b02629
10.1038/s41524-022-00854-z
10.1126/science.1133734
10.1103/PhysRevLett.115.176404
10.1126/science.aav1910
10.1073/pnas.1613110114
10.1063/5.0058583
10.1038/s41535-022-00451-9
10.1038/npjqi.2015.1
10.1103/PhysRevLett.95.226801
10.1038/nmat3305
10.1016/j.ssc.2014.04.005
10.1016/0038-1098(82)91016-X
10.1103/PhysRevB.101.125205
10.1063/5.0005077
10.1038/s41586-018-0107-1
10.1103/PhysRevLett.116.176803
10.1103/PhysRevLett.118.206601
10.1038/s41467-020-17481-1
10.1021/acs.nanolett.3c01528
10.1038/am.2016.166
10.1103/PhysRevLett.96.106802
10.1126/science.1148047
10.1103/PhysRevB.92.075107
10.1103/PhysRevB.102.155138
10.1038/s41535-022-00468-0
10.1103/PhysRevB.98.085144
10.1103/PhysRevB.107.075152
10.1038/nphys1274
10.1038/ncomms15512
10.1063/1.1148145
10.1016/j.commatsci.2014.11.026
10.1073/pnas.1601262113
10.1103/PhysRevB.95.125135
10.1103/RevModPhys.83.1057
10.1021/acs.nanolett.3c03029
10.1103/PhysRevB.93.115414
10.1038/s41565-018-0195-y
10.1016/0038-1098(86)90536-3
10.1088/0953-8984/18/34/012
10.1021/acs.nanolett.1c03066
10.1038/ncomms12516
10.1038/s41563-019-0506-1
10.1103/RevModPhys.82.3045
10.1103/PhysRevLett.117.237601
10.1038/s41535-022-00478-y
10.1103/PhysRevB.95.035420
10.1088/0953-8984/14/11/302
10.1143/JPSJ.77.031007
ContentType Journal Article
Copyright The Author(s) 2024
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2024.
The Author(s) 2024 2024
Copyright_xml – notice: The Author(s) 2024
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2024.
– notice: The Author(s) 2024 2024
DBID C6C
AAYXX
CITATION
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
KB.
P5Z
P62
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1038/s41535-024-00679-7
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
SciTech Premium Collection
Materials Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
ProQuest Materials Science Collection
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Publicly Available Content Database


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 2397-4648
EndPage 8
ExternalDocumentID oai_doaj_org_article_5509ac6ce1534663b03ba8d6a6ec680f
PMC11455658
10_1038_s41535_024_00679_7
GrantInformation_xml – fundername: FLAG-ERA / Graphene Flagship - MultiSpin European Research Council - Twistrain Nemzeti Kutatási, Fejlesztési és Innovációs Hivatal - OTKA K-138433, K-134437, K-131938, FK-124723, PD-134758, K-142179. Versenyképes Közép-magyarországi Operatív Program (VEKOP) - 2.3.3-15-2017-00015
– fundername: FLAG-ERA - 2DSOTECH 2021-05925
– fundername: European Cooperation in Science and Technology (COST)
  grantid: CA21144
  funderid: 501100000921
– fundername: National Research, Development and Innovation Office (HU) - 2022-2.1.1-NL-2022-00004
– fundername: Slovenská Akadémia Vied (Slovak Academy of Sciences)
  grantid: IMPULZ IM-2021-42
  funderid: 100010783
– fundername: Hungarian Academy of Sciences | Magyar Tudományos Akadémia Számítástechnikai és Automatizálási Kutatóintézet (Számítástechnikai és Automatizálási Kutatóintézet)
  grantid: BO/00242/20/11
  funderid: 100007626
GroupedDBID 0R~
AAJSJ
ABJCF
ACSMW
ADBBV
ADMLS
AFKRA
AFPKN
AJTQC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
BCNDV
BENPR
BGLVJ
C6C
CCPQU
EBLON
EBS
GROUPED_DOAJ
HCIFZ
KB.
KQ8
M~E
NAO
NO~
OK1
PDBOC
PIMPY
RNT
SNYQT
AAFWJ
AASML
AAYXX
CITATION
PHGZM
PHGZT
8FE
8FG
AARCD
ABUWG
AZQEC
D1I
DWQXO
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c469t-42ef80bf2aa6bd40352ce9974efeaa42920f847ccc637a6305f4dc601e35f87b3
IEDL.DBID AAJSJ
ISSN 2397-4648
IngestDate Wed Aug 27 01:30:46 EDT 2025
Thu Aug 21 18:35:52 EDT 2025
Fri Sep 05 05:35:46 EDT 2025
Wed Aug 13 03:18:57 EDT 2025
Tue Jul 01 02:29:19 EDT 2025
Fri Feb 21 02:40:17 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c469t-42ef80bf2aa6bd40352ce9974efeaa42920f847ccc637a6305f4dc601e35f87b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5821-6195
0000-0003-2576-9740
0000-0001-9733-0361
0000-0002-0000-3805
0000-0001-7931-4843
OpenAccessLink https://www.nature.com/articles/s41535-024-00679-7
PQID 3113185288
PQPubID 4669713
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_5509ac6ce1534663b03ba8d6a6ec680f
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11455658
proquest_miscellaneous_3114153291
proquest_journals_3113185288
crossref_primary_10_1038_s41535_024_00679_7
springer_journals_10_1038_s41535_024_00679_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-10-05
PublicationDateYYYYMMDD 2024-10-05
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-05
  day: 05
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle npj quantum materials
PublicationTitleAbbrev npj Quantum Mater
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Qiu (CR61) 2016; 16
Cha (CR14) 2018; 13
Bi (CR57) 2022; 7
Tian (CR12) 2014; 191
Kane, Mele (CR1) 2005; 95
König (CR6) 2007; 318
König (CR7) 2008; 77
Shahi (CR22) 2018; 8
Du (CR56) 2022; 7
Weng, Dai, Fang (CR25) 2014; 4
Liang (CR36) 2018; 14
Yankowitz (CR45) 2018; 557
Wu (CR35) 2016; 6
Tajkov (CR44) 2022; 8
Bernevig, Zhang (CR4) 2006; 96
Szentpéteri (CR52) 2021; 21
Tajkov, Visontai, Oroszlány, Koltai (CR50) 2019; 11
Hasan, Kane (CR2) 2010; 82
Monkhorst, Pack (CR73) 1976; 13
Chen (CR41) 2015; 92
Santos-Cottin (CR23) 2020; 101
Bernevig, Hughes, Zhang (CR5) 2006; 314
Liu (CR39) 2023; 23
Li (CR55) 2019; 18
Zhang (CR19) 2017; 8
Zheng (CR21) 2016; 93
Tang (CR66) 2018; 27
Vaklinova, Hoyer, Burghard, Kern (CR13) 2016; 16
Murata, Yoshino, Yadav, Honda, Shirakawa (CR62) 1997; 68
Sun (CR37) 2020; 5
Chen (CR43) 2017; 114
Zhang (CR59) 2017; 118
Manzoni (CR30) 2017; 219
Sarma, Freedman, Nayak (CR3) 2015; 1
Hromadová, Martoňák, Tosatti (CR47) 2013; 87
Rivero (CR72) 2015; 98
Fjellvåg, Kjekshus (CR16) 1986; 60
Carr, Fang, Jarillo-Herrero, Kaxiras (CR49) 2018; 98
Artacho (CR67) 2008; 20
Soler (CR68) 2002; 14
Zhou (CR58) 2016; 113
Kovács-Krausz (CR60) 2023; 107
Chen (CR40) 2015; 115
Wang (CR28) 2022; 128
Skelton (CR18) 1982; 42
Mutch (CR27) 2019; 5
Fülöp (CR46) 2021; 130
Zhang (CR9) 2009; 5
Perdew, Burke, Ernzerhof (CR71) 1996; 77
Morice, Lettl, Kopp, Kampf (CR24) 2020; 102
Li (CR34) 2016; 116
Yankowitz (CR51) 2019; 363
Pesin, Macdonald (CR11) 2012; 11
Wang (CR20) 2018; 8
Fernández-Seivane, Oliveira, Sanvito, Ferrer (CR70) 2006; 18
Lu (CR64) 2017; 95
Fan, Liang, Chen, Yao, Zhou (CR26) 2017; 7
Konstantinova (CR32) 2020; 5
DiSalvo, Fleming, Waszczak (CR17) 1981; 24
Munoz, Collado, Usaj, Sofo, Balseiro (CR48) 2016; 93
Wang (CR31) 2021; 12
Gourgout (CR38) 2022; 7
Manzoni (CR29) 2016; 117
Zhang (CR33) 2021; 12
Fülöp (CR53) 2021; 5
Yuan (CR42) 2016; 8
Kedves (CR54) 2023; 23
Khokhriakov, Hoque, Karpiak, Dash (CR15) 2020; 11
Xia (CR8) 2009; 5
Qi, Zhang (CR10) 2011; 83
García (CR69) 2020; 152
Liu (CR63) 2016; 7
Niu (CR65) 2017; 95
Z Sun (679_CR37) 2020; 5
Z Tajkov (679_CR44) 2022; 8
M Kedves (679_CR54) 2023; 23
D Pesin (679_CR11) 2012; 11
D Khokhriakov (679_CR15) 2020; 11
X-L Qi (679_CR10) 2011; 83
M König (679_CR7) 2008; 77
P Shahi (679_CR22) 2018; 8
P Rivero (679_CR72) 2015; 98
SD Sarma (679_CR3) 2015; 1
Z Kovács-Krausz (679_CR60) 2023; 107
RY Chen (679_CR40) 2015; 115
T Li (679_CR55) 2019; 18
Y Xia (679_CR8) 2009; 5
C Morice (679_CR24) 2020; 102
L Hromadová (679_CR47) 2013; 87
B Szentpéteri (679_CR52) 2021; 21
W Bi (679_CR57) 2022; 7
J Mutch (679_CR27) 2019; 5
L Fernández-Seivane (679_CR70) 2006; 18
HJ Monkhorst (679_CR73) 1976; 13
J Niu (679_CR65) 2017; 95
X-B Li (679_CR34) 2016; 116
J Tian (679_CR12) 2014; 191
BA Bernevig (679_CR4) 2006; 96
G Zheng (679_CR21) 2016; 93
Z Fan (679_CR26) 2017; 7
J Wang (679_CR31) 2021; 12
E Artacho (679_CR67) 2008; 20
Z-G Chen (679_CR43) 2017; 114
Y Zhang (679_CR19) 2017; 8
M Yankowitz (679_CR45) 2018; 557
W Wang (679_CR20) 2018; 8
H Fjellvåg (679_CR16) 1986; 60
F Munoz (679_CR48) 2016; 93
Y Liu (679_CR63) 2016; 7
A García (679_CR69) 2020; 152
Y Wang (679_CR28) 2022; 128
FJ DiSalvo (679_CR17) 1981; 24
E Skelton (679_CR18) 1982; 42
M König (679_CR6) 2007; 318
MZ Hasan (679_CR2) 2010; 82
B Fülöp (679_CR46) 2021; 130
S Cha (679_CR14) 2018; 13
CL Kane (679_CR1) 2005; 95
F Du (679_CR56) 2022; 7
X Yuan (679_CR42) 2016; 8
H Zhang (679_CR9) 2009; 5
R Wu (679_CR35) 2016; 6
JP Perdew (679_CR71) 1996; 77
RY Chen (679_CR41) 2015; 92
Y Zhou (679_CR58) 2016; 113
JM Soler (679_CR68) 2002; 14
S Carr (679_CR49) 2018; 98
K Vaklinova (679_CR13) 2016; 16
JL Zhang (679_CR59) 2017; 118
H Weng (679_CR25) 2014; 4
P Zhang (679_CR33) 2021; 12
T Konstantinova (679_CR32) 2020; 5
A Gourgout (679_CR38) 2022; 7
Z Tajkov (679_CR50) 2019; 11
K Murata (679_CR62) 1997; 68
M Yankowitz (679_CR51) 2019; 363
F Tang (679_CR66) 2018; 27
T Liang (679_CR36) 2018; 14
Y Liu (679_CR39) 2023; 23
D Santos-Cottin (679_CR23) 2020; 101
J Lu (679_CR64) 2017; 95
G Manzoni (679_CR30) 2017; 219
G Qiu (679_CR61) 2016; 16
BA Bernevig (679_CR5) 2006; 314
G Manzoni (679_CR29) 2016; 117
B Fülöp (679_CR53) 2021; 5
References_xml – volume: 7
  year: 2017
  ident: CR26
  article-title: Transition between strong and weak topological insulator in ZrTe and HfTe
  publication-title: Sci. Rep.
  doi: 10.1038/srep45667
– volume: 5
  start-page: eaav9771
  year: 2019
  ident: CR27
  article-title: Evidence for a strain-tuned topological phase transition in ZrTe
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aav9771
– volume: 93
  start-page: 235443
  year: 2016
  ident: CR48
  article-title: Bilayer graphene under pressure: electron-hole symmetry breaking, valley Hall effect, and Landau levels
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.93.235443
– volume: 24
  start-page: 2935
  year: 1981
  ident: CR17
  article-title: Possible phase transition in the quasi-one-dimensional materials ZrTe or HfTe
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.24.2935
– volume: 5
  year: 2020
  ident: CR32
  article-title: Photoinduced Dirac semimetal in ZrTe
  publication-title: npj Quantum Mater.
  doi: 10.1038/s41535-020-00280-8
– volume: 27
  start-page: 087307
  year: 2018
  ident: CR66
  article-title: Multi-carrier transport in ZrTe film
  publication-title: Chin. Phys. B
  doi: 10.1088/1674-1056/27/8/087307
– volume: 12
  year: 2021
  ident: CR31
  article-title: Magneto-transport evidence for strong topological insulator phase in ZrTe
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-27119-5
– volume: 8
  start-page: 125110
  year: 2018
  ident: CR20
  article-title: The metal-insulator transition in ZrTe induced by temperature
  publication-title: AIP Adv.
  doi: 10.1063/1.5064732
– volume: 219
  start-page: 9
  year: 2017
  ident: CR30
  article-title: Temperature dependent non-monotonic bands shift in ZrTe
  publication-title: J. Electron Spectrosc. Relat. Phenom.
  doi: 10.1016/j.elspec.2016.09.006
– volume: 5
  year: 2021
  ident: CR53
  article-title: Boosting proximity spin–orbit coupling in graphene/WSe heterostructures via hydrostatic pressure
  publication-title: npj 2D Mater. Appl.
  doi: 10.1038/s41699-021-00262-9
– volume: 20
  start-page: 064208
  year: 2008
  ident: CR67
  article-title: The SIESTA method; developments and applicability
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/20/6/064208
– volume: 14
  start-page: 451
  year: 2018
  end-page: 455
  ident: CR36
  article-title: Anomalous hall effect in ZrTe
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-018-0078-z
– volume: 87
  start-page: 144105
  year: 2013
  ident: CR47
  article-title: Structure change, layer sliding, and metallization in high-pressure MoS
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.87.144105
– volume: 5
  start-page: 438
  year: 2009
  ident: CR9
  article-title: Topological insulators in Bi Se , Bi Te and Sb Te with a single Dirac cone on the surface
  publication-title: Nat. Phys.
  doi: 10.1038/nphys1270
– volume: 5
  year: 2020
  ident: CR37
  article-title: Large Zeeman splitting induced anomalous hall effect in ZrTe
  publication-title: npj Quantum Mater.
  doi: 10.1038/s41535-020-0239-z
– volume: 16
  start-page: 2595
  year: 2016
  end-page: 2602
  ident: CR13
  article-title: Current-induced spin polarization in topological insulator-graphene heterostructures
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b00167
– volume: 12
  year: 2021
  ident: CR33
  article-title: Observation and control of the weak topological insulator state in ZrTe5
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-20564-8
– volume: 11
  start-page: 12704
  year: 2019
  ident: CR50
  article-title: Uniaxial strain induced topological phase transition in bismuth-tellurohalide-graphene heterostructures
  publication-title: Nanoscale
  doi: 10.1039/C9NR04519H
– volume: 128
  start-page: 176602
  year: 2022
  ident: CR28
  article-title: Gigantic magnetochiral anisotropy in the topological semimetal ZrTe
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.128.176602
– volume: 8
  start-page: 021055
  year: 2018
  ident: CR22
  article-title: Bipolar conduction as the possible origin of the electronic transition in pentatellurides: metallic vs semiconducting behavior
  publication-title: Phys. Rev. X
– volume: 13
  start-page: 5188
  year: 1976
  ident: CR73
  article-title: Special points for Brillouin-zone integrations
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.13.5188
– volume: 77
  start-page: 3865
  year: 1996
  ident: CR71
  article-title: Generalized gradient approximation made simple
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 16
  start-page: 7364
  year: 2016
  ident: CR61
  article-title: Observation of optical and electrical in-plane anisotropy in high-mobility few-layer ZrTe
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b02629
– volume: 8
  start-page: 177
  year: 2022
  ident: CR44
  article-title: Revealing the topological phase diagram of ZrTe using the complex strain fields of microbubbles
  publication-title: npj Comput. Mater.
  doi: 10.1038/s41524-022-00854-z
– volume: 314
  start-page: 1757
  year: 2006
  ident: CR5
  article-title: Quantum spin hall effect and topological phase transition in HgTe quantum wells
  publication-title: Science
  doi: 10.1126/science.1133734
– volume: 115
  start-page: 176404
  year: 2015
  ident: CR40
  article-title: Magnetoinfrared spectroscopy of Landau Levels and Zeeman splitting of three-dimensional massless dirac fermions in ZrTe
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.115.176404
– volume: 363
  start-page: 1059
  year: 2019
  ident: CR51
  article-title: Tuning superconductivity in twisted bilayer graphene
  publication-title: Science
  doi: 10.1126/science.aav1910
– volume: 114
  start-page: 816
  year: 2017
  ident: CR43
  article-title: Spectroscopic evidence for bulk-band inversion and three-dimensional massive Dirac fermions in ZrTe
  publication-title: Proc. Natl Acad. Sci.
  doi: 10.1073/pnas.1613110114
– volume: 130
  start-page: 064303
  year: 2021
  ident: CR46
  article-title: New method of transport measurements on van der Waals heterostructures under pressure
  publication-title: J. Appl. Phys.
  doi: 10.1063/5.0058583
– volume: 7
  year: 2022
  ident: CR57
  article-title: Drastic enhancement of magnetic critical temperature and amorphization in topological magnet EuSn P under pressure
  publication-title: npj Quantum Mater.
  doi: 10.1038/s41535-022-00451-9
– volume: 1
  year: 2015
  ident: CR3
  article-title: Majorana zero modes and topological quantum computation
  publication-title: npj Quantum Inf.
  doi: 10.1038/npjqi.2015.1
– volume: 95
  start-page: 226801
  year: 2005
  ident: CR1
  article-title: Quantum spin hall effect in graphene
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.95.226801
– volume: 11
  start-page: 409
  year: 2012
  ident: CR11
  article-title: Spintronics and pseudospintronics in graphene and topological insulators
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3305
– volume: 191
  start-page: 1
  year: 2014
  ident: CR12
  article-title: Topological insulator based spin valve devices: evidence for spin polarized transport of spin-momentum-locked topological surface states
  publication-title: Solid State Commun.
  doi: 10.1016/j.ssc.2014.04.005
– volume: 42
  start-page: 1
  year: 1982
  ident: CR18
  article-title: Giant resistivity and X-ray diffraction anomalies in low-dimensional ZrTe and HfTe
  publication-title: Solid State Commun.
  doi: 10.1016/0038-1098(82)91016-X
– volume: 101
  start-page: 125205
  year: 2020
  ident: CR23
  article-title: Probing intraband excitations in ZrTe : a high-pressure infrared and transport study
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.101.125205
– volume: 152
  start-page: 204108
  year: 2020
  ident: CR69
  article-title: Siesta: recent developments and applications
  publication-title: J. Chem. Phys.
  doi: 10.1063/5.0005077
– volume: 557
  start-page: 404
  year: 2018
  ident: CR45
  article-title: Dynamic band-structure tuning of graphene moiré superlattices with pressure
  publication-title: Nature
  doi: 10.1038/s41586-018-0107-1
– volume: 116
  start-page: 176803
  year: 2016
  ident: CR34
  article-title: Experimental observation of topological edge states at the surface step edge of the topological insulator ZrTe
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.116.176803
– volume: 118
  start-page: 206601
  year: 2017
  ident: CR59
  article-title: Disruption of the accidental dirac semimetal state in ZrTe under hydrostatic pressure
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.118.206601
– volume: 11
  year: 2020
  ident: CR15
  article-title: Gate-tunable spin-galvanic effect in graphene topological insulator van der waals heterostructures at room temperature
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-17481-1
– volume: 23
  start-page: 5334
  year: 2023
  ident: CR39
  article-title: Gate-tunable multiband transport in ZrTe thin devices
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.3c01528
– volume: 8
  year: 2016
  ident: CR42
  article-title: Observation of quasi-two-dimensional Dirac fermions in ZrTe
  publication-title: NPG Asia Mater.
  doi: 10.1038/am.2016.166
– volume: 96
  start-page: 106802
  year: 2006
  ident: CR4
  article-title: Quantum spin hall effect
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.96.106802
– volume: 318
  start-page: 766
  year: 2007
  ident: CR6
  article-title: Quantum spin hall insulator state in HgTe quantum wells
  publication-title: Science
  doi: 10.1126/science.1148047
– volume: 92
  start-page: 075107
  year: 2015
  ident: CR41
  article-title: Optical spectroscopy study of the three-dimensional Dirac semimetal ZrTe
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.92.075107
– volume: 6
  start-page: 021017
  year: 2016
  ident: CR35
  article-title: Evidence for topological edge states in a large energy gap near the step edges on the surface of ZrTe
  publication-title: Phys. Rev. X
– volume: 102
  start-page: 155138
  year: 2020
  ident: CR24
  article-title: Optical conductivity and resistivity in a four-band model for ZrTe from ab initio calculations
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.102.155138
– volume: 7
  year: 2022
  ident: CR56
  article-title: Consecutive topological phase transitions and colossal magnetoresistance in a magnetic topological semimetal
  publication-title: npj Quantum Mater.
  doi: 10.1038/s41535-022-00468-0
– volume: 98
  start-page: 085144
  year: 2018
  ident: CR49
  article-title: Pressure dependence of the magic twist angle in graphene superlattices
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.98.085144
– volume: 107
  start-page: 075152
  year: 2023
  ident: CR60
  article-title: Revealing the band structure of ZrTe using multicarrier transport
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.107.075152
– volume: 5
  start-page: 398
  year: 2009
  ident: CR8
  article-title: Observation of a large-gap topological-insulator class with a single Dirac cone on the surface
  publication-title: Nat. Phys.
  doi: 10.1038/nphys1274
– volume: 8
  year: 2017
  ident: CR19
  article-title: Electronic evidence of temperature-induced Lifshitz transition and topological nature in ZrTe
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms15512
– volume: 68
  start-page: 2490
  year: 1997
  ident: CR62
  article-title: Pt resistor thermometry and pressure calibration in a clamped pressure cell with the medium, daphne 7373
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.1148145
– volume: 98
  start-page: 372
  year: 2015
  ident: CR72
  article-title: Systematic pseudopotentials from reference eigenvalue sets for DFT calculations
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2014.11.026
– volume: 113
  start-page: 2904
  year: 2016
  ident: CR58
  article-title: Pressure-induced superconductivity in a three-dimensional topological material ZrTe
  publication-title: Proc. Natl Acad. Sci.
  doi: 10.1073/pnas.1601262113
– volume: 95
  start-page: 125135
  year: 2017
  ident: CR64
  article-title: Thickness-tuned transition of band topology in ZrTe nanosheets
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.95.125135
– volume: 83
  start-page: 1057
  year: 2011
  ident: CR10
  article-title: Topological insulators and superconductors
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.83.1057
– volume: 23
  start-page: 9508
  year: 2023
  ident: CR54
  article-title: Stabilizing the inverted phase of a WSe /BLG/WSe heterostructure via hydrostatic pressure
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.3c03029
– volume: 93
  start-page: 115414
  year: 2016
  ident: CR21
  article-title: Transport evidence for the three-dimensional Dirac semimetal phase in ZrTe
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.93.115414
– volume: 13
  start-page: 910
  year: 2018
  end-page: 914
  ident: CR14
  article-title: Generation, transport and detection of valley-locked spin photocurrent in WSe -graphene-Bi Se heterostructures
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-018-0195-y
– volume: 60
  start-page: 91
  year: 1986
  ident: CR16
  article-title: Structural properties of ZrTe and HfTe as seen by powder diffraction
  publication-title: Solid State Commun.
  doi: 10.1016/0038-1098(86)90536-3
– volume: 18
  start-page: 7999
  year: 2006
  ident: CR70
  article-title: On-site approximation for spin–orbit coupling in linear combination of atomic orbitals density functional methods
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/18/34/012
– volume: 4
  start-page: 011002
  year: 2014
  ident: CR25
  article-title: Transition-metal pentatelluride ZrTe and HfTe : a paradigm for large-gap quantum spin hall insulators
  publication-title: Phys. Rev. X
– volume: 21
  start-page: 8777
  year: 2021
  ident: CR52
  article-title: Tailoring the band structure of twisted double bilayer graphene with pressure
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.1c03066
– volume: 7
  year: 2016
  ident: CR63
  article-title: Zeeman splitting and dynamical mass generation in Dirac semimetal ZrTe
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms12516
– volume: 18
  start-page: 1303
  year: 2019
  ident: CR55
  article-title: Pressure-controlled interlayer magnetism in atomically thin CrI
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-019-0506-1
– volume: 82
  start-page: 3045
  year: 2010
  ident: CR2
  article-title: Colloquium: topological insulators
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.82.3045
– volume: 117
  start-page: 237601
  year: 2016
  ident: CR29
  article-title: Evidence for a strong topological insulator phase in ZrTe
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.117.237601
– volume: 7
  year: 2022
  ident: CR38
  article-title: Magnetic freeze-out and anomalous hall effect in ZrTe
  publication-title: npj Quantum Mater.
  doi: 10.1038/s41535-022-00478-y
– volume: 95
  start-page: 035420
  year: 2017
  ident: CR65
  article-title: Electrical transport in nanothick ZrTe sheets: From three to two dimensions
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.95.035420
– volume: 14
  start-page: 2745
  year: 2002
  ident: CR68
  article-title: The SIESTA method for ab initio order-N materials simulation
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/14/11/302
– volume: 77
  start-page: 031007
  year: 2008
  ident: CR7
  article-title: The quantum spin hall effect: theory and experiment
  publication-title: J. Phys. Soc. Jpn.
  doi: 10.1143/JPSJ.77.031007
– volume: 7
  year: 2016
  ident: 679_CR63
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms12516
– volume: 77
  start-page: 031007
  year: 2008
  ident: 679_CR7
  publication-title: J. Phys. Soc. Jpn.
  doi: 10.1143/JPSJ.77.031007
– volume: 219
  start-page: 9
  year: 2017
  ident: 679_CR30
  publication-title: J. Electron Spectrosc. Relat. Phenom.
  doi: 10.1016/j.elspec.2016.09.006
– volume: 11
  year: 2020
  ident: 679_CR15
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-17481-1
– volume: 8
  year: 2017
  ident: 679_CR19
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms15512
– volume: 116
  start-page: 176803
  year: 2016
  ident: 679_CR34
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.116.176803
– volume: 5
  start-page: eaav9771
  year: 2019
  ident: 679_CR27
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aav9771
– volume: 5
  year: 2021
  ident: 679_CR53
  publication-title: npj 2D Mater. Appl.
  doi: 10.1038/s41699-021-00262-9
– volume: 98
  start-page: 372
  year: 2015
  ident: 679_CR72
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2014.11.026
– volume: 42
  start-page: 1
  year: 1982
  ident: 679_CR18
  publication-title: Solid State Commun.
  doi: 10.1016/0038-1098(82)91016-X
– volume: 1
  year: 2015
  ident: 679_CR3
  publication-title: npj Quantum Inf.
  doi: 10.1038/npjqi.2015.1
– volume: 23
  start-page: 5334
  year: 2023
  ident: 679_CR39
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.3c01528
– volume: 7
  year: 2017
  ident: 679_CR26
  publication-title: Sci. Rep.
  doi: 10.1038/srep45667
– volume: 82
  start-page: 3045
  year: 2010
  ident: 679_CR2
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.82.3045
– volume: 102
  start-page: 155138
  year: 2020
  ident: 679_CR24
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.102.155138
– volume: 98
  start-page: 085144
  year: 2018
  ident: 679_CR49
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.98.085144
– volume: 87
  start-page: 144105
  year: 2013
  ident: 679_CR47
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.87.144105
– volume: 113
  start-page: 2904
  year: 2016
  ident: 679_CR58
  publication-title: Proc. Natl Acad. Sci.
  doi: 10.1073/pnas.1601262113
– volume: 16
  start-page: 7364
  year: 2016
  ident: 679_CR61
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b02629
– volume: 14
  start-page: 2745
  year: 2002
  ident: 679_CR68
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/14/11/302
– volume: 117
  start-page: 237601
  year: 2016
  ident: 679_CR29
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.117.237601
– volume: 7
  year: 2022
  ident: 679_CR56
  publication-title: npj Quantum Mater.
  doi: 10.1038/s41535-022-00468-0
– volume: 93
  start-page: 115414
  year: 2016
  ident: 679_CR21
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.93.115414
– volume: 7
  year: 2022
  ident: 679_CR57
  publication-title: npj Quantum Mater.
  doi: 10.1038/s41535-022-00451-9
– volume: 20
  start-page: 064208
  year: 2008
  ident: 679_CR67
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/20/6/064208
– volume: 96
  start-page: 106802
  year: 2006
  ident: 679_CR4
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.96.106802
– volume: 11
  start-page: 409
  year: 2012
  ident: 679_CR11
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3305
– volume: 77
  start-page: 3865
  year: 1996
  ident: 679_CR71
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 115
  start-page: 176404
  year: 2015
  ident: 679_CR40
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.115.176404
– volume: 107
  start-page: 075152
  year: 2023
  ident: 679_CR60
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.107.075152
– volume: 27
  start-page: 087307
  year: 2018
  ident: 679_CR66
  publication-title: Chin. Phys. B
  doi: 10.1088/1674-1056/27/8/087307
– volume: 18
  start-page: 7999
  year: 2006
  ident: 679_CR70
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/18/34/012
– volume: 314
  start-page: 1757
  year: 2006
  ident: 679_CR5
  publication-title: Science
  doi: 10.1126/science.1133734
– volume: 6
  start-page: 021017
  year: 2016
  ident: 679_CR35
  publication-title: Phys. Rev. X
– volume: 5
  year: 2020
  ident: 679_CR37
  publication-title: npj Quantum Mater.
  doi: 10.1038/s41535-020-0239-z
– volume: 83
  start-page: 1057
  year: 2011
  ident: 679_CR10
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.83.1057
– volume: 92
  start-page: 075107
  year: 2015
  ident: 679_CR41
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.92.075107
– volume: 5
  start-page: 398
  year: 2009
  ident: 679_CR8
  publication-title: Nat. Phys.
  doi: 10.1038/nphys1274
– volume: 13
  start-page: 910
  year: 2018
  ident: 679_CR14
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-018-0195-y
– volume: 5
  start-page: 438
  year: 2009
  ident: 679_CR9
  publication-title: Nat. Phys.
  doi: 10.1038/nphys1270
– volume: 191
  start-page: 1
  year: 2014
  ident: 679_CR12
  publication-title: Solid State Commun.
  doi: 10.1016/j.ssc.2014.04.005
– volume: 5
  year: 2020
  ident: 679_CR32
  publication-title: npj Quantum Mater.
  doi: 10.1038/s41535-020-00280-8
– volume: 101
  start-page: 125205
  year: 2020
  ident: 679_CR23
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.101.125205
– volume: 14
  start-page: 451
  year: 2018
  ident: 679_CR36
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-018-0078-z
– volume: 130
  start-page: 064303
  year: 2021
  ident: 679_CR46
  publication-title: J. Appl. Phys.
  doi: 10.1063/5.0058583
– volume: 18
  start-page: 1303
  year: 2019
  ident: 679_CR55
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-019-0506-1
– volume: 318
  start-page: 766
  year: 2007
  ident: 679_CR6
  publication-title: Science
  doi: 10.1126/science.1148047
– volume: 95
  start-page: 125135
  year: 2017
  ident: 679_CR64
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.95.125135
– volume: 152
  start-page: 204108
  year: 2020
  ident: 679_CR69
  publication-title: J. Chem. Phys.
  doi: 10.1063/5.0005077
– volume: 21
  start-page: 8777
  year: 2021
  ident: 679_CR52
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.1c03066
– volume: 8
  year: 2016
  ident: 679_CR42
  publication-title: NPG Asia Mater.
  doi: 10.1038/am.2016.166
– volume: 12
  year: 2021
  ident: 679_CR31
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-27119-5
– volume: 8
  start-page: 125110
  year: 2018
  ident: 679_CR20
  publication-title: AIP Adv.
  doi: 10.1063/1.5064732
– volume: 7
  year: 2022
  ident: 679_CR38
  publication-title: npj Quantum Mater.
  doi: 10.1038/s41535-022-00478-y
– volume: 118
  start-page: 206601
  year: 2017
  ident: 679_CR59
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.118.206601
– volume: 95
  start-page: 226801
  year: 2005
  ident: 679_CR1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.95.226801
– volume: 24
  start-page: 2935
  year: 1981
  ident: 679_CR17
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.24.2935
– volume: 4
  start-page: 011002
  year: 2014
  ident: 679_CR25
  publication-title: Phys. Rev. X
– volume: 16
  start-page: 2595
  year: 2016
  ident: 679_CR13
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b00167
– volume: 93
  start-page: 235443
  year: 2016
  ident: 679_CR48
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.93.235443
– volume: 95
  start-page: 035420
  year: 2017
  ident: 679_CR65
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.95.035420
– volume: 13
  start-page: 5188
  year: 1976
  ident: 679_CR73
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.13.5188
– volume: 60
  start-page: 91
  year: 1986
  ident: 679_CR16
  publication-title: Solid State Commun.
  doi: 10.1016/0038-1098(86)90536-3
– volume: 114
  start-page: 816
  year: 2017
  ident: 679_CR43
  publication-title: Proc. Natl Acad. Sci.
  doi: 10.1073/pnas.1613110114
– volume: 11
  start-page: 12704
  year: 2019
  ident: 679_CR50
  publication-title: Nanoscale
  doi: 10.1039/C9NR04519H
– volume: 8
  start-page: 177
  year: 2022
  ident: 679_CR44
  publication-title: npj Comput. Mater.
  doi: 10.1038/s41524-022-00854-z
– volume: 363
  start-page: 1059
  year: 2019
  ident: 679_CR51
  publication-title: Science
  doi: 10.1126/science.aav1910
– volume: 8
  start-page: 021055
  year: 2018
  ident: 679_CR22
  publication-title: Phys. Rev. X
– volume: 557
  start-page: 404
  year: 2018
  ident: 679_CR45
  publication-title: Nature
  doi: 10.1038/s41586-018-0107-1
– volume: 12
  year: 2021
  ident: 679_CR33
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-20564-8
– volume: 128
  start-page: 176602
  year: 2022
  ident: 679_CR28
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.128.176602
– volume: 23
  start-page: 9508
  year: 2023
  ident: 679_CR54
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.3c03029
– volume: 68
  start-page: 2490
  year: 1997
  ident: 679_CR62
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.1148145
SSID ssj0002118466
Score 2.284087
Snippet The layered van der Waals material ZrTe 5 is known as a candidate topological insulator (TI), however its topological phase and the relation with other...
The layered van der Waals material ZrTe5 is known as a candidate topological insulator (TI), however its topological phase and the relation with other...
Abstract The layered van der Waals material ZrTe5 is known as a candidate topological insulator (TI), however its topological phase and the relation with other...
SourceID doaj
pubmedcentral
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 76
SubjectTerms 639/301/119/2795
639/766/119/2792/4128
639/766/119/995
639/925/357/1018
Chemical potential
Condensed Matter Physics
Conduction bands
Electrons
Magnetic properties
Nanotechnology devices
Phase transitions
Physics
Physics and Astronomy
Quantum Physics
Structural Materials
Surfaces and Interfaces
Temperature dependence
Thin Films
Topological insulators
Valence band
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8QwEB3Ekx7ET6yuEsGbBtsmzaZHFUUEvbgL4iUkaaJ76Yrb_f9O0q5uBfHirTQpTWYyeTNk8gbg1Gmji8oa6pjxlHvhqMzSinpcHzoX1vlYpvPhUdyN-f1z8bxU6ivkhLX0wK3gLtCDLrXFj9A0OcKjSZnRshJaOCtk6sPum5bpUjAV9mAMaxBYRXdLJmXyYoZIxcJlZE7DDl3SYQ-JImF_z8v8mSP546A04s_tJmx0jiO5bAe8BSuu3ob1JTrBHbh-mry2RJ1k6knMcMVnilE36q8iTVsPIWiFvL8hepEmAFXM2SKTmrx8jFyxC-Pbm9H1He2KJFCLkW1Dee68TI3PtRam4oHe1LoSowTnndaxGJVHBLLWCjbUAs3b88piGOZY4eXQsD1Yrae12weSMuZ14L-RxnKmMXblxvCSYa_CmEwncLYQmHpvuTBUPMNmUrXiVSheFcWrhglcBZl-9Qw81vEFald12lV_aTeBwUIjqjOumWJZFu98S5nAyVczmkU469C1m85jnzCivMwSkD1N9gbUb6knb5FgOwvs7eiaJXC-UPr333-f8cF_zPgQ1vKwSGOOwgBWm4-5O0K_pzHHcYl_AmJhAAg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB7Bokr0ULW0iACtjMSNWiSx43VOFUXdrpDgAkiIi2U7NuwlWXbD_-_YyS4Eid6ixFGceXhmPONvAI6dNrqorKGOGU-5F47KLK2oR_nQubDOxzadl1diessv7oq7fsNt2ZdVrtbEuFBXjQ175Kcsy-JBXyl_zZ9o6BoVsqt9C41N2MrQ0gQ5l5O_6z0WDG7QvIr-rEzK5OkS7RULR5I5Det0SccDexRh-we-5ttKyTfp0miFJp_hU-8-krOO319gw9U78PEVqOAOfIhFnXb5Fc6vZw8dcCdpPIkVr3hNMQpHflak7fojBC6R-SNaM9IGwxVruMisJveLG1d8g9vJn5vzKe2bJlCLkW5Lee68TI3PtRam4gHu1LoSowbnndaxOZVHi2StFWysBaq755XFsMyxwsuxYbswqpva7QFJGfM64OFIYznTGMtyY3jJcFRhTKYTOFmRTs07bAwVc9pMqo7QCgmtIqHVOIHfgbrrkQHXOt5oFg-qVxOF8VKpLYoIvo2cYyZlRstKaOGskKlP4HDFG9Ur21K9iEYCR-vHqCYh96Fr1zzHMWFGeZklIAc8HUxo-KSePUbA7SyguaOrlsDPFftfvv7-H-__f7IHsJ0HQYzVCIcwahfP7jt6OK35EcX4H32s-l4
  priority: 102
  providerName: ProQuest
Title Signature of pressure-induced topological phase transition in ZrTe5
URI https://link.springer.com/article/10.1038/s41535-024-00679-7
https://www.proquest.com/docview/3113185288
https://www.proquest.com/docview/3114153291
https://pubmed.ncbi.nlm.nih.gov/PMC11455658
https://doaj.org/article/5509ac6ce1534663b03ba8d6a6ec680f
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1RT9swED5B0aTtYRpsEwFWedLeNmtJ7LjOY6koqBJoGiChvVi2Y0NfUtSG_7-zk3QL2h54ShTbin1n--7su-8AvjhtdFFZQx0znnIvHJVZWlGP80Pnwjof03ReXomLW764K-52IO9jYaLTfoS0jNt07x32fYOChoVYYk7DBlvSyS7sSRR_-Qj2ptPF9WJ7soImDQpV0UXIpEz-o_FACkWw_oGG-dw_8tklaZQ983fwtlMaybTt5j7suPoA3vwFJXgAr6Irp928h9n18r4dG1l5Ev1c8Z2i7Y1crEjTZkUIvCGPDyjDSBPEVfTcIsua_FrfuOID3M7PbmYXtEuVQC3atw3lufMyNT7XWpiKB5BT60q0FZx3WseUVB7lkLVWsIkWuMg9rywaY44VXk4M-wijelW7QyApY14HFBxpLGcaLVhuDC8Z1iqMyXQCX3vSqccWEUPFm2wmVUtohYRWkdBqksBpoO62ZkCzjh9W63vVcVehlVRqixMDWyPnmEmZ0bISWjgrZOoTOOl5o7oltlEsy2Lkt5QJfN4W4-IINx66dqunWCf0KC-zBOSAp4MODUvq5UOE2c4ChjsqaAl869n_5-__H_HRy6ofw-s8TMzok3ACo2b95D6hntOYMezK-fm4m974PD27-vETv87EbBzPDn4D_8z93w
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VrRDlgKCACBQwEpzAahI7WeeAEC2ttrRdIdhKFRdjO3a7l2S7mwrxUjwjYyfZspXg1luUOIkz841nJp4fgNdWaZWVRlPLtKPc5ZaKJC6pQ3yoNDfWhTadx-N8dMI_n2ana_C7z4XxYZX9mhgW6rI2_h_5NkuSkOgrxIfZBfVdo_zuat9Co4XFof31E122xfuDT8jfN2m6vzfZHdGuqwA16Ao2lKfWiVi7VKlcl9zXAzW2QLPaOqtU6N7kcMk2xuRsqHKUB8dLg36LZZkTQ83wubdgnfuM1gGs7-yNv3xd_tVBdwoVet5l58RMbC9QQzKfBM2p1wwFHa5owNAoYMW6vR6beW2DNui9_ftwrzNYyccWYQ9gzVabcPevMoabcDuEkZrFQ9j9Nj1rS4WS2pEQY4vHFP1-RFBJmrYjg8cFmZ2j_iSNV5UhaoxMK_J9PrHZIzi5EYI-hkFVV_YJkJgxp3wFHqENZwq9Z641LxiOyrROVARve9LJWVuNQ4ZddCZkS2iJhJaB0HIYwY6n7nKkr6QdTtTzM9kJpkQPrVAGQYl3I-eYjplWosxVbk0uYhfBVs8b2Yn3Ql6BMYJXy8somH63RVW2vgxj_IzSIolArPB0ZUKrV6rpeSjxnfj68WgcRvCuZ__V2__9xU__P9mXcGc0OT6SRwfjw2ewkXpQhliILRg080v7HO2rRr_oQE3gx03L0R_d1jlS
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Rb9QwDLbGJtB4QDBA69ggSLxBoG3SNH08BqdxwIS0TZp4iZI02e6ld7rr_v-ctD3oBA97qxq3TWwnthv7C8A7p40uamuoY8ZT7oWjMktr6lE_dC6s8_GYzp-n4uSCzy6Lyy0QQy1MTNqPkJZxmR6ywz6t0dCwUEvMaVhgK1p-XNb-AezIkleo3zuTyexstvm7gmENGlbRV8mkTP7jBSNLFAH7R17m3RzJOxul0f5Mn8KT3nEkk66rz2DLNXvw-C84wT14GNM57fo5HJ_Nr7rxkYUnMdcVrynG3yjJmrTdyQhBPmR5jXaMtMFkxewtMm_I79W5K17AxfTr-fEJ7Y9LoBZj3Jby3HmZGp9rLUzNA9CpdRXGC847reOxVB5tkbVWsFILnOie1xYDMscKL0vDXsJ2s2jcPpCUMa8DEo40ljONUSw3BvmMVIUxmU7g_cA6texQMVTczWZSdYxWyGgVGa3KBD4H7m4oA6J1vLFYXalewgojpUpbVA58GiXHTMqMlrXQwlkhU5_A4SAb1U-ztWJZFqu_pUzg7aYZJ0jY9dCNW9xEmtCjvMoSkCOZjjo0bmnm1xFqOws47uikJfBhEP-fr_9_xAf3I38Dj359maof306_v4LdPOhoTFE4hO12deOO0O1pzetex28BBQ_9jg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Signature+of+pressure-induced+topological+phase+transition+in+ZrTe5&rft.jtitle=npj+quantum+materials&rft.au=Kov%C3%A1cs-Krausz%2C+Zolt%C3%A1n&rft.au=Nagy%2C+D%C3%A1niel&rft.au=M%C3%A1rffy%2C+Albin&rft.au=Karpiak%2C+Bogdan&rft.date=2024-10-05&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2397-4648&rft.volume=9&rft.issue=1&rft_id=info:doi/10.1038%2Fs41535-024-00679-7&rft.externalDocID=10_1038_s41535_024_00679_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2397-4648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2397-4648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2397-4648&client=summon