Highly accurate and sensitive absolute quantification of bacterial strains in human fecal samples
Next-generation sequencing (NGS) approaches have revolutionized gut microbiome research and can provide strain-level resolution, but these techniques have limitations in that they are only semi-quantitative, suffer from high detection limits, and generate data that is compositional. The present stud...
Saved in:
Published in | Microbiome Vol. 12; no. 1; pp. 168 - 16 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central
07.09.2024
BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Next-generation sequencing (NGS) approaches have revolutionized gut microbiome research and can provide strain-level resolution, but these techniques have limitations in that they are only semi-quantitative, suffer from high detection limits, and generate data that is compositional. The present study aimed to systematically compare quantitative PCR (qPCR) and droplet digital PCR (ddPCR) for the absolute quantification of Limosilactobacillus reuteri strains in human fecal samples and to develop an optimized protocol for the absolute quantification of bacterial strains in fecal samples.
Using strain-specific PCR primers for L. reuteri 17938, ddPCR showed slightly better reproducibility, but qPCR was almost as reproducible and showed comparable sensitivity (limit of detection [LOD] around 10
cells/g feces) and linearity (R
> 0.98) when kit-based DNA isolation methods were used. qPCR further had a wider dynamic range and is cheaper and faster. Based on these findings, we conclude that qPCR has advantages over ddPCR for the absolute quantification of bacterial strains in fecal samples. We provide an optimized and easy-to-follow step-by-step protocol for the design of strain-specific qPCR assays, starting from primer design from genome sequences to the calibration of the PCR system. Validation of this protocol to design PCR assays for two L. reuteri strains, PB-W1 and DSM 20016
, resulted in a highly accurate qPCR with a detection limit in spiked fecal samples of around 10
cells/g feces. Applying our strain-specific qPCR assays to fecal samples collected from human subjects who received live L. reuteri PB-W1 or DSM 20016
during a human trial demonstrated a highly accurate quantification and sensitive detection of these two strains, with a much lower LOD and a broader dynamic range compared to NGS approaches (16S rRNA gene sequencing and whole metagenome sequencing).
Based on our analyses, we consider qPCR with kit-based DNA extraction approaches the best approach to accurately quantify gut bacteria at the strain level in fecal samples. The provided step-by-step protocol will allow scientists to design highly sensitive strain-specific PCR systems for the accurate quantification of bacterial strains of not only L. reuteri but also other bacterial taxa in a broad range of applications and sample types. Video Abstract. |
---|---|
AbstractList | Next-generation sequencing (NGS) approaches have revolutionized gut microbiome research and can provide strain-level resolution, but these techniques have limitations in that they are only semi-quantitative, suffer from high detection limits, and generate data that is compositional. The present study aimed to systematically compare quantitative PCR (qPCR) and droplet digital PCR (ddPCR) for the absolute quantification of Limosilactobacillus reuteri strains in human fecal samples and to develop an optimized protocol for the absolute quantification of bacterial strains in fecal samples.BACKGROUNDNext-generation sequencing (NGS) approaches have revolutionized gut microbiome research and can provide strain-level resolution, but these techniques have limitations in that they are only semi-quantitative, suffer from high detection limits, and generate data that is compositional. The present study aimed to systematically compare quantitative PCR (qPCR) and droplet digital PCR (ddPCR) for the absolute quantification of Limosilactobacillus reuteri strains in human fecal samples and to develop an optimized protocol for the absolute quantification of bacterial strains in fecal samples.Using strain-specific PCR primers for L. reuteri 17938, ddPCR showed slightly better reproducibility, but qPCR was almost as reproducible and showed comparable sensitivity (limit of detection [LOD] around 104 cells/g feces) and linearity (R2 > 0.98) when kit-based DNA isolation methods were used. qPCR further had a wider dynamic range and is cheaper and faster. Based on these findings, we conclude that qPCR has advantages over ddPCR for the absolute quantification of bacterial strains in fecal samples. We provide an optimized and easy-to-follow step-by-step protocol for the design of strain-specific qPCR assays, starting from primer design from genome sequences to the calibration of the PCR system. Validation of this protocol to design PCR assays for two L. reuteri strains, PB-W1 and DSM 20016 T, resulted in a highly accurate qPCR with a detection limit in spiked fecal samples of around 103 cells/g feces. Applying our strain-specific qPCR assays to fecal samples collected from human subjects who received live L. reuteri PB-W1 or DSM 20016 T during a human trial demonstrated a highly accurate quantification and sensitive detection of these two strains, with a much lower LOD and a broader dynamic range compared to NGS approaches (16S rRNA gene sequencing and whole metagenome sequencing).RESULTSUsing strain-specific PCR primers for L. reuteri 17938, ddPCR showed slightly better reproducibility, but qPCR was almost as reproducible and showed comparable sensitivity (limit of detection [LOD] around 104 cells/g feces) and linearity (R2 > 0.98) when kit-based DNA isolation methods were used. qPCR further had a wider dynamic range and is cheaper and faster. Based on these findings, we conclude that qPCR has advantages over ddPCR for the absolute quantification of bacterial strains in fecal samples. We provide an optimized and easy-to-follow step-by-step protocol for the design of strain-specific qPCR assays, starting from primer design from genome sequences to the calibration of the PCR system. Validation of this protocol to design PCR assays for two L. reuteri strains, PB-W1 and DSM 20016 T, resulted in a highly accurate qPCR with a detection limit in spiked fecal samples of around 103 cells/g feces. Applying our strain-specific qPCR assays to fecal samples collected from human subjects who received live L. reuteri PB-W1 or DSM 20016 T during a human trial demonstrated a highly accurate quantification and sensitive detection of these two strains, with a much lower LOD and a broader dynamic range compared to NGS approaches (16S rRNA gene sequencing and whole metagenome sequencing).Based on our analyses, we consider qPCR with kit-based DNA extraction approaches the best approach to accurately quantify gut bacteria at the strain level in fecal samples. The provided step-by-step protocol will allow scientists to design highly sensitive strain-specific PCR systems for the accurate quantification of bacterial strains of not only L. reuteri but also other bacterial taxa in a broad range of applications and sample types. Video Abstract.CONCLUSIONSBased on our analyses, we consider qPCR with kit-based DNA extraction approaches the best approach to accurately quantify gut bacteria at the strain level in fecal samples. The provided step-by-step protocol will allow scientists to design highly sensitive strain-specific PCR systems for the accurate quantification of bacterial strains of not only L. reuteri but also other bacterial taxa in a broad range of applications and sample types. Video Abstract. Abstract Background Next-generation sequencing (NGS) approaches have revolutionized gut microbiome research and can provide strain-level resolution, but these techniques have limitations in that they are only semi-quantitative, suffer from high detection limits, and generate data that is compositional. The present study aimed to systematically compare quantitative PCR (qPCR) and droplet digital PCR (ddPCR) for the absolute quantification of Limosilactobacillus reuteri strains in human fecal samples and to develop an optimized protocol for the absolute quantification of bacterial strains in fecal samples. Results Using strain-specific PCR primers for L. reuteri 17938, ddPCR showed slightly better reproducibility, but qPCR was almost as reproducible and showed comparable sensitivity (limit of detection [LOD] around 104 cells/g feces) and linearity (R 2 > 0.98) when kit-based DNA isolation methods were used. qPCR further had a wider dynamic range and is cheaper and faster. Based on these findings, we conclude that qPCR has advantages over ddPCR for the absolute quantification of bacterial strains in fecal samples. We provide an optimized and easy-to-follow step-by-step protocol for the design of strain-specific qPCR assays, starting from primer design from genome sequences to the calibration of the PCR system. Validation of this protocol to design PCR assays for two L. reuteri strains, PB-W1 and DSM 20016 T, resulted in a highly accurate qPCR with a detection limit in spiked fecal samples of around 103 cells/g feces. Applying our strain-specific qPCR assays to fecal samples collected from human subjects who received live L. reuteri PB-W1 or DSM 20016 T during a human trial demonstrated a highly accurate quantification and sensitive detection of these two strains, with a much lower LOD and a broader dynamic range compared to NGS approaches (16S rRNA gene sequencing and whole metagenome sequencing). Conclusions Based on our analyses, we consider qPCR with kit-based DNA extraction approaches the best approach to accurately quantify gut bacteria at the strain level in fecal samples. The provided step-by-step protocol will allow scientists to design highly sensitive strain-specific PCR systems for the accurate quantification of bacterial strains of not only L. reuteri but also other bacterial taxa in a broad range of applications and sample types. Video Abstract Next-generation sequencing (NGS) approaches have revolutionized gut microbiome research and can provide strain-level resolution, but these techniques have limitations in that they are only semi-quantitative, suffer from high detection limits, and generate data that is compositional. The present study aimed to systematically compare quantitative PCR (qPCR) and droplet digital PCR (ddPCR) for the absolute quantification of Limosilactobacillus reuteri strains in human fecal samples and to develop an optimized protocol for the absolute quantification of bacterial strains in fecal samples. Using strain-specific PCR primers for L. reuteri 17938, ddPCR showed slightly better reproducibility, but qPCR was almost as reproducible and showed comparable sensitivity (limit of detection [LOD] around 10 cells/g feces) and linearity (R > 0.98) when kit-based DNA isolation methods were used. qPCR further had a wider dynamic range and is cheaper and faster. Based on these findings, we conclude that qPCR has advantages over ddPCR for the absolute quantification of bacterial strains in fecal samples. We provide an optimized and easy-to-follow step-by-step protocol for the design of strain-specific qPCR assays, starting from primer design from genome sequences to the calibration of the PCR system. Validation of this protocol to design PCR assays for two L. reuteri strains, PB-W1 and DSM 20016 , resulted in a highly accurate qPCR with a detection limit in spiked fecal samples of around 10 cells/g feces. Applying our strain-specific qPCR assays to fecal samples collected from human subjects who received live L. reuteri PB-W1 or DSM 20016 during a human trial demonstrated a highly accurate quantification and sensitive detection of these two strains, with a much lower LOD and a broader dynamic range compared to NGS approaches (16S rRNA gene sequencing and whole metagenome sequencing). Based on our analyses, we consider qPCR with kit-based DNA extraction approaches the best approach to accurately quantify gut bacteria at the strain level in fecal samples. The provided step-by-step protocol will allow scientists to design highly sensitive strain-specific PCR systems for the accurate quantification of bacterial strains of not only L. reuteri but also other bacterial taxa in a broad range of applications and sample types. Video Abstract. |
ArticleNumber | 168 |
Author | Liu, Junhong Frese, Steven A. Li, Fuyong Maldonado-Gómez, María X. Gänzle, Michael G. Walter, Jens |
Author_xml | – sequence: 1 givenname: Fuyong surname: Li fullname: Li, Fuyong – sequence: 2 givenname: Junhong surname: Liu fullname: Liu, Junhong – sequence: 3 givenname: María X. surname: Maldonado-Gómez fullname: Maldonado-Gómez, María X. – sequence: 4 givenname: Steven A. surname: Frese fullname: Frese, Steven A. – sequence: 5 givenname: Michael G. surname: Gänzle fullname: Gänzle, Michael G. – sequence: 6 givenname: Jens surname: Walter fullname: Walter, Jens |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39244633$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uk1vFSEUJabG1to_4MLM0s0oX8PAyphGbZMmbnRNLgzzHg0Dr8A06b-X915tWheyAe4959yc3PMWncQUHULvCf5EiBSfC8dEyB5T3mMiJenpK3RGMVc9FUSePHufootSbnE7ivCRyzfolCnKuWDsDMGV32zDQwfWrhmq6yBOXXGx-Orv28-UFNZWvlshVj97C9Wn2KW5M2Cryx5CV2oGH0vnY7ddF4jd7Oy-DMsuuPIOvZ4hFHfxeJ-j39-__bq86m9-_ri-_HrTWy5U7ZmVAwx8GCepjAVnKaWTMYI3ByPGhE4Tc1y2rhxmZYWZm5_JMTvjRjGCnaPro-6U4Fbvsl8gP-gEXh8KKW805OptcNoq62YzuIFxydUgDWWcsFESosxA7dS0vhy1dqtZ3GRdbBbDC9GXnei3epPuNSFM4lGOTeHjo0JOd6srVS--WBcCRJfWohnBZFSCUNagH54Pe5ryd0kNQI8Am1Mp2c1PEIL1Pgz6GAbdwqAPYdC0keQ_JOvrYXn7bYX_Uf8A_ia6Fg |
CitedBy_id | crossref_primary_10_3390_antibiotics14030222 crossref_primary_10_1016_j_cell_2024_12_034 crossref_primary_10_1186_s40168_024_02009_2 crossref_primary_10_1016_j_cofs_2024_101245 |
Cites_doi | 10.1186/s40168-018-0494-4 10.1111/jam.14119 10.1038/nature24460 10.1007/s00253-016-7950-5 10.1128/AEM.01525-15 10.1371/journal.pone.0015046 10.1186/s12915-023-01541-1 10.1073/pnas.1000099107 10.1038/nature11053 10.1016/j.chom.2013.07.007 10.1038/s41587-023-01688-w 10.1007/s00216-018-1508-6 10.3389/fmicb.2017.00108 10.1016/j.mimet.2007.11.007 10.3390/nu7010017 10.1016/j.chom.2016.09.001 10.1016/j.jpba.2018.07.022 10.1016/j.foodchem.2018.04.079 10.1038/s41587-018-0009-7 10.1128/AEM.00380-09 10.1038/nature12198 10.1002/(SICI)1096-8644(199804)105:4<539::AID-AJPA10>3.0.CO;2-1 10.1016/j.cellimm.2016.03.007 10.1128/AEM.67.6.2578-2585.2001 10.1371/journal.pone.0227285 10.1038/ismej.2009.123 10.1099/ijsem.0.004644 10.1016/j.tifs.2014.03.008 10.1128/AEM.00132-17 10.1111/lam.12667 10.1038/nature13828 10.1111/j.1365-2672.2012.05305.x 10.1016/j.watres.2014.12.008 10.1186/s40168-021-01162-2 10.1016/j.celrep.2015.03.049 10.1016/j.cell.2018.08.041 10.7554/eLife.65088 10.1038/nbt.3960 10.1093/nar/gkm306 10.7554/eLife.36521 10.1038/s41591-019-0495-2 10.1111/j.1462-2920.2007.01292.x 10.1016/j.ijpara.2014.08.004 10.1128/mSystems.00190-17 10.1021/ac202028g 10.1007/s10482-009-9401-0 10.3390/microorganisms9091797 10.1038/nature09922 10.1371/journal.pgen.1001314 10.1021/acs.est.5b00253 10.1371/journal.pone.0055943 10.1038/nmeth.2633 10.1016/j.mimet.2018.03.004 10.3389/fmicb.2020.601422 10.1038/s41587-019-0209-9 10.1016/j.cell.2017.01.022 10.1021/ac403843j 10.1021/ac202578x 10.1007/s12328-017-0813-5 10.1038/mp.2016.50 |
ContentType | Journal Article |
Copyright | 2024. The Author(s). The Author(s) 2024 2024 |
Copyright_xml | – notice: 2024. The Author(s). – notice: The Author(s) 2024 2024 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
DOI | 10.1186/s40168-024-01881-2 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2049-2618 |
EndPage | 16 |
ExternalDocumentID | oai_doaj_org_article_c9cefb5e53484958b2341378119b52cd PMC11380787 39244633 10_1186_s40168_024_01881_2 |
Genre | Journal Article |
GroupedDBID | 0R~ 53G 5VS 7X7 88E 8FE 8FH 8FI 8FJ AAFWJ AAHBH AAJSJ AASML AAYXX ABUWG ACGFS ADBBV ADRAZ ADUKV AENEX AFKRA AFPKN AHBYD AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AOIJS ASPBG BAWUL BBNVY BCNDV BENPR BFQNJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CITATION DIK EBLON EBS FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAG IAO IEP IHR INH INR ISR ITC KQ8 LK8 M1P M48 M7P M~E OK1 PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RBZ ROL RPM RSV SOJ UKHRP CGR CUY CVF ECM EIF NPM 7X8 PPXIY PQGLB 5PM PJZUB PUEGO |
ID | FETCH-LOGICAL-c469t-3c85a5457d89bcaec222dbb6461870012dd3e48d8985f9c6bf009de3cf07d8b63 |
IEDL.DBID | M48 |
ISSN | 2049-2618 |
IngestDate | Wed Aug 27 01:32:31 EDT 2025 Thu Aug 21 18:35:37 EDT 2025 Fri Jul 11 05:21:53 EDT 2025 Thu Apr 03 06:54:05 EDT 2025 Tue Jul 01 04:16:48 EDT 2025 Thu Apr 24 23:09:53 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | ddPCR DNA extraction Strain-specific primers qPCR Limosilactobacillus reuteri Lactobacillus |
Language | English |
License | 2024. The Author(s). Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c469t-3c85a5457d89bcaec222dbb6461870012dd3e48d8985f9c6bf009de3cf07d8b63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s40168-024-01881-2 |
PMID | 39244633 |
PQID | 3101796123 |
PQPubID | 23479 |
PageCount | 16 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_c9cefb5e53484958b2341378119b52cd pubmedcentral_primary_oai_pubmedcentral_nih_gov_11380787 proquest_miscellaneous_3101796123 pubmed_primary_39244633 crossref_primary_10_1186_s40168_024_01881_2 crossref_citationtrail_10_1186_s40168_024_01881_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-09-07 |
PublicationDateYYYYMMDD | 2024-09-07 |
PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-07 day: 07 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | Microbiome |
PublicationTitleAlternate | Microbiome |
PublicationYear | 2024 |
Publisher | BioMed Central BMC |
Publisher_xml | – name: BioMed Central – name: BMC |
References | F Li (1881_CR44) 2023; 21 MA Conlon (1881_CR5) 2014; 7 GB Rogers (1881_CR6) 2016; 21 C Depommier (1881_CR17) 2019; 25 J Walter (1881_CR49) 2001; 67 SA Frese (1881_CR13) 2011; 7 C Jian (1881_CR19) 2020; 15 S Broeders (1881_CR58) 2014; 37 E Bolyen (1881_CR51) 2019; 37 A Nishida (1881_CR8) 2018; 11 I Martínez (1881_CR40) 2010; 5 N Geva-Zatorsky (1881_CR3) 2017; 168 D Vandeputte (1881_CR20) 2017; 551 N Zmora (1881_CR18) 2018; 174 PI Costea (1881_CR41) 2017; 35 MX Maldonado-Gómez (1881_CR22) 2016; 20 N Segata (1881_CR11) 2018; 3 F Beghini (1881_CR14) 2021; 10 LB Pinheiro (1881_CR26) 2012; 84 PL Oh (1881_CR45) 2010; 4 Z Zhang (1881_CR37) 2020; 11 P Kralik (1881_CR42) 2017; 8 A Blanco-Míguez (1881_CR52) 2023; 41 G Gobert (1881_CR34) 2018; 148 Y Cao (1881_CR60) 2015; 70 R Yang (1881_CR29) 2014; 44 Y Yang (1881_CR25) 2015; 81 D Yuan (1881_CR57) 2019; 411 BJ Hindson (1881_CR30) 2011; 83 T Yatsunenko (1881_CR2) 2012; 486 Y Wang (1881_CR43) 2018; 159 I Martínez (1881_CR48) 2015; 11 AD Kostic (1881_CR7) 2013; 14 F Li (1881_CR47) 2021; 71 CM Hindson (1881_CR55) 2013; 10 RM Duar (1881_CR12) 2017; 83 J Walter (1881_CR46) 2011; 108 J Stauber (1881_CR56) 2016; 303 DY Yang (1881_CR59) 1998; 105 CG Buffie (1881_CR4) 2015; 517 C Villa (1881_CR54) 2018; 262 J Walter (1881_CR36) 2007; 9 Y Cao (1881_CR61) 2012; 113 Z Wang (1881_CR10) 2011; 472 L Cavé (1881_CR33) 2016; 100 I Martínez (1881_CR23) 2018; 7 JD Palumbo (1881_CR35) 2016; 63 JA Krumbeck (1881_CR21) 2018; 6 1881_CR53 H Doi (1881_CR27) 2015; 49 JT Barlow (1881_CR15) 2021; 9 JM Nechvatal (1881_CR28) 2008; 72 SC Forster (1881_CR1) 2019; 37 M Egervärn (1881_CR38) 2010; 97 A Untergasser (1881_CR50) 2007; 35 FH Karlsson (1881_CR9) 2013; 498 L Miotke (1881_CR31) 2014; 86 X Zhao (1881_CR24) 2019; 126 MC Strain (1881_CR32) 2013; 8 I Martínez (1881_CR39) 2009; 75 X Wang (1881_CR16) 2021; 9 |
References_xml | – volume: 6 start-page: 121 year: 2018 ident: 1881_CR21 publication-title: Microbiome doi: 10.1186/s40168-018-0494-4 – volume: 126 start-page: 242 year: 2019 ident: 1881_CR24 publication-title: J Appl Microbiol doi: 10.1111/jam.14119 – volume: 551 start-page: 507 year: 2017 ident: 1881_CR20 publication-title: Nature doi: 10.1038/nature24460 – volume: 100 start-page: 10597 year: 2016 ident: 1881_CR33 publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-016-7950-5 – volume: 81 start-page: 5743 year: 2015 ident: 1881_CR25 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.01525-15 – volume: 5 year: 2010 ident: 1881_CR40 publication-title: PLoS ONE doi: 10.1371/journal.pone.0015046 – volume: 21 start-page: 53 year: 2023 ident: 1881_CR44 publication-title: BMC Biol doi: 10.1186/s12915-023-01541-1 – volume: 108 start-page: 4645 issue: Suppl 1 year: 2011 ident: 1881_CR46 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1000099107 – volume: 486 start-page: 222 year: 2012 ident: 1881_CR2 publication-title: Nature doi: 10.1038/nature11053 – volume: 14 start-page: 207 year: 2013 ident: 1881_CR7 publication-title: Cell Host Microbe doi: 10.1016/j.chom.2013.07.007 – volume: 41 start-page: 1633 issue: 11 year: 2023 ident: 1881_CR52 publication-title: Nat Biotechnol. doi: 10.1038/s41587-023-01688-w – volume: 411 start-page: 895 year: 2019 ident: 1881_CR57 publication-title: Anal Bioanal Chem doi: 10.1007/s00216-018-1508-6 – volume: 8 start-page: 108 year: 2017 ident: 1881_CR42 publication-title: Front Microbiol doi: 10.3389/fmicb.2017.00108 – volume: 72 start-page: 124 year: 2008 ident: 1881_CR28 publication-title: J Microbiol Methods doi: 10.1016/j.mimet.2007.11.007 – volume: 7 start-page: 17 year: 2014 ident: 1881_CR5 publication-title: Nutrients doi: 10.3390/nu7010017 – volume: 20 start-page: 515 year: 2016 ident: 1881_CR22 publication-title: Cell Host Microbe doi: 10.1016/j.chom.2016.09.001 – volume: 159 start-page: 477 year: 2018 ident: 1881_CR43 publication-title: J Pharm Biomed Anal doi: 10.1016/j.jpba.2018.07.022 – volume: 262 start-page: 251 year: 2018 ident: 1881_CR54 publication-title: Food Chem doi: 10.1016/j.foodchem.2018.04.079 – volume: 37 start-page: 186 year: 2019 ident: 1881_CR1 publication-title: Nat Biotechnol doi: 10.1038/s41587-018-0009-7 – volume: 75 start-page: 4175 year: 2009 ident: 1881_CR39 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.00380-09 – volume: 498 start-page: 99 year: 2013 ident: 1881_CR9 publication-title: Nature doi: 10.1038/nature12198 – volume: 105 start-page: 539 year: 1998 ident: 1881_CR59 publication-title: Am J Phys Anthropol doi: 10.1002/(SICI)1096-8644(199804)105:4<539::AID-AJPA10>3.0.CO;2-1 – volume: 303 start-page: 43 year: 2016 ident: 1881_CR56 publication-title: Cell Immunol doi: 10.1016/j.cellimm.2016.03.007 – volume: 67 start-page: 2578 year: 2001 ident: 1881_CR49 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.67.6.2578-2585.2001 – volume: 15 year: 2020 ident: 1881_CR19 publication-title: PLoS ONE doi: 10.1371/journal.pone.0227285 – volume: 4 start-page: 377 year: 2010 ident: 1881_CR45 publication-title: Isme j doi: 10.1038/ismej.2009.123 – volume: 71 start-page: 004644 issue: 2 year: 2021 ident: 1881_CR47 publication-title: Int J Syst Evol Microbiol doi: 10.1099/ijsem.0.004644 – volume: 37 start-page: 115 year: 2014 ident: 1881_CR58 publication-title: Trends Food Sci Technol doi: 10.1016/j.tifs.2014.03.008 – volume: 83 start-page: e00132 issue: 12 year: 2017 ident: 1881_CR12 publication-title: Appl Environ Microbiol. doi: 10.1128/AEM.00132-17 – volume: 63 start-page: 458 year: 2016 ident: 1881_CR35 publication-title: Lett Appl Microbiol doi: 10.1111/lam.12667 – volume: 517 start-page: 205 year: 2015 ident: 1881_CR4 publication-title: Nature doi: 10.1038/nature13828 – volume: 113 start-page: 66 year: 2012 ident: 1881_CR61 publication-title: J Appl Microbiol doi: 10.1111/j.1365-2672.2012.05305.x – volume: 70 start-page: 337 year: 2015 ident: 1881_CR60 publication-title: Water Res doi: 10.1016/j.watres.2014.12.008 – volume: 9 start-page: 214 year: 2021 ident: 1881_CR15 publication-title: Microbiome doi: 10.1186/s40168-021-01162-2 – volume: 11 start-page: 527 year: 2015 ident: 1881_CR48 publication-title: Cell Rep doi: 10.1016/j.celrep.2015.03.049 – volume: 174 start-page: 1388 year: 2018 ident: 1881_CR18 publication-title: Cell doi: 10.1016/j.cell.2018.08.041 – volume: 10 start-page: e65088 year: 2021 ident: 1881_CR14 publication-title: Elife. doi: 10.7554/eLife.65088 – volume: 35 start-page: 1069 year: 2017 ident: 1881_CR41 publication-title: Nat Biotechnol doi: 10.1038/nbt.3960 – volume: 35 start-page: W71 year: 2007 ident: 1881_CR50 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkm306 – volume: 7 start-page: e36521 year: 2018 ident: 1881_CR23 publication-title: Elife. doi: 10.7554/eLife.36521 – volume: 25 start-page: 1096 year: 2019 ident: 1881_CR17 publication-title: Nat Med doi: 10.1038/s41591-019-0495-2 – volume: 9 start-page: 1750 year: 2007 ident: 1881_CR36 publication-title: Environ Microbiol doi: 10.1111/j.1462-2920.2007.01292.x – volume: 44 start-page: 1105 year: 2014 ident: 1881_CR29 publication-title: Int J Parasitol doi: 10.1016/j.ijpara.2014.08.004 – volume: 3 start-page: e00190 issue: 2 year: 2018 ident: 1881_CR11 publication-title: mSystems doi: 10.1128/mSystems.00190-17 – volume: 83 start-page: 8604 year: 2011 ident: 1881_CR30 publication-title: Anal Chem doi: 10.1021/ac202028g – volume: 97 start-page: 189 year: 2010 ident: 1881_CR38 publication-title: Antonie Van Leeuwenhoek doi: 10.1007/s10482-009-9401-0 – volume: 9 start-page: 1797 issue: 9 year: 2021 ident: 1881_CR16 publication-title: Microorganisms. doi: 10.3390/microorganisms9091797 – ident: 1881_CR53 – volume: 472 start-page: 57 year: 2011 ident: 1881_CR10 publication-title: Nature doi: 10.1038/nature09922 – volume: 7 year: 2011 ident: 1881_CR13 publication-title: PLoS Genet doi: 10.1371/journal.pgen.1001314 – volume: 49 start-page: 5601 year: 2015 ident: 1881_CR27 publication-title: Environ Sci Technol. doi: 10.1021/acs.est.5b00253 – volume: 8 year: 2013 ident: 1881_CR32 publication-title: PLoS ONE doi: 10.1371/journal.pone.0055943 – volume: 10 start-page: 1003 year: 2013 ident: 1881_CR55 publication-title: Nat Methods doi: 10.1038/nmeth.2633 – volume: 148 start-page: 64 year: 2018 ident: 1881_CR34 publication-title: J Microbiol Methods doi: 10.1016/j.mimet.2018.03.004 – volume: 11 year: 2020 ident: 1881_CR37 publication-title: Front Microbiol doi: 10.3389/fmicb.2020.601422 – volume: 37 start-page: 852 year: 2019 ident: 1881_CR51 publication-title: Nat Biotechnol doi: 10.1038/s41587-019-0209-9 – volume: 168 start-page: 928 year: 2017 ident: 1881_CR3 publication-title: Cell doi: 10.1016/j.cell.2017.01.022 – volume: 86 start-page: 2618 year: 2014 ident: 1881_CR31 publication-title: Anal Chem doi: 10.1021/ac403843j – volume: 84 start-page: 1003 year: 2012 ident: 1881_CR26 publication-title: Anal Chem doi: 10.1021/ac202578x – volume: 11 start-page: 1 year: 2018 ident: 1881_CR8 publication-title: Clin J Gastroenterol doi: 10.1007/s12328-017-0813-5 – volume: 21 start-page: 738 year: 2016 ident: 1881_CR6 publication-title: Mol Psychiatry doi: 10.1038/mp.2016.50 |
SSID | ssj0000914748 |
Score | 2.4144254 |
Snippet | Next-generation sequencing (NGS) approaches have revolutionized gut microbiome research and can provide strain-level resolution, but these techniques have... Abstract Background Next-generation sequencing (NGS) approaches have revolutionized gut microbiome research and can provide strain-level resolution, but these... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 168 |
SubjectTerms | Bacteria - classification Bacteria - genetics Bacteria - isolation & purification ddPCR DNA extraction DNA, Bacterial - genetics Feces - microbiology Gastrointestinal Microbiome - genetics High-Throughput Nucleotide Sequencing - methods Humans Lactobacillus Limit of Detection Limosilactobacillus reuteri Limosilactobacillus reuteri - classification Limosilactobacillus reuteri - genetics Methodology qPCR Real-Time Polymerase Chain Reaction - methods Reproducibility of Results Sensitivity and Specificity Strain-specific primers |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlUOil9N1tk6BAbkUktiV5fGxCQughpwRyE9JIpguLt63Xh_z7zEi7y24p7aUXH_Swh9F49A0afSPEaYTe1LFpFaK1SvvOK4CQVELbtpUPTFjC2Ra39uZef3swDzulvjgnrNADF8WdYYepDyaZRgOBeQg1-12-H9kFU2Nk70t73k4wlX1wV-lWw-aWDNizkQIJC4q2JIqeASpV7-1EmbD_Tyjz92TJnd3n-pV4uYaN8msR97V4loY34nkpJPn4VnhO11g8So84MfeD9EOUI-emszeTPmQLS_Ln5EtyUF4PuexlKGzN9O4xV4sY5XyQuXCf7BNys2f-4PGduL--uru8UeviCQop4l2pBsF4gkdthC6gT0hAIIZgta2Az5rrGJukgXrB9B3a0JPSYmqwP6cpwTbvxcGwHNJHIQNiG4ChAQVPmjykiYaeHkNP-OBcz0S1UaTDNbM4i7xwOcIA64ryHSnfZeW7eia-bOf8KLwafx19weuzHcmc2LmBLMWtLcX9y1Jm4mSzuo7-IT4Y8UNaTqNrsl9iIpqZ-FBWe_spwo8UMTfUA3t2sCfLfs8w_555uqsqs_m3n_6H9J_FizobL985OxQHq19TOiI8tArH2fSfACCGBvA priority: 102 providerName: Directory of Open Access Journals |
Title | Highly accurate and sensitive absolute quantification of bacterial strains in human fecal samples |
URI | https://www.ncbi.nlm.nih.gov/pubmed/39244633 https://www.proquest.com/docview/3101796123 https://pubmed.ncbi.nlm.nih.gov/PMC11380787 https://doaj.org/article/c9cefb5e53484958b2341378119b52cd |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dixMxEB_OOwRfxG_rR4ngm0Rvv5Lsg4gndx6Ch4iFvoVkktWDsvW6LVz_-5vJbouVIr7sQ7LZDZPJzG92J78BeB1MU-Wh0BJRKVm62kljfJQRldaZ80xYwtkWF-p8Un6ZVtMD2JQ7GgTY7Q3tuJ7UZDF7e321_kAb_n3a8Ea96yhGUEaSt6HA2JhMkkk-Is-kuaLB1wHuJ8tcZ6VOBbVyAsaSggezOUez9zE7vipR-u_DoX-nU_7hn87uwd0BWIqPvSbch4PYPoDbfanJ9UNwnNAxWwuHuGJ2COHaIDrOXmd7J5xPOhjF1cr16UNpxcS8Eb7nc6Znd6meRCcuW5FK-4kmIjc7ZhjuHsHk7PTHp3M5lFeQSDHxUhZoKkcASgdTe3QRCSoE71VJYuG_0XkIRSwN9ZqqqVH5hgQYYoHNMQ3xqngMh-28jU9BeETtDYMHCq9KsqFVqOjq0DeEII7LEWQbQVocuMd5yjObYhCjbC98S8K3Sfg2H8Gb7ZjfPfPGP-8-4fXZ3sms2alhvvhph01oscbY-CpWRWkoMDQ-Zx_OZ21rX-UYRvBqs7qWdhn_OnFtnK86WyTLxVQ1I3jSr_b2VYQwKaYuqMfs6MHOXHZ72stfick7yxLfv372Hy9-DnfypJt86OwFHC4Xq_iSANHSj-GWnuoxHJ2cXnz7Pk6fFej6eZqNk_7fADTyCnI |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+accurate+and+sensitive+absolute+quantification+of+bacterial+strains+in+human+fecal+samples&rft.jtitle=Microbiome&rft.au=Li%2C+Fuyong&rft.au=Liu%2C+Junhong&rft.au=Maldonado-G%C3%B3mez%2C+Mar%C3%ADa+X&rft.au=Frese%2C+Steven+A&rft.date=2024-09-07&rft.issn=2049-2618&rft.eissn=2049-2618&rft.volume=12&rft.issue=1&rft.spage=168&rft_id=info:doi/10.1186%2Fs40168-024-01881-2&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2049-2618&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2049-2618&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2049-2618&client=summon |