Highly accurate and sensitive absolute quantification of bacterial strains in human fecal samples

Next-generation sequencing (NGS) approaches have revolutionized gut microbiome research and can provide strain-level resolution, but these techniques have limitations in that they are only semi-quantitative, suffer from high detection limits, and generate data that is compositional. The present stud...

Full description

Saved in:
Bibliographic Details
Published inMicrobiome Vol. 12; no. 1; pp. 168 - 16
Main Authors Li, Fuyong, Liu, Junhong, Maldonado-Gómez, María X., Frese, Steven A., Gänzle, Michael G., Walter, Jens
Format Journal Article
LanguageEnglish
Published England BioMed Central 07.09.2024
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Next-generation sequencing (NGS) approaches have revolutionized gut microbiome research and can provide strain-level resolution, but these techniques have limitations in that they are only semi-quantitative, suffer from high detection limits, and generate data that is compositional. The present study aimed to systematically compare quantitative PCR (qPCR) and droplet digital PCR (ddPCR) for the absolute quantification of Limosilactobacillus reuteri strains in human fecal samples and to develop an optimized protocol for the absolute quantification of bacterial strains in fecal samples. Using strain-specific PCR primers for L. reuteri 17938, ddPCR showed slightly better reproducibility, but qPCR was almost as reproducible and showed comparable sensitivity (limit of detection [LOD] around 10 cells/g feces) and linearity (R  > 0.98) when kit-based DNA isolation methods were used. qPCR further had a wider dynamic range and is cheaper and faster. Based on these findings, we conclude that qPCR has advantages over ddPCR for the absolute quantification of bacterial strains in fecal samples. We provide an optimized and easy-to-follow step-by-step protocol for the design of strain-specific qPCR assays, starting from primer design from genome sequences to the calibration of the PCR system. Validation of this protocol to design PCR assays for two L. reuteri strains, PB-W1 and DSM 20016 , resulted in a highly accurate qPCR with a detection limit in spiked fecal samples of around 10 cells/g feces. Applying our strain-specific qPCR assays to fecal samples collected from human subjects who received live L. reuteri PB-W1 or DSM 20016 during a human trial demonstrated a highly accurate quantification and sensitive detection of these two strains, with a much lower LOD and a broader dynamic range compared to NGS approaches (16S rRNA gene sequencing and whole metagenome sequencing). Based on our analyses, we consider qPCR with kit-based DNA extraction approaches the best approach to accurately quantify gut bacteria at the strain level in fecal samples. The provided step-by-step protocol will allow scientists to design highly sensitive strain-specific PCR systems for the accurate quantification of bacterial strains of not only L. reuteri but also other bacterial taxa in a broad range of applications and sample types. Video Abstract.
AbstractList Next-generation sequencing (NGS) approaches have revolutionized gut microbiome research and can provide strain-level resolution, but these techniques have limitations in that they are only semi-quantitative, suffer from high detection limits, and generate data that is compositional. The present study aimed to systematically compare quantitative PCR (qPCR) and droplet digital PCR (ddPCR) for the absolute quantification of Limosilactobacillus reuteri strains in human fecal samples and to develop an optimized protocol for the absolute quantification of bacterial strains in fecal samples.BACKGROUNDNext-generation sequencing (NGS) approaches have revolutionized gut microbiome research and can provide strain-level resolution, but these techniques have limitations in that they are only semi-quantitative, suffer from high detection limits, and generate data that is compositional. The present study aimed to systematically compare quantitative PCR (qPCR) and droplet digital PCR (ddPCR) for the absolute quantification of Limosilactobacillus reuteri strains in human fecal samples and to develop an optimized protocol for the absolute quantification of bacterial strains in fecal samples.Using strain-specific PCR primers for L. reuteri 17938, ddPCR showed slightly better reproducibility, but qPCR was almost as reproducible and showed comparable sensitivity (limit of detection [LOD] around 104 cells/g feces) and linearity (R2 > 0.98) when kit-based DNA isolation methods were used. qPCR further had a wider dynamic range and is cheaper and faster. Based on these findings, we conclude that qPCR has advantages over ddPCR for the absolute quantification of bacterial strains in fecal samples. We provide an optimized and easy-to-follow step-by-step protocol for the design of strain-specific qPCR assays, starting from primer design from genome sequences to the calibration of the PCR system. Validation of this protocol to design PCR assays for two L. reuteri strains, PB-W1 and DSM 20016 T, resulted in a highly accurate qPCR with a detection limit in spiked fecal samples of around 103 cells/g feces. Applying our strain-specific qPCR assays to fecal samples collected from human subjects who received live L. reuteri PB-W1 or DSM 20016 T during a human trial demonstrated a highly accurate quantification and sensitive detection of these two strains, with a much lower LOD and a broader dynamic range compared to NGS approaches (16S rRNA gene sequencing and whole metagenome sequencing).RESULTSUsing strain-specific PCR primers for L. reuteri 17938, ddPCR showed slightly better reproducibility, but qPCR was almost as reproducible and showed comparable sensitivity (limit of detection [LOD] around 104 cells/g feces) and linearity (R2 > 0.98) when kit-based DNA isolation methods were used. qPCR further had a wider dynamic range and is cheaper and faster. Based on these findings, we conclude that qPCR has advantages over ddPCR for the absolute quantification of bacterial strains in fecal samples. We provide an optimized and easy-to-follow step-by-step protocol for the design of strain-specific qPCR assays, starting from primer design from genome sequences to the calibration of the PCR system. Validation of this protocol to design PCR assays for two L. reuteri strains, PB-W1 and DSM 20016 T, resulted in a highly accurate qPCR with a detection limit in spiked fecal samples of around 103 cells/g feces. Applying our strain-specific qPCR assays to fecal samples collected from human subjects who received live L. reuteri PB-W1 or DSM 20016 T during a human trial demonstrated a highly accurate quantification and sensitive detection of these two strains, with a much lower LOD and a broader dynamic range compared to NGS approaches (16S rRNA gene sequencing and whole metagenome sequencing).Based on our analyses, we consider qPCR with kit-based DNA extraction approaches the best approach to accurately quantify gut bacteria at the strain level in fecal samples. The provided step-by-step protocol will allow scientists to design highly sensitive strain-specific PCR systems for the accurate quantification of bacterial strains of not only L. reuteri but also other bacterial taxa in a broad range of applications and sample types. Video Abstract.CONCLUSIONSBased on our analyses, we consider qPCR with kit-based DNA extraction approaches the best approach to accurately quantify gut bacteria at the strain level in fecal samples. The provided step-by-step protocol will allow scientists to design highly sensitive strain-specific PCR systems for the accurate quantification of bacterial strains of not only L. reuteri but also other bacterial taxa in a broad range of applications and sample types. Video Abstract.
Abstract Background Next-generation sequencing (NGS) approaches have revolutionized gut microbiome research and can provide strain-level resolution, but these techniques have limitations in that they are only semi-quantitative, suffer from high detection limits, and generate data that is compositional. The present study aimed to systematically compare quantitative PCR (qPCR) and droplet digital PCR (ddPCR) for the absolute quantification of Limosilactobacillus reuteri strains in human fecal samples and to develop an optimized protocol for the absolute quantification of bacterial strains in fecal samples. Results Using strain-specific PCR primers for L. reuteri 17938, ddPCR showed slightly better reproducibility, but qPCR was almost as reproducible and showed comparable sensitivity (limit of detection [LOD] around 104 cells/g feces) and linearity (R 2 > 0.98) when kit-based DNA isolation methods were used. qPCR further had a wider dynamic range and is cheaper and faster. Based on these findings, we conclude that qPCR has advantages over ddPCR for the absolute quantification of bacterial strains in fecal samples. We provide an optimized and easy-to-follow step-by-step protocol for the design of strain-specific qPCR assays, starting from primer design from genome sequences to the calibration of the PCR system. Validation of this protocol to design PCR assays for two L. reuteri strains, PB-W1 and DSM 20016 T, resulted in a highly accurate qPCR with a detection limit in spiked fecal samples of around 103 cells/g feces. Applying our strain-specific qPCR assays to fecal samples collected from human subjects who received live L. reuteri PB-W1 or DSM 20016 T during a human trial demonstrated a highly accurate quantification and sensitive detection of these two strains, with a much lower LOD and a broader dynamic range compared to NGS approaches (16S rRNA gene sequencing and whole metagenome sequencing). Conclusions Based on our analyses, we consider qPCR with kit-based DNA extraction approaches the best approach to accurately quantify gut bacteria at the strain level in fecal samples. The provided step-by-step protocol will allow scientists to design highly sensitive strain-specific PCR systems for the accurate quantification of bacterial strains of not only L. reuteri but also other bacterial taxa in a broad range of applications and sample types. Video Abstract
Next-generation sequencing (NGS) approaches have revolutionized gut microbiome research and can provide strain-level resolution, but these techniques have limitations in that they are only semi-quantitative, suffer from high detection limits, and generate data that is compositional. The present study aimed to systematically compare quantitative PCR (qPCR) and droplet digital PCR (ddPCR) for the absolute quantification of Limosilactobacillus reuteri strains in human fecal samples and to develop an optimized protocol for the absolute quantification of bacterial strains in fecal samples. Using strain-specific PCR primers for L. reuteri 17938, ddPCR showed slightly better reproducibility, but qPCR was almost as reproducible and showed comparable sensitivity (limit of detection [LOD] around 10 cells/g feces) and linearity (R  > 0.98) when kit-based DNA isolation methods were used. qPCR further had a wider dynamic range and is cheaper and faster. Based on these findings, we conclude that qPCR has advantages over ddPCR for the absolute quantification of bacterial strains in fecal samples. We provide an optimized and easy-to-follow step-by-step protocol for the design of strain-specific qPCR assays, starting from primer design from genome sequences to the calibration of the PCR system. Validation of this protocol to design PCR assays for two L. reuteri strains, PB-W1 and DSM 20016 , resulted in a highly accurate qPCR with a detection limit in spiked fecal samples of around 10 cells/g feces. Applying our strain-specific qPCR assays to fecal samples collected from human subjects who received live L. reuteri PB-W1 or DSM 20016 during a human trial demonstrated a highly accurate quantification and sensitive detection of these two strains, with a much lower LOD and a broader dynamic range compared to NGS approaches (16S rRNA gene sequencing and whole metagenome sequencing). Based on our analyses, we consider qPCR with kit-based DNA extraction approaches the best approach to accurately quantify gut bacteria at the strain level in fecal samples. The provided step-by-step protocol will allow scientists to design highly sensitive strain-specific PCR systems for the accurate quantification of bacterial strains of not only L. reuteri but also other bacterial taxa in a broad range of applications and sample types. Video Abstract.
ArticleNumber 168
Author Liu, Junhong
Frese, Steven A.
Li, Fuyong
Maldonado-Gómez, María X.
Gänzle, Michael G.
Walter, Jens
Author_xml – sequence: 1
  givenname: Fuyong
  surname: Li
  fullname: Li, Fuyong
– sequence: 2
  givenname: Junhong
  surname: Liu
  fullname: Liu, Junhong
– sequence: 3
  givenname: María X.
  surname: Maldonado-Gómez
  fullname: Maldonado-Gómez, María X.
– sequence: 4
  givenname: Steven A.
  surname: Frese
  fullname: Frese, Steven A.
– sequence: 5
  givenname: Michael G.
  surname: Gänzle
  fullname: Gänzle, Michael G.
– sequence: 6
  givenname: Jens
  surname: Walter
  fullname: Walter, Jens
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39244633$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1vFSEUJabG1to_4MLM0s0oX8PAyphGbZMmbnRNLgzzHg0Dr8A06b-X915tWheyAe4959yc3PMWncQUHULvCf5EiBSfC8dEyB5T3mMiJenpK3RGMVc9FUSePHufootSbnE7ivCRyzfolCnKuWDsDMGV32zDQwfWrhmq6yBOXXGx-Orv28-UFNZWvlshVj97C9Wn2KW5M2Cryx5CV2oGH0vnY7ddF4jd7Oy-DMsuuPIOvZ4hFHfxeJ-j39-__bq86m9-_ri-_HrTWy5U7ZmVAwx8GCepjAVnKaWTMYI3ByPGhE4Tc1y2rhxmZYWZm5_JMTvjRjGCnaPro-6U4Fbvsl8gP-gEXh8KKW805OptcNoq62YzuIFxydUgDWWcsFESosxA7dS0vhy1dqtZ3GRdbBbDC9GXnei3epPuNSFM4lGOTeHjo0JOd6srVS--WBcCRJfWohnBZFSCUNagH54Pe5ryd0kNQI8Am1Mp2c1PEIL1Pgz6GAbdwqAPYdC0keQ_JOvrYXn7bYX_Uf8A_ia6Fg
CitedBy_id crossref_primary_10_3390_antibiotics14030222
crossref_primary_10_1016_j_cell_2024_12_034
crossref_primary_10_1186_s40168_024_02009_2
crossref_primary_10_1016_j_cofs_2024_101245
Cites_doi 10.1186/s40168-018-0494-4
10.1111/jam.14119
10.1038/nature24460
10.1007/s00253-016-7950-5
10.1128/AEM.01525-15
10.1371/journal.pone.0015046
10.1186/s12915-023-01541-1
10.1073/pnas.1000099107
10.1038/nature11053
10.1016/j.chom.2013.07.007
10.1038/s41587-023-01688-w
10.1007/s00216-018-1508-6
10.3389/fmicb.2017.00108
10.1016/j.mimet.2007.11.007
10.3390/nu7010017
10.1016/j.chom.2016.09.001
10.1016/j.jpba.2018.07.022
10.1016/j.foodchem.2018.04.079
10.1038/s41587-018-0009-7
10.1128/AEM.00380-09
10.1038/nature12198
10.1002/(SICI)1096-8644(199804)105:4<539::AID-AJPA10>3.0.CO;2-1
10.1016/j.cellimm.2016.03.007
10.1128/AEM.67.6.2578-2585.2001
10.1371/journal.pone.0227285
10.1038/ismej.2009.123
10.1099/ijsem.0.004644
10.1016/j.tifs.2014.03.008
10.1128/AEM.00132-17
10.1111/lam.12667
10.1038/nature13828
10.1111/j.1365-2672.2012.05305.x
10.1016/j.watres.2014.12.008
10.1186/s40168-021-01162-2
10.1016/j.celrep.2015.03.049
10.1016/j.cell.2018.08.041
10.7554/eLife.65088
10.1038/nbt.3960
10.1093/nar/gkm306
10.7554/eLife.36521
10.1038/s41591-019-0495-2
10.1111/j.1462-2920.2007.01292.x
10.1016/j.ijpara.2014.08.004
10.1128/mSystems.00190-17
10.1021/ac202028g
10.1007/s10482-009-9401-0
10.3390/microorganisms9091797
10.1038/nature09922
10.1371/journal.pgen.1001314
10.1021/acs.est.5b00253
10.1371/journal.pone.0055943
10.1038/nmeth.2633
10.1016/j.mimet.2018.03.004
10.3389/fmicb.2020.601422
10.1038/s41587-019-0209-9
10.1016/j.cell.2017.01.022
10.1021/ac403843j
10.1021/ac202578x
10.1007/s12328-017-0813-5
10.1038/mp.2016.50
ContentType Journal Article
Copyright 2024. The Author(s).
The Author(s) 2024 2024
Copyright_xml – notice: 2024. The Author(s).
– notice: The Author(s) 2024 2024
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.1186/s40168-024-01881-2
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2049-2618
EndPage 16
ExternalDocumentID oai_doaj_org_article_c9cefb5e53484958b2341378119b52cd
PMC11380787
39244633
10_1186_s40168_024_01881_2
Genre Journal Article
GroupedDBID 0R~
53G
5VS
7X7
88E
8FE
8FH
8FI
8FJ
AAFWJ
AAHBH
AAJSJ
AASML
AAYXX
ABUWG
ACGFS
ADBBV
ADRAZ
ADUKV
AENEX
AFKRA
AFPKN
AHBYD
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AOIJS
ASPBG
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CITATION
DIK
EBLON
EBS
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAG
IAO
IEP
IHR
INH
INR
ISR
ITC
KQ8
LK8
M1P
M48
M7P
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RBZ
ROL
RPM
RSV
SOJ
UKHRP
CGR
CUY
CVF
ECM
EIF
NPM
7X8
PPXIY
PQGLB
5PM
PJZUB
PUEGO
ID FETCH-LOGICAL-c469t-3c85a5457d89bcaec222dbb6461870012dd3e48d8985f9c6bf009de3cf07d8b63
IEDL.DBID M48
ISSN 2049-2618
IngestDate Wed Aug 27 01:32:31 EDT 2025
Thu Aug 21 18:35:37 EDT 2025
Fri Jul 11 05:21:53 EDT 2025
Thu Apr 03 06:54:05 EDT 2025
Tue Jul 01 04:16:48 EDT 2025
Thu Apr 24 23:09:53 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords ddPCR
DNA extraction
Strain-specific primers
qPCR
Limosilactobacillus reuteri
Lactobacillus
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c469t-3c85a5457d89bcaec222dbb6461870012dd3e48d8985f9c6bf009de3cf07d8b63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s40168-024-01881-2
PMID 39244633
PQID 3101796123
PQPubID 23479
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_c9cefb5e53484958b2341378119b52cd
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11380787
proquest_miscellaneous_3101796123
pubmed_primary_39244633
crossref_primary_10_1186_s40168_024_01881_2
crossref_citationtrail_10_1186_s40168_024_01881_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-09-07
PublicationDateYYYYMMDD 2024-09-07
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-07
  day: 07
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle Microbiome
PublicationTitleAlternate Microbiome
PublicationYear 2024
Publisher BioMed Central
BMC
Publisher_xml – name: BioMed Central
– name: BMC
References F Li (1881_CR44) 2023; 21
MA Conlon (1881_CR5) 2014; 7
GB Rogers (1881_CR6) 2016; 21
C Depommier (1881_CR17) 2019; 25
J Walter (1881_CR49) 2001; 67
SA Frese (1881_CR13) 2011; 7
C Jian (1881_CR19) 2020; 15
S Broeders (1881_CR58) 2014; 37
E Bolyen (1881_CR51) 2019; 37
A Nishida (1881_CR8) 2018; 11
I Martínez (1881_CR40) 2010; 5
N Geva-Zatorsky (1881_CR3) 2017; 168
D Vandeputte (1881_CR20) 2017; 551
N Zmora (1881_CR18) 2018; 174
PI Costea (1881_CR41) 2017; 35
MX Maldonado-Gómez (1881_CR22) 2016; 20
N Segata (1881_CR11) 2018; 3
F Beghini (1881_CR14) 2021; 10
LB Pinheiro (1881_CR26) 2012; 84
PL Oh (1881_CR45) 2010; 4
Z Zhang (1881_CR37) 2020; 11
P Kralik (1881_CR42) 2017; 8
A Blanco-Míguez (1881_CR52) 2023; 41
G Gobert (1881_CR34) 2018; 148
Y Cao (1881_CR60) 2015; 70
R Yang (1881_CR29) 2014; 44
Y Yang (1881_CR25) 2015; 81
D Yuan (1881_CR57) 2019; 411
BJ Hindson (1881_CR30) 2011; 83
T Yatsunenko (1881_CR2) 2012; 486
Y Wang (1881_CR43) 2018; 159
I Martínez (1881_CR48) 2015; 11
AD Kostic (1881_CR7) 2013; 14
F Li (1881_CR47) 2021; 71
CM Hindson (1881_CR55) 2013; 10
RM Duar (1881_CR12) 2017; 83
J Walter (1881_CR46) 2011; 108
J Stauber (1881_CR56) 2016; 303
DY Yang (1881_CR59) 1998; 105
CG Buffie (1881_CR4) 2015; 517
C Villa (1881_CR54) 2018; 262
J Walter (1881_CR36) 2007; 9
Y Cao (1881_CR61) 2012; 113
Z Wang (1881_CR10) 2011; 472
L Cavé (1881_CR33) 2016; 100
I Martínez (1881_CR23) 2018; 7
JD Palumbo (1881_CR35) 2016; 63
JA Krumbeck (1881_CR21) 2018; 6
1881_CR53
H Doi (1881_CR27) 2015; 49
JT Barlow (1881_CR15) 2021; 9
JM Nechvatal (1881_CR28) 2008; 72
SC Forster (1881_CR1) 2019; 37
M Egervärn (1881_CR38) 2010; 97
A Untergasser (1881_CR50) 2007; 35
FH Karlsson (1881_CR9) 2013; 498
L Miotke (1881_CR31) 2014; 86
X Zhao (1881_CR24) 2019; 126
MC Strain (1881_CR32) 2013; 8
I Martínez (1881_CR39) 2009; 75
X Wang (1881_CR16) 2021; 9
References_xml – volume: 6
  start-page: 121
  year: 2018
  ident: 1881_CR21
  publication-title: Microbiome
  doi: 10.1186/s40168-018-0494-4
– volume: 126
  start-page: 242
  year: 2019
  ident: 1881_CR24
  publication-title: J Appl Microbiol
  doi: 10.1111/jam.14119
– volume: 551
  start-page: 507
  year: 2017
  ident: 1881_CR20
  publication-title: Nature
  doi: 10.1038/nature24460
– volume: 100
  start-page: 10597
  year: 2016
  ident: 1881_CR33
  publication-title: Appl Microbiol Biotechnol
  doi: 10.1007/s00253-016-7950-5
– volume: 81
  start-page: 5743
  year: 2015
  ident: 1881_CR25
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.01525-15
– volume: 5
  year: 2010
  ident: 1881_CR40
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0015046
– volume: 21
  start-page: 53
  year: 2023
  ident: 1881_CR44
  publication-title: BMC Biol
  doi: 10.1186/s12915-023-01541-1
– volume: 108
  start-page: 4645
  issue: Suppl 1
  year: 2011
  ident: 1881_CR46
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1000099107
– volume: 486
  start-page: 222
  year: 2012
  ident: 1881_CR2
  publication-title: Nature
  doi: 10.1038/nature11053
– volume: 14
  start-page: 207
  year: 2013
  ident: 1881_CR7
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2013.07.007
– volume: 41
  start-page: 1633
  issue: 11
  year: 2023
  ident: 1881_CR52
  publication-title: Nat Biotechnol.
  doi: 10.1038/s41587-023-01688-w
– volume: 411
  start-page: 895
  year: 2019
  ident: 1881_CR57
  publication-title: Anal Bioanal Chem
  doi: 10.1007/s00216-018-1508-6
– volume: 8
  start-page: 108
  year: 2017
  ident: 1881_CR42
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2017.00108
– volume: 72
  start-page: 124
  year: 2008
  ident: 1881_CR28
  publication-title: J Microbiol Methods
  doi: 10.1016/j.mimet.2007.11.007
– volume: 7
  start-page: 17
  year: 2014
  ident: 1881_CR5
  publication-title: Nutrients
  doi: 10.3390/nu7010017
– volume: 20
  start-page: 515
  year: 2016
  ident: 1881_CR22
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2016.09.001
– volume: 159
  start-page: 477
  year: 2018
  ident: 1881_CR43
  publication-title: J Pharm Biomed Anal
  doi: 10.1016/j.jpba.2018.07.022
– volume: 262
  start-page: 251
  year: 2018
  ident: 1881_CR54
  publication-title: Food Chem
  doi: 10.1016/j.foodchem.2018.04.079
– volume: 37
  start-page: 186
  year: 2019
  ident: 1881_CR1
  publication-title: Nat Biotechnol
  doi: 10.1038/s41587-018-0009-7
– volume: 75
  start-page: 4175
  year: 2009
  ident: 1881_CR39
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.00380-09
– volume: 498
  start-page: 99
  year: 2013
  ident: 1881_CR9
  publication-title: Nature
  doi: 10.1038/nature12198
– volume: 105
  start-page: 539
  year: 1998
  ident: 1881_CR59
  publication-title: Am J Phys Anthropol
  doi: 10.1002/(SICI)1096-8644(199804)105:4<539::AID-AJPA10>3.0.CO;2-1
– volume: 303
  start-page: 43
  year: 2016
  ident: 1881_CR56
  publication-title: Cell Immunol
  doi: 10.1016/j.cellimm.2016.03.007
– volume: 67
  start-page: 2578
  year: 2001
  ident: 1881_CR49
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.67.6.2578-2585.2001
– volume: 15
  year: 2020
  ident: 1881_CR19
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0227285
– volume: 4
  start-page: 377
  year: 2010
  ident: 1881_CR45
  publication-title: Isme j
  doi: 10.1038/ismej.2009.123
– volume: 71
  start-page: 004644
  issue: 2
  year: 2021
  ident: 1881_CR47
  publication-title: Int J Syst Evol Microbiol
  doi: 10.1099/ijsem.0.004644
– volume: 37
  start-page: 115
  year: 2014
  ident: 1881_CR58
  publication-title: Trends Food Sci Technol
  doi: 10.1016/j.tifs.2014.03.008
– volume: 83
  start-page: e00132
  issue: 12
  year: 2017
  ident: 1881_CR12
  publication-title: Appl Environ Microbiol.
  doi: 10.1128/AEM.00132-17
– volume: 63
  start-page: 458
  year: 2016
  ident: 1881_CR35
  publication-title: Lett Appl Microbiol
  doi: 10.1111/lam.12667
– volume: 517
  start-page: 205
  year: 2015
  ident: 1881_CR4
  publication-title: Nature
  doi: 10.1038/nature13828
– volume: 113
  start-page: 66
  year: 2012
  ident: 1881_CR61
  publication-title: J Appl Microbiol
  doi: 10.1111/j.1365-2672.2012.05305.x
– volume: 70
  start-page: 337
  year: 2015
  ident: 1881_CR60
  publication-title: Water Res
  doi: 10.1016/j.watres.2014.12.008
– volume: 9
  start-page: 214
  year: 2021
  ident: 1881_CR15
  publication-title: Microbiome
  doi: 10.1186/s40168-021-01162-2
– volume: 11
  start-page: 527
  year: 2015
  ident: 1881_CR48
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2015.03.049
– volume: 174
  start-page: 1388
  year: 2018
  ident: 1881_CR18
  publication-title: Cell
  doi: 10.1016/j.cell.2018.08.041
– volume: 10
  start-page: e65088
  year: 2021
  ident: 1881_CR14
  publication-title: Elife.
  doi: 10.7554/eLife.65088
– volume: 35
  start-page: 1069
  year: 2017
  ident: 1881_CR41
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.3960
– volume: 35
  start-page: W71
  year: 2007
  ident: 1881_CR50
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkm306
– volume: 7
  start-page: e36521
  year: 2018
  ident: 1881_CR23
  publication-title: Elife.
  doi: 10.7554/eLife.36521
– volume: 25
  start-page: 1096
  year: 2019
  ident: 1881_CR17
  publication-title: Nat Med
  doi: 10.1038/s41591-019-0495-2
– volume: 9
  start-page: 1750
  year: 2007
  ident: 1881_CR36
  publication-title: Environ Microbiol
  doi: 10.1111/j.1462-2920.2007.01292.x
– volume: 44
  start-page: 1105
  year: 2014
  ident: 1881_CR29
  publication-title: Int J Parasitol
  doi: 10.1016/j.ijpara.2014.08.004
– volume: 3
  start-page: e00190
  issue: 2
  year: 2018
  ident: 1881_CR11
  publication-title: mSystems
  doi: 10.1128/mSystems.00190-17
– volume: 83
  start-page: 8604
  year: 2011
  ident: 1881_CR30
  publication-title: Anal Chem
  doi: 10.1021/ac202028g
– volume: 97
  start-page: 189
  year: 2010
  ident: 1881_CR38
  publication-title: Antonie Van Leeuwenhoek
  doi: 10.1007/s10482-009-9401-0
– volume: 9
  start-page: 1797
  issue: 9
  year: 2021
  ident: 1881_CR16
  publication-title: Microorganisms.
  doi: 10.3390/microorganisms9091797
– ident: 1881_CR53
– volume: 472
  start-page: 57
  year: 2011
  ident: 1881_CR10
  publication-title: Nature
  doi: 10.1038/nature09922
– volume: 7
  year: 2011
  ident: 1881_CR13
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1001314
– volume: 49
  start-page: 5601
  year: 2015
  ident: 1881_CR27
  publication-title: Environ Sci Technol.
  doi: 10.1021/acs.est.5b00253
– volume: 8
  year: 2013
  ident: 1881_CR32
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0055943
– volume: 10
  start-page: 1003
  year: 2013
  ident: 1881_CR55
  publication-title: Nat Methods
  doi: 10.1038/nmeth.2633
– volume: 148
  start-page: 64
  year: 2018
  ident: 1881_CR34
  publication-title: J Microbiol Methods
  doi: 10.1016/j.mimet.2018.03.004
– volume: 11
  year: 2020
  ident: 1881_CR37
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2020.601422
– volume: 37
  start-page: 852
  year: 2019
  ident: 1881_CR51
  publication-title: Nat Biotechnol
  doi: 10.1038/s41587-019-0209-9
– volume: 168
  start-page: 928
  year: 2017
  ident: 1881_CR3
  publication-title: Cell
  doi: 10.1016/j.cell.2017.01.022
– volume: 86
  start-page: 2618
  year: 2014
  ident: 1881_CR31
  publication-title: Anal Chem
  doi: 10.1021/ac403843j
– volume: 84
  start-page: 1003
  year: 2012
  ident: 1881_CR26
  publication-title: Anal Chem
  doi: 10.1021/ac202578x
– volume: 11
  start-page: 1
  year: 2018
  ident: 1881_CR8
  publication-title: Clin J Gastroenterol
  doi: 10.1007/s12328-017-0813-5
– volume: 21
  start-page: 738
  year: 2016
  ident: 1881_CR6
  publication-title: Mol Psychiatry
  doi: 10.1038/mp.2016.50
SSID ssj0000914748
Score 2.4144254
Snippet Next-generation sequencing (NGS) approaches have revolutionized gut microbiome research and can provide strain-level resolution, but these techniques have...
Abstract Background Next-generation sequencing (NGS) approaches have revolutionized gut microbiome research and can provide strain-level resolution, but these...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 168
SubjectTerms Bacteria - classification
Bacteria - genetics
Bacteria - isolation & purification
ddPCR
DNA extraction
DNA, Bacterial - genetics
Feces - microbiology
Gastrointestinal Microbiome - genetics
High-Throughput Nucleotide Sequencing - methods
Humans
Lactobacillus
Limit of Detection
Limosilactobacillus reuteri
Limosilactobacillus reuteri - classification
Limosilactobacillus reuteri - genetics
Methodology
qPCR
Real-Time Polymerase Chain Reaction - methods
Reproducibility of Results
Sensitivity and Specificity
Strain-specific primers
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlUOil9N1tk6BAbkUktiV5fGxCQughpwRyE9JIpguLt63Xh_z7zEi7y24p7aUXH_Swh9F49A0afSPEaYTe1LFpFaK1SvvOK4CQVELbtpUPTFjC2Ra39uZef3swDzulvjgnrNADF8WdYYepDyaZRgOBeQg1-12-H9kFU2Nk70t73k4wlX1wV-lWw-aWDNizkQIJC4q2JIqeASpV7-1EmbD_Tyjz92TJnd3n-pV4uYaN8msR97V4loY34nkpJPn4VnhO11g8So84MfeD9EOUI-emszeTPmQLS_Ln5EtyUF4PuexlKGzN9O4xV4sY5XyQuXCf7BNys2f-4PGduL--uru8UeviCQop4l2pBsF4gkdthC6gT0hAIIZgta2Az5rrGJukgXrB9B3a0JPSYmqwP6cpwTbvxcGwHNJHIQNiG4ChAQVPmjykiYaeHkNP-OBcz0S1UaTDNbM4i7xwOcIA64ryHSnfZeW7eia-bOf8KLwafx19weuzHcmc2LmBLMWtLcX9y1Jm4mSzuo7-IT4Y8UNaTqNrsl9iIpqZ-FBWe_spwo8UMTfUA3t2sCfLfs8w_555uqsqs_m3n_6H9J_FizobL985OxQHq19TOiI8tArH2fSfACCGBvA
  priority: 102
  providerName: Directory of Open Access Journals
Title Highly accurate and sensitive absolute quantification of bacterial strains in human fecal samples
URI https://www.ncbi.nlm.nih.gov/pubmed/39244633
https://www.proquest.com/docview/3101796123
https://pubmed.ncbi.nlm.nih.gov/PMC11380787
https://doaj.org/article/c9cefb5e53484958b2341378119b52cd
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dixMxEB_OOwRfxG_rR4ngm0Rvv5Lsg4gndx6Ch4iFvoVkktWDsvW6LVz_-5vJbouVIr7sQ7LZDZPJzG92J78BeB1MU-Wh0BJRKVm62kljfJQRldaZ80xYwtkWF-p8Un6ZVtMD2JQ7GgTY7Q3tuJ7UZDF7e321_kAb_n3a8Ea96yhGUEaSt6HA2JhMkkk-Is-kuaLB1wHuJ8tcZ6VOBbVyAsaSggezOUez9zE7vipR-u_DoX-nU_7hn87uwd0BWIqPvSbch4PYPoDbfanJ9UNwnNAxWwuHuGJ2COHaIDrOXmd7J5xPOhjF1cr16UNpxcS8Eb7nc6Znd6meRCcuW5FK-4kmIjc7ZhjuHsHk7PTHp3M5lFeQSDHxUhZoKkcASgdTe3QRCSoE71VJYuG_0XkIRSwN9ZqqqVH5hgQYYoHNMQ3xqngMh-28jU9BeETtDYMHCq9KsqFVqOjq0DeEII7LEWQbQVocuMd5yjObYhCjbC98S8K3Sfg2H8Gb7ZjfPfPGP-8-4fXZ3sms2alhvvhph01oscbY-CpWRWkoMDQ-Zx_OZ21rX-UYRvBqs7qWdhn_OnFtnK86WyTLxVQ1I3jSr_b2VYQwKaYuqMfs6MHOXHZ72stfick7yxLfv372Hy9-DnfypJt86OwFHC4Xq_iSANHSj-GWnuoxHJ2cXnz7Pk6fFej6eZqNk_7fADTyCnI
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+accurate+and+sensitive+absolute+quantification+of+bacterial+strains+in+human+fecal+samples&rft.jtitle=Microbiome&rft.au=Li%2C+Fuyong&rft.au=Liu%2C+Junhong&rft.au=Maldonado-G%C3%B3mez%2C+Mar%C3%ADa+X&rft.au=Frese%2C+Steven+A&rft.date=2024-09-07&rft.issn=2049-2618&rft.eissn=2049-2618&rft.volume=12&rft.issue=1&rft.spage=168&rft_id=info:doi/10.1186%2Fs40168-024-01881-2&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2049-2618&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2049-2618&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2049-2618&client=summon