Online Calibration of Inertial Sensors Based on Error Backpropagation

Global satellite navigation systems (GNSSs) are the most-used technology for the localization of vehicles in the outdoor environment, but in the case of a densely built-up area or during passage through a tunnel, the satellite signal is not available or has poor quality. Inertial navigation systems...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 24; no. 23; p. 7525
Main Authors Simak, Vojtech, Andel, Jan, Nemec, Dusan, Kekelak, Juraj
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 25.11.2024
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Global satellite navigation systems (GNSSs) are the most-used technology for the localization of vehicles in the outdoor environment, but in the case of a densely built-up area or during passage through a tunnel, the satellite signal is not available or has poor quality. Inertial navigation systems (INSs) allow localization dead reckoning, but they have an integration error that grows over time. Inexpensive inertial measurement units (IMUs) are subject to thermal-dependent error and must be calibrated almost continuously. This article proposes a novel method of online (continuous) calibration of inertial sensors with the aid of the data from the GNSS receiver during the vehicle’s route. We performed data fusion using an extended Kalman filter (EKF) and calibrated the input sensors through error backpropagation. The algorithm thus calibrates the INS sensors while the GNSS receiver signal is good, and after a GNSS failure, for example in tunnels, the position is predicted only by low-cost inertial sensors. Such an approach significantly improved the localization precision in comparison with offline calibrated inertial localization with the same sensors.
AbstractList Global satellite navigation systems (GNSSs) are the most-used technology for the localization of vehicles in the outdoor environment, but in the case of a densely built-up area or during passage through a tunnel, the satellite signal is not available or has poor quality. Inertial navigation systems (INSs) allow localization dead reckoning, but they have an integration error that grows over time. Inexpensive inertial measurement units (IMUs) are subject to thermal-dependent error and must be calibrated almost continuously. This article proposes a novel method of online (continuous) calibration of inertial sensors with the aid of the data from the GNSS receiver during the vehicle’s route. We performed data fusion using an extended Kalman filter (EKF) and calibrated the input sensors through error backpropagation. The algorithm thus calibrates the INS sensors while the GNSS receiver signal is good, and after a GNSS failure, for example in tunnels, the position is predicted only by low-cost inertial sensors. Such an approach significantly improved the localization precision in comparison with offline calibrated inertial localization with the same sensors.
Global satellite navigation systems (GNSSs) are the most-used technology for the localization of vehicles in the outdoor environment, but in the case of a densely built-up area or during passage through a tunnel, the satellite signal is not available or has poor quality. Inertial navigation systems (INSs) allow localization dead reckoning, but they have an integration error that grows over time. Inexpensive inertial measurement units (IMUs) are subject to thermal-dependent error and must be calibrated almost continuously. This article proposes a novel method of online (continuous) calibration of inertial sensors with the aid of the data from the GNSS receiver during the vehicle's route. We performed data fusion using an extended Kalman filter (EKF) and calibrated the input sensors through error backpropagation. The algorithm thus calibrates the INS sensors while the GNSS receiver signal is good, and after a GNSS failure, for example in tunnels, the position is predicted only by low-cost inertial sensors. Such an approach significantly improved the localization precision in comparison with offline calibrated inertial localization with the same sensors.Global satellite navigation systems (GNSSs) are the most-used technology for the localization of vehicles in the outdoor environment, but in the case of a densely built-up area or during passage through a tunnel, the satellite signal is not available or has poor quality. Inertial navigation systems (INSs) allow localization dead reckoning, but they have an integration error that grows over time. Inexpensive inertial measurement units (IMUs) are subject to thermal-dependent error and must be calibrated almost continuously. This article proposes a novel method of online (continuous) calibration of inertial sensors with the aid of the data from the GNSS receiver during the vehicle's route. We performed data fusion using an extended Kalman filter (EKF) and calibrated the input sensors through error backpropagation. The algorithm thus calibrates the INS sensors while the GNSS receiver signal is good, and after a GNSS failure, for example in tunnels, the position is predicted only by low-cost inertial sensors. Such an approach significantly improved the localization precision in comparison with offline calibrated inertial localization with the same sensors.
Audience Academic
Author Nemec, Dusan
Andel, Jan
Simak, Vojtech
Kekelak, Juraj
AuthorAffiliation Department of Control and Information Systems, Faculty of Electrical Engineering and Information Technology, University of Žilina, 010 26 Žilina, Slovakia; vojtech.simak@uniza.sk (V.S.); andel.jano@gmail.com (J.A.); juraj.kekelak@feit.uniza.sk (J.K.)
AuthorAffiliation_xml – name: Department of Control and Information Systems, Faculty of Electrical Engineering and Information Technology, University of Žilina, 010 26 Žilina, Slovakia; vojtech.simak@uniza.sk (V.S.); andel.jano@gmail.com (J.A.); juraj.kekelak@feit.uniza.sk (J.K.)
Author_xml – sequence: 1
  givenname: Vojtech
  orcidid: 0000-0001-5137-0093
  surname: Simak
  fullname: Simak, Vojtech
– sequence: 2
  givenname: Jan
  orcidid: 0000-0002-0444-2071
  surname: Andel
  fullname: Andel, Jan
– sequence: 3
  givenname: Dusan
  orcidid: 0000-0003-1837-4046
  surname: Nemec
  fullname: Nemec, Dusan
– sequence: 4
  givenname: Juraj
  orcidid: 0009-0008-5338-0453
  surname: Kekelak
  fullname: Kekelak, Juraj
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39686062$$D View this record in MEDLINE/PubMed
BookMark eNpdkk1vEzEQhi1URNvAgT-AVuIChxSPv3Z9QiUKEKlSD8DZ8nrHwWFjB3tTiX-P05SoRT54PH7n8YxnLslZTBEJeQ30inNNPxQmGG8lk8_IBQgm5h1j9OyRfU4uS9lQyjjn3QtyzrXqFFXsgixv4xgiNgs7hj7bKaTYJN-sIuYp2LH5hrGkXJpPtuDQ1MtlzinXo_u1y2ln1_chL8lzb8eCrx72Gfnxefl98XV-c_tltbi-mTuh9DTniFRi7wSl0oJUiBpagR2Tg7IaB3C8FdTLmrazUh8M2SugulOWO6f5jKyO3CHZjdnlsLX5j0k2mHtHymtja95uRKOAM2yBMt23gve690r1VHnGBwpAfWV9PLJ2-36Lg8M4ZTs-gT69ieGnWac7A6CEaLmohHcPhJx-77FMZhuKw3G0EdO-GA61alC6NmdG3v4n3aR9jvWvDioBLRP6ALw6qta2VhCiT_VhV9eA2-Bqz32o_usOtJaSdVAD3jyu4ZT8v_5WwfujwOVUSkZ_kgA1h9kxp9nhfwE8fbK2
Cites_doi 10.1109/CarpathianCC.2017.7970452
10.3390/s22218447
10.1109/RTSI.2015.7325144
10.1016/j.ifacol.2018.08.151
10.1109/TAES.2011.5751259
10.1088/0957-0233/23/10/105105
10.1109/INOCON50539.2020.9298316
10.3390/rs14030752
10.1109/TIV.2020.2980758
10.1016/j.trpro.2021.07.066
10.1016/j.inffus.2010.01.003
10.1109/WPNC.2014.6843306
10.1109/TAES.2002.1008998
10.1109/JSEN.2015.2459767
10.1109/DESEC.2017.8073847
10.1109/ICINFA.2010.5512070
10.1155/2010/967245
10.1109/JSEN.2016.2597292
10.1109/CEEE.2017.8412926
10.1109/IoT-SIU.2018.8519902
10.1109/JSTARS.2016.2546316
10.1016/j.inffus.2004.07.002
10.1109/ICDI3C.2018.00013
10.1109/ACCESS.2020.3006210
10.23919/ChiCC.2018.8483718
10.1016/j.inffus.2010.06.006
10.1016/j.dt.2019.08.011
10.3390/s17061324
10.1109/WiSPNET45539.2019.9032769
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2024 by the authors. 2024
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2024 by the authors. 2024
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
7X8
5PM
DOA
DOI 10.3390/s24237525
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
PubMed
Publicly Available Content Database



MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_6132e71029b743b9bf66b06f23d0110f
PMC11644734
A819955281
39686062
10_3390_s24237525
Genre Journal Article
GrantInformation_xml – fundername: Slovak Research and Development Agency
  grantid: APVV SK-IL-RD-23-0002
– fundername: Advanced Localization Sensors and Techniques for Autonomous Vehicles and Robots
  grantid: APVV SK-IL-RD-23-0002
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
NPM
PMFND
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c469t-3ee05ebc4005a156ee9174e825d6a9ed1c3740f5424ca59f5425b610986a3cc93
IEDL.DBID 7X7
ISSN 1424-8220
IngestDate Wed Aug 27 01:25:49 EDT 2025
Thu Aug 21 18:29:34 EDT 2025
Fri Jul 11 09:17:30 EDT 2025
Fri Jul 25 23:04:00 EDT 2025
Tue Jun 10 21:00:17 EDT 2025
Sun Mar 30 02:11:06 EDT 2025
Tue Jul 01 03:51:21 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 23
Keywords inertial sensors
error backpropagation
online calibration
global satellite navigation
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c469t-3ee05ebc4005a156ee9174e825d6a9ed1c3740f5424ca59f5425b610986a3cc93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5137-0093
0009-0008-5338-0453
0000-0003-1837-4046
0000-0002-0444-2071
OpenAccessLink https://www.proquest.com/docview/3144172494?pq-origsite=%requestingapplication%
PMID 39686062
PQID 3144172494
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_6132e71029b743b9bf66b06f23d0110f
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11644734
proquest_miscellaneous_3146916942
proquest_journals_3144172494
gale_infotracacademiconefile_A819955281
pubmed_primary_39686062
crossref_primary_10_3390_s24237525
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20241125
PublicationDateYYYYMMDD 2024-11-25
PublicationDate_xml – month: 11
  year: 2024
  text: 20241125
  day: 25
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2024
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Brossard (ref_19) 2020; 5
Wen (ref_3) 2020; 8
Li (ref_30) 2012; 23
ref_14
ref_36
ref_13
ref_12
ref_11
ref_33
Guo (ref_22) 2016; 9
ref_32
ref_31
Ndjeng (ref_10) 2011; 12
Qi (ref_8) 2002; 38
ref_16
ref_15
ref_37
Wang (ref_9) 2018; 51
Caron (ref_7) 2006; 7
Nemec (ref_35) 2016; 16
Vasconcelos (ref_27) 2011; 47
Wu (ref_28) 2015; 15
ref_25
Renaudin (ref_26) 2010; 2010
ref_24
ref_23
ref_21
ref_20
Andel (ref_34) 2021; 55
ref_1
Dai (ref_18) 2020; 16
ref_29
He (ref_2) 2020; 70
ref_5
ref_4
ref_6
Noureldin (ref_17) 2010; 12
References_xml – ident: ref_1
  doi: 10.1109/CarpathianCC.2017.7970452
– ident: ref_33
  doi: 10.3390/s22218447
– ident: ref_5
  doi: 10.1109/RTSI.2015.7325144
– volume: 51
  start-page: 232
  year: 2018
  ident: ref_9
  article-title: A GNSS/INS Integrated Navigation Algorithm Based on Kalman Filter
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2018.08.151
– volume: 47
  start-page: 1293
  year: 2011
  ident: ref_27
  article-title: Geometric approach to strapdown magnetometer calibration in sensor frame
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
  doi: 10.1109/TAES.2011.5751259
– volume: 23
  start-page: 105105
  year: 2012
  ident: ref_30
  article-title: A new calibration method for tri-axial field sensors in strap-down navigation systems
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/0957-0233/23/10/105105
– ident: ref_12
  doi: 10.1109/INOCON50539.2020.9298316
– ident: ref_20
  doi: 10.3390/rs14030752
– volume: 5
  start-page: 585
  year: 2020
  ident: ref_19
  article-title: AI-IMU Dead-Reckoning
  publication-title: IEEE Trans. Intell. Veh.
  doi: 10.1109/TIV.2020.2980758
– volume: 55
  start-page: 969
  year: 2021
  ident: ref_34
  article-title: IoT-based Data Acquisition Unit for aircraft and road vehicle
  publication-title: Transp. Res. Procedia
  doi: 10.1016/j.trpro.2021.07.066
– ident: ref_16
– volume: 12
  start-page: 48
  year: 2010
  ident: ref_17
  article-title: GPS/INS integration utilizing dynamic neural networks for vehicular navigation
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2010.01.003
– ident: ref_37
– ident: ref_14
– ident: ref_31
  doi: 10.1109/WPNC.2014.6843306
– volume: 38
  start-page: 687
  year: 2002
  ident: ref_8
  article-title: Direct Kalman filtering approach for GPS/INS integration
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
  doi: 10.1109/TAES.2002.1008998
– volume: 15
  start-page: 6424
  year: 2015
  ident: ref_28
  article-title: On Calibration of Three-Axis Magnetometer
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2015.2459767
– ident: ref_21
  doi: 10.1109/DESEC.2017.8073847
– ident: ref_13
  doi: 10.1109/ICINFA.2010.5512070
– volume: 2010
  start-page: 967245
  year: 2010
  ident: ref_26
  article-title: Complete Triaxis Magnetometer Calibration in the Magnetic Domain
  publication-title: J. Sens.
  doi: 10.1155/2010/967245
– volume: 16
  start-page: 7150
  year: 2016
  ident: ref_35
  article-title: Intelligent Real-Time MEMS Sensor Fusion and Calibration
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2016.2597292
– ident: ref_6
  doi: 10.1109/CEEE.2017.8412926
– ident: ref_25
  doi: 10.1109/IoT-SIU.2018.8519902
– volume: 9
  start-page: 5880
  year: 2016
  ident: ref_22
  article-title: An Optimal Weighting Method of Global Positioning System (GPS) Troposphere Tomography
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2016.2546316
– volume: 7
  start-page: 221
  year: 2006
  ident: ref_7
  article-title: GPS/IMU data fusion using multisensor Kalman filtering: Introduction of contextual aspects
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2004.07.002
– ident: ref_4
– ident: ref_29
– volume: 70
  start-page: 7500709
  year: 2020
  ident: ref_2
  article-title: An Integrated GNSS/LiDAR-SLAM Pose Estimation Framework for Large-Scale Map Building in Partially GNSS-Denied Environments
  publication-title: IEEE Trans. Instrum. Meas.
– ident: ref_11
  doi: 10.1109/ICDI3C.2018.00013
– volume: 8
  start-page: 124323
  year: 2020
  ident: ref_3
  article-title: Multi-Agent Collaborative GNSS/Camera/INS Integration Aided by Inter-Ranging for Vehicular Navigation in Urban Areas
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3006210
– ident: ref_15
– ident: ref_36
– ident: ref_24
  doi: 10.23919/ChiCC.2018.8483718
– volume: 12
  start-page: 264
  year: 2011
  ident: ref_10
  article-title: Low cost IMU–Odometer–GPS ego localization for unusual maneuvers
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2010.06.006
– volume: 16
  start-page: 334
  year: 2020
  ident: ref_18
  article-title: An INS/GNSS integrated navigation in GNSS denied environment using recurrent neural network
  publication-title: Def. Technol.
  doi: 10.1016/j.dt.2019.08.011
– ident: ref_32
  doi: 10.3390/s17061324
– ident: ref_23
  doi: 10.1109/WiSPNET45539.2019.9032769
SSID ssj0023338
Score 2.4339433
Snippet Global satellite navigation systems (GNSSs) are the most-used technology for the localization of vehicles in the outdoor environment, but in the case of a...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 7525
SubjectTerms Accelerometers
Accuracy
Algorithms
Artificial intelligence
Calibration
Communication
Communications equipment
Electronics in navigation
error backpropagation
global satellite navigation
Inertial navigation
Inertial navigation (Aeronautics)
inertial sensors
Localization
Microelectromechanical systems
Neural networks
online calibration
Receivers & amplifiers
Sensors
Technology application
Wireless access points
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8QwFAziSQ_it9VVqgieit2mSZOjyooKelHBW2jSFEVopbv-f-e13aWLBy_euk0D6Zsm84bNmzB2XvDCC6S1kSskj1LtdGQtVAr5svDMxmWiqDj58UnevaYPb-JtcNQX7Qnr7IG7wF2CbhJPNKgtyM5qW0ppY1kmvCDqKmn1BefNxVQvtTiUV-cjxCHqL6eUNWSCzsMesE9r0v97KR5w0fI-yQHx3G6yjT5jDK-6kW6xFV9ts_WBj-AOm3SGoSEVWtkO0rAuw_uKNk2j7zO0at1Mw2tQVhGicdI0dYOf7hPDwZLSdtllr7eTl5u7qD8fIXIQtbOIex8Lbx2mocihw7yH9ko9NF8hc-2LseNZGpeAInW50HQhLNmrK5lz5zTfY6tVXfkDFioRl5rncZaonFIKVSKd5TwpxpAj6Bews3nczFdng2EgHyi4ZhHcgF1TRBcPkHN1ewN4mh5P8xeeAbsgPAzNLwTd5X2ZAMZJTlXmSlFRuUjUOGCjOWSmn3hTw0kgZtCUacBOF82YMvQ_SF75-rt9Bl-i1PRa-x3CizFzLRU0HVrUEvZLL7XcUn28t7bcYyjPNOPp4X-E4YitJUifqOoxESO2Omu-_THSn5k9ab_0H1Lf_4g
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwELVKucAB8U2gRQEhcQpk_RX7gKoWbVWQygVW6s2KHQeqogSyWwn-PW-SbLQRiFsS25Iz48m8J2eeGXtViSoqwNosVFpk0gabeQ-WQrosovB5zQ0VJ59_0mcr-fFCXeyx7RmbowHX_6R2dJ7Uqvv-5tfP30cI-HfEOEHZ364JExSKqxvsJhJSQfF5LqfNBC5AwwZRoXn3WSrqFfv__i7vJKb5T5M7Wej0Lrszwsf0ePD3PbYXm_vs9o6o4AO2HNRDU6q68oN_07ZOPzT0BzXGfgZxbbt1eoL8VaVoXHZd2-E2XGE6-L70Qx6y1enyy_uzbDwsIQtguJtMxJir6ANiUpUgZTGCiMkIAljp0sZqEUQh8xp-kaFUli6UJ611o0sRghWP2H7TNvEJS43KayvKvOCmJHxhamBbIXi1ADfBuIS93NrN_Rg0MRy4BBnXTcZN2AlZdOpAMtb9g7b76saocMASPBLGsR5Ixltfa-1zXXNRES6pE_aa_OHI_TB6KMeaAcyTZKvcsaEKc8XNImEHW5e57SJygthiAYIpE_Ziakb80KZI2cT2uu-DZaktvdbjwcPTnIXVBgQPLWbm-9lLzVuay2-9RvcCNFQWQj79_7yesVscKImKG7k6YPub7joeAuVs_PN-Df8BO6T5lw
  priority: 102
  providerName: Scholars Portal
Title Online Calibration of Inertial Sensors Based on Error Backpropagation
URI https://www.ncbi.nlm.nih.gov/pubmed/39686062
https://www.proquest.com/docview/3144172494
https://www.proquest.com/docview/3146916942
https://pubmed.ncbi.nlm.nih.gov/PMC11644734
https://doaj.org/article/6132e71029b743b9bf66b06f23d0110f
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1db9MwFLVge4GHiW8CowoIiadoafwR-wmtqGUgbULApL5Z8UcGQkq2tPv_nJukXSskXqI2jiXnXl_7HMf3mLH3gYcoAWszHxTPhPEmcw4shXRZeOnyutCUnHx-oc4uxdelXI4LbqtxW-VmTOwH6tB6WiM_4YT8S5AF8fH6JqNTo-jr6niExn12SNJltKWrXN4RLg7-NagJcVD7kxVhh1LSqdg7c1Av1f_vgLwzI-3vltyZfhaP2NGIG9PTwdGP2b3YPGEPd9QEn7L5IBuaUrqVGxybtnX6paGt06j7A4y17VbpDBNXSFE477q2w1__B83BwNJXecYuF_Ofn86y8ZSEzIParjMeYy6j8whGWYGNxQgGJiKYX1CViWHqeSnyGg4RvpKGfkhHIutaVdx7w5-zg6Zt4kuWapnXhld5WeiKgIWuAWo5L8IUpAT1EvZuYzd7PYhhWJAIMq7dGjdhM7Lo9gHSr-5vtN2VHcPBAkQUkcCNcYAwzrhaKZeruuCBAEmdsA_kD0tRBqP7akwWQDtJr8qeakotl4WeJux44zI7ht_K3nWWhL3dFiNw6GtI1cT2tn8G_VEZeq0Xg4e3beZGaTA7lOg93--91H5J8_tXL849Bf8UJRev_t-u1-xBAXhEWY2FPGYH6-42vgG8WbtJ34dx1YvPE3Y4m198-z7plwpwPRf6L1_q_Hw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5V7QE4oPJsoEBAIE5Rs3bs2AeEWthqlz4utNLeTPwIIKSkZLeq-qf4jczksd0VErfedtexZM_D830bzwzAW899EAhrE-clTzLtdGItshSqy8Jzm5ZMUXLyyamcnGdfZmK2AX-GXBi6Vjmcie1B7WtH_5HvcUL-OZKF7OPF74S6RtHb1aGFRmcWR-H6Cinb_MP0M-r3HWOH47NPk6TvKpA4pIKLhIeQimAdGq8okL2EgIwlC8iUvCx08CPH8ywtcQOZK4SmD8JSUXIlC-4cFV_CI38LA29KHpXPbggeR77XVS_iXKd7c8IquaAu3Csxr20N8G8AWImA67czV8Ld4Tbc73FqvN8Z1gPYCNVDuLdSvfARjLsypTGld9nOkOK6jKcVXdXGuV-RIdfNPD7AQOljHBw3Td3gV_cLl4MHWTvlMZzfivyewGZVV2EHYiXSUvMizZkqCMioEkE058yPkAThvAjeDHIzF13xDYOkhYRrlsKN4IAkunyA6mW3P9TNd9O7n0HQwgKBKW0RMlltSyltKkvGPQGgMoL3pA9DXo1Cd0WfnIDrpPpYZl9RKrtgahTB7qAy07v73NwYZwSvl8PoqPT2pahCfdk-g_YvNW3raafh5Zq5lgqZJI6oNd2vbWp9pPr5oy0GPkK-m-U8e_b_db2CO5Ozk2NzPD09eg53GUIzyqhkYhc2F81leIHQamFftvYcw7fbdqC_Ogw0Jw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED9NQ0LwgPgmMCAgEE9REzt27AeENtZqZTAhwaS-mdixASElI-2E-Nf467jLR9cKibe9tXUs2ffh-_0a3x3Ai4pXXiCsTVwleZJrpxNrkaVQXRZe2DQwRcnJH07k0Wn-biEWO_BnzIWha5Xjmdgd1FXj6D_yCSfkXyBZyCdhuBbx8XD25uxnQh2k6E3r2E6jN5Fj__sX0rfl6_kh6volY7Pp57dHydBhIHFIC1cJ9z4V3jo0ZFEik_Ee2UvukTVVstS-yhwv8jTgZnJXCk0fhKUC5UqW3DkqxITH_5WCi4x8rFhckD2O3K-vZMS5TidLwi2FoI7cG_GvaxPwbzDYiIbbNzU3Qt_sJtwYMGu83xvZLdjx9W24vlHJ8A5M-5KlMaV62d6o4ibE85qubePcT8iWm3YZH2DQrGIcnLZt0-JX9wOXg4daN-UunF6K_O7Bbt3U_gHESqRB8zItmCoJ1KiAgJpzVmVIiHBeBM9HuZmzvhCHQQJDwjVr4UZwQBJdP0C1s7sfmvarGVzRIIBhnoCVtgifrLZBSpvKwHhFYChE8Ir0YcjDUeiuHBIVcJ1UK8vsK0prF0xlEeyNKjOD6y_NhaFG8Gw9jE5Lb2LK2jfn3TPoC1LTtu73Gl6vmWupkFXiiNrS_damtkfq79-6wuAZct-84PnD_6_rKVxF1zHv5yfHj-AaQ5RGyZVM7MHuqj33jxFlreyTzpxj-HLZ_vMXkYU4XQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Online+Calibration+of+Inertial+Sensors+Based+on+Error+Backpropagation&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Simak%2C+Vojtech&rft.au=Andel%2C+Jan&rft.au=Nemec%2C+Dusan&rft.au=Kekelak%2C+Juraj&rft.date=2024-11-25&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=24&rft.issue=23&rft.spage=7525&rft_id=info:doi/10.3390%2Fs24237525&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon