Online Calibration of Inertial Sensors Based on Error Backpropagation
Global satellite navigation systems (GNSSs) are the most-used technology for the localization of vehicles in the outdoor environment, but in the case of a densely built-up area or during passage through a tunnel, the satellite signal is not available or has poor quality. Inertial navigation systems...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 24; no. 23; p. 7525 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
25.11.2024
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Global satellite navigation systems (GNSSs) are the most-used technology for the localization of vehicles in the outdoor environment, but in the case of a densely built-up area or during passage through a tunnel, the satellite signal is not available or has poor quality. Inertial navigation systems (INSs) allow localization dead reckoning, but they have an integration error that grows over time. Inexpensive inertial measurement units (IMUs) are subject to thermal-dependent error and must be calibrated almost continuously. This article proposes a novel method of online (continuous) calibration of inertial sensors with the aid of the data from the GNSS receiver during the vehicle’s route. We performed data fusion using an extended Kalman filter (EKF) and calibrated the input sensors through error backpropagation. The algorithm thus calibrates the INS sensors while the GNSS receiver signal is good, and after a GNSS failure, for example in tunnels, the position is predicted only by low-cost inertial sensors. Such an approach significantly improved the localization precision in comparison with offline calibrated inertial localization with the same sensors. |
---|---|
AbstractList | Global satellite navigation systems (GNSSs) are the most-used technology for the localization of vehicles in the outdoor environment, but in the case of a densely built-up area or during passage through a tunnel, the satellite signal is not available or has poor quality. Inertial navigation systems (INSs) allow localization dead reckoning, but they have an integration error that grows over time. Inexpensive inertial measurement units (IMUs) are subject to thermal-dependent error and must be calibrated almost continuously. This article proposes a novel method of online (continuous) calibration of inertial sensors with the aid of the data from the GNSS receiver during the vehicle’s route. We performed data fusion using an extended Kalman filter (EKF) and calibrated the input sensors through error backpropagation. The algorithm thus calibrates the INS sensors while the GNSS receiver signal is good, and after a GNSS failure, for example in tunnels, the position is predicted only by low-cost inertial sensors. Such an approach significantly improved the localization precision in comparison with offline calibrated inertial localization with the same sensors. Global satellite navigation systems (GNSSs) are the most-used technology for the localization of vehicles in the outdoor environment, but in the case of a densely built-up area or during passage through a tunnel, the satellite signal is not available or has poor quality. Inertial navigation systems (INSs) allow localization dead reckoning, but they have an integration error that grows over time. Inexpensive inertial measurement units (IMUs) are subject to thermal-dependent error and must be calibrated almost continuously. This article proposes a novel method of online (continuous) calibration of inertial sensors with the aid of the data from the GNSS receiver during the vehicle's route. We performed data fusion using an extended Kalman filter (EKF) and calibrated the input sensors through error backpropagation. The algorithm thus calibrates the INS sensors while the GNSS receiver signal is good, and after a GNSS failure, for example in tunnels, the position is predicted only by low-cost inertial sensors. Such an approach significantly improved the localization precision in comparison with offline calibrated inertial localization with the same sensors.Global satellite navigation systems (GNSSs) are the most-used technology for the localization of vehicles in the outdoor environment, but in the case of a densely built-up area or during passage through a tunnel, the satellite signal is not available or has poor quality. Inertial navigation systems (INSs) allow localization dead reckoning, but they have an integration error that grows over time. Inexpensive inertial measurement units (IMUs) are subject to thermal-dependent error and must be calibrated almost continuously. This article proposes a novel method of online (continuous) calibration of inertial sensors with the aid of the data from the GNSS receiver during the vehicle's route. We performed data fusion using an extended Kalman filter (EKF) and calibrated the input sensors through error backpropagation. The algorithm thus calibrates the INS sensors while the GNSS receiver signal is good, and after a GNSS failure, for example in tunnels, the position is predicted only by low-cost inertial sensors. Such an approach significantly improved the localization precision in comparison with offline calibrated inertial localization with the same sensors. |
Audience | Academic |
Author | Nemec, Dusan Andel, Jan Simak, Vojtech Kekelak, Juraj |
AuthorAffiliation | Department of Control and Information Systems, Faculty of Electrical Engineering and Information Technology, University of Žilina, 010 26 Žilina, Slovakia; vojtech.simak@uniza.sk (V.S.); andel.jano@gmail.com (J.A.); juraj.kekelak@feit.uniza.sk (J.K.) |
AuthorAffiliation_xml | – name: Department of Control and Information Systems, Faculty of Electrical Engineering and Information Technology, University of Žilina, 010 26 Žilina, Slovakia; vojtech.simak@uniza.sk (V.S.); andel.jano@gmail.com (J.A.); juraj.kekelak@feit.uniza.sk (J.K.) |
Author_xml | – sequence: 1 givenname: Vojtech orcidid: 0000-0001-5137-0093 surname: Simak fullname: Simak, Vojtech – sequence: 2 givenname: Jan orcidid: 0000-0002-0444-2071 surname: Andel fullname: Andel, Jan – sequence: 3 givenname: Dusan orcidid: 0000-0003-1837-4046 surname: Nemec fullname: Nemec, Dusan – sequence: 4 givenname: Juraj orcidid: 0009-0008-5338-0453 surname: Kekelak fullname: Kekelak, Juraj |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39686062$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkk1vEzEQhi1URNvAgT-AVuIChxSPv3Z9QiUKEKlSD8DZ8nrHwWFjB3tTiX-P05SoRT54PH7n8YxnLslZTBEJeQ30inNNPxQmGG8lk8_IBQgm5h1j9OyRfU4uS9lQyjjn3QtyzrXqFFXsgixv4xgiNgs7hj7bKaTYJN-sIuYp2LH5hrGkXJpPtuDQ1MtlzinXo_u1y2ln1_chL8lzb8eCrx72Gfnxefl98XV-c_tltbi-mTuh9DTniFRi7wSl0oJUiBpagR2Tg7IaB3C8FdTLmrazUh8M2SugulOWO6f5jKyO3CHZjdnlsLX5j0k2mHtHymtja95uRKOAM2yBMt23gve690r1VHnGBwpAfWV9PLJ2-36Lg8M4ZTs-gT69ieGnWac7A6CEaLmohHcPhJx-77FMZhuKw3G0EdO-GA61alC6NmdG3v4n3aR9jvWvDioBLRP6ALw6qta2VhCiT_VhV9eA2-Bqz32o_usOtJaSdVAD3jyu4ZT8v_5WwfujwOVUSkZ_kgA1h9kxp9nhfwE8fbK2 |
Cites_doi | 10.1109/CarpathianCC.2017.7970452 10.3390/s22218447 10.1109/RTSI.2015.7325144 10.1016/j.ifacol.2018.08.151 10.1109/TAES.2011.5751259 10.1088/0957-0233/23/10/105105 10.1109/INOCON50539.2020.9298316 10.3390/rs14030752 10.1109/TIV.2020.2980758 10.1016/j.trpro.2021.07.066 10.1016/j.inffus.2010.01.003 10.1109/WPNC.2014.6843306 10.1109/TAES.2002.1008998 10.1109/JSEN.2015.2459767 10.1109/DESEC.2017.8073847 10.1109/ICINFA.2010.5512070 10.1155/2010/967245 10.1109/JSEN.2016.2597292 10.1109/CEEE.2017.8412926 10.1109/IoT-SIU.2018.8519902 10.1109/JSTARS.2016.2546316 10.1016/j.inffus.2004.07.002 10.1109/ICDI3C.2018.00013 10.1109/ACCESS.2020.3006210 10.23919/ChiCC.2018.8483718 10.1016/j.inffus.2010.06.006 10.1016/j.dt.2019.08.011 10.3390/s17061324 10.1109/WiSPNET45539.2019.9032769 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2024 by the authors. 2024 |
Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2024 by the authors. 2024 |
DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI 7X8 5PM DOA |
DOI | 10.3390/s24237525 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_6132e71029b743b9bf66b06f23d0110f PMC11644734 A819955281 39686062 10_3390_s24237525 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Slovak Research and Development Agency grantid: APVV SK-IL-RD-23-0002 – fundername: Advanced Localization Sensors and Techniques for Autonomous Vehicles and Robots grantid: APVV SK-IL-RD-23-0002 |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M NPM PMFND 3V. 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c469t-3ee05ebc4005a156ee9174e825d6a9ed1c3740f5424ca59f5425b610986a3cc93 |
IEDL.DBID | 7X7 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:25:49 EDT 2025 Thu Aug 21 18:29:34 EDT 2025 Fri Jul 11 09:17:30 EDT 2025 Fri Jul 25 23:04:00 EDT 2025 Tue Jun 10 21:00:17 EDT 2025 Sun Mar 30 02:11:06 EDT 2025 Tue Jul 01 03:51:21 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 23 |
Keywords | inertial sensors error backpropagation online calibration global satellite navigation |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c469t-3ee05ebc4005a156ee9174e825d6a9ed1c3740f5424ca59f5425b610986a3cc93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-5137-0093 0009-0008-5338-0453 0000-0003-1837-4046 0000-0002-0444-2071 |
OpenAccessLink | https://www.proquest.com/docview/3144172494?pq-origsite=%requestingapplication% |
PMID | 39686062 |
PQID | 3144172494 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_6132e71029b743b9bf66b06f23d0110f pubmedcentral_primary_oai_pubmedcentral_nih_gov_11644734 proquest_miscellaneous_3146916942 proquest_journals_3144172494 gale_infotracacademiconefile_A819955281 pubmed_primary_39686062 crossref_primary_10_3390_s24237525 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20241125 |
PublicationDateYYYYMMDD | 2024-11-25 |
PublicationDate_xml | – month: 11 year: 2024 text: 20241125 day: 25 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2024 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Brossard (ref_19) 2020; 5 Wen (ref_3) 2020; 8 Li (ref_30) 2012; 23 ref_14 ref_36 ref_13 ref_12 ref_11 ref_33 Guo (ref_22) 2016; 9 ref_32 ref_31 Ndjeng (ref_10) 2011; 12 Qi (ref_8) 2002; 38 ref_16 ref_15 ref_37 Wang (ref_9) 2018; 51 Caron (ref_7) 2006; 7 Nemec (ref_35) 2016; 16 Vasconcelos (ref_27) 2011; 47 Wu (ref_28) 2015; 15 ref_25 Renaudin (ref_26) 2010; 2010 ref_24 ref_23 ref_21 ref_20 Andel (ref_34) 2021; 55 ref_1 Dai (ref_18) 2020; 16 ref_29 He (ref_2) 2020; 70 ref_5 ref_4 ref_6 Noureldin (ref_17) 2010; 12 |
References_xml | – ident: ref_1 doi: 10.1109/CarpathianCC.2017.7970452 – ident: ref_33 doi: 10.3390/s22218447 – ident: ref_5 doi: 10.1109/RTSI.2015.7325144 – volume: 51 start-page: 232 year: 2018 ident: ref_9 article-title: A GNSS/INS Integrated Navigation Algorithm Based on Kalman Filter publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2018.08.151 – volume: 47 start-page: 1293 year: 2011 ident: ref_27 article-title: Geometric approach to strapdown magnetometer calibration in sensor frame publication-title: IEEE Trans. Aerosp. Electron. Syst. doi: 10.1109/TAES.2011.5751259 – volume: 23 start-page: 105105 year: 2012 ident: ref_30 article-title: A new calibration method for tri-axial field sensors in strap-down navigation systems publication-title: Meas. Sci. Technol. doi: 10.1088/0957-0233/23/10/105105 – ident: ref_12 doi: 10.1109/INOCON50539.2020.9298316 – ident: ref_20 doi: 10.3390/rs14030752 – volume: 5 start-page: 585 year: 2020 ident: ref_19 article-title: AI-IMU Dead-Reckoning publication-title: IEEE Trans. Intell. Veh. doi: 10.1109/TIV.2020.2980758 – volume: 55 start-page: 969 year: 2021 ident: ref_34 article-title: IoT-based Data Acquisition Unit for aircraft and road vehicle publication-title: Transp. Res. Procedia doi: 10.1016/j.trpro.2021.07.066 – ident: ref_16 – volume: 12 start-page: 48 year: 2010 ident: ref_17 article-title: GPS/INS integration utilizing dynamic neural networks for vehicular navigation publication-title: Inf. Fusion doi: 10.1016/j.inffus.2010.01.003 – ident: ref_37 – ident: ref_14 – ident: ref_31 doi: 10.1109/WPNC.2014.6843306 – volume: 38 start-page: 687 year: 2002 ident: ref_8 article-title: Direct Kalman filtering approach for GPS/INS integration publication-title: IEEE Trans. Aerosp. Electron. Syst. doi: 10.1109/TAES.2002.1008998 – volume: 15 start-page: 6424 year: 2015 ident: ref_28 article-title: On Calibration of Three-Axis Magnetometer publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2015.2459767 – ident: ref_21 doi: 10.1109/DESEC.2017.8073847 – ident: ref_13 doi: 10.1109/ICINFA.2010.5512070 – volume: 2010 start-page: 967245 year: 2010 ident: ref_26 article-title: Complete Triaxis Magnetometer Calibration in the Magnetic Domain publication-title: J. Sens. doi: 10.1155/2010/967245 – volume: 16 start-page: 7150 year: 2016 ident: ref_35 article-title: Intelligent Real-Time MEMS Sensor Fusion and Calibration publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2016.2597292 – ident: ref_6 doi: 10.1109/CEEE.2017.8412926 – ident: ref_25 doi: 10.1109/IoT-SIU.2018.8519902 – volume: 9 start-page: 5880 year: 2016 ident: ref_22 article-title: An Optimal Weighting Method of Global Positioning System (GPS) Troposphere Tomography publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2016.2546316 – volume: 7 start-page: 221 year: 2006 ident: ref_7 article-title: GPS/IMU data fusion using multisensor Kalman filtering: Introduction of contextual aspects publication-title: Inf. Fusion doi: 10.1016/j.inffus.2004.07.002 – ident: ref_4 – ident: ref_29 – volume: 70 start-page: 7500709 year: 2020 ident: ref_2 article-title: An Integrated GNSS/LiDAR-SLAM Pose Estimation Framework for Large-Scale Map Building in Partially GNSS-Denied Environments publication-title: IEEE Trans. Instrum. Meas. – ident: ref_11 doi: 10.1109/ICDI3C.2018.00013 – volume: 8 start-page: 124323 year: 2020 ident: ref_3 article-title: Multi-Agent Collaborative GNSS/Camera/INS Integration Aided by Inter-Ranging for Vehicular Navigation in Urban Areas publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3006210 – ident: ref_15 – ident: ref_36 – ident: ref_24 doi: 10.23919/ChiCC.2018.8483718 – volume: 12 start-page: 264 year: 2011 ident: ref_10 article-title: Low cost IMU–Odometer–GPS ego localization for unusual maneuvers publication-title: Inf. Fusion doi: 10.1016/j.inffus.2010.06.006 – volume: 16 start-page: 334 year: 2020 ident: ref_18 article-title: An INS/GNSS integrated navigation in GNSS denied environment using recurrent neural network publication-title: Def. Technol. doi: 10.1016/j.dt.2019.08.011 – ident: ref_32 doi: 10.3390/s17061324 – ident: ref_23 doi: 10.1109/WiSPNET45539.2019.9032769 |
SSID | ssj0023338 |
Score | 2.4339433 |
Snippet | Global satellite navigation systems (GNSSs) are the most-used technology for the localization of vehicles in the outdoor environment, but in the case of a... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 7525 |
SubjectTerms | Accelerometers Accuracy Algorithms Artificial intelligence Calibration Communication Communications equipment Electronics in navigation error backpropagation global satellite navigation Inertial navigation Inertial navigation (Aeronautics) inertial sensors Localization Microelectromechanical systems Neural networks online calibration Receivers & amplifiers Sensors Technology application Wireless access points |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8QwFAziSQ_it9VVqgieit2mSZOjyooKelHBW2jSFEVopbv-f-e13aWLBy_euk0D6Zsm84bNmzB2XvDCC6S1kSskj1LtdGQtVAr5svDMxmWiqDj58UnevaYPb-JtcNQX7Qnr7IG7wF2CbhJPNKgtyM5qW0ppY1kmvCDqKmn1BefNxVQvtTiUV-cjxCHqL6eUNWSCzsMesE9r0v97KR5w0fI-yQHx3G6yjT5jDK-6kW6xFV9ts_WBj-AOm3SGoSEVWtkO0rAuw_uKNk2j7zO0at1Mw2tQVhGicdI0dYOf7hPDwZLSdtllr7eTl5u7qD8fIXIQtbOIex8Lbx2mocihw7yH9ko9NF8hc-2LseNZGpeAInW50HQhLNmrK5lz5zTfY6tVXfkDFioRl5rncZaonFIKVSKd5TwpxpAj6Bews3nczFdng2EgHyi4ZhHcgF1TRBcPkHN1ewN4mh5P8xeeAbsgPAzNLwTd5X2ZAMZJTlXmSlFRuUjUOGCjOWSmn3hTw0kgZtCUacBOF82YMvQ_SF75-rt9Bl-i1PRa-x3CizFzLRU0HVrUEvZLL7XcUn28t7bcYyjPNOPp4X-E4YitJUifqOoxESO2Omu-_THSn5k9ab_0H1Lf_4g priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwELVKucAB8U2gRQEhcQpk_RX7gKoWbVWQygVW6s2KHQeqogSyWwn-PW-SbLQRiFsS25Iz48m8J2eeGXtViSoqwNosVFpk0gabeQ-WQrosovB5zQ0VJ59_0mcr-fFCXeyx7RmbowHX_6R2dJ7Uqvv-5tfP30cI-HfEOEHZ364JExSKqxvsJhJSQfF5LqfNBC5AwwZRoXn3WSrqFfv__i7vJKb5T5M7Wej0Lrszwsf0ePD3PbYXm_vs9o6o4AO2HNRDU6q68oN_07ZOPzT0BzXGfgZxbbt1eoL8VaVoXHZd2-E2XGE6-L70Qx6y1enyy_uzbDwsIQtguJtMxJir6ANiUpUgZTGCiMkIAljp0sZqEUQh8xp-kaFUli6UJ611o0sRghWP2H7TNvEJS43KayvKvOCmJHxhamBbIXi1ADfBuIS93NrN_Rg0MRy4BBnXTcZN2AlZdOpAMtb9g7b76saocMASPBLGsR5Ixltfa-1zXXNRES6pE_aa_OHI_TB6KMeaAcyTZKvcsaEKc8XNImEHW5e57SJygthiAYIpE_Ziakb80KZI2cT2uu-DZaktvdbjwcPTnIXVBgQPLWbm-9lLzVuay2-9RvcCNFQWQj79_7yesVscKImKG7k6YPub7joeAuVs_PN-Df8BO6T5lw priority: 102 providerName: Scholars Portal |
Title | Online Calibration of Inertial Sensors Based on Error Backpropagation |
URI | https://www.ncbi.nlm.nih.gov/pubmed/39686062 https://www.proquest.com/docview/3144172494 https://www.proquest.com/docview/3146916942 https://pubmed.ncbi.nlm.nih.gov/PMC11644734 https://doaj.org/article/6132e71029b743b9bf66b06f23d0110f |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1db9MwFLVge4GHiW8CowoIiadoafwR-wmtqGUgbULApL5Z8UcGQkq2tPv_nJukXSskXqI2jiXnXl_7HMf3mLH3gYcoAWszHxTPhPEmcw4shXRZeOnyutCUnHx-oc4uxdelXI4LbqtxW-VmTOwH6tB6WiM_4YT8S5AF8fH6JqNTo-jr6niExn12SNJltKWrXN4RLg7-NagJcVD7kxVhh1LSqdg7c1Av1f_vgLwzI-3vltyZfhaP2NGIG9PTwdGP2b3YPGEPd9QEn7L5IBuaUrqVGxybtnX6paGt06j7A4y17VbpDBNXSFE477q2w1__B83BwNJXecYuF_Ofn86y8ZSEzIParjMeYy6j8whGWYGNxQgGJiKYX1CViWHqeSnyGg4RvpKGfkhHIutaVdx7w5-zg6Zt4kuWapnXhld5WeiKgIWuAWo5L8IUpAT1EvZuYzd7PYhhWJAIMq7dGjdhM7Lo9gHSr-5vtN2VHcPBAkQUkcCNcYAwzrhaKZeruuCBAEmdsA_kD0tRBqP7akwWQDtJr8qeakotl4WeJux44zI7ht_K3nWWhL3dFiNw6GtI1cT2tn8G_VEZeq0Xg4e3beZGaTA7lOg93--91H5J8_tXL849Bf8UJRev_t-u1-xBAXhEWY2FPGYH6-42vgG8WbtJ34dx1YvPE3Y4m198-z7plwpwPRf6L1_q_Hw |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5V7QE4oPJsoEBAIE5Rs3bs2AeEWthqlz4utNLeTPwIIKSkZLeq-qf4jczksd0VErfedtexZM_D830bzwzAW899EAhrE-clTzLtdGItshSqy8Jzm5ZMUXLyyamcnGdfZmK2AX-GXBi6Vjmcie1B7WtH_5HvcUL-OZKF7OPF74S6RtHb1aGFRmcWR-H6Cinb_MP0M-r3HWOH47NPk6TvKpA4pIKLhIeQimAdGq8okL2EgIwlC8iUvCx08CPH8ywtcQOZK4SmD8JSUXIlC-4cFV_CI38LA29KHpXPbggeR77XVS_iXKd7c8IquaAu3Csxr20N8G8AWImA67czV8Ld4Tbc73FqvN8Z1gPYCNVDuLdSvfARjLsypTGld9nOkOK6jKcVXdXGuV-RIdfNPD7AQOljHBw3Td3gV_cLl4MHWTvlMZzfivyewGZVV2EHYiXSUvMizZkqCMioEkE058yPkAThvAjeDHIzF13xDYOkhYRrlsKN4IAkunyA6mW3P9TNd9O7n0HQwgKBKW0RMlltSyltKkvGPQGgMoL3pA9DXo1Cd0WfnIDrpPpYZl9RKrtgahTB7qAy07v73NwYZwSvl8PoqPT2pahCfdk-g_YvNW3raafh5Zq5lgqZJI6oNd2vbWp9pPr5oy0GPkK-m-U8e_b_db2CO5Ozk2NzPD09eg53GUIzyqhkYhc2F81leIHQamFftvYcw7fbdqC_Ogw0Jw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED9NQ0LwgPgmMCAgEE9REzt27AeENtZqZTAhwaS-mdixASElI-2E-Nf467jLR9cKibe9tXUs2ffh-_0a3x3Ai4pXXiCsTVwleZJrpxNrkaVQXRZe2DQwRcnJH07k0Wn-biEWO_BnzIWha5Xjmdgd1FXj6D_yCSfkXyBZyCdhuBbx8XD25uxnQh2k6E3r2E6jN5Fj__sX0rfl6_kh6volY7Pp57dHydBhIHFIC1cJ9z4V3jo0ZFEik_Ee2UvukTVVstS-yhwv8jTgZnJXCk0fhKUC5UqW3DkqxITH_5WCi4x8rFhckD2O3K-vZMS5TidLwi2FoI7cG_GvaxPwbzDYiIbbNzU3Qt_sJtwYMGu83xvZLdjx9W24vlHJ8A5M-5KlMaV62d6o4ibE85qubePcT8iWm3YZH2DQrGIcnLZt0-JX9wOXg4daN-UunF6K_O7Bbt3U_gHESqRB8zItmCoJ1KiAgJpzVmVIiHBeBM9HuZmzvhCHQQJDwjVr4UZwQBJdP0C1s7sfmvarGVzRIIBhnoCVtgifrLZBSpvKwHhFYChE8Ir0YcjDUeiuHBIVcJ1UK8vsK0prF0xlEeyNKjOD6y_NhaFG8Gw9jE5Lb2LK2jfn3TPoC1LTtu73Gl6vmWupkFXiiNrS_damtkfq79-6wuAZct-84PnD_6_rKVxF1zHv5yfHj-AaQ5RGyZVM7MHuqj33jxFlreyTzpxj-HLZ_vMXkYU4XQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Online+Calibration+of+Inertial+Sensors+Based+on+Error+Backpropagation&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Simak%2C+Vojtech&rft.au=Andel%2C+Jan&rft.au=Nemec%2C+Dusan&rft.au=Kekelak%2C+Juraj&rft.date=2024-11-25&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=24&rft.issue=23&rft.spage=7525&rft_id=info:doi/10.3390%2Fs24237525&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |