Machine learning applied in maternal and fetal health: a narrative review focused on pregnancy diseases and complications

Machine learning (ML) corresponds to a wide variety of methods that use mathematics, statistics and computational science to learn from multiple variables simultaneously. By means of pattern recognition, ML methods are able to find hidden correlations and accomplish accurate predictions regarding di...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in endocrinology (Lausanne) Vol. 14; p. 1130139
Main Authors Mennickent, Daniela, Rodríguez, Andrés, Opazo, Ma. Cecilia, Riedel, Claudia A., Castro, Erica, Eriz-Salinas, Alma, Appel-Rubio, Javiera, Aguayo, Claudio, Damiano, Alicia E., Guzmán-Gutiérrez, Enrique, Araya, Juan
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 19.05.2023
Subjects
Online AccessGet full text
ISSN1664-2392
1664-2392
DOI10.3389/fendo.2023.1130139

Cover

Loading…
Abstract Machine learning (ML) corresponds to a wide variety of methods that use mathematics, statistics and computational science to learn from multiple variables simultaneously. By means of pattern recognition, ML methods are able to find hidden correlations and accomplish accurate predictions regarding different conditions. ML has been successfully used to solve varied problems in different areas of science, such as psychology, economics, biology and chemistry. Therefore, we wondered how far it has penetrated into the field of obstetrics and gynecology. To describe the state of art regarding the use of ML in the context of pregnancy diseases and complications. Publications were searched in PubMed, Web of Science and Google Scholar. Seven subjects of interest were considered: gestational diabetes mellitus, preeclampsia, perinatal death, spontaneous abortion, preterm birth, cesarean section, and fetal malformations. ML has been widely applied in all the included subjects. Its uses are varied, the most common being the prediction of perinatal disorders. Other ML applications include (but are not restricted to) biomarker discovery, risk estimation, correlation assessment, pharmacological treatment prediction, drug screening, data acquisition and data extraction. Most of the reviewed articles were published in the last five years. The most employed ML methods in the field are non-linear. Except for logistic regression, linear methods are rarely used. To improve data recording, storage and update in medical and research settings from different realities. To develop more accurate and understandable ML models using data from cutting-edge instruments. To carry out validation and impact analysis studies of currently existing high-accuracy ML models. The use of ML in pregnancy diseases and complications is quite recent, and has increased over the last few years. The applications are varied and point not only to the diagnosis, but also to the management, treatment, and pathophysiological understanding of perinatal alterations. Facing the challenges that come with working with different types of data, the handling of increasingly large amounts of information, the development of emerging technologies, and the need of translational studies, it is expected that the use of ML continue growing in the field of obstetrics and gynecology.
AbstractList Machine learning (ML) corresponds to a wide variety of methods that use mathematics, statistics and computational science to learn from multiple variables simultaneously. By means of pattern recognition, ML methods are able to find hidden correlations and accomplish accurate predictions regarding different conditions. ML has been successfully used to solve varied problems in different areas of science, such as psychology, economics, biology and chemistry. Therefore, we wondered how far it has penetrated into the field of obstetrics and gynecology. To describe the state of art regarding the use of ML in the context of pregnancy diseases and complications. Publications were searched in PubMed, Web of Science and Google Scholar. Seven subjects of interest were considered: gestational diabetes mellitus, preeclampsia, perinatal death, spontaneous abortion, preterm birth, cesarean section, and fetal malformations. ML has been widely applied in all the included subjects. Its uses are varied, the most common being the prediction of perinatal disorders. Other ML applications include (but are not restricted to) biomarker discovery, risk estimation, correlation assessment, pharmacological treatment prediction, drug screening, data acquisition and data extraction. Most of the reviewed articles were published in the last five years. The most employed ML methods in the field are non-linear. Except for logistic regression, linear methods are rarely used. To improve data recording, storage and update in medical and research settings from different realities. To develop more accurate and understandable ML models using data from cutting-edge instruments. To carry out validation and impact analysis studies of currently existing high-accuracy ML models. The use of ML in pregnancy diseases and complications is quite recent, and has increased over the last few years. The applications are varied and point not only to the diagnosis, but also to the management, treatment, and pathophysiological understanding of perinatal alterations. Facing the challenges that come with working with different types of data, the handling of increasingly large amounts of information, the development of emerging technologies, and the need of translational studies, it is expected that the use of ML continue growing in the field of obstetrics and gynecology.
IntroductionMachine learning (ML) corresponds to a wide variety of methods that use mathematics, statistics and computational science to learn from multiple variables simultaneously. By means of pattern recognition, ML methods are able to find hidden correlations and accomplish accurate predictions regarding different conditions. ML has been successfully used to solve varied problems in different areas of science, such as psychology, economics, biology and chemistry. Therefore, we wondered how far it has penetrated into the field of obstetrics and gynecology.AimTo describe the state of art regarding the use of ML in the context of pregnancy diseases and complications.MethodologyPublications were searched in PubMed, Web of Science and Google Scholar. Seven subjects of interest were considered: gestational diabetes mellitus, preeclampsia, perinatal death, spontaneous abortion, preterm birth, cesarean section, and fetal malformations.Current stateML has been widely applied in all the included subjects. Its uses are varied, the most common being the prediction of perinatal disorders. Other ML applications include (but are not restricted to) biomarker discovery, risk estimation, correlation assessment, pharmacological treatment prediction, drug screening, data acquisition and data extraction. Most of the reviewed articles were published in the last five years. The most employed ML methods in the field are non-linear. Except for logistic regression, linear methods are rarely used.Future challengesTo improve data recording, storage and update in medical and research settings from different realities. To develop more accurate and understandable ML models using data from cutting-edge instruments. To carry out validation and impact analysis studies of currently existing high-accuracy ML models.ConclusionThe use of ML in pregnancy diseases and complications is quite recent, and has increased over the last few years. The applications are varied and point not only to the diagnosis, but also to the management, treatment, and pathophysiological understanding of perinatal alterations. Facing the challenges that come with working with different types of data, the handling of increasingly large amounts of information, the development of emerging technologies, and the need of translational studies, it is expected that the use of ML continue growing in the field of obstetrics and gynecology.
Machine learning (ML) corresponds to a wide variety of methods that use mathematics, statistics and computational science to learn from multiple variables simultaneously. By means of pattern recognition, ML methods are able to find hidden correlations and accomplish accurate predictions regarding different conditions. ML has been successfully used to solve varied problems in different areas of science, such as psychology, economics, biology and chemistry. Therefore, we wondered how far it has penetrated into the field of obstetrics and gynecology.IntroductionMachine learning (ML) corresponds to a wide variety of methods that use mathematics, statistics and computational science to learn from multiple variables simultaneously. By means of pattern recognition, ML methods are able to find hidden correlations and accomplish accurate predictions regarding different conditions. ML has been successfully used to solve varied problems in different areas of science, such as psychology, economics, biology and chemistry. Therefore, we wondered how far it has penetrated into the field of obstetrics and gynecology.To describe the state of art regarding the use of ML in the context of pregnancy diseases and complications.AimTo describe the state of art regarding the use of ML in the context of pregnancy diseases and complications.Publications were searched in PubMed, Web of Science and Google Scholar. Seven subjects of interest were considered: gestational diabetes mellitus, preeclampsia, perinatal death, spontaneous abortion, preterm birth, cesarean section, and fetal malformations.MethodologyPublications were searched in PubMed, Web of Science and Google Scholar. Seven subjects of interest were considered: gestational diabetes mellitus, preeclampsia, perinatal death, spontaneous abortion, preterm birth, cesarean section, and fetal malformations.ML has been widely applied in all the included subjects. Its uses are varied, the most common being the prediction of perinatal disorders. Other ML applications include (but are not restricted to) biomarker discovery, risk estimation, correlation assessment, pharmacological treatment prediction, drug screening, data acquisition and data extraction. Most of the reviewed articles were published in the last five years. The most employed ML methods in the field are non-linear. Except for logistic regression, linear methods are rarely used.Current stateML has been widely applied in all the included subjects. Its uses are varied, the most common being the prediction of perinatal disorders. Other ML applications include (but are not restricted to) biomarker discovery, risk estimation, correlation assessment, pharmacological treatment prediction, drug screening, data acquisition and data extraction. Most of the reviewed articles were published in the last five years. The most employed ML methods in the field are non-linear. Except for logistic regression, linear methods are rarely used.To improve data recording, storage and update in medical and research settings from different realities. To develop more accurate and understandable ML models using data from cutting-edge instruments. To carry out validation and impact analysis studies of currently existing high-accuracy ML models.Future challengesTo improve data recording, storage and update in medical and research settings from different realities. To develop more accurate and understandable ML models using data from cutting-edge instruments. To carry out validation and impact analysis studies of currently existing high-accuracy ML models.The use of ML in pregnancy diseases and complications is quite recent, and has increased over the last few years. The applications are varied and point not only to the diagnosis, but also to the management, treatment, and pathophysiological understanding of perinatal alterations. Facing the challenges that come with working with different types of data, the handling of increasingly large amounts of information, the development of emerging technologies, and the need of translational studies, it is expected that the use of ML continue growing in the field of obstetrics and gynecology.ConclusionThe use of ML in pregnancy diseases and complications is quite recent, and has increased over the last few years. The applications are varied and point not only to the diagnosis, but also to the management, treatment, and pathophysiological understanding of perinatal alterations. Facing the challenges that come with working with different types of data, the handling of increasingly large amounts of information, the development of emerging technologies, and the need of translational studies, it is expected that the use of ML continue growing in the field of obstetrics and gynecology.
Author Castro, Erica
Eriz-Salinas, Alma
Appel-Rubio, Javiera
Opazo, Ma. Cecilia
Riedel, Claudia A.
Aguayo, Claudio
Rodríguez, Andrés
Mennickent, Daniela
Guzmán-Gutiérrez, Enrique
Damiano, Alicia E.
Araya, Juan
AuthorAffiliation 9 Departamento de Obstetricia y Puericultura, Facultad de Medicina, Universidad de Concepción , Concepción , Chile
3 Machine Learning Applied in Biomedicine (MLAB) , Concepción , Chile
6 Millennium Institute on Immunology and Immunotherapy , Santiago , Chile
11 Laboratorio de Biología de la Reproducción, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO-Houssay)- CONICET, Universidad de Buenos Aires , Buenos Aires , Argentina
1 Departamento de Bioquímica Clínica e Inmunología, Facultad de Farmacia, Universidad de Concepción , Concepción , Chile
8 Departamento de Obstetricia y Puericultura, Facultad de Ciencias de la Salud, Universidad de Atacama , Copiapó , Chile
2 Departamento de Análisis Instrumental, Facultad de Farmacia, Universidad de Concepción , Concepción , Chile
4 Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad del Bío-Bío , Chillán , Chile
7 Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello , Santiago , Chile
AuthorAffiliation_xml – name: 1 Departamento de Bioquímica Clínica e Inmunología, Facultad de Farmacia, Universidad de Concepción , Concepción , Chile
– name: 5 Instituto de Ciencias Naturales, Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas , Santiago , Chile
– name: 7 Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello , Santiago , Chile
– name: 2 Departamento de Análisis Instrumental, Facultad de Farmacia, Universidad de Concepción , Concepción , Chile
– name: 3 Machine Learning Applied in Biomedicine (MLAB) , Concepción , Chile
– name: 4 Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad del Bío-Bío , Chillán , Chile
– name: 10 Cátedra de Biología Celular y Molecular, Departamento de Ciencias Biológicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires , Buenos Aires , Argentina
– name: 6 Millennium Institute on Immunology and Immunotherapy , Santiago , Chile
– name: 11 Laboratorio de Biología de la Reproducción, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO-Houssay)- CONICET, Universidad de Buenos Aires , Buenos Aires , Argentina
– name: 9 Departamento de Obstetricia y Puericultura, Facultad de Medicina, Universidad de Concepción , Concepción , Chile
– name: 8 Departamento de Obstetricia y Puericultura, Facultad de Ciencias de la Salud, Universidad de Atacama , Copiapó , Chile
Author_xml – sequence: 1
  givenname: Daniela
  surname: Mennickent
  fullname: Mennickent, Daniela
– sequence: 2
  givenname: Andrés
  surname: Rodríguez
  fullname: Rodríguez, Andrés
– sequence: 3
  givenname: Ma. Cecilia
  surname: Opazo
  fullname: Opazo, Ma. Cecilia
– sequence: 4
  givenname: Claudia A.
  surname: Riedel
  fullname: Riedel, Claudia A.
– sequence: 5
  givenname: Erica
  surname: Castro
  fullname: Castro, Erica
– sequence: 6
  givenname: Alma
  surname: Eriz-Salinas
  fullname: Eriz-Salinas, Alma
– sequence: 7
  givenname: Javiera
  surname: Appel-Rubio
  fullname: Appel-Rubio, Javiera
– sequence: 8
  givenname: Claudio
  surname: Aguayo
  fullname: Aguayo, Claudio
– sequence: 9
  givenname: Alicia E.
  surname: Damiano
  fullname: Damiano, Alicia E.
– sequence: 10
  givenname: Enrique
  surname: Guzmán-Gutiérrez
  fullname: Guzmán-Gutiérrez, Enrique
– sequence: 11
  givenname: Juan
  surname: Araya
  fullname: Araya, Juan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37274341$$D View this record in MEDLINE/PubMed
BookMark eNp9kktv1DAUhSNURB_0D7BAXrKZwa_EDhuEKiiVitjA2rpxrmdcJXawM4Pm3-N5FLUs8MZX9j3fsXzPZXUWYsCqesPoUgjdvncY-rjklIslY4Iy0b6oLljTyAUXLT97Up9X1zk_0LIkZW2rX1XnQnElhWQX1e4b2LUPSAaEFHxYEZimwWNPfCAjzJgCDARCTxzOpVojDPP6AwESICWY_RZJwq3H38RFu8lFGAOZEq4CBLsjvc8IGfMBYeNY2LaoYsivq5cOhozXp_2q-vnl84-br4v777d3N5_uF1Y27bwQDjtJa7SIupPaSYFOgah1p7VTfc071VBnBbYSlK6FhIZq6DUTHW1ASnFV3R25fYQHMyU_QtqZCN4cDmJaGUiztwMa6WineieEFVwq1nUdsyB7Lp2ouVCusD4eWdOmG7G3GOYEwzPo85vg12YVt4aVOdVKN4Xw7kRI8dcG82xGny0OAwSMm2y45lzRpuX7h799avbX5XF4pUEfG2yKOSd0xvr58LnF2w_F1OyjYg5RMfuomFNUipT_I32k_0f0B4bZxRg
CitedBy_id crossref_primary_10_2147_IJWH_S454127
crossref_primary_10_1051_itmconf_20257401008
crossref_primary_10_1001_jama_2024_14794
crossref_primary_10_1016_j_bpobgyn_2024_102545
crossref_primary_10_38124_ijisrt_IJISRT24OCT1526
crossref_primary_10_1002_jcu_23918
crossref_primary_10_1016_j_cmet_2023_11_015
crossref_primary_10_1016_j_intimp_2024_112238
crossref_primary_10_1159_000542700
crossref_primary_10_1109_ACCESS_2024_3399827
crossref_primary_10_3390_ai5020026
crossref_primary_10_1016_j_clp_2024_04_001
crossref_primary_10_1016_j_ssmqr_2025_100540
crossref_primary_10_7759_cureus_69115
crossref_primary_10_1109_ACCESS_2025_3527151
crossref_primary_10_1080_20476965_2024_2435845
crossref_primary_10_1055_a_2489_4462
crossref_primary_10_1186_s12884_024_07030_9
crossref_primary_10_3390_biomimetics8070519
crossref_primary_10_3390_medicina61040561
Cites_doi 10.1002/9783527699377
10.1111/jcmm.16671
10.2337/dc20-1475
10.1016/j.bbe.2018.03.003
10.3233/SHTI210927
10.1038/s41598-019-53448-z
10.1117/1.JMI.3.1.014501
10.1007/s12178-020-09600-8
10.1186/s12911-021-01388-y
10.1016/j.ajog.2007.06.055
10.1080/14767058.2018.1484090
10.1002/j.2205-0140.2013.tb00242.x
10.1016/j.cmpb.2020.105624
10.1136/bmjopen-2020-040132
10.1080/14767058.2020.1786517
10.1016/S0140-6736(14)61698-6
10.1016/j.ijom.2017.03.017
10.1136/heart.83.4.414
10.1016/0002-9378(91)90424-P
10.1093/gigascience/giac004
10.1155/2022/6410103
10.1186/s12884-021-03658-z
10.1177/1753495X17754149
10.3389/fimmu.2021.642167
10.1371/journal.pone.0221202
10.1016/j.artmed.2022.102378
10.2196/33835
10.1002/uog.12563
10.1016/j.diabres.2018.05.002
10.1016/j.reprotox.2020.05.004
10.5772/intechopen.92297
10.1007/s00404-017-4445-2
10.1016/j.ajog.2019.12.267
10.1371/journal.pone.0280513
10.1177/1933719109356802
10.1002/hpm.2754
10.30744/brjac.2179-3425.AR-38-2021
10.1016/j.bpobgyn.2015.03.022
10.1016/j.bpobgyn.2014.09.006
10.1016/j.trac.2013.04.015
10.1038/s41598-020-75539-y
10.3390/healthcare10112164
10.1016/j.media.2016.11.006
10.1016/j.ebiom.2020.102710
10.1055/s-0044-100147
10.1155/2021/6691096
10.1109/10.76387
10.2196/21435
10.7754/Clin.Lab.2020.200222
10.1042/BSR20190187
10.1038/s41598-020-62210-9
10.1109/SISY.2018.8524818
10.1002/uog.15767
10.11152/mu.2013.2066.181.dop
10.1186/s41512-019-0060-y
10.1038/s41746-019-0089-x
10.2337/dc21-S002
10.1016/j.placenta.2013.08.006
10.1002/uog.9061
10.1109/IEMBS.2004.1403194
10.1186/s12871-021-01331-8
10.1159/000505021
10.1080/09513590.2021.1937101
10.1001/jamanetworkopen.2020.26750
10.1016/j.media.2017.01.003
10.1088/1361-6579/abf7db
10.1002/advs.201901819
10.1016/S2214-109X(18)30451-0
10.3390/diagnostics12122979
10.1007/978-3-7091-0558-0_2
10.1038/s41591-019-0724-8
10.1371/journal.pone.0217273
10.1016/S0301-2115(01)00416-X
10.1016/j.ajog.2007.08.052
10.1186/s12884-022-04594-2
10.1016/j.cmpb.2020.105712
10.1155/2018/8568617
10.28945/4184
10.1016/j.cell.2020.03.022
10.1007/s13755-020-00105-9
10.1016/j.jhsa.2021.09.016
10.2196/15411
10.1038/s41572-019-0098-8
10.1016/j.ijmedinf.2023.105040
10.17605/OSF.IO/GV5T4
10.1210/clinem/dgaa899
10.3109/01674829809025691
10.1177/17455065211046132
10.1186/s12911-021-01497-8
10.1002/9780470057780
10.3390/medicina58030332
10.1016/j.ajogmf.2020.100100
10.1109/ICSIP.2014.54
10.1159/000516891
10.1186/s12884-015-0780-0
10.1093/humrep/des352
10.3109/14767058.2014.937418
10.3390/molecules26040777
10.1161/01.HYP.0000258404.21552.a3
10.1111/j.1651-2227.2008.01152.x
10.1001/jama.284.1.79
10.1016/j.chemolab.2017.12.004
10.1016/j.jviscsurg.2016.09.012
10.1159/000489685
10.1016/j.bjps.2017.08.031
10.1002/edm2.201
10.1093/bib/bbaa369
10.1109/ACCESS.2020.3006710
10.1038/nmeth.4642
10.1186/s13690-021-00568-6
10.3389/fbioe.2021.780389
10.1002/14651858.CD012982.pub2
10.1093/ajcn/nqaa027
10.1016/j.ajog.2010.05.037
10.1016/B978-0-12-382032-7.10008-6
10.1371/journal.pone.0225716
10.1016/j.jbi.2019.103334
10.1109/51.585518
10.1093/toxsci/kfr088
10.1530/EJE-19-0206
10.1016/j.chemolab.2006.06.016
10.1016/j.humimm.2015.02.004
10.1016/j.media.2014.02.008
10.1001/jamanetworkopen.2020.29655
10.1007/s00404-019-05325-3
10.1186/1741-7015-11-154
10.1515/CCLM.2001.132
10.1186/s12938-017-0378-z
10.1007/978-981-16-4345-3_1
10.26355/eurrev_202007_21874
10.1016/j.compbiomed.2017.12.002
10.1016/j.placenta.2020.10.015
10.1186/s12884-019-2374-8
10.1080/14767058.2021.1887847
10.1186/1475-925X-10-6
10.1016/j.cmpb.2018.06.010
10.1186/s12911-019-1007-5
10.1016/j.jss.2017.09.002
10.1097/01.AOG.0000437382.03963.88
10.2196/16503
10.1111/j.1600-0412.2010.01056.x
10.1002/nur.22122
10.1016/S2214-109X(15)00275-2
10.1371/journal.pone.0252025
10.1111/1471-0528.13592
10.1016/S1470-2045(19)30149-4
10.1016/j.psyneuen.2020.104862
10.1016/j.siny.2018.09.006
10.3389/fgene.2014.00285
10.3389/fphys.2017.00641
10.1038/s41598-020-72852-4
10.1186/s12884-016-1061-2
10.1371/journal.pcbi.1006937
10.1109/EMBC.2019.8857942
10.1007/s12652-020-02562-2
10.1016/j.compbiolchem.2020.107233
ContentType Journal Article
Copyright Copyright © 2023 Mennickent, Rodríguez, Opazo, Riedel, Castro, Eriz-Salinas, Appel-Rubio, Aguayo, Damiano, Guzmán-Gutiérrez and Araya.
Copyright © 2023 Mennickent, Rodríguez, Opazo, Riedel, Castro, Eriz-Salinas, Appel-Rubio, Aguayo, Damiano, Guzmán-Gutiérrez and Araya 2023 Mennickent, Rodríguez, Opazo, Riedel, Castro, Eriz-Salinas, Appel-Rubio, Aguayo, Damiano, Guzmán-Gutiérrez and Araya
Copyright_xml – notice: Copyright © 2023 Mennickent, Rodríguez, Opazo, Riedel, Castro, Eriz-Salinas, Appel-Rubio, Aguayo, Damiano, Guzmán-Gutiérrez and Araya.
– notice: Copyright © 2023 Mennickent, Rodríguez, Opazo, Riedel, Castro, Eriz-Salinas, Appel-Rubio, Aguayo, Damiano, Guzmán-Gutiérrez and Araya 2023 Mennickent, Rodríguez, Opazo, Riedel, Castro, Eriz-Salinas, Appel-Rubio, Aguayo, Damiano, Guzmán-Gutiérrez and Araya
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3389/fendo.2023.1130139
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1664-2392
ExternalDocumentID oai_doaj_org_article_4f0b7df33c32471bbb1ca4d24f35237f
PMC10235786
37274341
10_3389_fendo_2023_1130139
Genre Journal Article
Review
GrantInformation_xml – fundername: ;
  grantid: Proyecto UCO 1866
– fundername: ;
  grantid: FOVI210057, FONDECYT11181153, PFCHA21190736
GroupedDBID 53G
5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CITATION
DIK
EMOBN
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
OK1
PGMZT
RPM
IPNFZ
NPM
RIG
7X8
5PM
ID FETCH-LOGICAL-c469t-3feb405ecee8b48f43ef7a358b88f7d52b760fc3e94a78534a608ad813b06a443
IEDL.DBID M48
ISSN 1664-2392
IngestDate Wed Aug 27 01:10:47 EDT 2025
Thu Aug 21 18:37:14 EDT 2025
Fri Jul 11 05:04:33 EDT 2025
Thu Apr 03 07:07:55 EDT 2025
Tue Jul 01 01:41:41 EDT 2025
Thu Apr 24 22:53:11 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords pregnancy complications
adverse perinatal outcomes
machine learning
pregnancy diseases
artificial intelligence
Language English
License Copyright © 2023 Mennickent, Rodríguez, Opazo, Riedel, Castro, Eriz-Salinas, Appel-Rubio, Aguayo, Damiano, Guzmán-Gutiérrez and Araya.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c469t-3feb405ecee8b48f43ef7a358b88f7d52b760fc3e94a78534a608ad813b06a443
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
Reviewed by: Shujie Liao, Huazhong University of Science and Technology, China; Stepan Feduniw, University Zürich, Switzerland
Edited by: Lawrence Merle Nelson, Mary Elizabeth Conover Foundation, Inc., United States
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fendo.2023.1130139
PMID 37274341
PQID 2822706924
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_4f0b7df33c32471bbb1ca4d24f35237f
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10235786
proquest_miscellaneous_2822706924
pubmed_primary_37274341
crossref_citationtrail_10_3389_fendo_2023_1130139
crossref_primary_10_3389_fendo_2023_1130139
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-05-19
PublicationDateYYYYMMDD 2023-05-19
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-19
  day: 19
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in endocrinology (Lausanne)
PublicationTitleAlternate Front Endocrinol (Lausanne)
PublicationYear 2023
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Despotovic (B93) 2018
David (B98) 2018; 78
Mu (B75) 2020; 66
Khatibi (B67) 2021; 21
Mendoza (B112) 2014; 18
Bottomley (B74) 2013; 28
Rychik (B140) 2007; 197
Fotiadou (B120) 2021; 42
Arabi Belaghi (B87) 2021; 16
Sufriyana (B49) 2020; 8
Birdir (B38) 2015; 28
Shukla (B65) 2020; 3
Garg (B147) 2011
Araya (B30) 2021; 103
Velardo (B31) 2021; 23
Magenes (B128) 2004
Sobti (B153) 2022
Tang (B105) 2018; 2018
Gyselaers (B36) 2011; 38
Langer (B145) 1991; 165
Islam (B5) 2022; 22
Toh (B76) 2021
Gosset (B97) 2017; 154
Yu (B116) 2018; 38
Gibbs (B8) 2008
Jaskari (B70) 2020; 8
Suff (B85) 2019; 24
Parer (B125) 2010; 203
Garcia-Canadilla (B141) 2020; 47
Berger (B82) 2010; 17
Liu (B27) 2021; 37
Fergus (B102) 2017; 16
Sufriyana (B150) 2020; 8
Brocklehurst (B124) 2016; 16
Wren (B138) 2000; 83
Cruz-Lemini (B143) 2016; 48
Resendiz (B144) 2014; 5
Chawanpaiboon (B84) 2019; 7
Huang (B80) 2021; 12
Gurgen (B127) 1997; 16
Clark (B106) 2021; 44
Tao (B134) 2021; 21
Rezaeian (B68) 2022; 13
Mello (B47) 2001; 39
Goecks (B3) 2020; 181
Tejera (B55) 2021; 26
Blencowe (B59) 2016; 4
Mora-Sánchez (B77) 2019; 2
Scott (B24) 2021; 4
Sweeting (B155) 2015; 29
Feduniw (B160) 2022; 10
Rawashdeh (B94) 2020; 85
Cowley (B15) 2019; 3
Martinez (B96) 2020; 122
Moons (B139) 2009; 98
Balani (B22) 2018; 11
Liu (B79) 2020; 196
Shigemi (B133) 2019; 32
Bzdok (B11) 2018; 15
(B16) 2021; 44
Sandström (B48) 2019; 14
Safran (B137) 2018; 71
Mennickent (B23) 2023; 18
Lee (B41) 2020; 10
Sufriyana (B50) 2020; 54
Ye (B95) 2016; 123
Medenica (B83) 2022; 12
Al-Angari (B122) 2017; 8
Yeo (B130) 2013; 42
(B56) 2016
Abebe (B61) 2021; 79
Ricciardi (B104) 2020; 196
Daszykowski (B9) 2007; 85
Bridge (B115) 2017; 36
Fotiadou (B121) 2020
Engel (B10) 2013; 50
Meuleman (B81) 2015; 76
McGinn (B14) 2000; 284
Davidson (B161) 2021; 22
Xiong (B18) 2022; 35
Stepan (B39) 2007; 49
Gupta (B51) 2022; 35
Mangold (B72) 2021; 118
Muduli (B117) 2016
Crispi (B142) 2013; 16
Mennickent (B32) 2022; 132
Bodnar (B54) 2020; 111
Aung (B90) 2019; 9
Mureşan (B35) 2016; 18
Wu (B20) 2021; 106
Khatibi (B86) 2019; 300
Pinas (B110) 2016; 30
Artzi (B21) 2020; 26
Otto (B7) 2016
Gao (B88) 2019; 100
Lipschuetz (B109) 2020; 222
Bertini (B149) 2022; 9
Kim (B148) 2011; 122
Khanzode (B159) 2020; 9
Ballabio (B12) 2018; 174
Sheikhtaheri (B71) 2021; 21
Ababneh (B33) 2004; 17
Guo (B26) 2020; 7
Akbulut (B111) 2018; 163
Al-Shaer (B132) 2019; 15
(B34) 2013; 122
Oral (B146) 2001; 99
Ngiam (B158) 2019; 20
Kumar (B151) 2019; 34
(B57) 2016
Zhang (B89) 2022; 10
Krupa (B119) 2011; 10
Meulstee (B114) 2017; 46
Zhao (B123) 2019; 19
Shapiro (B152) 2022; 47
Chen (B91) 2022; 11
McIntyre (B17) 2019; 5
Cooper (B69) 2018; 221
Brereton (B6) 2007
Botchkarev (B13) 2019; 14
Helm (B1) 2020; 13
Yoffe (B25) 2019; 181
Liu (B52) 2019; 39
Han (B131) 2022; 2022
Yang (B100) 2017; 296
Guo (B53) 2021; 2021
Zheng (B19) 2019; 19
Amigo (B2) 2021; 8
Du (B154) 2023; 173
Keikkala (B37) 2013; 34
Stepan (B40) 2008; 198
Kayode (B63) 2016; 16
Fletcher (B108) 2019
Jhee (B45) 2019; 14
Ramakrishnan (B162) 2021; 17
Bernardes-Oliveira (B29) 2020; 10
Gadagkar (B129) 2014
Koivu (B64) 2020; 8
Liu (B58) 2015; 385
Malacova (B62) 2020; 10
Mboya (B66) 2020; 10
Ehrlich (B28) 2021; 44
Tarca (B42) 2019; 14
Wei (B107) 2021; 21
Maraci (B118) 2017; 37
Jiang (B43) 2018; 46
Ryding (B99) 1998; 19
Wangel (B101) 2011; 90
Fergus (B103) 2018; 93
Wu (B113) 2016; 3
Willcox (B60) 2020; 2020
Guimarães-Ferreira (B136) 2004
Wu (B78) 2021; 25
Jehan (B92) 2020; 3
Abuelezz (B4) 2022; 289
Marić (B46) 2020; 2
Alonso-Betanzos (B126) 1991; 38
Bouariu (B157) 2022; 58
Larsen (B73) 2013; 11
Challa (B135) 2020; 95
Poon (B156) 2018; 145
Han (B44) 2020; 24
References_xml – volume-title: Chemometrics
  year: 2016
  ident: B7
  doi: 10.1002/9783527699377
– volume: 25
  year: 2021
  ident: B78
  article-title: Extensive serum biomarker analysis in the prethrombotic state of recurrent spontaneous abortion
  publication-title: J Cell Mol Med
  doi: 10.1111/jcmm.16671
– volume: 44
  year: 2021
  ident: B28
  article-title: Exercise during the first trimester of pregnancy and the risks of abnormal screening and gestational diabetes mellitus
  publication-title: Diabetes Care
  doi: 10.2337/dc20-1475
– volume: 38
  year: 2018
  ident: B116
  article-title: Automatic identifying of maternal ECG source when applying ICA in fetal ECG extraction
  publication-title: Biocybern BioMed Eng
  doi: 10.1016/j.bbe.2018.03.003
– volume: 289
  year: 2022
  ident: B4
  article-title: Contribution of artificial intelligence in pregnancy: a scoping review
  publication-title: Stud Health Technol Inform
  doi: 10.3233/SHTI210927
– volume: 9
  start-page: 17049
  year: 2019
  ident: B90
  article-title: Prediction and associations of preterm birth and its subtypes with eicosanoid enzymatic pathways and inflammatory markers
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-53448-z
– volume: 3
  year: 2016
  ident: B113
  article-title: Quantitative analysis of ultrasound images for computer-aided diagnosis
  publication-title: J Med Imaging
  doi: 10.1117/1.JMI.3.1.014501
– volume: 13
  start-page: 69
  year: 2020
  ident: B1
  article-title: Machine learning and artificial intelligence: definitions, applications, and future directions
  publication-title: Curr Rev Musculoskelet Med
  doi: 10.1007/s12178-020-09600-8
– volume: 21
  start-page: 26
  year: 2021
  ident: B134
  article-title: Fetal birthweight prediction with measured data by a temporal machine learning method
  publication-title: BMC Med Inform Decis Mak
  doi: 10.1186/s12911-021-01388-y
– volume: 197
  year: 2007
  ident: B140
  article-title: The twin-twin transfusion syndrome: spectrum of cardiovascular abnormality and development of a cardiovascular score to assess severity of disease
  publication-title: Am J Obstet Gynecol
  doi: 10.1016/j.ajog.2007.06.055
– volume: 32
  year: 2019
  ident: B133
  article-title: Predictive model for macrosomia using maternal parameters without sonography information
  publication-title: J Matern Neonatal Med
  doi: 10.1080/14767058.2018.1484090
– volume: 16
  year: 2013
  ident: B142
  article-title: Ultrasound assessment of fetal cardiac function
  publication-title: Australas J Ultrasound Med
  doi: 10.1002/j.2205-0140.2013.tb00242.x
– volume: 196
  year: 2020
  ident: B79
  article-title: Machine learning algorithms to predict early pregnancy loss after in vitro fertilization-embryo transfer with fetal heart rate as a strong predictor
  publication-title: Comput Methods Programs BioMed
  doi: 10.1016/j.cmpb.2020.105624
– volume: 10
  year: 2020
  ident: B66
  article-title: Prediction of perinatal death using machine learning models: a birth registry-based cohort study in northern Tanzania
  publication-title: BMJ Open
  doi: 10.1136/bmjopen-2020-040132
– volume: 35
  year: 2022
  ident: B18
  article-title: Prediction of gestational diabetes mellitus in the first 19 weeks of pregnancy using machine learning techniques
  publication-title: J Matern Neonatal Med
  doi: 10.1080/14767058.2020.1786517
– volume: 385
  year: 2015
  ident: B58
  article-title: Global, regional, and national causes of child mortality in 2000–13, with projections to inform post-2015 priorities: an updated systematic analysis
  publication-title: Lancet
  doi: 10.1016/S0140-6736(14)61698-6
– volume: 46
  year: 2017
  ident: B114
  article-title: A new method for three-dimensional evaluation of the cranial shape and the automatic identification of craniosynostosis using 3D stereophotogrammetry
  publication-title: Int J Oral Maxillofac Surg
  doi: 10.1016/j.ijom.2017.03.017
– volume: 83
  year: 2000
  ident: B138
  article-title: Temporal variability in birth prevalence of cardiovascular malformations
  publication-title: Heart
  doi: 10.1136/heart.83.4.414
– volume: 165
  year: 1991
  ident: B145
  article-title: Shoulder dystocia: should the fetus weighing ≥4000 grams be delivered by cesarean section
  publication-title: Am J Obstet Gynecol
  doi: 10.1016/0002-9378(91)90424-P
– volume: 11
  start-page: 1
  year: 2022
  ident: B91
  article-title: Maternal plasma lipids are involved in the pathogenesis of preterm birth
  publication-title: Gigascience
  doi: 10.1093/gigascience/giac004
– volume: 2022
  start-page: 1
  year: 2022
  ident: B131
  article-title: Adoption of compound echocardiography under artificial intelligence algorithm in fetal congenial heart disease screening during gestation
  publication-title: Appl Bionics Biomech
  doi: 10.1155/2022/6410103
– volume: 21
  start-page: 202
  year: 2021
  ident: B67
  article-title: Proposing a machine-learning based method to predict stillbirth before and during delivery and ranking the features: nationwide retrospective cross-sectional study
  publication-title: BMC Pregnancy Childbirth
  doi: 10.1186/s12884-021-03658-z
– volume: 11
  year: 2018
  ident: B22
  article-title: Visceral fat mass as a novel risk factor for predicting gestational diabetes in obese pregnant women
  publication-title: Obstet Med
  doi: 10.1177/1753495X17754149
– volume: 12
  year: 2021
  ident: B80
  article-title: Using deep learning in a monocentric study to characterize maternal immune environment for predicting pregnancy outcomes in the recurrent reproductive failure patients
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2021.642167
– volume: 14
  year: 2019
  ident: B45
  article-title: Prediction model development of late-onset preeclampsia using machine learning-based methods
  publication-title: PloS One
  doi: 10.1371/journal.pone.0221202
– volume: 132
  year: 2022
  ident: B32
  article-title: Machine learning-based models for gestational diabetes mellitus prediction before 24–28 weeks of pregnancy: a review
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2022.102378
– volume: 10
  year: 2022
  ident: B89
  article-title: The prediction of preterm birth using time-series technology-based machine learning: retrospective cohort study
  publication-title: JMIR Med Inf
  doi: 10.2196/33835
– volume: 42
  year: 2013
  ident: B130
  article-title: Fetal intelligent navigation echocardiography (FINE): a novel method for rapid, simple, and automatic examination of the fetal heart
  publication-title: Ultrasound Obstet Gynecol
  doi: 10.1002/uog.12563
– volume: 145
  start-page: 20
  year: 2018
  ident: B156
  article-title: The first-trimester of pregnancy – a window of opportunity for prediction and prevention of pregnancy complications and future life
  publication-title: Diabetes Res Clin Pract
  doi: 10.1016/j.diabres.2018.05.002
– volume: 95
  year: 2020
  ident: B135
  article-title: Machine learning on drug-specific data to predict small molecule teratogenicity
  publication-title: Reprod Toxicol
  doi: 10.1016/j.reprotox.2020.05.004
– volume-title: Smart manufacturing - when artificial intelligence meets the Internet of things
  year: 2021
  ident: B76
  article-title: Applications of machine learning in healthcare
  doi: 10.5772/intechopen.92297
– volume: 296
  year: 2017
  ident: B100
  article-title: Comparison of maternal and fetal complications in elective and emergency cesarean section: a systematic review and meta-analysis
  publication-title: Arch Gynecol Obstet
  doi: 10.1007/s00404-017-4445-2
– volume: 222
  start-page: 613.e1
  year: 2020
  ident: B109
  article-title: Prediction of vaginal birth after cesarean deliveries using machine learning
  publication-title: Am J Obstet Gynecol
  doi: 10.1016/j.ajog.2019.12.267
– volume: 18
  year: 2023
  ident: B23
  article-title: Evaluation of first and second trimester maternal thyroid profile on the prediction of gestational diabetes mellitus and post load glycemia
  publication-title: PloS One
  doi: 10.1371/journal.pone.0280513
– volume: 17
  year: 2010
  ident: B82
  article-title: Comprehensive analysis of HLA-G: implications for recurrent spontaneous abortion
  publication-title: Reprod Sci
  doi: 10.1177/1933719109356802
– volume: 34
  year: 2019
  ident: B151
  article-title: Research evidence on strategies enabling integration of electronic health records in the health care systems of low- and middle-income countries: a literature review
  publication-title: Int J Health Plann Manage
  doi: 10.1002/hpm.2754
– volume: 8
  start-page: 45
  year: 2021
  ident: B2
  article-title: Data mining, machine learning, deep learning, chemometrics. definitions, common points and trends (Spoiler alert: VALIDATE your models!)
  publication-title: Braz J Anal Chem
  doi: 10.30744/brjac.2179-3425.AR-38-2021
– volume: 30
  start-page: 33
  year: 2016
  ident: B110
  article-title: Continuous cardiotocography during labour: analysis, classification and management
  publication-title: Best Pract Res Clin Obstet Gynaecol
  doi: 10.1016/j.bpobgyn.2015.03.022
– volume: 29
  year: 2015
  ident: B155
  article-title: The first trimester: prediction and prevention of the great obstetrical syndromes
  publication-title: Best Pract Res Clin Obstet Gynaecol
  doi: 10.1016/j.bpobgyn.2014.09.006
– volume: 50
  start-page: 96
  year: 2013
  ident: B10
  article-title: Breaking with trends in pre-processing
  publication-title: TrAC Trends Anal Chem
  doi: 10.1016/j.trac.2013.04.015
– volume: 10
  start-page: 19259
  year: 2020
  ident: B29
  article-title: Spectrochemical differentiation in gestational diabetes mellitus based on attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy and multivariate analysis
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-75539-y
– volume: 10
  start-page: 1
  year: 2022
  ident: B160
  article-title: Application of artificial intelligence in screening for adverse perinatal outcomes–a systematic review
  publication-title: Healthc
  doi: 10.3390/healthcare10112164
– volume: 36
  year: 2017
  ident: B115
  article-title: Automated annotation and quantitative description of ultrasound videos of the fetal heart
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2016.11.006
– volume: 54
  year: 2020
  ident: B50
  article-title: Artificial intelligence-assisted prediction of preeclampsia: development and external validation of a nationwide health insurance dataset of the BPJS kesehatan in Indonesia
  publication-title: EBioMedicine
  doi: 10.1016/j.ebiom.2020.102710
– volume: 78
  year: 2018
  ident: B98
  article-title: Does an immigrant background affect the indication, incidence or outcome of emergency cesarean section? results of the prospective data collection of 111 births
  publication-title: Geburtshilfe Frauenheilkd
  doi: 10.1055/s-0044-100147
– volume: 2021
  start-page: 1
  year: 2021
  ident: B53
  article-title: Integrated learning: screening optimal biomarkers for identifying preeclampsia in placental mRNA samples
  publication-title: Comput Math Methods Med
  doi: 10.1155/2021/6691096
– volume: 38
  start-page: 199
  year: 1991
  ident: B126
  article-title: Foetos: an expert system for fetal assessment
  publication-title: IEEE Trans BioMed Eng
  doi: 10.1109/10.76387
– volume: 23
  year: 2021
  ident: B31
  article-title: Toward a multivariate prediction model of pharmacological treatment for women with gestational diabetes mellitus: algorithm development and validation
  publication-title: J Med Internet Res
  doi: 10.2196/21435
– volume: 66
  year: 2020
  ident: B75
  article-title: Exploring the molecular mechanism and biomarker of recurrent spontaneous abortion based on RNA sequencing analysis
  publication-title: Clin Lab
  doi: 10.7754/Clin.Lab.2020.200222
– volume: 39
  year: 2019
  ident: B52
  article-title: An integrative bioinformatics analysis of microarray data for identifying hub genes as diagnostic biomarkers of preeclampsia
  publication-title: Biosci Rep
  doi: 10.1042/BSR20190187
– volume: 10
  start-page: 5354
  year: 2020
  ident: B62
  article-title: Stillbirth risk prediction using machine learning for a large cohort of births from Western australia 1980–2015
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-62210-9
– year: 2018
  ident: B93
  article-title: A machine learning approach for an early prediction of preterm delivery
  publication-title: 2018 IEEE 16th Int Symp Intell Syst Inf
  doi: 10.1109/SISY.2018.8524818
– volume: 48
  year: 2016
  ident: B143
  article-title: Fetal cardiovascular remodeling persists at 6 months in infants with intrauterine growth restriction
  publication-title: Ultrasound Obstet Gynecol
  doi: 10.1002/uog.15767
– volume: 18
  start-page: 103
  year: 2016
  ident: B35
  article-title: The usefulness of fetal Doppler evaluation in early versus late onset intrauterine growth restriction. review of the literature
  publication-title: Med Ultrason
  doi: 10.11152/mu.2013.2066.181.dop
– volume: 3
  start-page: 16
  year: 2019
  ident: B15
  article-title: Methodological standards for the development and evaluation of clinical prediction rules: a review of the literature
  publication-title: Diagn Progn Res
  doi: 10.1186/s41512-019-0060-y
– volume-title: The WHO application of ICD-10 to deaths during the perinatal period: ICD-PM
  year: 2016
  ident: B57
– volume: 2
  start-page: 12
  year: 2019
  ident: B77
  article-title: Towards a gamete matching platform: using immunogenetics and artificial intelligence to predict recurrent miscarriage
  publication-title: NPJ Digit Med
  doi: 10.1038/s41746-019-0089-x
– volume: 44
  year: 2021
  ident: B16
  article-title: 2. classification and diagnosis of diabetes: standards of medical care in diabetes–2021
  publication-title: Diabetes Care
  doi: 10.2337/dc21-S002
– volume: 34
  year: 2013
  ident: B37
  article-title: First trimester hyperglycosylated human chorionic gonadotrophin in serum – a marker of early-onset preeclampsia
  publication-title: Placenta
  doi: 10.1016/j.placenta.2013.08.006
– volume: 38
  year: 2011
  ident: B36
  article-title: Role of dysfunctional maternal venous hemodynamics in the pathophysiology of pre-eclampsia: a review
  publication-title: Ultrasound Obstet Gynecol
  doi: 10.1002/uog.9061
– year: 2004
  ident: B128
  article-title: Identification of fetal sufferance antepartum through a multiparametric analysis and a support vector machine
  doi: 10.1109/IEMBS.2004.1403194
– volume: 21
  start-page: 116
  year: 2021
  ident: B107
  article-title: A prediction model using machine-learning algorithm for assessing intrathecal hyperbaric bupivacaine dose during cesarean section
  publication-title: BMC Anesthesiol
  doi: 10.1186/s12871-021-01331-8
– volume: 47
  year: 2020
  ident: B141
  article-title: Machine learning in fetal cardiology: what to expect
  publication-title: Fetal Diagn Ther
  doi: 10.1159/000505021
– volume: 37
  year: 2021
  ident: B27
  article-title: Identification of diagnostic cytosine-phosphate-guanine biomarkers in patients with gestational diabetes mellitus via epigenome-wide association study and machine learning
  publication-title: Gynecol Endocrinol
  doi: 10.1080/09513590.2021.1937101
– volume: 3
  year: 2020
  ident: B65
  article-title: Predictive modeling for perinatal mortality in resource-limited settings
  publication-title: JAMA Netw Open
  doi: 10.1001/jamanetworkopen.2020.26750
– volume: 37
  start-page: 22
  year: 2017
  ident: B118
  article-title: A framework for analysis of linear ultrasound videos to detect fetal presentation and heartbeat
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2017.01.003
– volume: 42
  start-page: 045007
  year: 2021
  ident: B120
  article-title: A dilated inception CNN-LSTM network for fetal heart rate estimation
  publication-title: Physiol Meas
  doi: 10.1088/1361-6579/abf7db
– volume: 7
  year: 2020
  ident: B26
  article-title: Whole-genome promoter profiling of plasma DNA exhibits diagnostic value for placenta-origin pregnancy complications
  publication-title: Adv Sci
  doi: 10.1002/advs.201901819
– volume: 17
  year: 2004
  ident: B33
  article-title: Management of pre-eclampsia/eclampsia
  publication-title: Middle East J Anaesthesiol
– volume: 7
  year: 2019
  ident: B84
  article-title: Global, regional, and national estimates of levels of preterm birth in 2014: a systematic review and modelling analysis
  publication-title: Lancet Glob Heal
  doi: 10.1016/S2214-109X(18)30451-0
– volume: 12
  year: 2022
  ident: B83
  article-title: The future is coming: artificial intelligence in the treatment of infertility could improve assisted reproduction outcomes–the value of regulatory frameworks
  publication-title: Diagnostics
  doi: 10.3390/diagnostics12122979
– start-page: 23
  volume-title: Advances and technical standards in neurosurgery
  year: 2004
  ident: B136
  article-title: Advances in craniosynostosis research and management
  doi: 10.1007/978-3-7091-0558-0_2
– volume: 26
  year: 2020
  ident: B21
  article-title: Prediction of gestational diabetes based on nationwide electronic health records
  publication-title: Nat Med
  doi: 10.1038/s41591-019-0724-8
– volume: 14
  year: 2019
  ident: B42
  article-title: The prediction of early preeclampsia: results from a longitudinal proteomics study
  publication-title: PloS One
  doi: 10.1371/journal.pone.0217273
– volume: 99
  year: 2001
  ident: B146
  article-title: Perinatal and maternal outcomes of fetal macrosomia
  publication-title: Eur J Obstet Gynecol Reprod Biol
  doi: 10.1016/S0301-2115(01)00416-X
– volume: 198
  year: 2008
  ident: B40
  article-title: Circulatory soluble endoglin and its predictive value for preeclampsia in second-trimester pregnancies with abnormal uterine perfusion
  publication-title: Am J Obstet Gynecol
  doi: 10.1016/j.ajog.2007.08.052
– volume: 22
  start-page: 1
  year: 2022
  ident: B5
  article-title: Machine learning to predict pregnancy outcomes: a systematic review, synthesizing framework and future research agenda
  publication-title: BMC Pregnancy Childbirth
  doi: 10.1186/s12884-022-04594-2
– volume: 196
  year: 2020
  ident: B104
  article-title: Classifying the type of delivery from cardiotocographic signals: a machine learning approach
  publication-title: Comput Methods Programs BioMed
  doi: 10.1016/j.cmpb.2020.105712
– volume: 2018
  start-page: 1
  year: 2018
  ident: B105
  article-title: The design and implementation of cardiotocography signals classification algorithm based on neural network
  publication-title: Comput Math Methods Med
  doi: 10.1155/2018/8568617
– volume: 14
  year: 2019
  ident: B13
  article-title: A new typology design of performance metrics to measure errors in machine learning regression algorithms
  publication-title: Interdiscip J Information Knowledge Manag
  doi: 10.28945/4184
– volume: 181
  start-page: 92
  year: 2020
  ident: B3
  article-title: How machine learning will transform biomedicine
  publication-title: Cell
  doi: 10.1016/j.cell.2020.03.022
– volume: 8
  start-page: 14
  year: 2020
  ident: B64
  article-title: Predicting risk of stillbirth and preterm pregnancies with machine learning
  publication-title: Heal Inf Sci Syst
  doi: 10.1007/s13755-020-00105-9
– volume: 47
  year: 2022
  ident: B152
  article-title: Implementation of electronic health records during global outreach: a necessary next step in measuring and improving quality of care
  publication-title: J Handb Surg Am
  doi: 10.1016/j.jhsa.2021.09.016
– volume: 8
  year: 2020
  ident: B49
  article-title: Prediction of preeclampsia and intrauterine growth restriction: development of machine learning models on a prospective cohort
  publication-title: JMIR Med Inf
  doi: 10.2196/15411
– volume: 5
  start-page: 47
  year: 2019
  ident: B17
  article-title: Gestational diabetes mellitus
  publication-title: Nat Rev Dis Prim
  doi: 10.1038/s41572-019-0098-8
– volume: 173
  year: 2023
  ident: B154
  article-title: Machine learning-based clinical decision support systems for pregnancy care: a systematic review
  publication-title: Int J Med Inform
  doi: 10.1016/j.ijmedinf.2023.105040
– volume: 9
  year: 2020
  ident: B159
  article-title: Advantages and disadvantages of artificial intelligence and machine learning: a literature review
  publication-title: Int J Libr Inf Sci
  doi: 10.17605/OSF.IO/GV5T4
– volume: 106
  year: 2021
  ident: B20
  article-title: Early prediction of gestational diabetes mellitus in the Chinese population via advanced machine learning
  publication-title: J Clin Endocrinol Metab
  doi: 10.1210/clinem/dgaa899
– volume: 19
  year: 1998
  ident: B99
  article-title: Psychological impact of emergency cesarean section in comparison with elective cesarean section, instrumental and normal vaginal delivery
  publication-title: J Psychosom Obstet Gynecol
  doi: 10.3109/01674829809025691
– volume: 17
  year: 2021
  ident: B162
  article-title: Perinatal health predictors using artificial intelligence: a review
  publication-title: Women’s Heal
  doi: 10.1177/17455065211046132
– volume: 21
  start-page: 131
  year: 2021
  ident: B71
  article-title: Prediction of neonatal deaths in NICUs: development and validation of machine learning models
  publication-title: BMC Med Inform Decis Mak
  doi: 10.1186/s12911-021-01497-8
– volume-title: Applied chemometrics for scientists
  year: 2007
  ident: B6
  doi: 10.1002/9780470057780
– volume-title: Making every baby Count : audit and review of stillbirths and neonatal deaths
  year: 2016
  ident: B56
– volume: 58
  year: 2022
  ident: B157
  article-title: First trimester prediction of adverse pregnancy outcomes–identifying pregnancies at risk from as early as 11–13 weeks
  publication-title: Medicina (B Aires)
  doi: 10.3390/medicina58030332
– volume: 2
  year: 2020
  ident: B46
  article-title: Early prediction of preeclampsia via machine learning
  publication-title: Am J Obstet Gynecol MFM
  doi: 10.1016/j.ajogmf.2020.100100
– year: 2014
  ident: B129
  article-title: Features based IUGR diagnosis using variational level set method and classification using artificial neural networks
  doi: 10.1109/ICSIP.2014.54
– volume: 118
  start-page: 394
  year: 2021
  ident: B72
  article-title: Machine learning models for predicting neonatal mortality: a systematic review
  publication-title: Neonatology
  doi: 10.1159/000516891
– volume-title: Danforth’s obstetrics and gynecology
  year: 2008
  ident: B8
– volume: 16
  year: 2016
  ident: B124
  article-title: A study of an intelligent system to support decision making in the management of labour using the cardiotocograph – the INFANT study protocol
  publication-title: BMC Pregnancy Childbirth
  doi: 10.1186/s12884-015-0780-0
– volume: 28
  start-page: 68
  year: 2013
  ident: B74
  article-title: Accurate prediction of pregnancy viability by means of a simple scoring system
  publication-title: Hum Reprod
  doi: 10.1093/humrep/des352
– volume: 28
  year: 2015
  ident: B38
  article-title: Maternal serum anti-müllerian hormone at 11–13 weeks’ gestation in the prediction of preeclampsia
  publication-title: J Matern Neonatal Med
  doi: 10.3109/14767058.2014.937418
– volume: 26
  year: 2021
  ident: B55
  article-title: A multi-objective approach for drug repurposing in preeclampsia
  publication-title: Molecules
  doi: 10.3390/molecules26040777
– volume: 49
  year: 2007
  ident: B39
  article-title: Predictive value of maternal angiogenic factors in second trimester pregnancies with abnormal uterine perfusion
  publication-title: Hypertension
  doi: 10.1161/01.HYP.0000258404.21552.a3
– start-page: 1
  year: 2016
  ident: B117
  article-title: A deep learning approach to fetal-ECG signal reconstruction
– start-page: 1
  year: 2020
  ident: B121
  article-title: Deep convolutional long short-term memory network for fetal heart rate extraction
– volume: 98
  year: 2009
  ident: B139
  article-title: Congenital heart disease in 111 225 births in Belgium: birth prevalence, treatment and survival in the 21st century
  publication-title: Acta Paediatr
  doi: 10.1111/j.1651-2227.2008.01152.x
– volume: 284
  year: 2000
  ident: B14
  article-title: Users’ guides to the medical literature
  publication-title: JAMA
  doi: 10.1001/jama.284.1.79
– volume: 174
  start-page: 33
  year: 2018
  ident: B12
  article-title: Multivariate comparison of classification performance measures
  publication-title: Chemom Intell Lab Syst
  doi: 10.1016/j.chemolab.2017.12.004
– volume: 154
  start-page: 47
  year: 2017
  ident: B97
  article-title: Emergency caesarean section
  publication-title: J Visc Surg
  doi: 10.1016/j.jviscsurg.2016.09.012
– volume: 46
  year: 2018
  ident: B43
  article-title: CircRNA-0004904, CircRNA-0001855, and PAPP-a: potential novel biomarkers for the prediction of preeclampsia
  publication-title: Cell Physiol Biochem
  doi: 10.1159/000489685
– volume: 71
  year: 2018
  ident: B137
  article-title: The role of ultrasound technology in plastic surgery
  publication-title: J Plast Reconstr Aesthetic Surg
  doi: 10.1016/j.bjps.2017.08.031
– volume: 4
  start-page: 1
  year: 2021
  ident: B24
  article-title: Metabolic dysfunction in pregnancy: fingerprinting the maternal metabolome using proton nuclear magnetic resonance spectroscopy
  publication-title: Endocrinol Diabetes Metab
  doi: 10.1002/edm2.201
– volume: 22
  start-page: 1
  year: 2021
  ident: B161
  article-title: Towards deep phenotyping pregnancy: a systematic review on artificial intelligence and machine learning methods to improve pregnancy outcomes
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbaa369
– volume: 8
  year: 2020
  ident: B70
  article-title: Machine learning methods for neonatal mortality and morbidity classification
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3006710
– volume: 15
  year: 2018
  ident: B11
  article-title: Statistics versus machine learning
  publication-title: Nat Methods
  doi: 10.1038/nmeth.4642
– volume: 79
  start-page: 42
  year: 2021
  ident: B61
  article-title: Essential newborn care practice and its associated factors in southwest Ethiopia
  publication-title: Arch Public Heal
  doi: 10.1186/s13690-021-00568-6
– volume: 9
  year: 2022
  ident: B149
  article-title: Using machine learning to predict complications in pregnancy: a systematic review
  publication-title: Front Bioeng Biotechnol
  doi: 10.3389/fbioe.2021.780389
– volume: 2020
  year: 2020
  ident: B60
  article-title: Death audits and reviews for reducing maternal, perinatal and child mortality
  publication-title: Cochrane Database Syst Rev
  doi: 10.1002/14651858.CD012982.pub2
– volume: 111
  year: 2020
  ident: B54
  article-title: Machine learning as a strategy to account for dietary synergy: an illustration based on dietary intake and adverse pregnancy outcomes
  publication-title: Am J Clin Nutr
  doi: 10.1093/ajcn/nqaa027
– volume: 203
  year: 2010
  ident: B125
  article-title: Comparison of 5 experts and computer analysis in rule-based fetal heart rate interpretation
  publication-title: Am J Obstet Gynecol
  doi: 10.1016/j.ajog.2010.05.037
– start-page: 89
  volume-title: Reproductive and developmental toxicology
  year: 2011
  ident: B147
  article-title: Reproductive and developmental safety evaluation of new pharmaceutical compounds
  doi: 10.1016/B978-0-12-382032-7.10008-6
– volume: 14
  year: 2019
  ident: B48
  article-title: Clinical risk assessment in early pregnancy for preeclampsia in nulliparous women: a population based cohort study
  publication-title: PloS One
  doi: 10.1371/journal.pone.0225716
– volume: 100
  year: 2019
  ident: B88
  article-title: Deep learning predicts extreme preterm birth from electronic health records
  publication-title: J BioMed Inform
  doi: 10.1016/j.jbi.2019.103334
– volume: 16
  year: 1997
  ident: B127
  article-title: IUGR detection by ultrasonographic examinations using neural networks
  publication-title: IEEE Eng Med Biol Mag
  doi: 10.1109/51.585518
– volume: 122
  start-page: 1
  year: 2011
  ident: B148
  article-title: Thalidomide: the tragedy of birth defects and the effective treatment of disease
  publication-title: Toxicol Sci
  doi: 10.1093/toxsci/kfr088
– volume: 181
  year: 2019
  ident: B25
  article-title: Early diagnosis of gestational diabetes mellitus using circulating microRNAs
  publication-title: Eur J Endocrinol
  doi: 10.1530/EJE-19-0206
– volume: 85
  year: 2007
  ident: B9
  article-title: Robust statistics in data analysis {{/amp]]mdash; a review
  publication-title: Chemom Intell Lab Syst
  doi: 10.1016/j.chemolab.2006.06.016
– volume: 76
  year: 2015
  ident: B81
  article-title: HLA associations and HLA sharing in recurrent miscarriage: a systematic review and meta-analysis
  publication-title: Hum Immunol
  doi: 10.1016/j.humimm.2015.02.004
– volume: 18
  year: 2014
  ident: B112
  article-title: Personalized assessment of craniosynostosis via statistical shape modeling
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2014.02.008
– volume: 3
  year: 2020
  ident: B92
  article-title: Multiomics characterization of preterm birth in low- and middle-income countries
  publication-title: JAMA Netw Open
  doi: 10.1001/jamanetworkopen.2020.29655
– volume: 300
  year: 2019
  ident: B86
  article-title: Analysis of big data for prediction of provider-initiated preterm birth and spontaneous premature deliveries and ranking the predictive features
  publication-title: Arch Gynecol Obstet
  doi: 10.1007/s00404-019-05325-3
– volume: 11
  year: 2013
  ident: B73
  article-title: New insights into mechanisms behind miscarriage
  publication-title: BMC Med
  doi: 10.1186/1741-7015-11-154
– volume: 39
  year: 2001
  ident: B47
  article-title: Prediction of the development of pregnancy-induced hypertensive disorders in high-risk pregnant women by artificial neural networks
  publication-title: Clin Chem Lab Med
  doi: 10.1515/CCLM.2001.132
– volume: 16
  start-page: 89
  year: 2017
  ident: B102
  article-title: Classification of caesarean section and normal vaginal deliveries using foetal heart rate signals and advanced machine learning algorithms
  publication-title: BioMed Eng Online
  doi: 10.1186/s12938-017-0378-z
– start-page: 1
  volume-title: Biomedical translational research
  year: 2022
  ident: B153
  article-title: Introduction to emerging technologies in biomedical sciences
  doi: 10.1007/978-981-16-4345-3_1
– volume: 24
  year: 2020
  ident: B44
  article-title: A new predicting model of preeclampsia based on peripheral blood test values
  publication-title: Eur Rev Med Pharmacol Sci
  doi: 10.26355/eurrev_202007_21874
– volume: 93
  start-page: 7
  year: 2018
  ident: B103
  article-title: Machine learning ensemble modelling to classify caesarean section and vaginal delivery types using cardiotocography traces
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2017.12.002
– volume: 103
  year: 2021
  ident: B30
  article-title: Maternal thyroid profile in first and second trimester of pregnancy is correlated with gestational diabetes mellitus through machine learning
  publication-title: Placenta
  doi: 10.1016/j.placenta.2020.10.015
– volume: 19
  start-page: 252
  year: 2019
  ident: B19
  article-title: A simple model to predict risk of gestational diabetes mellitus from 8 to 20 weeks of gestation in Chinese women
  publication-title: BMC Pregnancy Childbirth
  doi: 10.1186/s12884-019-2374-8
– volume: 35
  year: 2022
  ident: B51
  article-title: Ultrasound placental image texture analysis using artificial intelligence to predict hypertension in pregnancy
  publication-title: J Matern Neonatal Med
  doi: 10.1080/14767058.2021.1887847
– volume: 10
  year: 2011
  ident: B119
  article-title: Antepartum fetal heart rate feature extraction and classification using empirical mode decomposition and support vector machine
  publication-title: BioMed Eng Online
  doi: 10.1186/1475-925X-10-6
– volume: 163
  start-page: 87
  year: 2018
  ident: B111
  article-title: Fetal health status prediction based on maternal clinical history using machine learning techniques
  publication-title: Comput Methods Programs BioMed
  doi: 10.1016/j.cmpb.2018.06.010
– volume: 19
  start-page: 286
  year: 2019
  ident: B123
  article-title: DeepFHR: intelligent prediction of fetal acidemia using fetal heart rate signals based on convolutional neural network
  publication-title: BMC Med Inform Decis Mak
  doi: 10.1186/s12911-019-1007-5
– volume: 221
  year: 2018
  ident: B69
  article-title: Postoperative neonatal mortality prediction using superlearning
  publication-title: J Surg Res
  doi: 10.1016/j.jss.2017.09.002
– volume: 122
  year: 2013
  ident: B34
  article-title: Hypertension in pregnancy
  publication-title: Obstet Gynecol
  doi: 10.1097/01.AOG.0000437382.03963.88
– volume: 8
  start-page: 1
  year: 2020
  ident: B150
  article-title: Comparison of multivariable logistic regression and other machine learning algorithms for prognostic prediction studies in pregnancy care: systematic review and meta-analysis
  publication-title: JMIR Med Inf
  doi: 10.2196/16503
– volume: 90
  year: 2011
  ident: B101
  article-title: Emergency cesarean sections can be predicted by markers for stress, worry and sleep disturbances in first-time mothers
  publication-title: Acta Obstet Gynecol Scand
  doi: 10.1111/j.1600-0412.2010.01056.x
– volume: 44
  year: 2021
  ident: B106
  article-title: Three machine learning algorithms and their utility in exploring risk factors associated with primary cesarean section in low-risk women: a methods paper
  publication-title: Res Nurs Health
  doi: 10.1002/nur.22122
– volume: 4
  start-page: e98
  year: 2016
  ident: B59
  article-title: National, regional, and worldwide estimates of stillbirth rates in 2015, with trends from 2000: a systematic analysis
  publication-title: Lancet Glob Heal
  doi: 10.1016/S2214-109X(15)00275-2
– volume: 16
  year: 2021
  ident: B87
  article-title: Prediction of preterm birth in nulliparous women using logistic regression and machine learning
  publication-title: PloS One
  doi: 10.1371/journal.pone.0252025
– volume: 123
  year: 2016
  ident: B95
  article-title: Association between rates of caesarean section and maternal and neonatal mortality in the 21st century: a worldwide population-based ecological study with longitudinal data
  publication-title: BJOG Int J Obstet Gynaecol
  doi: 10.1111/1471-0528.13592
– volume: 20
  year: 2019
  ident: B158
  article-title: Big data and machine learning algorithms for health-care delivery
  publication-title: Lancet Oncol
  doi: 10.1016/S1470-2045(19)30149-4
– volume: 122
  year: 2020
  ident: B96
  article-title: Cesarean delivery and infant cortisol regulation
  publication-title: Psychoneuroendocrinology
  doi: 10.1016/j.psyneuen.2020.104862
– volume: 24
  start-page: 27
  year: 2019
  ident: B85
  article-title: The prediction of preterm delivery: what is new
  publication-title: Semin Fetal Neonatal Med
  doi: 10.1016/j.siny.2018.09.006
– volume: 5
  year: 2014
  ident: B144
  article-title: Epigenetic regulation of the neural transcriptome and alcohol interference during development
  publication-title: Front Genet
  doi: 10.3389/fgene.2014.00285
– volume: 8
  year: 2017
  ident: B122
  article-title: A hybrid EMD-kurtosis method for estimating fetal heart rate from continuous Doppler signals
  publication-title: Front Physiol
  doi: 10.3389/fphys.2017.00641
– volume: 10
  start-page: 16142
  year: 2020
  ident: B41
  article-title: Metabolomic biomarkers in midtrimester maternal plasma can accurately predict the development of preeclampsia
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-72852-4
– volume: 16
  start-page: 274
  year: 2016
  ident: B63
  article-title: Predicting stillbirth in a low resource setting
  publication-title: BMC Pregnancy Childbirth
  doi: 10.1186/s12884-016-1061-2
– volume: 15
  year: 2019
  ident: B132
  article-title: Exon level machine learning analyses elucidate novel candidate miRNA targets in an avian model of fetal alcohol spectrum disorder
  publication-title: PloS Comput Biol
  doi: 10.1371/journal.pcbi.1006937
– year: 2019
  ident: B108
  article-title: Application of machine learning to prediction of surgical site infection
  publication-title: 2019 41st Annu Int Conf IEEE Eng Med Biol Soc (EMBC)
  doi: 10.1109/EMBC.2019.8857942
– volume: 13
  year: 2022
  ident: B68
  article-title: Prediction of mortality of premature neonates using neural network and logistic regression
  publication-title: J Ambient Intell Humaniz Comput
  doi: 10.1007/s12652-020-02562-2
– volume: 85
  year: 2020
  ident: B94
  article-title: Intelligent system based on data mining techniques for prediction of preterm birth for women with cervical cerclage
  publication-title: Comput Biol Chem
  doi: 10.1016/j.compbiolchem.2020.107233
SSID ssj0000401998
Score 2.446992
SecondaryResourceType review_article
Snippet Machine learning (ML) corresponds to a wide variety of methods that use mathematics, statistics and computational science to learn from multiple variables...
IntroductionMachine learning (ML) corresponds to a wide variety of methods that use mathematics, statistics and computational science to learn from multiple...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1130139
SubjectTerms adverse perinatal outcomes
artificial intelligence
Endocrinology
machine learning
pregnancy complications
pregnancy diseases
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSyQxEA7iQbyIr93t9UEEb9LYPanppL2pKCKMJwVvIU8VJCPzOPjvt5K0w7TIepG-dSfpkKqkviJVXxFyDBY4021det2wEpS2pTLClaoCh48d8HSjO7prbh7g9nH4uFTqK8aEZXrgvHCn4CvNrWfMoOnntda6NgrHAI_QgXEfT1-0eUvOVDqD0W1ARyJnyaAX1p56F2xM9huwWMYkAp-eJUqE_V-hzM_BkkvW53qTbHSwkZ7n6W6RFRe2ydqouxjfIe-jFBTpaFcF4omqDC_pS6AIShPTM1XBUu8QbtOc_nhGFQ1qksm_ac5ioX5s5lPsOA70beKeIiHHO-3ucaZpiF4Y-i55uL66v7wpu6oKpUFXeFYy7zSiNIfWUWgQHpjzXLGh0EJ4bocDzZvKG-ZaUByNOaimEsqKmumqUQDsF1kN4-D-EBozoltoWVt5Cy0YYRw6jI6joJRm4AtSf6ywNB3leKx88SrR9YhSkUkqMkpFdlIpyMmiz1sm3Phv64souEXLSJadXqAKyU6F5HcqVJCjD7FL3FzxxkQFN55PZYyx5VWDPmpBfmc1WPyKIfIDxAAFET0F6c2l_yW8PCcC7zqTDDV_f2L2e2Q9rkiMaKjbfbI6m8zdAQKlmT5Me-IfDXYTYA
  priority: 102
  providerName: Directory of Open Access Journals
Title Machine learning applied in maternal and fetal health: a narrative review focused on pregnancy diseases and complications
URI https://www.ncbi.nlm.nih.gov/pubmed/37274341
https://www.proquest.com/docview/2822706924
https://pubmed.ncbi.nlm.nih.gov/PMC10235786
https://doaj.org/article/4f0b7df33c32471bbb1ca4d24f35237f
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEA_nCeLL4fm56h0RfJNq28wmqSCi4nkI65ML-1aSJlkPjvSuuwvuf-_kYxcrpyCFQr_SNpPp_KaZ-Q0hL8GAYLqpCqc5K0BpU6hO2kKVYHExtYgzurNv_HwOXxfTxQHZlTvKHbi60bUL9aTmw-Xrn9fb96jw74LHifb2jbPehDy-moUKJQHT3CK30TKJoKizDPfjlxmdiSaWx604h6JGbJDyaP7SzMhWRUr_m3Don-GUv9mns3vkKANL-iGNhGNyYP19cmeWp84fkO0shk1amutELKlKAJReeIqwNXJBU-UNdRb7gqYEybdUUa-GRA9OU54LdX23WeGFvadXg10Gyo4tzTM9q9jEKFD9IZmfff7-6bzIdReKDp3ldcGc1YjjLNpPqUE6YNYJxaZSS-mEmdZa8NJ1zDagBJp7ULyUysiK6ZIrAPaIHPre2yeEhpzpBhrWlM5AA53sLLqUVtQglGbgJqTa9XDbZVLyUBvjskXnJEiljVJpg1TaLJUJebW_5ipRcvzz7I9BcPszA5123NEPyzZrZwuu1MI4xjrEl6LSWledwoEKDvEpE_iYL3Zib1H9wpyK8rbfrNoQhStKjl7shDxOw2B_K4bYEBAlTIgcDZDRs4yP-IsfkeK7SjRE_Ol_veszcjdshuCGqnlODtfDxp4gZlrr0_ivAddfFtVpVIpfqJIWsg
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+applied+in+maternal+and+fetal+health%3A+a+narrative+review+focused+on+pregnancy+diseases+and+complications&rft.jtitle=Frontiers+in+endocrinology+%28Lausanne%29&rft.au=Mennickent%2C+Daniela&rft.au=Rodr%C3%ADguez%2C+Andr%C3%A9s&rft.au=Opazo%2C+Ma.+Cecilia&rft.au=Riedel%2C+Claudia+A.&rft.date=2023-05-19&rft.issn=1664-2392&rft.eissn=1664-2392&rft.volume=14&rft_id=info:doi/10.3389%2Ffendo.2023.1130139&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fendo_2023_1130139
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-2392&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-2392&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-2392&client=summon