Path Planning for Autonomous Mobile Robots: A Review
Providing mobile robots with autonomous capabilities is advantageous. It allows one to dispense with the intervention of human operators, which may prove beneficial in economic and safety terms. Autonomy requires, in most cases, the use of path planners that enable the robot to deliberate about how...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 21; no. 23; p. 7898 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
26.11.2021
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Providing mobile robots with autonomous capabilities is advantageous. It allows one to dispense with the intervention of human operators, which may prove beneficial in economic and safety terms. Autonomy requires, in most cases, the use of path planners that enable the robot to deliberate about how to move from its location at one moment to another. Looking for the most appropriate path planning algorithm according to the requirements imposed by users can be challenging, given the overwhelming number of approaches that exist in the literature. Moreover, the past review works analyzed here cover only some of these approaches, missing important ones. For this reason, our paper aims to serve as a starting point for a clear and comprehensive overview of the research to date. It introduces a global classification of path planning algorithms, with a focus on those approaches used along with autonomous ground vehicles, but is also extendable to other robots moving on surfaces, such as autonomous boats. Moreover, the models used to represent the environment, together with the robot mobility and dynamics, are also addressed from the perspective of path planning. Each of the path planning categories presented in the classification is disclosed and analyzed, and a discussion about their applicability is added at the end. |
---|---|
AbstractList | Providing mobile robots with autonomous capabilities is advantageous. It allows one to dispense with the intervention of human operators, which may prove beneficial in economic and safety terms. Autonomy requires, in most cases, the use of path planners that enable the robot to deliberate about how to move from its location at one moment to another. Looking for the most appropriate path planning algorithm according to the requirements imposed by users can be challenging, given the overwhelming number of approaches that exist in the literature. Moreover, the past review works analyzed here cover only some of these approaches, missing important ones. For this reason, our paper aims to serve as a starting point for a clear and comprehensive overview of the research to date. It introduces a global classification of path planning algorithms, with a focus on those approaches used along with autonomous ground vehicles, but is also extendable to other robots moving on surfaces, such as autonomous boats. Moreover, the models used to represent the environment, together with the robot mobility and dynamics, are also addressed from the perspective of path planning. Each of the path planning categories presented in the classification is disclosed and analyzed, and a discussion about their applicability is added at the end. Providing mobile robots with autonomous capabilities is advantageous. It allows one to dispense with the intervention of human operators, which may prove beneficial in economic and safety terms. Autonomy requires, in most cases, the use of path planners that enable the robot to deliberate about how to move from its location at one moment to another. Looking for the most appropriate path planning algorithm according to the requirements imposed by users can be challenging, given the overwhelming number of approaches that exist in the literature. Moreover, the past review works analyzed here cover only some of these approaches, missing important ones. For this reason, our paper aims to serve as a starting point for a clear and comprehensive overview of the research to date. It introduces a global classification of path planning algorithms, with a focus on those approaches used along with autonomous ground vehicles, but is also extendable to other robots moving on surfaces, such as autonomous boats. Moreover, the models used to represent the environment, together with the robot mobility and dynamics, are also addressed from the perspective of path planning. Each of the path planning categories presented in the classification is disclosed and analyzed, and a discussion about their applicability is added at the end.Providing mobile robots with autonomous capabilities is advantageous. It allows one to dispense with the intervention of human operators, which may prove beneficial in economic and safety terms. Autonomy requires, in most cases, the use of path planners that enable the robot to deliberate about how to move from its location at one moment to another. Looking for the most appropriate path planning algorithm according to the requirements imposed by users can be challenging, given the overwhelming number of approaches that exist in the literature. Moreover, the past review works analyzed here cover only some of these approaches, missing important ones. For this reason, our paper aims to serve as a starting point for a clear and comprehensive overview of the research to date. It introduces a global classification of path planning algorithms, with a focus on those approaches used along with autonomous ground vehicles, but is also extendable to other robots moving on surfaces, such as autonomous boats. Moreover, the models used to represent the environment, together with the robot mobility and dynamics, are also addressed from the perspective of path planning. Each of the path planning categories presented in the classification is disclosed and analyzed, and a discussion about their applicability is added at the end. |
Author | Sánchez-Ibáñez, José Ricardo Pérez-del-Pulgar, Carlos J. García-Cerezo, Alfonso |
AuthorAffiliation | Space Robotics Laboratory, Department of Systems Engineering and Automation, Universidad de Málaga, C/Ortiz Ramos s/n, 29071 Málaga, Spain; carlosperez@uma.es (C.J.P.-d.-P.); ajgarcia@uma.es (A.G.-C.) |
AuthorAffiliation_xml | – name: Space Robotics Laboratory, Department of Systems Engineering and Automation, Universidad de Málaga, C/Ortiz Ramos s/n, 29071 Málaga, Spain; carlosperez@uma.es (C.J.P.-d.-P.); ajgarcia@uma.es (A.G.-C.) |
Author_xml | – sequence: 1 givenname: José Ricardo orcidid: 0000-0002-5130-3808 surname: Sánchez-Ibáñez fullname: Sánchez-Ibáñez, José Ricardo – sequence: 2 givenname: Carlos J. orcidid: 0000-0001-5819-8310 surname: Pérez-del-Pulgar fullname: Pérez-del-Pulgar, Carlos J. – sequence: 3 givenname: Alfonso orcidid: 0000-0003-3432-3230 surname: García-Cerezo fullname: García-Cerezo, Alfonso |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34883899$$D View this record in MEDLINE/PubMed |
BookMark | eNptkctrVDEUh4NU7EMX_gNywY0uxp48bh4uCkPxUahYiq5Dbm4yzXAnqUluxf_etFOHtrhKSL7zcc7vHKK9mKJD6DWGD5QqOC4EEyqkks_QAWaELSQhsPfgvo8OS1kDEEqpfIH2KZOSSqUOELsw9aq7mEyMIa46n3K3nGuKaZPm0n1LQ5hcd5mGVMvHbtldupvgfr9Ez72Zint1fx6hn58__Tj9ujj__uXsdHm-sIyruqDeA_Gccmy9EANWTIjRMgMYpHTSsmEwhoHEAjtGMebYw8jHVtEryZ2lR-hs6x2TWevrHDYm_9HJBH33kPJKm1yDnZweuFGEYye8wcwSIcEClb6nuB8sKNJcJ1vX9Txs3GhdrNlMj6SPf2K40qt0oyXvlQJognf3gpx-za5UvQnFuqlF51pWmnCQPeU96Rv69gm6TnOOLao7CjMmet6oNw872rXybzkNeL8FbE6lZOd3CAZ9u3i9W3xjj5-wNlRTQ7odJkz_qfgL8Ter7w |
CitedBy_id | crossref_primary_10_1007_s10462_025_11129_6 crossref_primary_10_1109_ACCESS_2024_3373446 crossref_primary_10_3390_mca28020035 crossref_primary_10_3390_s24165166 crossref_primary_10_1007_s11760_024_03168_3 crossref_primary_10_3390_s22062387 crossref_primary_10_3390_s24051422 crossref_primary_10_1038_s41598_024_84637_0 crossref_primary_10_2478_amns_2024_1933 crossref_primary_10_1109_ACCESS_2022_3192019 crossref_primary_10_1177_17298806241277195 crossref_primary_10_21869_2223_1560_2022_26_4_39_56 crossref_primary_10_3390_s24165393 crossref_primary_10_1007_s00521_024_10914_8 crossref_primary_10_1109_ACCESS_2023_3302698 crossref_primary_10_1109_TFR_2024_3450408 crossref_primary_10_3233_AIS_220292 crossref_primary_10_3390_s22093295 crossref_primary_10_3390_s23136082 crossref_primary_10_1007_s10846_024_02144_w crossref_primary_10_1109_ACCESS_2024_3463876 crossref_primary_10_1093_ooenergy_oiae012 crossref_primary_10_3390_electronics12163424 crossref_primary_10_3934_math_2023288 crossref_primary_10_1177_09544062251322013 crossref_primary_10_1016_j_procs_2024_10_078 crossref_primary_10_1109_ACCESS_2025_3548326 crossref_primary_10_1007_s10489_022_03965_8 crossref_primary_10_1016_j_robot_2023_104384 crossref_primary_10_3390_machines10020097 crossref_primary_10_1109_ACCESS_2023_3282365 crossref_primary_10_3390_s23073532 crossref_primary_10_3390_app12125999 crossref_primary_10_3390_app14052032 crossref_primary_10_3390_electronics11182801 crossref_primary_10_1109_ACCESS_2023_3347399 crossref_primary_10_3390_machines11080807 crossref_primary_10_1016_j_procir_2024_10_187 crossref_primary_10_15622_ia_21_3_1 crossref_primary_10_3389_fnbot_2024_1464572 crossref_primary_10_1109_TIV_2024_3352613 crossref_primary_10_3390_app12188977 crossref_primary_10_3390_s24092794 crossref_primary_10_3390_machines10100886 crossref_primary_10_1007_s10462_024_10940_x crossref_primary_10_3389_fnbot_2023_1270860 crossref_primary_10_3390_s24061854 crossref_primary_10_1016_j_swevo_2024_101576 crossref_primary_10_1109_TITS_2024_3484771 crossref_primary_10_3390_e25040582 crossref_primary_10_3390_electronics13122239 crossref_primary_10_3390_s25041206 crossref_primary_10_1109_ACCESS_2025_3536081 crossref_primary_10_1186_s10033_024_01014_8 crossref_primary_10_1016_j_birob_2024_100207 crossref_primary_10_1016_j_autcon_2022_104715 crossref_primary_10_4204_EPTCS_391_12 crossref_primary_10_1016_j_engappai_2024_108440 crossref_primary_10_3390_electronics13183660 crossref_primary_10_1016_j_ifacol_2023_11_004 crossref_primary_10_3390_s24051377 crossref_primary_10_7717_peerj_cs_2611 crossref_primary_10_1016_j_ijnaoe_2023_100528 crossref_primary_10_1109_ACCESS_2024_3367115 crossref_primary_10_33166_AETiC_2024_02_005 crossref_primary_10_1109_ACCESS_2023_3247730 crossref_primary_10_3390_machines11010105 crossref_primary_10_7717_peerj_cs_2691 crossref_primary_10_3390_math10213990 crossref_primary_10_1088_1742_6596_2963_1_012008 crossref_primary_10_3389_frobt_2024_1462717 crossref_primary_10_3390_automation6010012 crossref_primary_10_3390_jmse12050833 crossref_primary_10_1108_F_11_2022_0146 crossref_primary_10_3390_agriculture13081495 crossref_primary_10_3233_JIFS_219428 crossref_primary_10_3390_s25020416 crossref_primary_10_3390_aerospace12010021 crossref_primary_10_1016_j_eswa_2023_120942 crossref_primary_10_3233_JIFS_232076 crossref_primary_10_3390_electronics14050982 crossref_primary_10_3390_robotics13120178 crossref_primary_10_3390_app13052919 crossref_primary_10_1016_j_compeleceng_2024_110032 crossref_primary_10_3390_s23156952 crossref_primary_10_1016_j_jcp_2022_111785 crossref_primary_10_3390_biomimetics8060481 crossref_primary_10_1109_ACCESS_2024_3452277 crossref_primary_10_1038_s41598_023_49407_4 crossref_primary_10_3390_electronics11111709 crossref_primary_10_1016_j_eswa_2024_126123 crossref_primary_10_3390_aerospace9110721 crossref_primary_10_3390_biomimetics8020182 crossref_primary_10_1177_01423312241296969 crossref_primary_10_1177_01423312241265524 crossref_primary_10_1016_j_robot_2024_104723 crossref_primary_10_3390_app122312377 crossref_primary_10_3390_en16196910 crossref_primary_10_3390_electronics12153263 crossref_primary_10_3390_electronics13101892 crossref_primary_10_1038_s41598_022_17684_0 crossref_primary_10_3390_app14010025 crossref_primary_10_3390_machines10090773 crossref_primary_10_3390_electronics13010188 crossref_primary_10_3390_act12040162 crossref_primary_10_3390_en15051769 crossref_primary_10_3390_s22124518 crossref_primary_10_1155_2023_3264369 crossref_primary_10_3390_app13137547 crossref_primary_10_1016_j_engappai_2023_105976 crossref_primary_10_1109_ACCESS_2023_3311519 crossref_primary_10_1007_s11227_024_06690_w crossref_primary_10_3390_s24134041 crossref_primary_10_3390_biomimetics9120744 crossref_primary_10_3390_electronics12194122 crossref_primary_10_3390_ma16020683 crossref_primary_10_1007_s00607_025_01431_0 crossref_primary_10_1016_j_compag_2024_109112 crossref_primary_10_1038_s41467_025_57845_z crossref_primary_10_3390_agriculture14081206 crossref_primary_10_3390_s25030768 crossref_primary_10_1016_j_jksuci_2024_102254 crossref_primary_10_1017_S0263574723001832 crossref_primary_10_1016_j_jobe_2024_109837 crossref_primary_10_1016_j_robot_2023_104430 crossref_primary_10_1007_s11370_022_00450_6 crossref_primary_10_3390_electronics11111734 crossref_primary_10_1007_s12204_024_2732_1 crossref_primary_10_1109_JIOT_2023_3290395 crossref_primary_10_32604_cmc_2023_034872 crossref_primary_10_3390_app12115641 crossref_primary_10_3390_s22041558 crossref_primary_10_36897_jme_196037 crossref_primary_10_3390_electronics11213568 crossref_primary_10_3390_drones8040125 crossref_primary_10_1007_s44268_024_00047_1 crossref_primary_10_1108_IR_04_2022_0102 crossref_primary_10_1007_s10489_024_06124_3 crossref_primary_10_1080_21642583_2024_2334301 crossref_primary_10_3390_s23156841 crossref_primary_10_1109_TIM_2023_3338722 crossref_primary_10_54097_fcis_v3i2_7514 crossref_primary_10_3390_agriculture14091473 crossref_primary_10_3390_app142311195 crossref_primary_10_1016_j_oceaneng_2024_119906 |
Cites_doi | 10.1177/105971239400200303 10.1609/aiide.v7i1.12445 10.1109/ACCESS.2019.2963368 10.1080/10798587.2009.10643032 10.1137/090749645 10.1016/j.artint.2007.11.009 10.1177/0278364909359210 10.1016/j.eswa.2018.01.050 10.1016/j.procs.2018.07.064 10.1029/2010JE003633 10.1080/0952813X.2020.1764631 10.1007/s10915-016-0163-3 10.1007/978-3-319-66972-4_10 10.1016/j.neucom.2012.09.019 10.1177/1729881418754563 10.1016/j.advengsoft.2016.01.008 10.1109/ROBIO49542.2019.8961684 10.1109/3468.709600 10.1016/j.procs.2018.01.113 10.1016/j.jterra.2010.02.004 10.1109/100.580977 10.1007/978-3-319-48490-7_20 10.1109/MRA.2014.2381359 10.1007/978-1-84882-548-2_12 10.1007/s10846-020-01173-5 10.1016/j.ijleo.2017.12.169 10.1002/rob.21459 10.1007/s10462-018-09676-2 10.1609/icaps.v23i1.13609 10.1002/acs.2561 10.1007/s00521-019-04172-2 10.1023/A:1020564024509 10.1007/s00500-020-05483-6 10.1109/TMECH.2013.2277271 10.1109/ACC.2006.1657504 10.1177/0278364920913945 10.1109/21.148426 10.3390/electronics7100212 10.1109/ICRA40945.2020.9197106 10.1016/j.jcp.2012.11.042 10.1016/j.robot.2016.12.008 10.1109/ACIRS.2016.7556184 10.1016/j.robot.2003.10.003 10.3390/s21030796 10.1177/0278364911406761 10.1109/CAC.2017.8243168 10.1016/j.compeleceng.2012.06.016 10.1109/ICARSC.2019.8733623 10.3390/robotics10020078 10.1155/2020/7821942 10.1007/978-3-030-12127-3 10.1109/ISCO.2014.7103914 10.1016/j.robot.2012.10.012 10.1109/URAI.2012.6462928 10.1002/rob.21700 10.1299/jsmeicam.2010.5.225 10.1016/j.robot.2014.09.003 10.1007/978-1-4471-4739-8_8 10.1109/70.62043 10.1109/ICNC.2008.923 10.1109/IROS.2014.6942976 10.1109/WCICA.2016.7578767 10.1109/JOE.2013.2254214 10.1109/TII.2018.2844370 10.1109/CINTI.2010.5672245 10.1109/LRA.2020.2975756 10.1109/TASE.2016.2533418 10.1109/70.88137 10.1108/IR-03-2020-0063 10.1109/ICSP.2016.7877851 10.1007/s42423-018-0007-3 10.1109/OCEANSE.2005.1513161 10.1109/CCA.2010.5611171 10.1609/icaps.v25i1.13724 10.1609/aaai.v25i1.7813 10.1109/TSSC.1968.300136 10.1109/AERO.2015.7119022 10.3390/geosciences9070322 10.1016/j.robot.2015.02.003 10.1002/rob.21892 10.1007/978-3-319-29363-9_27 10.1007/s10586-018-2360-3 10.12785/amis/080551 10.1109/TRO.2004.829461 10.1163/016918610X501499 10.1016/j.robot.2015.06.002 10.1023/A:1011234012449 10.4236/jcc.2016.42002 10.1109/IROS40897.2019.8968014 10.1016/j.dt.2017.01.001 10.1016/j.oceaneng.2020.107793 10.5772/intechopen.72574 10.1007/978-3-319-03753-0_47 10.1109/ICRA40945.2020.9197338 10.23919/ACC45564.2020.9147470 10.1109/IROS.2007.4399139 10.1016/j.dt.2018.06.004 10.1109/IAEAC.2018.8577599 10.1007/BF01386390 10.3390/s19040815 10.1016/j.asoc.2017.05.012 10.3390/sym13020280 10.1007/978-3-319-27146-0_8 10.1016/j.ifacol.2016.07.610 10.1109/ICRA.2018.8461096 10.1016/j.apor.2016.06.013 10.1007/978-3-319-60771-9 10.1109/ICRA.2011.5979769 10.1109/70.508439 10.23919/ECC.2007.7068785 10.1109/TII.2015.2413355 10.1109/IROS.2011.6094768 10.1016/j.engappai.2013.01.006 10.1017/CBO9780511546877 10.1016/j.procs.2018.07.018 10.1126/science.153.3731.34 10.1109/RISE.2017.8378228 10.3103/S1068798X17120127 10.1109/ICRA.2013.6630906 10.1109/TAC.1986.1104175 10.1080/0232929032000115100 10.1109/AERO.2011.5747265 10.1109/ICRA.2016.7487615 10.1109/ROBOT.2009.5152817 10.1109/MRA.2013.2248309 10.1007/978-981-15-8462-6_133 10.2507/IJSIMM18(3)474 10.1016/j.jterra.2020.12.001 10.1109/IRC.2017.72 10.1109/IROS.2013.6696431 10.1109/ACCESS.2019.2906782 10.1016/S0168-1699(97)00029-X 10.1109/TRA.2002.1019461 10.1609/aaai.v24i1.7566 10.1016/j.dt.2019.04.011 10.1109/79.543973 10.3390/app10031135 10.1109/LRA.2021.3065302 10.1007/s00773-020-00787-6 10.1016/j.engappai.2019.08.011 10.1061/9780784412190.002 10.1109/ROBOT.2007.363672 10.1049/iet-smt.2016.0273 10.1002/rob.20287 10.1016/j.engappai.2017.02.010 10.1109/ICRA40945.2020.9196580 10.1109/IROS.2009.5354175 10.1613/jair.2994 10.1016/j.robot.2016.08.001 10.5897/IJPS11.1745 10.1137/S0036142902419600 10.1177/027836499801700706 10.1007/s12555-009-0320-7 10.1016/j.robot.2014.07.002 10.1007/s10846-012-9794-2 10.1109/ICAIIC48513.2020.9065237 10.1109/ICIT.2018.8352184 10.1137/S0036142901392742 10.1137/060670298 10.1007/s10915-012-9671-y 10.1002/rob.21894 10.1109/TIV.2020.2991951 10.4218/etrij.2018-0041 10.1109/ACCESS.2021.3076530 10.1109/AIM.2017.8014223 10.1109/ICBR.2013.6729271 10.1109/ICRA.2015.7139620 10.1016/j.jocs.2017.08.004 10.1109/ACCESS.2014.2302442 10.3390/sym10100450 10.1109/ICMRE49073.2020.9065187 10.1177/0278364909340445 10.1007/978-3-319-60771-9_2 10.1007/s10846-017-0495-8 10.1631/jzus.2005.A0549 10.1007/s11771-006-0018-4 10.1016/j.jterra.2014.12.001 10.1007/s11071-017-3553-7 10.1016/j.artint.2003.12.001 10.3390/s18093170 10.1613/jair.5007 |
ContentType | Journal Article |
Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 by the authors. 2021 |
Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 by the authors. 2021 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI 7X8 5PM DOA |
DOI | 10.3390/s21237898 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni) PML(ProQuest Medical Library) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_b6a9261e7fa14c2780c038f5315bc092 PMC8659900 34883899 10_3390_s21237898 |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: H2020 European project ADE grantid: 821988 – fundername: Andalusian regional government grantid: P18-RT-991 |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. ABJCF ARAPS CGR CUY CVF ECM EIF HCIFZ KB. M7S NPM PDBOC 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c469t-3ff02f6361cf77b19477dc4a01088e8c4bbaa408171e431161f0d6df635986ec3 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:30:53 EDT 2025 Thu Aug 21 14:15:10 EDT 2025 Tue Aug 05 09:50:46 EDT 2025 Fri Jul 25 20:40:21 EDT 2025 Wed Feb 19 02:10:59 EST 2025 Tue Jul 01 02:41:35 EDT 2025 Thu Apr 24 23:08:19 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 23 |
Keywords | autonomy route guidance wheeled sampling survey graph search trajectory vehicle |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c469t-3ff02f6361cf77b19477dc4a01088e8c4bbaa408171e431161f0d6df635986ec3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0001-5819-8310 0000-0002-5130-3808 0000-0003-3432-3230 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s21237898 |
PMID | 34883899 |
PQID | 2608144756 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_b6a9261e7fa14c2780c038f5315bc092 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8659900 proquest_miscellaneous_2608536525 proquest_journals_2608144756 pubmed_primary_34883899 crossref_primary_10_3390_s21237898 crossref_citationtrail_10_3390_s21237898 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20211126 |
PublicationDateYYYYMMDD | 2021-11-26 |
PublicationDate_xml | – month: 11 year: 2021 text: 20211126 day: 26 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2021 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Effati (ref_38) 2020; 100 ref_137 ref_136 ref_92 Yi (ref_22) 2012; 2 Algfoor (ref_23) 2015; 2015 Ganguly (ref_225) 2004; 46 Raja (ref_78) 2015; 72 Wen (ref_120) 2006; 13 ref_131 ref_133 ref_97 ref_96 Harabor (ref_185) 2016; 56 ref_134 Creager (ref_46) 2015; 57 Xin (ref_150) 2005; 6 Hart (ref_160) 1968; 4 Papadakis (ref_30) 2013; 26 ref_126 Likhachev (ref_167) 2008; 172 Otsu (ref_61) 2020; 37 ref_122 ref_124 Sun (ref_21) 2021; 9 Furgale (ref_58) 2017; 34 Kao (ref_218) 2005; 42 ref_72 ref_158 Koenig (ref_165) 2004; 155 ref_151 Noreen (ref_14) 2016; 7 Fausto (ref_105) 2020; 53 ref_77 ref_75 ref_154 ref_157 ref_73 ref_156 Ram (ref_107) 1994; 2 Vagale (ref_6) 2021; 26 Sangeetha (ref_125) 2021; 25 Chakravarthy (ref_93) 1998; 28 Qu (ref_94) 2004; 20 Detrixhe (ref_220) 2013; 237 Xie (ref_99) 2018; 15 ref_147 Ganganath (ref_56) 2018; 14 Karaman (ref_186) 2011; 30 Shum (ref_217) 2016; 68 Elmi (ref_132) 2020; 33 ref_142 ref_88 ref_144 ref_143 ref_85 ref_146 ref_84 Bak (ref_219) 2010; 32 Nashashibi (ref_13) 2015; 17 Borenstein (ref_83) 1991; 7 ref_213 Kavraki (ref_196) 1996; 12 ref_212 Garrido (ref_18) 2019; 7 Triharminto (ref_80) 2016; 6 Plonski (ref_70) 2013; 30 Carsten (ref_170) 2009; 26 Alenezi (ref_1) 2018; 9 ref_202 ref_205 ref_204 ref_206 ref_209 Zhang (ref_115) 2013; 103 Zhang (ref_148) 2017; 89 Norouzi (ref_53) 2017; 87 ref_200 Chen (ref_91) 2020; 214 Liu (ref_211) 2016; 59 Taghavifar (ref_63) 2020; 96 Niksirat (ref_69) 2020; 39 Reid (ref_50) 2019; 37 Elbanhawi (ref_12) 2014; 2 ref_116 Rowe (ref_54) 1990; 6 ref_118 Ge (ref_76) 2002; 13 ref_110 ref_112 Zafar (ref_9) 2018; 133 Inotsume (ref_68) 2020; 5 Tharwat (ref_128) 2019; 22 Fiorini (ref_89) 1998; 17 Ganganath (ref_55) 2015; 11 Liu (ref_210) 2017; 31 Elhoseny (ref_113) 2018; 25 Mirjalili (ref_135) 2016; 95 Fox (ref_95) 1997; 4 ref_104 ref_103 ref_224 ref_227 Xu (ref_214) 2013; 71 ref_226 ref_108 Shum (ref_31) 2015; 70 ref_100 ref_102 ref_223 ref_101 ref_222 Sutoh (ref_66) 2015; 22 Muthukumaran (ref_130) 2019; 18 Barraquand (ref_25) 1992; 22 Mohanty (ref_155) 2014; 8 Malenkov (ref_43) 2017; 37 ref_19 Likhachev (ref_27) 2009; 28 ref_17 ref_16 ref_15 You (ref_121) 2016; 9 Zavlangas (ref_141) 2003; 43 Arvidson (ref_64) 2010; 115 ref_24 Noguchi (ref_149) 1997; 18 Daniel (ref_172) 2010; 39 Zhou (ref_79) 2018; 158 Henkel (ref_98) 2016; 49 ref_29 Kuwata (ref_90) 2013; 39 ref_26 Kaplan (ref_71) 2016; 14 Takei (ref_37) 2013; 54 Ghosh (ref_138) 2017; 11 Bakdi (ref_111) 2017; 89 Garrido (ref_208) 2013; 61 Seraji (ref_140) 2002; 18 Patle (ref_129) 2018; 14 Joshi (ref_153) 2011; 2 Lumelsky (ref_86) 1986; 31 Hossain (ref_139) 2015; 64 Brunner (ref_41) 2015; 63 Luo (ref_123) 2020; 32 Zhang (ref_20) 2020; 47 Hines (ref_62) 2021; 6 Wang (ref_201) 2020; 2020 Bergman (ref_28) 2020; 6 Dolgov (ref_168) 2010; 29 Mac (ref_8) 2016; 86 ref_173 ref_57 ref_175 ref_174 Patle (ref_10) 2019; 15 ref_177 Mac (ref_117) 2017; 59 ref_176 ref_52 Kim (ref_81) 2009; 7 ref_179 ref_178 ref_180 Jeong (ref_221) 2008; 30 ref_182 ref_59 Xu (ref_216) 2019; 8 Dijkstra (ref_159) 1959; 1 ref_60 ref_169 Patel (ref_39) 2010; 47 Bellman (ref_203) 1966; 153 ref_162 ref_161 ref_67 ref_164 ref_163 ref_65 ref_166 Tamakoshi (ref_33) 2018; 1 Bayat (ref_82) 2018; 100 Raja (ref_3) 2012; 7 Tang (ref_106) 1996; 13 Gomez (ref_74) 2013; 20 ref_171 Nash (ref_11) 2013; 34 Park (ref_197) 2018; 40 Lamini (ref_114) 2018; 127 Sethian (ref_215) 2003; 41 Buniyamin (ref_87) 2011; 5 Tuncer (ref_109) 2012; 38 Rohmer (ref_47) 2010; 24 ref_36 ref_195 ref_35 ref_194 Pandey (ref_145) 2017; 13 Shi (ref_152) 2009; 15 ref_32 ref_199 ref_198 Saraswathi (ref_127) 2018; 133 Mattson (ref_51) 2004; 58 Azkarate (ref_49) 2019; 86 ref_184 ref_183 ref_45 ref_44 Cao (ref_119) 2016; 4 ref_188 ref_42 ref_187 ref_40 ref_189 Kimmel (ref_207) 2001; 14 Marin (ref_34) 2013; 19 ref_2 (ref_181) 2017; 60 ref_191 ref_190 ref_193 ref_48 ref_192 ref_5 ref_4 ref_7 |
References_xml | – volume: 2 start-page: 277 year: 1994 ident: ref_107 article-title: Using genetic algorithms to learn reactive control parameters for autonomous robotic navigation publication-title: Adapt. Behav. doi: 10.1177/105971239400200303 – ident: ref_178 doi: 10.1609/aiide.v7i1.12445 – volume: 8 start-page: 5256 year: 2019 ident: ref_216 article-title: Fast Marching Based Path Generating Algorithm in Anisotropic Environment with Perturbations publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2963368 – volume: 58 start-page: 100 year: 2004 ident: ref_51 article-title: Modeling slope in a geographic information system publication-title: J. Ark. Acad. Sci. – volume: 15 start-page: 289 year: 2009 ident: ref_152 article-title: A fuzzy-neural network approach to multisensor integration for obstacle avoidance of a mobile robot publication-title: Intell. Autom. Soft Comput. doi: 10.1080/10798587.2009.10643032 – volume: 32 start-page: 2853 year: 2010 ident: ref_219 article-title: Some improvements for the fast sweeping method publication-title: SIAM J. Sci. Comput. doi: 10.1137/090749645 – volume: 172 start-page: 1613 year: 2008 ident: ref_167 article-title: Anytime search in dynamic graphs publication-title: Artif. Intell. doi: 10.1016/j.artint.2007.11.009 – volume: 29 start-page: 485 year: 2010 ident: ref_168 article-title: Path planning for autonomous vehicles in unknown semi-structured environments publication-title: Int. J. Robot. Res. doi: 10.1177/0278364909359210 – ident: ref_108 – ident: ref_42 – volume: 100 start-page: 68 year: 2018 ident: ref_82 article-title: Mobile robots path planning: Electrostatic potential field approach publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2018.01.050 – ident: ref_161 – ident: ref_77 – volume: 133 start-page: 510 year: 2018 ident: ref_127 article-title: Optimal path planning of mobile robot using hybrid cuckoo search-bat algorithm publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2018.07.064 – volume: 115 start-page: 1 year: 2010 ident: ref_64 article-title: Spirit Mars Rover Mission: Overview and selected results from the northern Home Plate Winter Haven to the side of Scamander crater publication-title: J. Geophys. Res. Planets doi: 10.1029/2010JE003633 – volume: 33 start-page: 467 year: 2020 ident: ref_132 article-title: Online path planning of mobile robot using grasshopper algorithm in a dynamic and unknown environment publication-title: J. Exp. Theor. Artif. Intell. doi: 10.1080/0952813X.2020.1764631 – volume: 68 start-page: 889 year: 2016 ident: ref_217 article-title: Convergence rate for the ordered upwind method publication-title: J. Sci. Comput. doi: 10.1007/s10915-016-0163-3 – ident: ref_224 doi: 10.1007/978-3-319-66972-4_10 – volume: 103 start-page: 172 year: 2013 ident: ref_115 article-title: Robot path planning in uncertain environment using multi-objective particle swarm optimization publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.09.019 – ident: ref_212 – volume: 15 start-page: 1729881418754563 year: 2018 ident: ref_99 article-title: Power-minimization and energy-reduction autonomous navigation of an omnidirectional Mecanum robot via the dynamic window approach local trajectory planning publication-title: Int. J. Adv. Robot. Syst. doi: 10.1177/1729881418754563 – ident: ref_103 – ident: ref_206 – volume: 95 start-page: 51 year: 2016 ident: ref_135 article-title: The whale optimization algorithm publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2016.01.008 – ident: ref_5 doi: 10.1109/ROBIO49542.2019.8961684 – volume: 28 start-page: 562 year: 1998 ident: ref_93 article-title: Obstacle avoidance in a dynamic environment: A collision cone approach publication-title: IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. doi: 10.1109/3468.709600 – volume: 127 start-page: 180 year: 2018 ident: ref_114 article-title: Genetic algorithm based approach for autonomous mobile robot path planning publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2018.01.113 – volume: 47 start-page: 227 year: 2010 ident: ref_39 article-title: The ExoMars rover locomotion subsystem publication-title: J. Terramech. doi: 10.1016/j.jterra.2010.02.004 – volume: 4 start-page: 23 year: 1997 ident: ref_95 article-title: The dynamic window approach to collision avoidance publication-title: IEEE Robot. Autom. Mag. doi: 10.1109/100.580977 – ident: ref_133 doi: 10.1007/978-3-319-48490-7_20 – volume: 22 start-page: 22 year: 2015 ident: ref_66 article-title: The right path: Comprehensive path planning for lunar exploration rovers publication-title: IEEE Robot. Autom. Mag. doi: 10.1109/MRA.2014.2381359 – ident: ref_151 doi: 10.1007/978-1-84882-548-2_12 – volume: 100 start-page: 335 year: 2020 ident: ref_38 article-title: Considering slip-track for energy-efficient paths of skid-steer rovers publication-title: J. Intell. Robot. Syst. doi: 10.1007/s10846-020-01173-5 – volume: 158 start-page: 639 year: 2018 ident: ref_79 article-title: Tangent navigated robot path planning strategy using particle swarm optimized artificial potential field publication-title: Optik doi: 10.1016/j.ijleo.2017.12.169 – volume: 6 start-page: 3262 year: 2016 ident: ref_80 article-title: A novel of repulsive function on artificial potential field for robot path planning publication-title: Int. J. Electr. Comput. Eng. – volume: 30 start-page: 583 year: 2013 ident: ref_70 article-title: Energy-efficient path planning for solar-powered mobile robots publication-title: J. Field Robot. doi: 10.1002/rob.21459 – volume: 53 start-page: 753 year: 2020 ident: ref_105 article-title: From ants to whales: Metaheuristics for all tastes publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-018-09676-2 – ident: ref_184 doi: 10.1609/icaps.v23i1.13609 – volume: 2 start-page: 128 year: 2011 ident: ref_153 article-title: Reactive navigation of autonomous mobile robot using neuro-fuzzy system publication-title: Int. J. Robot. Autom. (IJRA) – volume: 31 start-page: 464 year: 2017 ident: ref_210 article-title: Predictive navigation of unmanned surface vehicles in a dynamic maritime environment when using the fast marching method publication-title: Int. J. Adapt. Control Signal Process. doi: 10.1002/acs.2561 – volume: 32 start-page: 1555 year: 2020 ident: ref_123 article-title: Research on path planning of mobile robot based on improved ant colony algorithm publication-title: Neural Comput. Appl. doi: 10.1007/s00521-019-04172-2 – volume: 13 start-page: 207 year: 2002 ident: ref_76 article-title: Dynamic motion planning for mobile robots using potential field method publication-title: Auton. Robot. doi: 10.1023/A:1020564024509 – ident: ref_205 – volume: 25 start-page: 4749 year: 2021 ident: ref_125 article-title: Energy-efficient green ant colony optimization for path planning in dynamic 3D environments publication-title: Soft Comput. doi: 10.1007/s00500-020-05483-6 – volume: 19 start-page: 1171 year: 2013 ident: ref_34 article-title: Event-based localization in ackermann steering limited resource mobile robots publication-title: IEEE/ASME Trans. Mechatron. doi: 10.1109/TMECH.2013.2277271 – ident: ref_226 doi: 10.1109/ACC.2006.1657504 – volume: 39 start-page: 797 year: 2020 ident: ref_69 article-title: The effects of reduced-gravity on planetary rover mobility publication-title: Int. J. Robot. Res. doi: 10.1177/0278364920913945 – volume: 22 start-page: 224 year: 1992 ident: ref_25 article-title: Numerical potential field techniques for robot path planning publication-title: IEEE Trans. Syst. Man Cybern. doi: 10.1109/21.148426 – ident: ref_112 doi: 10.3390/electronics7100212 – ident: ref_198 doi: 10.1109/ICRA40945.2020.9197106 – volume: 237 start-page: 46 year: 2013 ident: ref_220 article-title: A parallel fast sweeping method for the Eikonal equation publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2012.11.042 – volume: 89 start-page: 95 year: 2017 ident: ref_111 article-title: Optimal path planning and execution for mobile robots using genetic algorithm and adaptive fuzzy-logic control publication-title: Robot. Auton. Syst. doi: 10.1016/j.robot.2016.12.008 – volume: 5 start-page: 151 year: 2011 ident: ref_87 article-title: A simple local path planning algorithm for autonomous mobile robots publication-title: Int. J. Syst. Appl. Eng. Dev. – ident: ref_122 doi: 10.1109/ACIRS.2016.7556184 – volume: 46 start-page: 47 year: 2004 ident: ref_225 article-title: Near-optimal dynamic trajectory generation and control of an omnidirectional vehicle publication-title: Robot. Auton. Syst. doi: 10.1016/j.robot.2003.10.003 – ident: ref_157 doi: 10.3390/s21030796 – volume: 30 start-page: 846 year: 2011 ident: ref_186 article-title: Sampling-based algorithms for optimal motion planning publication-title: Int. J. Robot. Res. doi: 10.1177/0278364911406761 – ident: ref_88 doi: 10.1109/CAC.2017.8243168 – volume: 38 start-page: 1564 year: 2012 ident: ref_109 article-title: Dynamic path planning of mobile robots with improved genetic algorithm publication-title: Comput. Electr. Eng. doi: 10.1016/j.compeleceng.2012.06.016 – ident: ref_17 doi: 10.1109/ICARSC.2019.8733623 – ident: ref_72 doi: 10.3390/robotics10020078 – ident: ref_26 – volume: 2020 start-page: 7821942 year: 2020 ident: ref_201 article-title: Research on SBMPC Algorithm for Path Planning of Rescue and Detection Robot publication-title: Discret. Dyn. Nat. Soc. doi: 10.1155/2020/7821942 – ident: ref_104 doi: 10.1007/978-3-030-12127-3 – ident: ref_143 doi: 10.1109/ISCO.2014.7103914 – volume: 61 start-page: 106 year: 2013 ident: ref_208 article-title: Application of the fast marching method for outdoor motion planning in robotics publication-title: Robot. Auton. Syst. doi: 10.1016/j.robot.2012.10.012 – ident: ref_29 doi: 10.1109/URAI.2012.6462928 – volume: 34 start-page: 940 year: 2017 ident: ref_58 article-title: Driving on point clouds: Motion planning, trajectory optimization, and terrain assessment in generic nonplanar environments publication-title: J. Field Robot. doi: 10.1002/rob.21700 – ident: ref_40 doi: 10.1299/jsmeicam.2010.5.225 – volume: 63 start-page: 89 year: 2015 ident: ref_41 article-title: Design and comparative evaluation of an iterative contact point estimation method for static stability estimation of mobile actively reconfigurable robots publication-title: Robot. Auton. Syst. doi: 10.1016/j.robot.2014.09.003 – ident: ref_179 doi: 10.1007/978-1-4471-4739-8_8 – volume: 6 start-page: 540 year: 1990 ident: ref_54 article-title: Optimal grid-free path planning across arbitrarily-contoured terrain with anisotropic friction and gravity effects publication-title: IEEE Trans. Robot. Autom. doi: 10.1109/70.62043 – ident: ref_116 doi: 10.1109/ICNC.2008.923 – ident: ref_191 doi: 10.1109/IROS.2014.6942976 – ident: ref_144 doi: 10.1109/WCICA.2016.7578767 – ident: ref_188 – volume: 39 start-page: 110 year: 2013 ident: ref_90 article-title: Safe maritime autonomous navigation with COLREGS, using velocity obstacles publication-title: IEEE J. Ocean. Eng. doi: 10.1109/JOE.2013.2254214 – volume: 14 start-page: 4264 year: 2018 ident: ref_56 article-title: Shortest path planning for energy-constrained mobile platforms navigating on uneven terrains publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2018.2844370 – ident: ref_227 – ident: ref_147 doi: 10.1109/CINTI.2010.5672245 – volume: 5 start-page: 3390 year: 2020 ident: ref_68 article-title: Robust Path Planning for Slope Traversing under Uncertainty in Slip Prediction publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2020.2975756 – volume: 14 start-page: 1235 year: 2016 ident: ref_71 article-title: Time-optimal path planning with power schedules for a solar-powered ground robot publication-title: IEEE Trans. Autom. Sci. Eng. doi: 10.1109/TASE.2016.2533418 – volume: 7 start-page: 278 year: 1991 ident: ref_83 article-title: The vector field histogram-fast obstacle avoidance for mobile robots publication-title: IEEE Trans. Robot. Autom. doi: 10.1109/70.88137 – volume: 47 start-page: 607 year: 2020 ident: ref_20 article-title: A survey of energy-efficient motion planning for wheeled mobile robots publication-title: Ind. Robot. Int. J. Robot. Res. Appl. doi: 10.1108/IR-03-2020-0063 – ident: ref_136 doi: 10.1109/ICSP.2016.7877851 – volume: 1 start-page: 111 year: 2018 ident: ref_33 article-title: Initial design characteristics, testing and performance optimisation for a lunar exploration micro-rover prototype publication-title: Adv. Astronaut. Sci. Technol. doi: 10.1007/s42423-018-0007-3 – ident: ref_24 doi: 10.1109/OCEANSE.2005.1513161 – ident: ref_162 – ident: ref_183 – ident: ref_7 – ident: ref_200 doi: 10.1109/CCA.2010.5611171 – ident: ref_182 doi: 10.1609/icaps.v25i1.13724 – ident: ref_173 – ident: ref_177 doi: 10.1609/aaai.v25i1.7813 – volume: 4 start-page: 100 year: 1968 ident: ref_160 article-title: A formal basis for the heuristic determination of minimum cost paths publication-title: IEEE Trans. Syst. Sci. Cybern. doi: 10.1109/TSSC.1968.300136 – ident: ref_73 doi: 10.1109/AERO.2015.7119022 – ident: ref_59 doi: 10.3390/geosciences9070322 – volume: 70 start-page: 202 year: 2015 ident: ref_31 article-title: Direction-dependent optimal path planning for autonomous vehicles publication-title: Robot. Auton. Syst. doi: 10.1016/j.robot.2015.02.003 – volume: 37 start-page: 768 year: 2020 ident: ref_61 article-title: Fast approximate clearance evaluation for rovers with articulated suspension systems publication-title: J. Field Robot. doi: 10.1002/rob.21892 – ident: ref_223 doi: 10.1007/978-3-319-29363-9_27 – volume: 22 start-page: 4745 year: 2019 ident: ref_128 article-title: Intelligent Bézier curve-based path planning model using Chaotic Particle Swarm Optimization algorithm publication-title: Clust. Comput. doi: 10.1007/s10586-018-2360-3 – volume: 8 start-page: 2527 year: 2014 ident: ref_155 article-title: A new intelligent motion planning for mobile robot navigation using multiple adaptive neuro-fuzzy inference system publication-title: Appl. Math. Inf. Sci. doi: 10.12785/amis/080551 – volume: 20 start-page: 978 year: 2004 ident: ref_94 article-title: A new analytical solution to mobile robot trajectory generation in the presence of moving obstacles publication-title: IEEE Trans. Robot. doi: 10.1109/TRO.2004.829461 – volume: 34 start-page: 85 year: 2013 ident: ref_11 article-title: Any-angle path planning publication-title: AI Mag. – ident: ref_189 – volume: 24 start-page: 1219 year: 2010 ident: ref_47 article-title: Dynamic Simulation-Based Action Planner for a Reconfigurable Hybrid Leg–Wheel Planetary Exploration Rover publication-title: Adv. Robot. doi: 10.1163/016918610X501499 – volume: 72 start-page: 295 year: 2015 ident: ref_78 article-title: New potential field method for rough terrain path planning using genetic algorithm for a 6-wheel rover publication-title: Robot. Auton. Syst. doi: 10.1016/j.robot.2015.06.002 – volume: 14 start-page: 237 year: 2001 ident: ref_207 article-title: Optimal algorithm for shape from shading and path planning publication-title: J. Math. Imaging Vis. doi: 10.1023/A:1011234012449 – volume: 4 start-page: 63419 year: 2016 ident: ref_119 article-title: Robot global path planning based on an improved ant colony algorithm publication-title: J. Comput. Commun. doi: 10.4236/jcc.2016.42002 – ident: ref_60 doi: 10.1109/IROS40897.2019.8968014 – volume: 13 start-page: 47 year: 2017 ident: ref_145 article-title: Optimum path planning of mobile robot in unknown static and dynamic environments using Fuzzy-Wind Driven Optimization algorithm publication-title: Def. Technol. doi: 10.1016/j.dt.2017.01.001 – volume: 214 start-page: 107793 year: 2020 ident: ref_91 article-title: Global path planning for autonomous ship: A hybrid approach of Fast Marching Square and velocity obstacles methods publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2020.107793 – ident: ref_102 doi: 10.5772/intechopen.72574 – ident: ref_137 doi: 10.1007/978-3-319-03753-0_47 – ident: ref_194 doi: 10.1109/ICRA40945.2020.9197338 – ident: ref_57 doi: 10.23919/ACC45564.2020.9147470 – ident: ref_100 – volume: 7 start-page: 97 year: 2016 ident: ref_14 article-title: Optimal path planning using RRT* based approaches: A survey and future directions publication-title: Int. J. Adv. Comput. Sci. Appl. – ident: ref_35 doi: 10.1109/IROS.2007.4399139 – volume: 14 start-page: 691 year: 2018 ident: ref_129 article-title: Path planning in uncertain environment by using firefly algorithm publication-title: Def. Technol. doi: 10.1016/j.dt.2018.06.004 – ident: ref_154 doi: 10.1109/IAEAC.2018.8577599 – volume: 1 start-page: 269 year: 1959 ident: ref_159 article-title: A note on two problems in connexion with graphs publication-title: Numer. Math. doi: 10.1007/BF01386390 – ident: ref_124 doi: 10.3390/s19040815 – volume: 59 start-page: 68 year: 2017 ident: ref_117 article-title: A hierarchical global path planning approach for mobile robots based on multi-objective particle swarm optimization publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.05.012 – volume: 17 start-page: 1135 year: 2015 ident: ref_13 article-title: A review of motion planning techniques for automated vehicles publication-title: IEEE Trans. Intell. Transp. Syst. – ident: ref_146 – ident: ref_169 – ident: ref_126 doi: 10.3390/sym13020280 – ident: ref_209 doi: 10.1007/978-3-319-27146-0_8 – volume: 49 start-page: 32 year: 2016 ident: ref_98 article-title: Energy efficient dynamic window approach for local path planning in mobile service robotics publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2016.07.610 – ident: ref_158 doi: 10.1109/ICRA.2018.8461096 – volume: 59 start-page: 327 year: 2016 ident: ref_211 article-title: The angle guidance path planning algorithms for unmanned surface vehicle formations by using the fast marching method publication-title: Appl. Ocean Res. doi: 10.1016/j.apor.2016.06.013 – ident: ref_202 doi: 10.1007/978-3-319-60771-9 – ident: ref_175 doi: 10.1109/ICRA.2011.5979769 – volume: 12 start-page: 566 year: 1996 ident: ref_196 article-title: Probabilistic roadmaps for path planning in high-dimensional configuration spaces publication-title: IEEE Trans. Robot. Autom. doi: 10.1109/70.508439 – ident: ref_32 doi: 10.23919/ECC.2007.7068785 – volume: 11 start-page: 601 year: 2015 ident: ref_55 article-title: A constraint-aware heuristic path planner for finding energy-efficient paths on uneven terrains publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2015.2413355 – ident: ref_2 doi: 10.1109/IROS.2011.6094768 – volume: 26 start-page: 1373 year: 2013 ident: ref_30 article-title: Terrain traversability analysis methods for unmanned ground vehicles: A survey publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2013.01.006 – ident: ref_187 doi: 10.1017/CBO9780511546877 – volume: 133 start-page: 141 year: 2018 ident: ref_9 article-title: Methodology for path planning and optimization of mobile robots: A review publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2018.07.018 – volume: 153 start-page: 34 year: 1966 ident: ref_203 article-title: Dynamic programming publication-title: Science doi: 10.1126/science.153.3731.34 – ident: ref_15 doi: 10.1109/RISE.2017.8378228 – ident: ref_134 – volume: 37 start-page: 1033 year: 2017 ident: ref_43 article-title: Wheel-walking propulsion unit of a planetary rover with active suspension publication-title: Russ. Eng. Res. doi: 10.3103/S1068798X17120127 – ident: ref_190 doi: 10.1109/ICRA.2013.6630906 – volume: 31 start-page: 1058 year: 1986 ident: ref_86 article-title: Dynamic path planning for a mobile automaton with limited information on the environment publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.1986.1104175 – ident: ref_67 – volume: 43 start-page: 1625 year: 2003 ident: ref_141 article-title: Motion control for mobile robot obstacle avoidance and navigation: A fuzzy logic-based approach publication-title: Syst. Anal. Model. Simul. doi: 10.1080/0232929032000115100 – ident: ref_44 doi: 10.1109/AERO.2011.5747265 – ident: ref_193 doi: 10.1109/ICRA.2016.7487615 – ident: ref_222 doi: 10.1109/ROBOT.2009.5152817 – volume: 20 start-page: 111 year: 2013 ident: ref_74 article-title: The path to efficiency: Fast marching method for safer, more efficient mobile robot trajectories publication-title: IEEE Robot. Autom. Mag. doi: 10.1109/MRA.2013.2248309 – ident: ref_97 doi: 10.1007/978-981-15-8462-6_133 – ident: ref_163 – volume: 18 start-page: 397 year: 2019 ident: ref_130 article-title: Optimal path planning for an autonomous mobile robot using dragonfly algorithm publication-title: Int. J. Simul. Model. doi: 10.2507/IJSIMM18(3)474 – volume: 96 start-page: 147 year: 2020 ident: ref_63 article-title: A novel optimal path-planning and following algorithm for wheeled robots on deformable terrains publication-title: J. Terramech. doi: 10.1016/j.jterra.2020.12.001 – ident: ref_75 – volume: 9 start-page: 88507 year: 2018 ident: ref_1 article-title: Optimal Path Planning for a Remote Sensing Unmanned Ground Vehicle in a Hazardous Indoor Environment publication-title: Intell. Control Autom. – ident: ref_199 doi: 10.1109/IRC.2017.72 – ident: ref_166 doi: 10.1109/IROS.2013.6696431 – volume: 7 start-page: 39005 year: 2019 ident: ref_18 article-title: Fast methods for eikonal equations: An experimental survey publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2906782 – volume: 2015 start-page: 7 year: 2015 ident: ref_23 article-title: A comprehensive study on pathfinding techniques for robotics and video games publication-title: Int. J. Comput. Games Technol. – ident: ref_101 – volume: 18 start-page: 187 year: 1997 ident: ref_149 article-title: Path planning of an agricultural mobile robot by neural network and genetic algorithm publication-title: Comput. Electron. Agric. doi: 10.1016/S0168-1699(97)00029-X – volume: 18 start-page: 308 year: 2002 ident: ref_140 article-title: Behavior-based robot navigation on challenging terrain: A fuzzy logic approach publication-title: IEEE Trans. Robot. Autom. doi: 10.1109/TRA.2002.1019461 – ident: ref_174 doi: 10.1609/aaai.v24i1.7566 – volume: 15 start-page: 582 year: 2019 ident: ref_10 article-title: A review: On path planning strategies for navigation of mobile robot publication-title: Def. Technol. doi: 10.1016/j.dt.2019.04.011 – volume: 13 start-page: 22 year: 1996 ident: ref_106 article-title: Genetic algorithms and their applications publication-title: IEEE Signal Process. Mag. doi: 10.1109/79.543973 – ident: ref_36 doi: 10.3390/app10031135 – volume: 6 start-page: 4048 year: 2021 ident: ref_62 article-title: Virtual Surfaces and Attitude Aware Planning and Behaviours for Negative Obstacle Navigation publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2021.3065302 – volume: 26 start-page: 1292 year: 2021 ident: ref_6 article-title: Path planning and collision avoidance for autonomous surface vehicles I: A review publication-title: J. Mar. Sci. Technol. doi: 10.1007/s00773-020-00787-6 – volume: 86 start-page: 32 year: 2019 ident: ref_49 article-title: Dynamic path planning for reconfigurable rovers using a multi-layered grid publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2019.08.011 – ident: ref_45 doi: 10.1061/9780784412190.002 – ident: ref_65 doi: 10.1109/ROBOT.2007.363672 – ident: ref_142 – volume: 11 start-page: 817 year: 2017 ident: ref_138 article-title: Analysis of FPA and BA meta-heuristic controllers for optimal path planning of mobile robot in cluttered environment publication-title: IET Sci. Meas. Technol. doi: 10.1049/iet-smt.2016.0273 – volume: 26 start-page: 337 year: 2009 ident: ref_170 article-title: Global planning on the Mars Exploration Rovers: Software integration and surface testing publication-title: J. Field Robot. doi: 10.1002/rob.20287 – volume: 60 start-page: 175 year: 2017 ident: ref_181 article-title: 3Dana: A path planning algorithm for surface robotics publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2017.02.010 – ident: ref_195 doi: 10.1109/ICRA40945.2020.9196580 – ident: ref_92 doi: 10.1109/IROS.2009.5354175 – ident: ref_171 – ident: ref_84 – volume: 9 start-page: 329 year: 2016 ident: ref_121 article-title: A chaotic ant colony system for path planning of mobile robot publication-title: Int. J. Hybrid Inf. Technol. – volume: 39 start-page: 533 year: 2010 ident: ref_172 article-title: Theta*: Any-angle path planning on grids publication-title: J. Artif. Intell. Res. doi: 10.1613/jair.2994 – ident: ref_180 – ident: ref_213 – volume: 86 start-page: 13 year: 2016 ident: ref_8 article-title: Heuristic approaches in robot path planning: A survey publication-title: Robot. Auton. Syst. doi: 10.1016/j.robot.2016.08.001 – volume: 2 start-page: 18 year: 2012 ident: ref_22 article-title: Map representation for robots publication-title: Smart Comput. Rev. – volume: 7 start-page: 1314 year: 2012 ident: ref_3 article-title: Optimal path planning of mobile robots: A review publication-title: Int. J. Phys. Sci. doi: 10.5897/IJPS11.1745 – volume: 42 start-page: 2612 year: 2005 ident: ref_218 article-title: Fast sweeping methods for static Hamilton–Jacobi equations publication-title: SIAM J. Numer. Anal. doi: 10.1137/S0036142902419600 – volume: 17 start-page: 760 year: 1998 ident: ref_89 article-title: Motion planning in dynamic environments using velocity obstacles publication-title: Int. J. Robot. Res. doi: 10.1177/027836499801700706 – volume: 7 start-page: 495 year: 2009 ident: ref_81 article-title: Escaping route method for a trap situation in local path planning publication-title: Int. J. Control Autom. Syst. doi: 10.1007/s12555-009-0320-7 – ident: ref_118 – volume: 64 start-page: 137 year: 2015 ident: ref_139 article-title: Autonomous robot path planning in dynamic environment using a new optimization technique inspired by bacterial foraging technique publication-title: Robot. Auton. Syst. doi: 10.1016/j.robot.2014.07.002 – volume: 71 start-page: 303 year: 2013 ident: ref_214 article-title: Fast path re-planning based on fast marching and level sets publication-title: J. Intell. Robot. Syst. doi: 10.1007/s10846-012-9794-2 – ident: ref_52 – ident: ref_156 doi: 10.1109/ICAIIC48513.2020.9065237 – ident: ref_176 – ident: ref_131 doi: 10.1109/ICIT.2018.8352184 – volume: 41 start-page: 325 year: 2003 ident: ref_215 article-title: Ordered upwind methods for static Hamilton–Jacobi equations: Theory and algorithms publication-title: SIAM J. Numer. Anal. doi: 10.1137/S0036142901392742 – volume: 30 start-page: 2512 year: 2008 ident: ref_221 article-title: A fast iterative method for eikonal equations publication-title: SIAM J. Sci. Comput. doi: 10.1137/060670298 – volume: 54 start-page: 622 year: 2013 ident: ref_37 article-title: Optimal trajectories of curvature constrained motion in the hamilton–jacobi formulation publication-title: J. Sci. Comput. doi: 10.1007/s10915-012-9671-y – volume: 37 start-page: 786 year: 2019 ident: ref_50 article-title: Sampling-based hierarchical motion planning for a reconfigurable wheel-on-leg planetary analogue exploration rover publication-title: J. Field Robot. doi: 10.1002/rob.21894 – volume: 6 start-page: 57 year: 2020 ident: ref_28 article-title: Improved path planning by tightly combining lattice-based path planning and optimal control publication-title: IEEE Trans. Intell. Veh. doi: 10.1109/TIV.2020.2991951 – volume: 40 start-page: 458 year: 2018 ident: ref_197 article-title: Incremental hierarchical roadmap construction for efficient path planning publication-title: ETRI J. doi: 10.4218/etrij.2018-0041 – volume: 9 start-page: 69061 year: 2021 ident: ref_21 article-title: Motion planning for mobile Robots–focusing on deep reinforcement learning: A systematic Review publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3076530 – ident: ref_48 doi: 10.1109/AIM.2017.8014223 – ident: ref_110 doi: 10.1109/ICBR.2013.6729271 – ident: ref_192 doi: 10.1109/ICRA.2015.7139620 – volume: 25 start-page: 339 year: 2018 ident: ref_113 article-title: Bezier curve based path planning in a dynamic field using modified genetic algorithm publication-title: J. Comput. Sci. doi: 10.1016/j.jocs.2017.08.004 – volume: 2 start-page: 56 year: 2014 ident: ref_12 article-title: Sampling-based robot motion planning: A review publication-title: IEEE Access doi: 10.1109/ACCESS.2014.2302442 – ident: ref_96 – ident: ref_164 – ident: ref_4 doi: 10.3390/sym10100450 – ident: ref_85 – ident: ref_19 doi: 10.1109/ICMRE49073.2020.9065187 – volume: 28 start-page: 933 year: 2009 ident: ref_27 article-title: Planning long dynamically feasible maneuvers for autonomous vehicles publication-title: Int. J. Robot. Res. doi: 10.1177/0278364909340445 – ident: ref_204 doi: 10.1007/978-3-319-60771-9_2 – volume: 87 start-page: 291 year: 2017 ident: ref_53 article-title: Planning stable and efficient paths for reconfigurable robots on uneven terrain publication-title: J. Intell. Robot. Syst. doi: 10.1007/s10846-017-0495-8 – volume: 6 start-page: 549 year: 2005 ident: ref_150 article-title: Neural network and genetic algorithm based global path planning in a static environment publication-title: J. Zhejiang Univ.-Sci. A doi: 10.1631/jzus.2005.A0549 – volume: 13 start-page: 707 year: 2006 ident: ref_120 article-title: Global path planning approach based on ant colony optimization algorithm publication-title: J. Cent. South Univ. Technol. doi: 10.1007/s11771-006-0018-4 – volume: 57 start-page: 71 year: 2015 ident: ref_46 article-title: Push–pull locomotion for vehicle extrication publication-title: J. Terramech. doi: 10.1016/j.jterra.2014.12.001 – volume: 89 start-page: 1803 year: 2017 ident: ref_148 article-title: A type of biased consensus-based distributed neural network for path planning publication-title: Nonlinear Dyn. doi: 10.1007/s11071-017-3553-7 – volume: 155 start-page: 93 year: 2004 ident: ref_165 article-title: Lifelong planning A* publication-title: Artif. Intell. doi: 10.1016/j.artint.2003.12.001 – ident: ref_16 doi: 10.3390/s18093170 – volume: 56 start-page: 89 year: 2016 ident: ref_185 article-title: Optimal any-angle pathfinding in practice publication-title: J. Artif. Intell. Res. doi: 10.1613/jair.5007 |
SSID | ssj0023338 |
Score | 2.6960862 |
SecondaryResourceType | review_article |
Snippet | Providing mobile robots with autonomous capabilities is advantageous. It allows one to dispense with the intervention of human operators, which may prove... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 7898 |
SubjectTerms | Algorithms autonomy Classification guidance Humans Planning Review Robotics Robots route survey trajectory vehicle |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8QwEB1kT3oQv62uEsWDl2LTpEnqbRVFBEVEwVtJ0gQF6Yrb_f9O2m7ZlQUvHnppppDOJJn3SPIG4Myl2pWU6VjnXMe8VDrOeUbjkmY-56n2tCnf9vAo7l75_Vv2NlfqK5wJa-WBW8ddGKFzRPlOek25TaVKbMKUx6GTGZvkzeqLOW9GpjqqxZB5tTpCDEn9xSQs0FLlaiH7NCL9y5Dl7wOScxnndgPWO6hIRm0XN2HFVVuwNicguA38CQEcmRUeIghAyWhah3sKSOjJw9jgnCfPYzOuJ5dkRNqNgB14vb15ub6LuzoIsUXyWsfM-yT1gglqvZSG5lzK0nKNVEoppyw3RmuOuV1Sh3gAMZxPSlHiF0F83Vm2C4NqXLl9INYoh0-JJAaJsclNKRNM-B5hlBSauwjOZ_4pbCcSHmpVfBZIFoIri96VEZz2pl-tMsYyo6vg5N4giFk3LzDERRfi4q8QRzCchajoZtikQB6maFArFBGc9M04N8KGh64curmxyZjI0iyCvTaifU8YrlxBWzACuRDrha4utlQf743-thIZ5vDk4D_-7RBW03BKhtI4FUMY1N9Td4QwpzbHzYj-AVxe-PY priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwEB1BuZRDxUcLKQUZ1EMv1saxYztc0IJYKqQiVHWlvUX-BCSUlG76_xkn2dCtVhxyiR3JGtsz79mTNwCnoTDBM26oqYShwmtDK1Ey6lkZK1GYyPrybRff5PlSfF2Vq_HAbT2mVW58Yu-ofevSGfkMcbdmSZ1Ofrj-Q1PVqHS7OpbQeAiPGEaalNKlF18mwsWRfw1qQhyp_Wyd3LTSld6KQb1U_y58eT9N8k7cWTyBgxEwkvkww0_hQWieweM7MoLPQXxHGEc25YcIwlAyv-3S3wpI68lFa3Hnk8vWtt36PZmT4TrgEJaLz1efzulYDYE6pLAd5THmRZRcMheVsqwSSnknDBIqrYN2wlpjBBpJsYCoAJFczL30-EWSYA-OH8Fe0zbhJRBndcDHI5VBemwr61WOYT8imFLSiJDB2cY-tRulwlPFit81UoZkynoyZQbvpq7Xgz7Grk4fk5GnDknSun_R3vyoxx1SW2kqpHNBRcOEK5TOXc51RB9RWpdXRQYnmymqx322rv-tigzeTs24Q9K1h2kCmrnvU3JZFmUGL4YZnUbC0X8lhcEM1NZcbw11u6X59bNX4dayxEieH_9_WK9gv0hZMIzRQp7AXndzG14jjOnsm36t_gXYZvEy priority: 102 providerName: ProQuest |
Title | Path Planning for Autonomous Mobile Robots: A Review |
URI | https://www.ncbi.nlm.nih.gov/pubmed/34883899 https://www.proquest.com/docview/2608144756 https://www.proquest.com/docview/2608536525 https://pubmed.ncbi.nlm.nih.gov/PMC8659900 https://doaj.org/article/b6a9261e7fa14c2780c038f5315bc092 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB71cYED4k2grALiwCUQP2I7SAhtUZcKaauqYqW9RbZjF6QqaXdTCf4947zUoD1wSA7xWLLGj_m-2P4G4J2j2pWE6UTnXCe8VDrJeUaSkmQ-51R70qZvW56J0xX_vs7WezDk2OwduN1J7UI-qdXm6sPvmz9fcMJ_DowTKfvHbVh-pcrVPhxiQJIhkcGSj5sJlLE2oXW405VgPEw7gaFp1UlYatX7d0HOf09O3glFi4fwoMeQ8bzr9Eew56rHcP-OsuAT4OeI7OIhI1GMyDSe3zbhAgMy_XhZG1wM4ova1M32UzyPux2Cp7BanPz4epr0CRISi6y2SZj3KfWCCWK9lIbkXMrSco0cSymnLDdGa45BXxKHQAHBnU9LUWKNoMruLHsGB1VduRcQW6McPiWyG2TMJjelTBEJeMRXUmjuIng_-KewvXp4SGJxVSCLCK4sRldG8HY0ve4kM3YZHQcnjwZB5br9UG8ui37SFEboHBmek14TbqlUqU2Z8rhsZMamOY3gaOiiYhg5BRI0RYKMoYjgzViMkybshOjKoZtbm4yJjGYRPO96dGwJwyUtiA5GICd9PWnqtKT69bMV5lYiw-CevvwfB7yCezQcjyEkoeIIDprNrXuN-KYxM9iXa4lvtfg2g8Pjk7Pzi1n7r2DWjuu_1_r6Uw |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiDeBAgaBxCVq7Di2g4TQ8li2tFsh1Eq9BduxAQklpckK8af4jYzzoosqbj3kEjuJNbZnvi-2vwF46ph2JU11rHOuY14qHec8o3FJM59zpj3t0rct98XikH84yo424Pd4FiZsqxx9Yueoy9qGf-TbiLsVDep04tXxjzhkjQqrq2MKjX5Y7LpfP5GyNS933mL_PmNs_u7gzSIesgrEFqlgG6feJ8yLVFDrpTRI4qUsLddITJRyynJjtOb4MUkdRldERD4pRYlPBClzZ1N87wW4yFOM5OFk-vz9RPBS5Hu9ehEWJttNCAtS5Wot5nWpAc7Cs_9uyzwV5-bX4OoAUMmsH1HXYcNVN-DKKdnCm8A_ImwkY7ojgrCXzFZtOB1RrxqyrA16GvKpNnXbvCAz0i8_3ILDc7HTbdis6srdBWKNcniVSJ2QjpvclDJBmOERvEmhuYvg-Wifwg7S5CFDxvcCKUowZTGZMoInU9XjXo_jrEqvg5GnCkFCu7tRn3wphhlZGKFzpI9Oek25ZVIlNkmVR5-UGZvkLIKtsYuKYV43xd9RGMHjqRhnZFhm0ZVDM3d1slRkLIvgTt-jU0tS9JdB0TACudbXa01dL6m-fe1Uv5XIEDkk9_7frEdwaXGw3Cv2dvZ378NlFnbgUBozsQWb7cnKPUAI1ZqH3bgl8Pm8J8ofZ28tOQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYTggHgTKBAQSFyijR-JHSSEtrSrltLVqqJSb6nt2ICEktJkhfhr_DrGedFFFbcecomdxBp7xt8X298AvLJU2YIwFamMq4gXUkUZT0hUkMRlnCpH2vRth4t075h_PElONuD3cBbGb6scYmIbqIvK-H_kU8Tdknh1unTq-m0Ry535-7Mfkc8g5Vdah3Qa3RA5sL9-In2r3-3vYF-_pnS--_nDXtRnGIgM0sImYs7F1KUsJcYJoZHQC1EYrpCkSGml4VorxfHDglicaREdubhIC3zCy5pbw_C912BTeFY0gc3t3cXyaKR7DNlfp2XEWBZPaz9JCJnJtRmwTRRwGbr9d5PmhVlvfhtu9XA1nHXj6w5s2PIu3LwgYngP-BJBZDgkPwoRBIezVePPSlSrOjysNMad8KjSVVO_DWdhtxhxH46vxFIPYFJWpX0EodHS4lUgkUJyrjNdiBhBh0MoJ1LFbQBvBvvkphcq9_kyvudIWLwp89GUAbwcq5516hyXVdr2Rh4reEHt9kZ1_iXv_TPXqcqQTFrhFOGGChmbmEmHESrRJs5oAFtDF-W9l9f53zEZwIuxGP3TL7qo0qKZ2zoJSxOaBPCw69GxJQyjp9c3DECs9fVaU9dLym9fWw1wmSaII-LH_2_Wc7iOTpJ_2l8cPIEb1G_HISSi6RZMmvOVfYp4qtHP-oEbwulV-8ofcOwyyw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Path+Planning+for+Autonomous+Mobile+Robots%3A+A+Review&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=S%C3%A1nchez-Ib%C3%A1%C3%B1ez%2C+Jos%C3%A9+Ricardo&rft.au=P%C3%A9rez-del-Pulgar%2C+Carlos+J.&rft.au=Garc%C3%ADa-Cerezo%2C+Alfonso&rft.date=2021-11-26&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=21&rft.issue=23&rft.spage=7898&rft_id=info:doi/10.3390%2Fs21237898&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_s21237898 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |