Machine learning applied in maternal and fetal health: a narrative review focused on pregnancy diseases and complications
Machine learning (ML) corresponds to a wide variety of methods that use mathematics, statistics and computational science to learn from multiple variables simultaneously. By means of pattern recognition, ML methods are able to find hidden correlations and accomplish accurate predictions regarding di...
Saved in:
Published in | Frontiers in endocrinology (Lausanne) Vol. 14; p. 1130139 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Media S.A
19.05.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 1664-2392 1664-2392 |
DOI | 10.3389/fendo.2023.1130139 |
Cover
Loading…
Abstract | Machine learning (ML) corresponds to a wide variety of methods that use mathematics, statistics and computational science to learn from multiple variables simultaneously. By means of pattern recognition, ML methods are able to find hidden correlations and accomplish accurate predictions regarding different conditions. ML has been successfully used to solve varied problems in different areas of science, such as psychology, economics, biology and chemistry. Therefore, we wondered how far it has penetrated into the field of obstetrics and gynecology.
To describe the state of art regarding the use of ML in the context of pregnancy diseases and complications.
Publications were searched in PubMed, Web of Science and Google Scholar. Seven subjects of interest were considered: gestational diabetes mellitus, preeclampsia, perinatal death, spontaneous abortion, preterm birth, cesarean section, and fetal malformations.
ML has been widely applied in all the included subjects. Its uses are varied, the most common being the prediction of perinatal disorders. Other ML applications include (but are not restricted to) biomarker discovery, risk estimation, correlation assessment, pharmacological treatment prediction, drug screening, data acquisition and data extraction. Most of the reviewed articles were published in the last five years. The most employed ML methods in the field are non-linear. Except for logistic regression, linear methods are rarely used.
To improve data recording, storage and update in medical and research settings from different realities. To develop more accurate and understandable ML models using data from cutting-edge instruments. To carry out validation and impact analysis studies of currently existing high-accuracy ML models.
The use of ML in pregnancy diseases and complications is quite recent, and has increased over the last few years. The applications are varied and point not only to the diagnosis, but also to the management, treatment, and pathophysiological understanding of perinatal alterations. Facing the challenges that come with working with different types of data, the handling of increasingly large amounts of information, the development of emerging technologies, and the need of translational studies, it is expected that the use of ML continue growing in the field of obstetrics and gynecology. |
---|---|
AbstractList | Machine learning (ML) corresponds to a wide variety of methods that use mathematics, statistics and computational science to learn from multiple variables simultaneously. By means of pattern recognition, ML methods are able to find hidden correlations and accomplish accurate predictions regarding different conditions. ML has been successfully used to solve varied problems in different areas of science, such as psychology, economics, biology and chemistry. Therefore, we wondered how far it has penetrated into the field of obstetrics and gynecology.
To describe the state of art regarding the use of ML in the context of pregnancy diseases and complications.
Publications were searched in PubMed, Web of Science and Google Scholar. Seven subjects of interest were considered: gestational diabetes mellitus, preeclampsia, perinatal death, spontaneous abortion, preterm birth, cesarean section, and fetal malformations.
ML has been widely applied in all the included subjects. Its uses are varied, the most common being the prediction of perinatal disorders. Other ML applications include (but are not restricted to) biomarker discovery, risk estimation, correlation assessment, pharmacological treatment prediction, drug screening, data acquisition and data extraction. Most of the reviewed articles were published in the last five years. The most employed ML methods in the field are non-linear. Except for logistic regression, linear methods are rarely used.
To improve data recording, storage and update in medical and research settings from different realities. To develop more accurate and understandable ML models using data from cutting-edge instruments. To carry out validation and impact analysis studies of currently existing high-accuracy ML models.
The use of ML in pregnancy diseases and complications is quite recent, and has increased over the last few years. The applications are varied and point not only to the diagnosis, but also to the management, treatment, and pathophysiological understanding of perinatal alterations. Facing the challenges that come with working with different types of data, the handling of increasingly large amounts of information, the development of emerging technologies, and the need of translational studies, it is expected that the use of ML continue growing in the field of obstetrics and gynecology. IntroductionMachine learning (ML) corresponds to a wide variety of methods that use mathematics, statistics and computational science to learn from multiple variables simultaneously. By means of pattern recognition, ML methods are able to find hidden correlations and accomplish accurate predictions regarding different conditions. ML has been successfully used to solve varied problems in different areas of science, such as psychology, economics, biology and chemistry. Therefore, we wondered how far it has penetrated into the field of obstetrics and gynecology.AimTo describe the state of art regarding the use of ML in the context of pregnancy diseases and complications.MethodologyPublications were searched in PubMed, Web of Science and Google Scholar. Seven subjects of interest were considered: gestational diabetes mellitus, preeclampsia, perinatal death, spontaneous abortion, preterm birth, cesarean section, and fetal malformations.Current stateML has been widely applied in all the included subjects. Its uses are varied, the most common being the prediction of perinatal disorders. Other ML applications include (but are not restricted to) biomarker discovery, risk estimation, correlation assessment, pharmacological treatment prediction, drug screening, data acquisition and data extraction. Most of the reviewed articles were published in the last five years. The most employed ML methods in the field are non-linear. Except for logistic regression, linear methods are rarely used.Future challengesTo improve data recording, storage and update in medical and research settings from different realities. To develop more accurate and understandable ML models using data from cutting-edge instruments. To carry out validation and impact analysis studies of currently existing high-accuracy ML models.ConclusionThe use of ML in pregnancy diseases and complications is quite recent, and has increased over the last few years. The applications are varied and point not only to the diagnosis, but also to the management, treatment, and pathophysiological understanding of perinatal alterations. Facing the challenges that come with working with different types of data, the handling of increasingly large amounts of information, the development of emerging technologies, and the need of translational studies, it is expected that the use of ML continue growing in the field of obstetrics and gynecology. Machine learning (ML) corresponds to a wide variety of methods that use mathematics, statistics and computational science to learn from multiple variables simultaneously. By means of pattern recognition, ML methods are able to find hidden correlations and accomplish accurate predictions regarding different conditions. ML has been successfully used to solve varied problems in different areas of science, such as psychology, economics, biology and chemistry. Therefore, we wondered how far it has penetrated into the field of obstetrics and gynecology.IntroductionMachine learning (ML) corresponds to a wide variety of methods that use mathematics, statistics and computational science to learn from multiple variables simultaneously. By means of pattern recognition, ML methods are able to find hidden correlations and accomplish accurate predictions regarding different conditions. ML has been successfully used to solve varied problems in different areas of science, such as psychology, economics, biology and chemistry. Therefore, we wondered how far it has penetrated into the field of obstetrics and gynecology.To describe the state of art regarding the use of ML in the context of pregnancy diseases and complications.AimTo describe the state of art regarding the use of ML in the context of pregnancy diseases and complications.Publications were searched in PubMed, Web of Science and Google Scholar. Seven subjects of interest were considered: gestational diabetes mellitus, preeclampsia, perinatal death, spontaneous abortion, preterm birth, cesarean section, and fetal malformations.MethodologyPublications were searched in PubMed, Web of Science and Google Scholar. Seven subjects of interest were considered: gestational diabetes mellitus, preeclampsia, perinatal death, spontaneous abortion, preterm birth, cesarean section, and fetal malformations.ML has been widely applied in all the included subjects. Its uses are varied, the most common being the prediction of perinatal disorders. Other ML applications include (but are not restricted to) biomarker discovery, risk estimation, correlation assessment, pharmacological treatment prediction, drug screening, data acquisition and data extraction. Most of the reviewed articles were published in the last five years. The most employed ML methods in the field are non-linear. Except for logistic regression, linear methods are rarely used.Current stateML has been widely applied in all the included subjects. Its uses are varied, the most common being the prediction of perinatal disorders. Other ML applications include (but are not restricted to) biomarker discovery, risk estimation, correlation assessment, pharmacological treatment prediction, drug screening, data acquisition and data extraction. Most of the reviewed articles were published in the last five years. The most employed ML methods in the field are non-linear. Except for logistic regression, linear methods are rarely used.To improve data recording, storage and update in medical and research settings from different realities. To develop more accurate and understandable ML models using data from cutting-edge instruments. To carry out validation and impact analysis studies of currently existing high-accuracy ML models.Future challengesTo improve data recording, storage and update in medical and research settings from different realities. To develop more accurate and understandable ML models using data from cutting-edge instruments. To carry out validation and impact analysis studies of currently existing high-accuracy ML models.The use of ML in pregnancy diseases and complications is quite recent, and has increased over the last few years. The applications are varied and point not only to the diagnosis, but also to the management, treatment, and pathophysiological understanding of perinatal alterations. Facing the challenges that come with working with different types of data, the handling of increasingly large amounts of information, the development of emerging technologies, and the need of translational studies, it is expected that the use of ML continue growing in the field of obstetrics and gynecology.ConclusionThe use of ML in pregnancy diseases and complications is quite recent, and has increased over the last few years. The applications are varied and point not only to the diagnosis, but also to the management, treatment, and pathophysiological understanding of perinatal alterations. Facing the challenges that come with working with different types of data, the handling of increasingly large amounts of information, the development of emerging technologies, and the need of translational studies, it is expected that the use of ML continue growing in the field of obstetrics and gynecology. |
Author | Castro, Erica Eriz-Salinas, Alma Appel-Rubio, Javiera Opazo, Ma. Cecilia Riedel, Claudia A. Aguayo, Claudio Rodríguez, Andrés Mennickent, Daniela Guzmán-Gutiérrez, Enrique Damiano, Alicia E. Araya, Juan |
AuthorAffiliation | 9 Departamento de Obstetricia y Puericultura, Facultad de Medicina, Universidad de Concepción , Concepción , Chile 3 Machine Learning Applied in Biomedicine (MLAB) , Concepción , Chile 6 Millennium Institute on Immunology and Immunotherapy , Santiago , Chile 11 Laboratorio de Biología de la Reproducción, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO-Houssay)- CONICET, Universidad de Buenos Aires , Buenos Aires , Argentina 1 Departamento de Bioquímica Clínica e Inmunología, Facultad de Farmacia, Universidad de Concepción , Concepción , Chile 8 Departamento de Obstetricia y Puericultura, Facultad de Ciencias de la Salud, Universidad de Atacama , Copiapó , Chile 2 Departamento de Análisis Instrumental, Facultad de Farmacia, Universidad de Concepción , Concepción , Chile 4 Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad del Bío-Bío , Chillán , Chile 7 Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello , Santiago , Chile |
AuthorAffiliation_xml | – name: 1 Departamento de Bioquímica Clínica e Inmunología, Facultad de Farmacia, Universidad de Concepción , Concepción , Chile – name: 5 Instituto de Ciencias Naturales, Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas , Santiago , Chile – name: 7 Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello , Santiago , Chile – name: 2 Departamento de Análisis Instrumental, Facultad de Farmacia, Universidad de Concepción , Concepción , Chile – name: 3 Machine Learning Applied in Biomedicine (MLAB) , Concepción , Chile – name: 4 Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad del Bío-Bío , Chillán , Chile – name: 10 Cátedra de Biología Celular y Molecular, Departamento de Ciencias Biológicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires , Buenos Aires , Argentina – name: 6 Millennium Institute on Immunology and Immunotherapy , Santiago , Chile – name: 11 Laboratorio de Biología de la Reproducción, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO-Houssay)- CONICET, Universidad de Buenos Aires , Buenos Aires , Argentina – name: 9 Departamento de Obstetricia y Puericultura, Facultad de Medicina, Universidad de Concepción , Concepción , Chile – name: 8 Departamento de Obstetricia y Puericultura, Facultad de Ciencias de la Salud, Universidad de Atacama , Copiapó , Chile |
Author_xml | – sequence: 1 givenname: Daniela surname: Mennickent fullname: Mennickent, Daniela – sequence: 2 givenname: Andrés surname: Rodríguez fullname: Rodríguez, Andrés – sequence: 3 givenname: Ma. Cecilia surname: Opazo fullname: Opazo, Ma. Cecilia – sequence: 4 givenname: Claudia A. surname: Riedel fullname: Riedel, Claudia A. – sequence: 5 givenname: Erica surname: Castro fullname: Castro, Erica – sequence: 6 givenname: Alma surname: Eriz-Salinas fullname: Eriz-Salinas, Alma – sequence: 7 givenname: Javiera surname: Appel-Rubio fullname: Appel-Rubio, Javiera – sequence: 8 givenname: Claudio surname: Aguayo fullname: Aguayo, Claudio – sequence: 9 givenname: Alicia E. surname: Damiano fullname: Damiano, Alicia E. – sequence: 10 givenname: Enrique surname: Guzmán-Gutiérrez fullname: Guzmán-Gutiérrez, Enrique – sequence: 11 givenname: Juan surname: Araya fullname: Araya, Juan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37274341$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kktv1DAUhSNURB_0D7BAXrKZwa_EDhuEKiiVitjA2rpxrmdcJXawM4Pm3-N5FLUs8MZX9j3fsXzPZXUWYsCqesPoUgjdvncY-rjklIslY4Iy0b6oLljTyAUXLT97Up9X1zk_0LIkZW2rX1XnQnElhWQX1e4b2LUPSAaEFHxYEZimwWNPfCAjzJgCDARCTxzOpVojDPP6AwESICWY_RZJwq3H38RFu8lFGAOZEq4CBLsjvc8IGfMBYeNY2LaoYsivq5cOhozXp_2q-vnl84-br4v777d3N5_uF1Y27bwQDjtJa7SIupPaSYFOgah1p7VTfc071VBnBbYSlK6FhIZq6DUTHW1ASnFV3R25fYQHMyU_QtqZCN4cDmJaGUiztwMa6WineieEFVwq1nUdsyB7Lp2ouVCusD4eWdOmG7G3GOYEwzPo85vg12YVt4aVOdVKN4Xw7kRI8dcG82xGny0OAwSMm2y45lzRpuX7h799avbX5XF4pUEfG2yKOSd0xvr58LnF2w_F1OyjYg5RMfuomFNUipT_I32k_0f0B4bZxRg |
CitedBy_id | crossref_primary_10_2147_IJWH_S454127 crossref_primary_10_1051_itmconf_20257401008 crossref_primary_10_1001_jama_2024_14794 crossref_primary_10_1016_j_bpobgyn_2024_102545 crossref_primary_10_38124_ijisrt_IJISRT24OCT1526 crossref_primary_10_1002_jcu_23918 crossref_primary_10_1016_j_cmet_2023_11_015 crossref_primary_10_1016_j_intimp_2024_112238 crossref_primary_10_1159_000542700 crossref_primary_10_1109_ACCESS_2024_3399827 crossref_primary_10_3390_ai5020026 crossref_primary_10_1016_j_clp_2024_04_001 crossref_primary_10_1016_j_ssmqr_2025_100540 crossref_primary_10_7759_cureus_69115 crossref_primary_10_1109_ACCESS_2025_3527151 crossref_primary_10_1080_20476965_2024_2435845 crossref_primary_10_1055_a_2489_4462 crossref_primary_10_1186_s12884_024_07030_9 crossref_primary_10_3390_biomimetics8070519 crossref_primary_10_3390_medicina61040561 |
Cites_doi | 10.1002/9783527699377 10.1111/jcmm.16671 10.2337/dc20-1475 10.1016/j.bbe.2018.03.003 10.3233/SHTI210927 10.1038/s41598-019-53448-z 10.1117/1.JMI.3.1.014501 10.1007/s12178-020-09600-8 10.1186/s12911-021-01388-y 10.1016/j.ajog.2007.06.055 10.1080/14767058.2018.1484090 10.1002/j.2205-0140.2013.tb00242.x 10.1016/j.cmpb.2020.105624 10.1136/bmjopen-2020-040132 10.1080/14767058.2020.1786517 10.1016/S0140-6736(14)61698-6 10.1016/j.ijom.2017.03.017 10.1136/heart.83.4.414 10.1016/0002-9378(91)90424-P 10.1093/gigascience/giac004 10.1155/2022/6410103 10.1186/s12884-021-03658-z 10.1177/1753495X17754149 10.3389/fimmu.2021.642167 10.1371/journal.pone.0221202 10.1016/j.artmed.2022.102378 10.2196/33835 10.1002/uog.12563 10.1016/j.diabres.2018.05.002 10.1016/j.reprotox.2020.05.004 10.5772/intechopen.92297 10.1007/s00404-017-4445-2 10.1016/j.ajog.2019.12.267 10.1371/journal.pone.0280513 10.1177/1933719109356802 10.1002/hpm.2754 10.30744/brjac.2179-3425.AR-38-2021 10.1016/j.bpobgyn.2015.03.022 10.1016/j.bpobgyn.2014.09.006 10.1016/j.trac.2013.04.015 10.1038/s41598-020-75539-y 10.3390/healthcare10112164 10.1016/j.media.2016.11.006 10.1016/j.ebiom.2020.102710 10.1055/s-0044-100147 10.1155/2021/6691096 10.1109/10.76387 10.2196/21435 10.7754/Clin.Lab.2020.200222 10.1042/BSR20190187 10.1038/s41598-020-62210-9 10.1109/SISY.2018.8524818 10.1002/uog.15767 10.11152/mu.2013.2066.181.dop 10.1186/s41512-019-0060-y 10.1038/s41746-019-0089-x 10.2337/dc21-S002 10.1016/j.placenta.2013.08.006 10.1002/uog.9061 10.1109/IEMBS.2004.1403194 10.1186/s12871-021-01331-8 10.1159/000505021 10.1080/09513590.2021.1937101 10.1001/jamanetworkopen.2020.26750 10.1016/j.media.2017.01.003 10.1088/1361-6579/abf7db 10.1002/advs.201901819 10.1016/S2214-109X(18)30451-0 10.3390/diagnostics12122979 10.1007/978-3-7091-0558-0_2 10.1038/s41591-019-0724-8 10.1371/journal.pone.0217273 10.1016/S0301-2115(01)00416-X 10.1016/j.ajog.2007.08.052 10.1186/s12884-022-04594-2 10.1016/j.cmpb.2020.105712 10.1155/2018/8568617 10.28945/4184 10.1016/j.cell.2020.03.022 10.1007/s13755-020-00105-9 10.1016/j.jhsa.2021.09.016 10.2196/15411 10.1038/s41572-019-0098-8 10.1016/j.ijmedinf.2023.105040 10.17605/OSF.IO/GV5T4 10.1210/clinem/dgaa899 10.3109/01674829809025691 10.1177/17455065211046132 10.1186/s12911-021-01497-8 10.1002/9780470057780 10.3390/medicina58030332 10.1016/j.ajogmf.2020.100100 10.1109/ICSIP.2014.54 10.1159/000516891 10.1186/s12884-015-0780-0 10.1093/humrep/des352 10.3109/14767058.2014.937418 10.3390/molecules26040777 10.1161/01.HYP.0000258404.21552.a3 10.1111/j.1651-2227.2008.01152.x 10.1001/jama.284.1.79 10.1016/j.chemolab.2017.12.004 10.1016/j.jviscsurg.2016.09.012 10.1159/000489685 10.1016/j.bjps.2017.08.031 10.1002/edm2.201 10.1093/bib/bbaa369 10.1109/ACCESS.2020.3006710 10.1038/nmeth.4642 10.1186/s13690-021-00568-6 10.3389/fbioe.2021.780389 10.1002/14651858.CD012982.pub2 10.1093/ajcn/nqaa027 10.1016/j.ajog.2010.05.037 10.1016/B978-0-12-382032-7.10008-6 10.1371/journal.pone.0225716 10.1016/j.jbi.2019.103334 10.1109/51.585518 10.1093/toxsci/kfr088 10.1530/EJE-19-0206 10.1016/j.chemolab.2006.06.016 10.1016/j.humimm.2015.02.004 10.1016/j.media.2014.02.008 10.1001/jamanetworkopen.2020.29655 10.1007/s00404-019-05325-3 10.1186/1741-7015-11-154 10.1515/CCLM.2001.132 10.1186/s12938-017-0378-z 10.1007/978-981-16-4345-3_1 10.26355/eurrev_202007_21874 10.1016/j.compbiomed.2017.12.002 10.1016/j.placenta.2020.10.015 10.1186/s12884-019-2374-8 10.1080/14767058.2021.1887847 10.1186/1475-925X-10-6 10.1016/j.cmpb.2018.06.010 10.1186/s12911-019-1007-5 10.1016/j.jss.2017.09.002 10.1097/01.AOG.0000437382.03963.88 10.2196/16503 10.1111/j.1600-0412.2010.01056.x 10.1002/nur.22122 10.1016/S2214-109X(15)00275-2 10.1371/journal.pone.0252025 10.1111/1471-0528.13592 10.1016/S1470-2045(19)30149-4 10.1016/j.psyneuen.2020.104862 10.1016/j.siny.2018.09.006 10.3389/fgene.2014.00285 10.3389/fphys.2017.00641 10.1038/s41598-020-72852-4 10.1186/s12884-016-1061-2 10.1371/journal.pcbi.1006937 10.1109/EMBC.2019.8857942 10.1007/s12652-020-02562-2 10.1016/j.compbiolchem.2020.107233 |
ContentType | Journal Article |
Copyright | Copyright © 2023 Mennickent, Rodríguez, Opazo, Riedel, Castro, Eriz-Salinas, Appel-Rubio, Aguayo, Damiano, Guzmán-Gutiérrez and Araya. Copyright © 2023 Mennickent, Rodríguez, Opazo, Riedel, Castro, Eriz-Salinas, Appel-Rubio, Aguayo, Damiano, Guzmán-Gutiérrez and Araya 2023 Mennickent, Rodríguez, Opazo, Riedel, Castro, Eriz-Salinas, Appel-Rubio, Aguayo, Damiano, Guzmán-Gutiérrez and Araya |
Copyright_xml | – notice: Copyright © 2023 Mennickent, Rodríguez, Opazo, Riedel, Castro, Eriz-Salinas, Appel-Rubio, Aguayo, Damiano, Guzmán-Gutiérrez and Araya. – notice: Copyright © 2023 Mennickent, Rodríguez, Opazo, Riedel, Castro, Eriz-Salinas, Appel-Rubio, Aguayo, Damiano, Guzmán-Gutiérrez and Araya 2023 Mennickent, Rodríguez, Opazo, Riedel, Castro, Eriz-Salinas, Appel-Rubio, Aguayo, Damiano, Guzmán-Gutiérrez and Araya |
DBID | AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.3389/fendo.2023.1130139 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1664-2392 |
ExternalDocumentID | oai_doaj_org_article_4f0b7df33c32471bbb1ca4d24f35237f PMC10235786 37274341 10_3389_fendo_2023_1130139 |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: ; grantid: Proyecto UCO 1866 – fundername: ; grantid: FOVI210057, FONDECYT11181153, PFCHA21190736 |
GroupedDBID | 53G 5VS 9T4 AAFWJ AAKDD AAYXX ACGFO ACGFS ACXDI ADBBV ADRAZ AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV CITATION DIK EMOBN GROUPED_DOAJ GX1 HYE KQ8 M48 M~E OK1 PGMZT RPM IPNFZ NPM RIG 7X8 5PM |
ID | FETCH-LOGICAL-c469t-3feb405ecee8b48f43ef7a358b88f7d52b760fc3e94a78534a608ad813b06a443 |
IEDL.DBID | M48 |
ISSN | 1664-2392 |
IngestDate | Wed Aug 27 01:10:47 EDT 2025 Thu Aug 21 18:37:14 EDT 2025 Fri Jul 11 05:04:33 EDT 2025 Thu Apr 03 07:07:55 EDT 2025 Tue Jul 01 01:41:41 EDT 2025 Thu Apr 24 22:53:11 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | pregnancy complications adverse perinatal outcomes machine learning pregnancy diseases artificial intelligence |
Language | English |
License | Copyright © 2023 Mennickent, Rodríguez, Opazo, Riedel, Castro, Eriz-Salinas, Appel-Rubio, Aguayo, Damiano, Guzmán-Gutiérrez and Araya. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c469t-3feb405ecee8b48f43ef7a358b88f7d52b760fc3e94a78534a608ad813b06a443 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 Reviewed by: Shujie Liao, Huazhong University of Science and Technology, China; Stepan Feduniw, University Zürich, Switzerland Edited by: Lawrence Merle Nelson, Mary Elizabeth Conover Foundation, Inc., United States |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fendo.2023.1130139 |
PMID | 37274341 |
PQID | 2822706924 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_4f0b7df33c32471bbb1ca4d24f35237f pubmedcentral_primary_oai_pubmedcentral_nih_gov_10235786 proquest_miscellaneous_2822706924 pubmed_primary_37274341 crossref_citationtrail_10_3389_fendo_2023_1130139 crossref_primary_10_3389_fendo_2023_1130139 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-05-19 |
PublicationDateYYYYMMDD | 2023-05-19 |
PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-19 day: 19 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Frontiers in endocrinology (Lausanne) |
PublicationTitleAlternate | Front Endocrinol (Lausanne) |
PublicationYear | 2023 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Despotovic (B93) 2018 David (B98) 2018; 78 Mu (B75) 2020; 66 Khatibi (B67) 2021; 21 Mendoza (B112) 2014; 18 Bottomley (B74) 2013; 28 Rychik (B140) 2007; 197 Fotiadou (B120) 2021; 42 Arabi Belaghi (B87) 2021; 16 Sufriyana (B49) 2020; 8 Birdir (B38) 2015; 28 Shukla (B65) 2020; 3 Garg (B147) 2011 Araya (B30) 2021; 103 Velardo (B31) 2021; 23 Magenes (B128) 2004 Sobti (B153) 2022 Tang (B105) 2018; 2018 Gyselaers (B36) 2011; 38 Langer (B145) 1991; 165 Islam (B5) 2022; 22 Toh (B76) 2021 Gosset (B97) 2017; 154 Yu (B116) 2018; 38 Gibbs (B8) 2008 Jaskari (B70) 2020; 8 Suff (B85) 2019; 24 Parer (B125) 2010; 203 Garcia-Canadilla (B141) 2020; 47 Berger (B82) 2010; 17 Liu (B27) 2021; 37 Fergus (B102) 2017; 16 Sufriyana (B150) 2020; 8 Brocklehurst (B124) 2016; 16 Wren (B138) 2000; 83 Cruz-Lemini (B143) 2016; 48 Resendiz (B144) 2014; 5 Chawanpaiboon (B84) 2019; 7 Huang (B80) 2021; 12 Gurgen (B127) 1997; 16 Clark (B106) 2021; 44 Tao (B134) 2021; 21 Rezaeian (B68) 2022; 13 Mello (B47) 2001; 39 Goecks (B3) 2020; 181 Tejera (B55) 2021; 26 Blencowe (B59) 2016; 4 Mora-Sánchez (B77) 2019; 2 Scott (B24) 2021; 4 Sweeting (B155) 2015; 29 Feduniw (B160) 2022; 10 Rawashdeh (B94) 2020; 85 Cowley (B15) 2019; 3 Martinez (B96) 2020; 122 Moons (B139) 2009; 98 Balani (B22) 2018; 11 Liu (B79) 2020; 196 Shigemi (B133) 2019; 32 Bzdok (B11) 2018; 15 (B16) 2021; 44 Sandström (B48) 2019; 14 Safran (B137) 2018; 71 Mennickent (B23) 2023; 18 Lee (B41) 2020; 10 Sufriyana (B50) 2020; 54 Ye (B95) 2016; 123 Medenica (B83) 2022; 12 Al-Angari (B122) 2017; 8 Yeo (B130) 2013; 42 (B56) 2016 Abebe (B61) 2021; 79 Ricciardi (B104) 2020; 196 Daszykowski (B9) 2007; 85 Bridge (B115) 2017; 36 Fotiadou (B121) 2020 Engel (B10) 2013; 50 Meuleman (B81) 2015; 76 McGinn (B14) 2000; 284 Davidson (B161) 2021; 22 Xiong (B18) 2022; 35 Stepan (B39) 2007; 49 Gupta (B51) 2022; 35 Mangold (B72) 2021; 118 Muduli (B117) 2016 Crispi (B142) 2013; 16 Mennickent (B32) 2022; 132 Bodnar (B54) 2020; 111 Aung (B90) 2019; 9 Mureşan (B35) 2016; 18 Wu (B20) 2021; 106 Khatibi (B86) 2019; 300 Pinas (B110) 2016; 30 Artzi (B21) 2020; 26 Otto (B7) 2016 Gao (B88) 2019; 100 Lipschuetz (B109) 2020; 222 Bertini (B149) 2022; 9 Kim (B148) 2011; 122 Khanzode (B159) 2020; 9 Ballabio (B12) 2018; 174 Sheikhtaheri (B71) 2021; 21 Ababneh (B33) 2004; 17 Guo (B26) 2020; 7 Akbulut (B111) 2018; 163 Al-Shaer (B132) 2019; 15 (B34) 2013; 122 Oral (B146) 2001; 99 Ngiam (B158) 2019; 20 Kumar (B151) 2019; 34 (B57) 2016 Zhang (B89) 2022; 10 Krupa (B119) 2011; 10 Meulstee (B114) 2017; 46 Zhao (B123) 2019; 19 Shapiro (B152) 2022; 47 Chen (B91) 2022; 11 McIntyre (B17) 2019; 5 Cooper (B69) 2018; 221 Brereton (B6) 2007 Botchkarev (B13) 2019; 14 Helm (B1) 2020; 13 Yoffe (B25) 2019; 181 Liu (B52) 2019; 39 Han (B131) 2022; 2022 Yang (B100) 2017; 296 Guo (B53) 2021; 2021 Zheng (B19) 2019; 19 Amigo (B2) 2021; 8 Du (B154) 2023; 173 Keikkala (B37) 2013; 34 Stepan (B40) 2008; 198 Kayode (B63) 2016; 16 Fletcher (B108) 2019 Jhee (B45) 2019; 14 Ramakrishnan (B162) 2021; 17 Bernardes-Oliveira (B29) 2020; 10 Gadagkar (B129) 2014 Koivu (B64) 2020; 8 Liu (B58) 2015; 385 Malacova (B62) 2020; 10 Mboya (B66) 2020; 10 Ehrlich (B28) 2021; 44 Tarca (B42) 2019; 14 Wei (B107) 2021; 21 Maraci (B118) 2017; 37 Jiang (B43) 2018; 46 Ryding (B99) 1998; 19 Wangel (B101) 2011; 90 Fergus (B103) 2018; 93 Wu (B113) 2016; 3 Willcox (B60) 2020; 2020 Guimarães-Ferreira (B136) 2004 Wu (B78) 2021; 25 Jehan (B92) 2020; 3 Abuelezz (B4) 2022; 289 Marić (B46) 2020; 2 Alonso-Betanzos (B126) 1991; 38 Bouariu (B157) 2022; 58 Larsen (B73) 2013; 11 Challa (B135) 2020; 95 Poon (B156) 2018; 145 Han (B44) 2020; 24 |
References_xml | – volume-title: Chemometrics year: 2016 ident: B7 doi: 10.1002/9783527699377 – volume: 25 year: 2021 ident: B78 article-title: Extensive serum biomarker analysis in the prethrombotic state of recurrent spontaneous abortion publication-title: J Cell Mol Med doi: 10.1111/jcmm.16671 – volume: 44 year: 2021 ident: B28 article-title: Exercise during the first trimester of pregnancy and the risks of abnormal screening and gestational diabetes mellitus publication-title: Diabetes Care doi: 10.2337/dc20-1475 – volume: 38 year: 2018 ident: B116 article-title: Automatic identifying of maternal ECG source when applying ICA in fetal ECG extraction publication-title: Biocybern BioMed Eng doi: 10.1016/j.bbe.2018.03.003 – volume: 289 year: 2022 ident: B4 article-title: Contribution of artificial intelligence in pregnancy: a scoping review publication-title: Stud Health Technol Inform doi: 10.3233/SHTI210927 – volume: 9 start-page: 17049 year: 2019 ident: B90 article-title: Prediction and associations of preterm birth and its subtypes with eicosanoid enzymatic pathways and inflammatory markers publication-title: Sci Rep doi: 10.1038/s41598-019-53448-z – volume: 3 year: 2016 ident: B113 article-title: Quantitative analysis of ultrasound images for computer-aided diagnosis publication-title: J Med Imaging doi: 10.1117/1.JMI.3.1.014501 – volume: 13 start-page: 69 year: 2020 ident: B1 article-title: Machine learning and artificial intelligence: definitions, applications, and future directions publication-title: Curr Rev Musculoskelet Med doi: 10.1007/s12178-020-09600-8 – volume: 21 start-page: 26 year: 2021 ident: B134 article-title: Fetal birthweight prediction with measured data by a temporal machine learning method publication-title: BMC Med Inform Decis Mak doi: 10.1186/s12911-021-01388-y – volume: 197 year: 2007 ident: B140 article-title: The twin-twin transfusion syndrome: spectrum of cardiovascular abnormality and development of a cardiovascular score to assess severity of disease publication-title: Am J Obstet Gynecol doi: 10.1016/j.ajog.2007.06.055 – volume: 32 year: 2019 ident: B133 article-title: Predictive model for macrosomia using maternal parameters without sonography information publication-title: J Matern Neonatal Med doi: 10.1080/14767058.2018.1484090 – volume: 16 year: 2013 ident: B142 article-title: Ultrasound assessment of fetal cardiac function publication-title: Australas J Ultrasound Med doi: 10.1002/j.2205-0140.2013.tb00242.x – volume: 196 year: 2020 ident: B79 article-title: Machine learning algorithms to predict early pregnancy loss after in vitro fertilization-embryo transfer with fetal heart rate as a strong predictor publication-title: Comput Methods Programs BioMed doi: 10.1016/j.cmpb.2020.105624 – volume: 10 year: 2020 ident: B66 article-title: Prediction of perinatal death using machine learning models: a birth registry-based cohort study in northern Tanzania publication-title: BMJ Open doi: 10.1136/bmjopen-2020-040132 – volume: 35 year: 2022 ident: B18 article-title: Prediction of gestational diabetes mellitus in the first 19 weeks of pregnancy using machine learning techniques publication-title: J Matern Neonatal Med doi: 10.1080/14767058.2020.1786517 – volume: 385 year: 2015 ident: B58 article-title: Global, regional, and national causes of child mortality in 2000–13, with projections to inform post-2015 priorities: an updated systematic analysis publication-title: Lancet doi: 10.1016/S0140-6736(14)61698-6 – volume: 46 year: 2017 ident: B114 article-title: A new method for three-dimensional evaluation of the cranial shape and the automatic identification of craniosynostosis using 3D stereophotogrammetry publication-title: Int J Oral Maxillofac Surg doi: 10.1016/j.ijom.2017.03.017 – volume: 83 year: 2000 ident: B138 article-title: Temporal variability in birth prevalence of cardiovascular malformations publication-title: Heart doi: 10.1136/heart.83.4.414 – volume: 165 year: 1991 ident: B145 article-title: Shoulder dystocia: should the fetus weighing ≥4000 grams be delivered by cesarean section publication-title: Am J Obstet Gynecol doi: 10.1016/0002-9378(91)90424-P – volume: 11 start-page: 1 year: 2022 ident: B91 article-title: Maternal plasma lipids are involved in the pathogenesis of preterm birth publication-title: Gigascience doi: 10.1093/gigascience/giac004 – volume: 2022 start-page: 1 year: 2022 ident: B131 article-title: Adoption of compound echocardiography under artificial intelligence algorithm in fetal congenial heart disease screening during gestation publication-title: Appl Bionics Biomech doi: 10.1155/2022/6410103 – volume: 21 start-page: 202 year: 2021 ident: B67 article-title: Proposing a machine-learning based method to predict stillbirth before and during delivery and ranking the features: nationwide retrospective cross-sectional study publication-title: BMC Pregnancy Childbirth doi: 10.1186/s12884-021-03658-z – volume: 11 year: 2018 ident: B22 article-title: Visceral fat mass as a novel risk factor for predicting gestational diabetes in obese pregnant women publication-title: Obstet Med doi: 10.1177/1753495X17754149 – volume: 12 year: 2021 ident: B80 article-title: Using deep learning in a monocentric study to characterize maternal immune environment for predicting pregnancy outcomes in the recurrent reproductive failure patients publication-title: Front Immunol doi: 10.3389/fimmu.2021.642167 – volume: 14 year: 2019 ident: B45 article-title: Prediction model development of late-onset preeclampsia using machine learning-based methods publication-title: PloS One doi: 10.1371/journal.pone.0221202 – volume: 132 year: 2022 ident: B32 article-title: Machine learning-based models for gestational diabetes mellitus prediction before 24–28 weeks of pregnancy: a review publication-title: Artif Intell Med doi: 10.1016/j.artmed.2022.102378 – volume: 10 year: 2022 ident: B89 article-title: The prediction of preterm birth using time-series technology-based machine learning: retrospective cohort study publication-title: JMIR Med Inf doi: 10.2196/33835 – volume: 42 year: 2013 ident: B130 article-title: Fetal intelligent navigation echocardiography (FINE): a novel method for rapid, simple, and automatic examination of the fetal heart publication-title: Ultrasound Obstet Gynecol doi: 10.1002/uog.12563 – volume: 145 start-page: 20 year: 2018 ident: B156 article-title: The first-trimester of pregnancy – a window of opportunity for prediction and prevention of pregnancy complications and future life publication-title: Diabetes Res Clin Pract doi: 10.1016/j.diabres.2018.05.002 – volume: 95 year: 2020 ident: B135 article-title: Machine learning on drug-specific data to predict small molecule teratogenicity publication-title: Reprod Toxicol doi: 10.1016/j.reprotox.2020.05.004 – volume-title: Smart manufacturing - when artificial intelligence meets the Internet of things year: 2021 ident: B76 article-title: Applications of machine learning in healthcare doi: 10.5772/intechopen.92297 – volume: 296 year: 2017 ident: B100 article-title: Comparison of maternal and fetal complications in elective and emergency cesarean section: a systematic review and meta-analysis publication-title: Arch Gynecol Obstet doi: 10.1007/s00404-017-4445-2 – volume: 222 start-page: 613.e1 year: 2020 ident: B109 article-title: Prediction of vaginal birth after cesarean deliveries using machine learning publication-title: Am J Obstet Gynecol doi: 10.1016/j.ajog.2019.12.267 – volume: 18 year: 2023 ident: B23 article-title: Evaluation of first and second trimester maternal thyroid profile on the prediction of gestational diabetes mellitus and post load glycemia publication-title: PloS One doi: 10.1371/journal.pone.0280513 – volume: 17 year: 2010 ident: B82 article-title: Comprehensive analysis of HLA-G: implications for recurrent spontaneous abortion publication-title: Reprod Sci doi: 10.1177/1933719109356802 – volume: 34 year: 2019 ident: B151 article-title: Research evidence on strategies enabling integration of electronic health records in the health care systems of low- and middle-income countries: a literature review publication-title: Int J Health Plann Manage doi: 10.1002/hpm.2754 – volume: 8 start-page: 45 year: 2021 ident: B2 article-title: Data mining, machine learning, deep learning, chemometrics. definitions, common points and trends (Spoiler alert: VALIDATE your models!) publication-title: Braz J Anal Chem doi: 10.30744/brjac.2179-3425.AR-38-2021 – volume: 30 start-page: 33 year: 2016 ident: B110 article-title: Continuous cardiotocography during labour: analysis, classification and management publication-title: Best Pract Res Clin Obstet Gynaecol doi: 10.1016/j.bpobgyn.2015.03.022 – volume: 29 year: 2015 ident: B155 article-title: The first trimester: prediction and prevention of the great obstetrical syndromes publication-title: Best Pract Res Clin Obstet Gynaecol doi: 10.1016/j.bpobgyn.2014.09.006 – volume: 50 start-page: 96 year: 2013 ident: B10 article-title: Breaking with trends in pre-processing publication-title: TrAC Trends Anal Chem doi: 10.1016/j.trac.2013.04.015 – volume: 10 start-page: 19259 year: 2020 ident: B29 article-title: Spectrochemical differentiation in gestational diabetes mellitus based on attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy and multivariate analysis publication-title: Sci Rep doi: 10.1038/s41598-020-75539-y – volume: 10 start-page: 1 year: 2022 ident: B160 article-title: Application of artificial intelligence in screening for adverse perinatal outcomes–a systematic review publication-title: Healthc doi: 10.3390/healthcare10112164 – volume: 36 year: 2017 ident: B115 article-title: Automated annotation and quantitative description of ultrasound videos of the fetal heart publication-title: Med Image Anal doi: 10.1016/j.media.2016.11.006 – volume: 54 year: 2020 ident: B50 article-title: Artificial intelligence-assisted prediction of preeclampsia: development and external validation of a nationwide health insurance dataset of the BPJS kesehatan in Indonesia publication-title: EBioMedicine doi: 10.1016/j.ebiom.2020.102710 – volume: 78 year: 2018 ident: B98 article-title: Does an immigrant background affect the indication, incidence or outcome of emergency cesarean section? results of the prospective data collection of 111 births publication-title: Geburtshilfe Frauenheilkd doi: 10.1055/s-0044-100147 – volume: 2021 start-page: 1 year: 2021 ident: B53 article-title: Integrated learning: screening optimal biomarkers for identifying preeclampsia in placental mRNA samples publication-title: Comput Math Methods Med doi: 10.1155/2021/6691096 – volume: 38 start-page: 199 year: 1991 ident: B126 article-title: Foetos: an expert system for fetal assessment publication-title: IEEE Trans BioMed Eng doi: 10.1109/10.76387 – volume: 23 year: 2021 ident: B31 article-title: Toward a multivariate prediction model of pharmacological treatment for women with gestational diabetes mellitus: algorithm development and validation publication-title: J Med Internet Res doi: 10.2196/21435 – volume: 66 year: 2020 ident: B75 article-title: Exploring the molecular mechanism and biomarker of recurrent spontaneous abortion based on RNA sequencing analysis publication-title: Clin Lab doi: 10.7754/Clin.Lab.2020.200222 – volume: 39 year: 2019 ident: B52 article-title: An integrative bioinformatics analysis of microarray data for identifying hub genes as diagnostic biomarkers of preeclampsia publication-title: Biosci Rep doi: 10.1042/BSR20190187 – volume: 10 start-page: 5354 year: 2020 ident: B62 article-title: Stillbirth risk prediction using machine learning for a large cohort of births from Western australia 1980–2015 publication-title: Sci Rep doi: 10.1038/s41598-020-62210-9 – year: 2018 ident: B93 article-title: A machine learning approach for an early prediction of preterm delivery publication-title: 2018 IEEE 16th Int Symp Intell Syst Inf doi: 10.1109/SISY.2018.8524818 – volume: 48 year: 2016 ident: B143 article-title: Fetal cardiovascular remodeling persists at 6 months in infants with intrauterine growth restriction publication-title: Ultrasound Obstet Gynecol doi: 10.1002/uog.15767 – volume: 18 start-page: 103 year: 2016 ident: B35 article-title: The usefulness of fetal Doppler evaluation in early versus late onset intrauterine growth restriction. review of the literature publication-title: Med Ultrason doi: 10.11152/mu.2013.2066.181.dop – volume: 3 start-page: 16 year: 2019 ident: B15 article-title: Methodological standards for the development and evaluation of clinical prediction rules: a review of the literature publication-title: Diagn Progn Res doi: 10.1186/s41512-019-0060-y – volume-title: The WHO application of ICD-10 to deaths during the perinatal period: ICD-PM year: 2016 ident: B57 – volume: 2 start-page: 12 year: 2019 ident: B77 article-title: Towards a gamete matching platform: using immunogenetics and artificial intelligence to predict recurrent miscarriage publication-title: NPJ Digit Med doi: 10.1038/s41746-019-0089-x – volume: 44 year: 2021 ident: B16 article-title: 2. classification and diagnosis of diabetes: standards of medical care in diabetes–2021 publication-title: Diabetes Care doi: 10.2337/dc21-S002 – volume: 34 year: 2013 ident: B37 article-title: First trimester hyperglycosylated human chorionic gonadotrophin in serum – a marker of early-onset preeclampsia publication-title: Placenta doi: 10.1016/j.placenta.2013.08.006 – volume: 38 year: 2011 ident: B36 article-title: Role of dysfunctional maternal venous hemodynamics in the pathophysiology of pre-eclampsia: a review publication-title: Ultrasound Obstet Gynecol doi: 10.1002/uog.9061 – year: 2004 ident: B128 article-title: Identification of fetal sufferance antepartum through a multiparametric analysis and a support vector machine doi: 10.1109/IEMBS.2004.1403194 – volume: 21 start-page: 116 year: 2021 ident: B107 article-title: A prediction model using machine-learning algorithm for assessing intrathecal hyperbaric bupivacaine dose during cesarean section publication-title: BMC Anesthesiol doi: 10.1186/s12871-021-01331-8 – volume: 47 year: 2020 ident: B141 article-title: Machine learning in fetal cardiology: what to expect publication-title: Fetal Diagn Ther doi: 10.1159/000505021 – volume: 37 year: 2021 ident: B27 article-title: Identification of diagnostic cytosine-phosphate-guanine biomarkers in patients with gestational diabetes mellitus via epigenome-wide association study and machine learning publication-title: Gynecol Endocrinol doi: 10.1080/09513590.2021.1937101 – volume: 3 year: 2020 ident: B65 article-title: Predictive modeling for perinatal mortality in resource-limited settings publication-title: JAMA Netw Open doi: 10.1001/jamanetworkopen.2020.26750 – volume: 37 start-page: 22 year: 2017 ident: B118 article-title: A framework for analysis of linear ultrasound videos to detect fetal presentation and heartbeat publication-title: Med Image Anal doi: 10.1016/j.media.2017.01.003 – volume: 42 start-page: 045007 year: 2021 ident: B120 article-title: A dilated inception CNN-LSTM network for fetal heart rate estimation publication-title: Physiol Meas doi: 10.1088/1361-6579/abf7db – volume: 7 year: 2020 ident: B26 article-title: Whole-genome promoter profiling of plasma DNA exhibits diagnostic value for placenta-origin pregnancy complications publication-title: Adv Sci doi: 10.1002/advs.201901819 – volume: 17 year: 2004 ident: B33 article-title: Management of pre-eclampsia/eclampsia publication-title: Middle East J Anaesthesiol – volume: 7 year: 2019 ident: B84 article-title: Global, regional, and national estimates of levels of preterm birth in 2014: a systematic review and modelling analysis publication-title: Lancet Glob Heal doi: 10.1016/S2214-109X(18)30451-0 – volume: 12 year: 2022 ident: B83 article-title: The future is coming: artificial intelligence in the treatment of infertility could improve assisted reproduction outcomes–the value of regulatory frameworks publication-title: Diagnostics doi: 10.3390/diagnostics12122979 – start-page: 23 volume-title: Advances and technical standards in neurosurgery year: 2004 ident: B136 article-title: Advances in craniosynostosis research and management doi: 10.1007/978-3-7091-0558-0_2 – volume: 26 year: 2020 ident: B21 article-title: Prediction of gestational diabetes based on nationwide electronic health records publication-title: Nat Med doi: 10.1038/s41591-019-0724-8 – volume: 14 year: 2019 ident: B42 article-title: The prediction of early preeclampsia: results from a longitudinal proteomics study publication-title: PloS One doi: 10.1371/journal.pone.0217273 – volume: 99 year: 2001 ident: B146 article-title: Perinatal and maternal outcomes of fetal macrosomia publication-title: Eur J Obstet Gynecol Reprod Biol doi: 10.1016/S0301-2115(01)00416-X – volume: 198 year: 2008 ident: B40 article-title: Circulatory soluble endoglin and its predictive value for preeclampsia in second-trimester pregnancies with abnormal uterine perfusion publication-title: Am J Obstet Gynecol doi: 10.1016/j.ajog.2007.08.052 – volume: 22 start-page: 1 year: 2022 ident: B5 article-title: Machine learning to predict pregnancy outcomes: a systematic review, synthesizing framework and future research agenda publication-title: BMC Pregnancy Childbirth doi: 10.1186/s12884-022-04594-2 – volume: 196 year: 2020 ident: B104 article-title: Classifying the type of delivery from cardiotocographic signals: a machine learning approach publication-title: Comput Methods Programs BioMed doi: 10.1016/j.cmpb.2020.105712 – volume: 2018 start-page: 1 year: 2018 ident: B105 article-title: The design and implementation of cardiotocography signals classification algorithm based on neural network publication-title: Comput Math Methods Med doi: 10.1155/2018/8568617 – volume: 14 year: 2019 ident: B13 article-title: A new typology design of performance metrics to measure errors in machine learning regression algorithms publication-title: Interdiscip J Information Knowledge Manag doi: 10.28945/4184 – volume: 181 start-page: 92 year: 2020 ident: B3 article-title: How machine learning will transform biomedicine publication-title: Cell doi: 10.1016/j.cell.2020.03.022 – volume: 8 start-page: 14 year: 2020 ident: B64 article-title: Predicting risk of stillbirth and preterm pregnancies with machine learning publication-title: Heal Inf Sci Syst doi: 10.1007/s13755-020-00105-9 – volume: 47 year: 2022 ident: B152 article-title: Implementation of electronic health records during global outreach: a necessary next step in measuring and improving quality of care publication-title: J Handb Surg Am doi: 10.1016/j.jhsa.2021.09.016 – volume: 8 year: 2020 ident: B49 article-title: Prediction of preeclampsia and intrauterine growth restriction: development of machine learning models on a prospective cohort publication-title: JMIR Med Inf doi: 10.2196/15411 – volume: 5 start-page: 47 year: 2019 ident: B17 article-title: Gestational diabetes mellitus publication-title: Nat Rev Dis Prim doi: 10.1038/s41572-019-0098-8 – volume: 173 year: 2023 ident: B154 article-title: Machine learning-based clinical decision support systems for pregnancy care: a systematic review publication-title: Int J Med Inform doi: 10.1016/j.ijmedinf.2023.105040 – volume: 9 year: 2020 ident: B159 article-title: Advantages and disadvantages of artificial intelligence and machine learning: a literature review publication-title: Int J Libr Inf Sci doi: 10.17605/OSF.IO/GV5T4 – volume: 106 year: 2021 ident: B20 article-title: Early prediction of gestational diabetes mellitus in the Chinese population via advanced machine learning publication-title: J Clin Endocrinol Metab doi: 10.1210/clinem/dgaa899 – volume: 19 year: 1998 ident: B99 article-title: Psychological impact of emergency cesarean section in comparison with elective cesarean section, instrumental and normal vaginal delivery publication-title: J Psychosom Obstet Gynecol doi: 10.3109/01674829809025691 – volume: 17 year: 2021 ident: B162 article-title: Perinatal health predictors using artificial intelligence: a review publication-title: Women’s Heal doi: 10.1177/17455065211046132 – volume: 21 start-page: 131 year: 2021 ident: B71 article-title: Prediction of neonatal deaths in NICUs: development and validation of machine learning models publication-title: BMC Med Inform Decis Mak doi: 10.1186/s12911-021-01497-8 – volume-title: Applied chemometrics for scientists year: 2007 ident: B6 doi: 10.1002/9780470057780 – volume-title: Making every baby Count : audit and review of stillbirths and neonatal deaths year: 2016 ident: B56 – volume: 58 year: 2022 ident: B157 article-title: First trimester prediction of adverse pregnancy outcomes–identifying pregnancies at risk from as early as 11–13 weeks publication-title: Medicina (B Aires) doi: 10.3390/medicina58030332 – volume: 2 year: 2020 ident: B46 article-title: Early prediction of preeclampsia via machine learning publication-title: Am J Obstet Gynecol MFM doi: 10.1016/j.ajogmf.2020.100100 – year: 2014 ident: B129 article-title: Features based IUGR diagnosis using variational level set method and classification using artificial neural networks doi: 10.1109/ICSIP.2014.54 – volume: 118 start-page: 394 year: 2021 ident: B72 article-title: Machine learning models for predicting neonatal mortality: a systematic review publication-title: Neonatology doi: 10.1159/000516891 – volume-title: Danforth’s obstetrics and gynecology year: 2008 ident: B8 – volume: 16 year: 2016 ident: B124 article-title: A study of an intelligent system to support decision making in the management of labour using the cardiotocograph – the INFANT study protocol publication-title: BMC Pregnancy Childbirth doi: 10.1186/s12884-015-0780-0 – volume: 28 start-page: 68 year: 2013 ident: B74 article-title: Accurate prediction of pregnancy viability by means of a simple scoring system publication-title: Hum Reprod doi: 10.1093/humrep/des352 – volume: 28 year: 2015 ident: B38 article-title: Maternal serum anti-müllerian hormone at 11–13 weeks’ gestation in the prediction of preeclampsia publication-title: J Matern Neonatal Med doi: 10.3109/14767058.2014.937418 – volume: 26 year: 2021 ident: B55 article-title: A multi-objective approach for drug repurposing in preeclampsia publication-title: Molecules doi: 10.3390/molecules26040777 – volume: 49 year: 2007 ident: B39 article-title: Predictive value of maternal angiogenic factors in second trimester pregnancies with abnormal uterine perfusion publication-title: Hypertension doi: 10.1161/01.HYP.0000258404.21552.a3 – start-page: 1 year: 2016 ident: B117 article-title: A deep learning approach to fetal-ECG signal reconstruction – start-page: 1 year: 2020 ident: B121 article-title: Deep convolutional long short-term memory network for fetal heart rate extraction – volume: 98 year: 2009 ident: B139 article-title: Congenital heart disease in 111 225 births in Belgium: birth prevalence, treatment and survival in the 21st century publication-title: Acta Paediatr doi: 10.1111/j.1651-2227.2008.01152.x – volume: 284 year: 2000 ident: B14 article-title: Users’ guides to the medical literature publication-title: JAMA doi: 10.1001/jama.284.1.79 – volume: 174 start-page: 33 year: 2018 ident: B12 article-title: Multivariate comparison of classification performance measures publication-title: Chemom Intell Lab Syst doi: 10.1016/j.chemolab.2017.12.004 – volume: 154 start-page: 47 year: 2017 ident: B97 article-title: Emergency caesarean section publication-title: J Visc Surg doi: 10.1016/j.jviscsurg.2016.09.012 – volume: 46 year: 2018 ident: B43 article-title: CircRNA-0004904, CircRNA-0001855, and PAPP-a: potential novel biomarkers for the prediction of preeclampsia publication-title: Cell Physiol Biochem doi: 10.1159/000489685 – volume: 71 year: 2018 ident: B137 article-title: The role of ultrasound technology in plastic surgery publication-title: J Plast Reconstr Aesthetic Surg doi: 10.1016/j.bjps.2017.08.031 – volume: 4 start-page: 1 year: 2021 ident: B24 article-title: Metabolic dysfunction in pregnancy: fingerprinting the maternal metabolome using proton nuclear magnetic resonance spectroscopy publication-title: Endocrinol Diabetes Metab doi: 10.1002/edm2.201 – volume: 22 start-page: 1 year: 2021 ident: B161 article-title: Towards deep phenotyping pregnancy: a systematic review on artificial intelligence and machine learning methods to improve pregnancy outcomes publication-title: Brief Bioinform doi: 10.1093/bib/bbaa369 – volume: 8 year: 2020 ident: B70 article-title: Machine learning methods for neonatal mortality and morbidity classification publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3006710 – volume: 15 year: 2018 ident: B11 article-title: Statistics versus machine learning publication-title: Nat Methods doi: 10.1038/nmeth.4642 – volume: 79 start-page: 42 year: 2021 ident: B61 article-title: Essential newborn care practice and its associated factors in southwest Ethiopia publication-title: Arch Public Heal doi: 10.1186/s13690-021-00568-6 – volume: 9 year: 2022 ident: B149 article-title: Using machine learning to predict complications in pregnancy: a systematic review publication-title: Front Bioeng Biotechnol doi: 10.3389/fbioe.2021.780389 – volume: 2020 year: 2020 ident: B60 article-title: Death audits and reviews for reducing maternal, perinatal and child mortality publication-title: Cochrane Database Syst Rev doi: 10.1002/14651858.CD012982.pub2 – volume: 111 year: 2020 ident: B54 article-title: Machine learning as a strategy to account for dietary synergy: an illustration based on dietary intake and adverse pregnancy outcomes publication-title: Am J Clin Nutr doi: 10.1093/ajcn/nqaa027 – volume: 203 year: 2010 ident: B125 article-title: Comparison of 5 experts and computer analysis in rule-based fetal heart rate interpretation publication-title: Am J Obstet Gynecol doi: 10.1016/j.ajog.2010.05.037 – start-page: 89 volume-title: Reproductive and developmental toxicology year: 2011 ident: B147 article-title: Reproductive and developmental safety evaluation of new pharmaceutical compounds doi: 10.1016/B978-0-12-382032-7.10008-6 – volume: 14 year: 2019 ident: B48 article-title: Clinical risk assessment in early pregnancy for preeclampsia in nulliparous women: a population based cohort study publication-title: PloS One doi: 10.1371/journal.pone.0225716 – volume: 100 year: 2019 ident: B88 article-title: Deep learning predicts extreme preterm birth from electronic health records publication-title: J BioMed Inform doi: 10.1016/j.jbi.2019.103334 – volume: 16 year: 1997 ident: B127 article-title: IUGR detection by ultrasonographic examinations using neural networks publication-title: IEEE Eng Med Biol Mag doi: 10.1109/51.585518 – volume: 122 start-page: 1 year: 2011 ident: B148 article-title: Thalidomide: the tragedy of birth defects and the effective treatment of disease publication-title: Toxicol Sci doi: 10.1093/toxsci/kfr088 – volume: 181 year: 2019 ident: B25 article-title: Early diagnosis of gestational diabetes mellitus using circulating microRNAs publication-title: Eur J Endocrinol doi: 10.1530/EJE-19-0206 – volume: 85 year: 2007 ident: B9 article-title: Robust statistics in data analysis {{/amp]]mdash; a review publication-title: Chemom Intell Lab Syst doi: 10.1016/j.chemolab.2006.06.016 – volume: 76 year: 2015 ident: B81 article-title: HLA associations and HLA sharing in recurrent miscarriage: a systematic review and meta-analysis publication-title: Hum Immunol doi: 10.1016/j.humimm.2015.02.004 – volume: 18 year: 2014 ident: B112 article-title: Personalized assessment of craniosynostosis via statistical shape modeling publication-title: Med Image Anal doi: 10.1016/j.media.2014.02.008 – volume: 3 year: 2020 ident: B92 article-title: Multiomics characterization of preterm birth in low- and middle-income countries publication-title: JAMA Netw Open doi: 10.1001/jamanetworkopen.2020.29655 – volume: 300 year: 2019 ident: B86 article-title: Analysis of big data for prediction of provider-initiated preterm birth and spontaneous premature deliveries and ranking the predictive features publication-title: Arch Gynecol Obstet doi: 10.1007/s00404-019-05325-3 – volume: 11 year: 2013 ident: B73 article-title: New insights into mechanisms behind miscarriage publication-title: BMC Med doi: 10.1186/1741-7015-11-154 – volume: 39 year: 2001 ident: B47 article-title: Prediction of the development of pregnancy-induced hypertensive disorders in high-risk pregnant women by artificial neural networks publication-title: Clin Chem Lab Med doi: 10.1515/CCLM.2001.132 – volume: 16 start-page: 89 year: 2017 ident: B102 article-title: Classification of caesarean section and normal vaginal deliveries using foetal heart rate signals and advanced machine learning algorithms publication-title: BioMed Eng Online doi: 10.1186/s12938-017-0378-z – start-page: 1 volume-title: Biomedical translational research year: 2022 ident: B153 article-title: Introduction to emerging technologies in biomedical sciences doi: 10.1007/978-981-16-4345-3_1 – volume: 24 year: 2020 ident: B44 article-title: A new predicting model of preeclampsia based on peripheral blood test values publication-title: Eur Rev Med Pharmacol Sci doi: 10.26355/eurrev_202007_21874 – volume: 93 start-page: 7 year: 2018 ident: B103 article-title: Machine learning ensemble modelling to classify caesarean section and vaginal delivery types using cardiotocography traces publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2017.12.002 – volume: 103 year: 2021 ident: B30 article-title: Maternal thyroid profile in first and second trimester of pregnancy is correlated with gestational diabetes mellitus through machine learning publication-title: Placenta doi: 10.1016/j.placenta.2020.10.015 – volume: 19 start-page: 252 year: 2019 ident: B19 article-title: A simple model to predict risk of gestational diabetes mellitus from 8 to 20 weeks of gestation in Chinese women publication-title: BMC Pregnancy Childbirth doi: 10.1186/s12884-019-2374-8 – volume: 35 year: 2022 ident: B51 article-title: Ultrasound placental image texture analysis using artificial intelligence to predict hypertension in pregnancy publication-title: J Matern Neonatal Med doi: 10.1080/14767058.2021.1887847 – volume: 10 year: 2011 ident: B119 article-title: Antepartum fetal heart rate feature extraction and classification using empirical mode decomposition and support vector machine publication-title: BioMed Eng Online doi: 10.1186/1475-925X-10-6 – volume: 163 start-page: 87 year: 2018 ident: B111 article-title: Fetal health status prediction based on maternal clinical history using machine learning techniques publication-title: Comput Methods Programs BioMed doi: 10.1016/j.cmpb.2018.06.010 – volume: 19 start-page: 286 year: 2019 ident: B123 article-title: DeepFHR: intelligent prediction of fetal acidemia using fetal heart rate signals based on convolutional neural network publication-title: BMC Med Inform Decis Mak doi: 10.1186/s12911-019-1007-5 – volume: 221 year: 2018 ident: B69 article-title: Postoperative neonatal mortality prediction using superlearning publication-title: J Surg Res doi: 10.1016/j.jss.2017.09.002 – volume: 122 year: 2013 ident: B34 article-title: Hypertension in pregnancy publication-title: Obstet Gynecol doi: 10.1097/01.AOG.0000437382.03963.88 – volume: 8 start-page: 1 year: 2020 ident: B150 article-title: Comparison of multivariable logistic regression and other machine learning algorithms for prognostic prediction studies in pregnancy care: systematic review and meta-analysis publication-title: JMIR Med Inf doi: 10.2196/16503 – volume: 90 year: 2011 ident: B101 article-title: Emergency cesarean sections can be predicted by markers for stress, worry and sleep disturbances in first-time mothers publication-title: Acta Obstet Gynecol Scand doi: 10.1111/j.1600-0412.2010.01056.x – volume: 44 year: 2021 ident: B106 article-title: Three machine learning algorithms and their utility in exploring risk factors associated with primary cesarean section in low-risk women: a methods paper publication-title: Res Nurs Health doi: 10.1002/nur.22122 – volume: 4 start-page: e98 year: 2016 ident: B59 article-title: National, regional, and worldwide estimates of stillbirth rates in 2015, with trends from 2000: a systematic analysis publication-title: Lancet Glob Heal doi: 10.1016/S2214-109X(15)00275-2 – volume: 16 year: 2021 ident: B87 article-title: Prediction of preterm birth in nulliparous women using logistic regression and machine learning publication-title: PloS One doi: 10.1371/journal.pone.0252025 – volume: 123 year: 2016 ident: B95 article-title: Association between rates of caesarean section and maternal and neonatal mortality in the 21st century: a worldwide population-based ecological study with longitudinal data publication-title: BJOG Int J Obstet Gynaecol doi: 10.1111/1471-0528.13592 – volume: 20 year: 2019 ident: B158 article-title: Big data and machine learning algorithms for health-care delivery publication-title: Lancet Oncol doi: 10.1016/S1470-2045(19)30149-4 – volume: 122 year: 2020 ident: B96 article-title: Cesarean delivery and infant cortisol regulation publication-title: Psychoneuroendocrinology doi: 10.1016/j.psyneuen.2020.104862 – volume: 24 start-page: 27 year: 2019 ident: B85 article-title: The prediction of preterm delivery: what is new publication-title: Semin Fetal Neonatal Med doi: 10.1016/j.siny.2018.09.006 – volume: 5 year: 2014 ident: B144 article-title: Epigenetic regulation of the neural transcriptome and alcohol interference during development publication-title: Front Genet doi: 10.3389/fgene.2014.00285 – volume: 8 year: 2017 ident: B122 article-title: A hybrid EMD-kurtosis method for estimating fetal heart rate from continuous Doppler signals publication-title: Front Physiol doi: 10.3389/fphys.2017.00641 – volume: 10 start-page: 16142 year: 2020 ident: B41 article-title: Metabolomic biomarkers in midtrimester maternal plasma can accurately predict the development of preeclampsia publication-title: Sci Rep doi: 10.1038/s41598-020-72852-4 – volume: 16 start-page: 274 year: 2016 ident: B63 article-title: Predicting stillbirth in a low resource setting publication-title: BMC Pregnancy Childbirth doi: 10.1186/s12884-016-1061-2 – volume: 15 year: 2019 ident: B132 article-title: Exon level machine learning analyses elucidate novel candidate miRNA targets in an avian model of fetal alcohol spectrum disorder publication-title: PloS Comput Biol doi: 10.1371/journal.pcbi.1006937 – year: 2019 ident: B108 article-title: Application of machine learning to prediction of surgical site infection publication-title: 2019 41st Annu Int Conf IEEE Eng Med Biol Soc (EMBC) doi: 10.1109/EMBC.2019.8857942 – volume: 13 year: 2022 ident: B68 article-title: Prediction of mortality of premature neonates using neural network and logistic regression publication-title: J Ambient Intell Humaniz Comput doi: 10.1007/s12652-020-02562-2 – volume: 85 year: 2020 ident: B94 article-title: Intelligent system based on data mining techniques for prediction of preterm birth for women with cervical cerclage publication-title: Comput Biol Chem doi: 10.1016/j.compbiolchem.2020.107233 |
SSID | ssj0000401998 |
Score | 2.446992 |
SecondaryResourceType | review_article |
Snippet | Machine learning (ML) corresponds to a wide variety of methods that use mathematics, statistics and computational science to learn from multiple variables... IntroductionMachine learning (ML) corresponds to a wide variety of methods that use mathematics, statistics and computational science to learn from multiple... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1130139 |
SubjectTerms | adverse perinatal outcomes artificial intelligence Endocrinology machine learning pregnancy complications pregnancy diseases |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSyQxEA7iQbyIr93t9UEEb9LYPanppL2pKCKMJwVvIU8VJCPzOPjvt5K0w7TIepG-dSfpkKqkviJVXxFyDBY4021det2wEpS2pTLClaoCh48d8HSjO7prbh7g9nH4uFTqK8aEZXrgvHCn4CvNrWfMoOnntda6NgrHAI_QgXEfT1-0eUvOVDqD0W1ARyJnyaAX1p56F2xM9huwWMYkAp-eJUqE_V-hzM_BkkvW53qTbHSwkZ7n6W6RFRe2ydqouxjfIe-jFBTpaFcF4omqDC_pS6AIShPTM1XBUu8QbtOc_nhGFQ1qksm_ac5ioX5s5lPsOA70beKeIiHHO-3ucaZpiF4Y-i55uL66v7wpu6oKpUFXeFYy7zSiNIfWUWgQHpjzXLGh0EJ4bocDzZvKG-ZaUByNOaimEsqKmumqUQDsF1kN4-D-EBozoltoWVt5Cy0YYRw6jI6joJRm4AtSf6ywNB3leKx88SrR9YhSkUkqMkpFdlIpyMmiz1sm3Phv64souEXLSJadXqAKyU6F5HcqVJCjD7FL3FzxxkQFN55PZYyx5VWDPmpBfmc1WPyKIfIDxAAFET0F6c2l_yW8PCcC7zqTDDV_f2L2e2Q9rkiMaKjbfbI6m8zdAQKlmT5Me-IfDXYTYA priority: 102 providerName: Directory of Open Access Journals |
Title | Machine learning applied in maternal and fetal health: a narrative review focused on pregnancy diseases and complications |
URI | https://www.ncbi.nlm.nih.gov/pubmed/37274341 https://www.proquest.com/docview/2822706924 https://pubmed.ncbi.nlm.nih.gov/PMC10235786 https://doaj.org/article/4f0b7df33c32471bbb1ca4d24f35237f |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEA_nCeLL4fm56h0RfJNq28wmqSCi4nkI65ML-1aSJlkPjvSuuwvuf-_kYxcrpyCFQr_SNpPp_KaZ-Q0hL8GAYLqpCqc5K0BpU6hO2kKVYHExtYgzurNv_HwOXxfTxQHZlTvKHbi60bUL9aTmw-Xrn9fb96jw74LHifb2jbPehDy-moUKJQHT3CK30TKJoKizDPfjlxmdiSaWx604h6JGbJDyaP7SzMhWRUr_m3Don-GUv9mns3vkKANL-iGNhGNyYP19cmeWp84fkO0shk1amutELKlKAJReeIqwNXJBU-UNdRb7gqYEybdUUa-GRA9OU54LdX23WeGFvadXg10Gyo4tzTM9q9jEKFD9IZmfff7-6bzIdReKDp3ldcGc1YjjLNpPqUE6YNYJxaZSS-mEmdZa8NJ1zDagBJp7ULyUysiK6ZIrAPaIHPre2yeEhpzpBhrWlM5AA53sLLqUVtQglGbgJqTa9XDbZVLyUBvjskXnJEiljVJpg1TaLJUJebW_5ipRcvzz7I9BcPszA5123NEPyzZrZwuu1MI4xjrEl6LSWledwoEKDvEpE_iYL3Zib1H9wpyK8rbfrNoQhStKjl7shDxOw2B_K4bYEBAlTIgcDZDRs4yP-IsfkeK7SjRE_Ol_veszcjdshuCGqnlODtfDxp4gZlrr0_ivAddfFtVpVIpfqJIWsg |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+applied+in+maternal+and+fetal+health%3A+a+narrative+review+focused+on+pregnancy+diseases+and+complications&rft.jtitle=Frontiers+in+endocrinology+%28Lausanne%29&rft.au=Mennickent%2C+Daniela&rft.au=Rodr%C3%ADguez%2C+Andr%C3%A9s&rft.au=Opazo%2C+Ma.+Cecilia&rft.au=Riedel%2C+Claudia+A.&rft.date=2023-05-19&rft.issn=1664-2392&rft.eissn=1664-2392&rft.volume=14&rft_id=info:doi/10.3389%2Ffendo.2023.1130139&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fendo_2023_1130139 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-2392&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-2392&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-2392&client=summon |