Biomarkers of Progression after HIV Acute/Early Infection: Nothing Compares to CD4+ T-cell Count?

Progression of HIV infection is variable among individuals, and definition disease progression biomarkers is still needed. Here, we aimed to categorize the predictive potential of several variables using feature selection methods and decision trees. A total of seventy-five treatment-naïve subjects w...

Full description

Saved in:
Bibliographic Details
Published inViruses Vol. 10; no. 1; p. 34
Main Authors Turk, Gabriela, Ghiglione, Yanina, Hormanstorfer, Macarena, Laufer, Natalia, Coloccini, Romina, Salido, Jimena, Trifone, César, Ruiz, María, Falivene, Juliana, Holgado, María, Caruso, María, Figueroa, María, Salomón, Horacio, Giavedoni, Luis, Pando, María, Gherardi, María, Rabinovich, Roberto, Pury, Pedro, Sued, Omar
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 13.01.2018
MDPI
Subjects
Online AccessGet full text
ISSN1999-4915
1999-4915
DOI10.3390/v10010034

Cover

Abstract Progression of HIV infection is variable among individuals, and definition disease progression biomarkers is still needed. Here, we aimed to categorize the predictive potential of several variables using feature selection methods and decision trees. A total of seventy-five treatment-naïve subjects were enrolled during acute/early HIV infection. CD4+ T-cell counts (CD4TC) and viral load (VL) levels were determined at enrollment and for one year. Immune activation, HIV-specific immune response, Human Leukocyte Antigen (HLA) and C-C chemokine receptor type 5 (CCR5) genotypes, and plasma levels of 39 cytokines were determined. Data were analyzed by machine learning and non-parametric methods. Variable hierarchization was performed by Weka correlation-based feature selection and J48 decision tree. Plasma interleukin (IL)-10, interferon gamma-induced protein (IP)-10, soluble IL-2 receptor alpha (sIL-2Rα) and tumor necrosis factor alpha (TNF-α) levels correlated directly with baseline VL, whereas IL-2, TNF-α, fibroblast growth factor (FGF)-2 and macrophage inflammatory protein (MIP)-1β correlated directly with CD4+ T-cell activation (p < 0.05). However, none of these cytokines had good predictive values to distinguish “progressors” from “non-progressors”. Similarly, immune activation, HIV-specific immune responses and HLA/CCR5 genotypes had low discrimination power. Baseline CD4TC was the most potent discerning variable with a cut-off of 438 cells/μL (accuracy = 0.93, κ-Cohen = 0.85). Limited discerning power of the other factors might be related to frequency, variability and/or sampling time. Future studies based on decision trees to identify biomarkers of post-treatment control are warrantied.
AbstractList Progression of HIV infection is variable among individuals, and definition disease progression biomarkers is still needed. Here, we aimed to categorize the predictive potential of several variables using feature selection methods and decision trees. A total of seventy-five treatment-naïve subjects were enrolled during acute/early HIV infection. CD4⁺ T-cell counts (CD4TC) and viral load (VL) levels were determined at enrollment and for one year. Immune activation, HIV-specific immune response, Human Leukocyte Antigen (HLA) and C-C chemokine receptor type 5 (CCR5) genotypes, and plasma levels of 39 cytokines were determined. Data were analyzed by machine learning and non-parametric methods. Variable hierarchization was performed by Weka correlation-based feature selection and J48 decision tree. Plasma interleukin (IL)-10, interferon gamma-induced protein (IP)-10, soluble IL-2 receptor alpha (sIL-2Rα) and tumor necrosis factor alpha (TNF-α) levels correlated directly with baseline VL, whereas IL-2, TNF-α, fibroblast growth factor (FGF)-2 and macrophage inflammatory protein (MIP)-1β correlated directly with CD4⁺ T-cell activation ( < 0.05). However, none of these cytokines had good predictive values to distinguish "progressors" from "non-progressors". Similarly, immune activation, HIV-specific immune responses and HLA/CCR5 genotypes had low discrimination power. Baseline CD4TC was the most potent discerning variable with a cut-off of 438 cells/μL (accuracy = 0.93, κ-Cohen = 0.85). Limited discerning power of the other factors might be related to frequency, variability and/or sampling time. Future studies based on decision trees to identify biomarkers of post-treatment control are warrantied.
Progression of HIV infection is variable among individuals, and definition disease progression biomarkers is still needed. Here, we aimed to categorize the predictive potential of several variables using feature selection methods and decision trees. A total of seventy-five treatment-naïve subjects were enrolled during acute/early HIV infection. CD4⁺ T-cell counts (CD4TC) and viral load (VL) levels were determined at enrollment and for one year. Immune activation, HIV-specific immune response, Human Leukocyte Antigen (HLA) and C-C chemokine receptor type 5 (CCR5) genotypes, and plasma levels of 39 cytokines were determined. Data were analyzed by machine learning and non-parametric methods. Variable hierarchization was performed by Weka correlation-based feature selection and J48 decision tree. Plasma interleukin (IL)-10, interferon gamma-induced protein (IP)-10, soluble IL-2 receptor alpha (sIL-2Rα) and tumor necrosis factor alpha (TNF-α) levels correlated directly with baseline VL, whereas IL-2, TNF-α, fibroblast growth factor (FGF)-2 and macrophage inflammatory protein (MIP)-1β correlated directly with CD4⁺ T-cell activation (p < 0.05). However, none of these cytokines had good predictive values to distinguish "progressors" from "non-progressors". Similarly, immune activation, HIV-specific immune responses and HLA/CCR5 genotypes had low discrimination power. Baseline CD4TC was the most potent discerning variable with a cut-off of 438 cells/μL (accuracy = 0.93, κ-Cohen = 0.85). Limited discerning power of the other factors might be related to frequency, variability and/or sampling time. Future studies based on decision trees to identify biomarkers of post-treatment control are warrantied.Progression of HIV infection is variable among individuals, and definition disease progression biomarkers is still needed. Here, we aimed to categorize the predictive potential of several variables using feature selection methods and decision trees. A total of seventy-five treatment-naïve subjects were enrolled during acute/early HIV infection. CD4⁺ T-cell counts (CD4TC) and viral load (VL) levels were determined at enrollment and for one year. Immune activation, HIV-specific immune response, Human Leukocyte Antigen (HLA) and C-C chemokine receptor type 5 (CCR5) genotypes, and plasma levels of 39 cytokines were determined. Data were analyzed by machine learning and non-parametric methods. Variable hierarchization was performed by Weka correlation-based feature selection and J48 decision tree. Plasma interleukin (IL)-10, interferon gamma-induced protein (IP)-10, soluble IL-2 receptor alpha (sIL-2Rα) and tumor necrosis factor alpha (TNF-α) levels correlated directly with baseline VL, whereas IL-2, TNF-α, fibroblast growth factor (FGF)-2 and macrophage inflammatory protein (MIP)-1β correlated directly with CD4⁺ T-cell activation (p < 0.05). However, none of these cytokines had good predictive values to distinguish "progressors" from "non-progressors". Similarly, immune activation, HIV-specific immune responses and HLA/CCR5 genotypes had low discrimination power. Baseline CD4TC was the most potent discerning variable with a cut-off of 438 cells/μL (accuracy = 0.93, κ-Cohen = 0.85). Limited discerning power of the other factors might be related to frequency, variability and/or sampling time. Future studies based on decision trees to identify biomarkers of post-treatment control are warrantied.
Progression of HIV infection is variable among individuals, and definition disease progression biomarkers is still needed. Here, we aimed to categorize the predictive potential of several variables using feature selection methods and decision trees. A total of seventy-five treatment-naïve subjects were enrolled during acute/early HIV infection. CD4 + T-cell counts (CD4TC) and viral load (VL) levels were determined at enrollment and for one year. Immune activation, HIV-specific immune response, Human Leukocyte Antigen (HLA) and C-C chemokine receptor type 5 (CCR5) genotypes, and plasma levels of 39 cytokines were determined. Data were analyzed by machine learning and non-parametric methods. Variable hierarchization was performed by Weka correlation-based feature selection and J48 decision tree. Plasma interleukin (IL)-10, interferon gamma-induced protein (IP)-10, soluble IL-2 receptor alpha (sIL-2Rα) and tumor necrosis factor alpha (TNF-α) levels correlated directly with baseline VL, whereas IL-2, TNF-α, fibroblast growth factor (FGF)-2 and macrophage inflammatory protein (MIP)-1β correlated directly with CD4 + T-cell activation ( p < 0.05). However, none of these cytokines had good predictive values to distinguish “progressors” from “non-progressors”. Similarly, immune activation, HIV-specific immune responses and HLA/CCR5 genotypes had low discrimination power. Baseline CD4TC was the most potent discerning variable with a cut-off of 438 cells/μL (accuracy = 0.93, κ-Cohen = 0.85). Limited discerning power of the other factors might be related to frequency, variability and/or sampling time. Future studies based on decision trees to identify biomarkers of post-treatment control are warrantied.
Progression of HIV infection is variable among individuals, and definition disease progression biomarkers is still needed. Here, we aimed to categorize the predictive potential of several variables using feature selection methods and decision trees. A total of seventy-five treatment-naïve subjects were enrolled during acute/early HIV infection. CD4+ T-cell counts (CD4TC) and viral load (VL) levels were determined at enrollment and for one year. Immune activation, HIV-specific immune response, Human Leukocyte Antigen (HLA) and C-C chemokine receptor type 5 (CCR5) genotypes, and plasma levels of 39 cytokines were determined. Data were analyzed by machine learning and non-parametric methods. Variable hierarchization was performed by Weka correlation-based feature selection and J48 decision tree. Plasma interleukin (IL)-10, interferon gamma-induced protein (IP)-10, soluble IL-2 receptor alpha (sIL-2Rα) and tumor necrosis factor alpha (TNF-α) levels correlated directly with baseline VL, whereas IL-2, TNF-α, fibroblast growth factor (FGF)-2 and macrophage inflammatory protein (MIP)-1β correlated directly with CD4+ T-cell activation (p < 0.05). However, none of these cytokines had good predictive values to distinguish “progressors” from “non-progressors”. Similarly, immune activation, HIV-specific immune responses and HLA/CCR5 genotypes had low discrimination power. Baseline CD4TC was the most potent discerning variable with a cut-off of 438 cells/μL (accuracy = 0.93, κ-Cohen = 0.85). Limited discerning power of the other factors might be related to frequency, variability and/or sampling time. Future studies based on decision trees to identify biomarkers of post-treatment control are warrantied.
Author Ruiz, María
Turk, Gabriela
Falivene, Juliana
Holgado, María
Trifone, César
Coloccini, Romina
Pando, María
Giavedoni, Luis
Figueroa, María
Ghiglione, Yanina
Hormanstorfer, Macarena
Salido, Jimena
Salomón, Horacio
Gherardi, María
Laufer, Natalia
Pury, Pedro
Caruso, María
Rabinovich, Roberto
Sued, Omar
AuthorAffiliation 3 Hospital Juan A. Fernández, Unidad Enfermedades Infecciosas, Buenos Aires C1425AGP, Argentina
1 CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Universidad de Buenos Aires- CONICET, Paraguay 2155 Piso 11, Buenos Aires C1121ABG, Argentina; yghiglione@fmed.uba.ar (Y.G.); nlaufer@fmed.uba.ar (N.L.); romina.coloccini@gmail.com (R.C.); jimenasalido@gmail.com (J.S.); trifonecesar@gmail.com (C.T.); mariajulia83@gmail.com (M.J.R.); juliana.falivene@gmail.com (J.F.); piaholgado@gmail.com (M.P.H.); pau_caruso@hotmail.com (M.P.C.); hsalomon@fmed.uba.ar (H.S.); mpando@fmed.uba.ar (M.A.P.); mgherardi@fmed.uba.ar (M.M.G.); rabinovichra@yahoo.com.ar (R.D.R.)
2 Fundación Huésped, Buenos Aires C1202ABB, Argentina; hormanstorferm@gmail.com (M.H.); maria.figueroa@huesped.org.ar (M.I.F.); omar.sued@huesped.org.ar (O.S.)
4 Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA; lgiavedoni@txbiome
AuthorAffiliation_xml – name: 4 Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA; lgiavedoni@txbiomed.org
– name: 5 Facultad de Matemática, Astronomía, Física y Computación, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina; pury@famaf.unc.edu.ar
– name: 1 CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Universidad de Buenos Aires- CONICET, Paraguay 2155 Piso 11, Buenos Aires C1121ABG, Argentina; yghiglione@fmed.uba.ar (Y.G.); nlaufer@fmed.uba.ar (N.L.); romina.coloccini@gmail.com (R.C.); jimenasalido@gmail.com (J.S.); trifonecesar@gmail.com (C.T.); mariajulia83@gmail.com (M.J.R.); juliana.falivene@gmail.com (J.F.); piaholgado@gmail.com (M.P.H.); pau_caruso@hotmail.com (M.P.C.); hsalomon@fmed.uba.ar (H.S.); mpando@fmed.uba.ar (M.A.P.); mgherardi@fmed.uba.ar (M.M.G.); rabinovichra@yahoo.com.ar (R.D.R.)
– name: 3 Hospital Juan A. Fernández, Unidad Enfermedades Infecciosas, Buenos Aires C1425AGP, Argentina
– name: 2 Fundación Huésped, Buenos Aires C1202ABB, Argentina; hormanstorferm@gmail.com (M.H.); maria.figueroa@huesped.org.ar (M.I.F.); omar.sued@huesped.org.ar (O.S.)
Author_xml – sequence: 1
  givenname: Gabriela
  orcidid: 0000-0002-4808-670X
  surname: Turk
  fullname: Turk, Gabriela
– sequence: 2
  givenname: Yanina
  surname: Ghiglione
  fullname: Ghiglione, Yanina
– sequence: 3
  givenname: Macarena
  surname: Hormanstorfer
  fullname: Hormanstorfer, Macarena
– sequence: 4
  givenname: Natalia
  orcidid: 0000-0002-5690-9454
  surname: Laufer
  fullname: Laufer, Natalia
– sequence: 5
  givenname: Romina
  surname: Coloccini
  fullname: Coloccini, Romina
– sequence: 6
  givenname: Jimena
  surname: Salido
  fullname: Salido, Jimena
– sequence: 7
  givenname: César
  surname: Trifone
  fullname: Trifone, César
– sequence: 8
  givenname: María
  surname: Ruiz
  fullname: Ruiz, María
– sequence: 9
  givenname: Juliana
  surname: Falivene
  fullname: Falivene, Juliana
– sequence: 10
  givenname: María
  orcidid: 0000-0003-3437-4863
  surname: Holgado
  fullname: Holgado, María
– sequence: 11
  givenname: María
  surname: Caruso
  fullname: Caruso, María
– sequence: 12
  givenname: María
  surname: Figueroa
  fullname: Figueroa, María
– sequence: 13
  givenname: Horacio
  surname: Salomón
  fullname: Salomón, Horacio
– sequence: 14
  givenname: Luis
  orcidid: 0000-0001-5244-7187
  surname: Giavedoni
  fullname: Giavedoni, Luis
– sequence: 15
  givenname: María
  surname: Pando
  fullname: Pando, María
– sequence: 16
  givenname: María
  surname: Gherardi
  fullname: Gherardi, María
– sequence: 17
  givenname: Roberto
  surname: Rabinovich
  fullname: Rabinovich, Roberto
– sequence: 18
  givenname: Pedro
  orcidid: 0000-0003-2229-0590
  surname: Pury
  fullname: Pury, Pedro
– sequence: 19
  givenname: Omar
  surname: Sued
  fullname: Sued, Omar
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29342870$$D View this record in MEDLINE/PubMed
BookMark eNplkl1rFDEUhoNU7Ide-Ack4I0i4yaT714oda12oagX1duQyWS2WWeTNckU-u_Num1pKwQSznnPw5tzziHYCzE4AF5i9J4QhWZXGKF6CH0CDrBSqqEKs717731wmPMKIc4VEs_AfqsIbaVAB8B88nFt0m-XMowD_JHiMrmcfQzQDMUleLb4BU_sVNzs1KTxGi7C4Gyp-WP4LZZLH5ZwHtcbU6tgiXD-mb6DF41141jjUygfn4Ongxmze3FzH4GfX04v5mfN-fevi_nJeWMpV6UhUijFrOsVdj3HYpCCONpJ3BrChcUt4xZLKoV0iCOGSU8p4oQgyTpC-4EcgcWO20ez0pvk67eudTRe_wvEtNQmFW9Hp7ntKRGU4gEj6pSVUmLaYt7LTna87Srrw461mbq1660LJZnxAfRhJvhLvYxXmgnFKBUV8OYGkOKfyeWi1z5vm2KCi1PWWEnF6iz4Vvr6kXQVpxRqq3SLUCuY4pxV1av7ju6s3E6yCmY7gU0x5-QGbX0x20FVg37UGOntrui7XakVbx9V3EL_1_4FJxm6GA
CitedBy_id crossref_primary_10_1097_QAD_0000000000004075
crossref_primary_10_12677_acm_2025_153666
crossref_primary_10_3389_fimmu_2018_02443
crossref_primary_10_1038_s41598_020_73852_0
crossref_primary_10_1186_s12979_024_00497_2
crossref_primary_10_1080_10408363_2020_1857681
crossref_primary_10_3390_v14102218
crossref_primary_10_1016_j_cytogfr_2022_06_004
crossref_primary_10_3390_a17080362
crossref_primary_10_3390_ijms24021465
crossref_primary_10_1212_NXI_0000000000000551
Cites_doi 10.1097/QAD.0b013e3283367836
10.1186/1758-2652-14-40
10.1016/j.immuni.2013.10.001
10.7448/IAS.20.1.21579
10.1128/JVI.00865-13
10.1177/001316446002000104
10.1093/infdis/jir394
10.1128/JVI.02260-07
10.1016/j.cytogfr.2012.05.001
10.1097/QAD.0000000000000174
10.1128/JVI.01847-06
10.1016/j.cytogfr.2012.05.007
10.1371/journal.pone.0019617
10.1038/nri2674
10.1371/journal.pone.0113146
10.1186/1472-6947-12-148
10.1093/ofid/ofw025
10.7554/eLife.03821
10.1371/journal.pone.0104235
10.1038/nm1511
10.1055/s-2003-39942
10.1038/nm1520
10.1128/JVI.07034-11
10.1155/2014/198413
10.1097/QAI.0b013e3182930ea8
10.1016/S0140-6736(14)60164-1
10.1016/j.ebiom.2016.07.024
10.1016/j.jmii.2016.09.003
10.1097/QAD.0000000000000854
10.1097/QAD.0b013e3283489d1f
10.1007/s00251-017-1000-z
10.1128/JVI.78.7.3233-3243.2004
10.1128/JVI.02363-15
10.1089/vim.2012.0011
10.1128/JVI.01844-08
10.1038/nm.1972
10.1371/journal.pone.0030881
10.1097/QAD.0b013e328353bcaf
10.1016/j.jim.2005.03.015
10.1016/S2352-3018(17)30043-7
10.1371/journal.pone.0046143
10.1371/journal.ppat.1002055
10.1097/QAI.0000000000001080
10.1128/JVI.80.6.3122-3125.2006
10.1038/srep11511
10.1038/srep36234
10.1097/QAD.0b013e32835ce2e9
10.1182/blood-2003-09-3333
10.1128/JVI.00182-09
10.1016/j.tibtech.2011.06.015
10.1001/jama.2012.7961
ContentType Journal Article
Copyright Copyright MDPI AG 2018
2018 by the authors. 2018
Copyright_xml – notice: Copyright MDPI AG 2018
– notice: 2018 by the authors. 2018
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7U9
7X7
7XB
88E
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/v10010034
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
Proquest Central
Natural Science Collection
ProQuest One
ProQuest Central
ProQuest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
AIDS and Cancer Research Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: Proquest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1999-4915
ExternalDocumentID oai_doaj_org_article_6cd437441f104e9c88814216d8b8b62b
PMC5795447
29342870
10_3390_v10010034
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIH HHS
  grantid: P51 OD011133
GroupedDBID ---
2WC
53G
5VS
7X7
88E
8FE
8FH
8FI
8FJ
A8Z
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADRAZ
AFKRA
AFPKN
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BBNVY
BENPR
BHPHI
BPHCQ
BVXVI
CCPQU
CITATION
DIK
E3Z
EBD
ESX
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IPNFZ
KQ8
LK8
M1P
M48
M7P
MODMG
M~E
O5R
O5S
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RIG
RPM
TR2
TUS
UKHRP
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
3V.
7U9
7XB
8FK
AZQEC
DWQXO
GNUQQ
H94
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
ESTFP
PUEGO
5PM
ID FETCH-LOGICAL-c469t-387995ced91ed617f873e4b812a367c1256c184878e060513d440633085b34df3
IEDL.DBID M48
ISSN 1999-4915
IngestDate Wed Aug 27 01:31:01 EDT 2025
Thu Aug 21 18:02:22 EDT 2025
Mon Sep 08 05:43:56 EDT 2025
Fri Jul 25 12:01:19 EDT 2025
Mon Jul 21 05:55:20 EDT 2025
Tue Jul 01 01:33:39 EDT 2025
Thu Apr 24 22:53:22 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords HIV
acute infection
soluble plasma factors
biomarkers
decision trees
disease progression
HLA
immune responses
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c469t-387995ced91ed617f873e4b812a367c1256c184878e060513d440633085b34df3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2229-0590
0000-0002-5690-9454
0000-0001-5244-7187
0000-0003-3437-4863
0000-0002-4808-670X
OpenAccessLink https://doaj.org/article/6cd437441f104e9c88814216d8b8b62b
PMID 29342870
PQID 2002759665
PQPubID 2032319
ParticipantIDs doaj_primary_oai_doaj_org_article_6cd437441f104e9c88814216d8b8b62b
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5795447
proquest_miscellaneous_1989590767
proquest_journals_2002759665
pubmed_primary_29342870
crossref_citationtrail_10_3390_v10010034
crossref_primary_10_3390_v10010034
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-01-13
PublicationDateYYYYMMDD 2018-01-13
PublicationDate_xml – month: 01
  year: 2018
  text: 2018-01-13
  day: 13
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Viruses
PublicationTitleAlternate Viruses
PublicationYear 2018
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Deeks (ref_13) 2004; 104
Brenchley (ref_42) 2006; 12
Stacey (ref_44) 2009; 83
Streeck (ref_22) 2009; 83
ref_10
ref_54
McDermott (ref_3) 2012; 26
Turk (ref_34) 2008; 82
Norris (ref_50) 2016; 3
Stiksrud (ref_51) 2016; 73
Williams (ref_11) 2014; 3
ref_18
ref_16
Giavedoni (ref_35) 2005; 301
Jiao (ref_52) 2012; 25
Turk (ref_28) 2013; 87
Zuniga (ref_19) 2006; 80
Keating (ref_17) 2011; 25
Ruiz (ref_36) 2016; 90
Cohen (ref_38) 1960; 20
Mayeux (ref_5) 2004; 1
Boyle (ref_53) 2012; 30
ref_29
Noel (ref_46) 2014; 28
Maartens (ref_1) 2014; 384
Caniglia (ref_55) 2017; 4
Roberts (ref_15) 2010; 24
Masemola (ref_23) 2004; 78
Socias (ref_27) 2011; 14
Radebe (ref_24) 2011; 204
Geldmacher (ref_20) 2007; 81
Burger (ref_4) 2003; 23
McMichael (ref_40) 2010; 10
Mahnke (ref_12) 2013; 27
ref_33
Casazza (ref_25) 2012; 86
ref_30
Ananworanich (ref_57) 2016; 11
Falivene (ref_31) 2015; 5
ref_37
Huang (ref_39) 2016; 6
Thompson (ref_32) 2012; 308
Kiepiela (ref_21) 2007; 13
ref_41
Malherbe (ref_49) 2014; 2014
Chomont (ref_58) 2009; 15
Rutstein (ref_2) 2017; 20
Mueller (ref_45) 2010; 21
Deeks (ref_14) 2013; 39
Catalfamo (ref_43) 2012; 23
Cori (ref_56) 2015; 29
ref_48
ref_9
ref_8
Naranbhai (ref_26) 2017; 69
Gray (ref_47) 2013; 63
Vandergeeten (ref_59) 2012; 23
ref_7
ref_6
References_xml – volume: 24
  start-page: 819
  year: 2010
  ident: ref_15
  article-title: Plasma cytokine levels during acute HIV-1 infection predict HIV disease progression
  publication-title: Aids
  doi: 10.1097/QAD.0b013e3283367836
– ident: ref_9
– volume: 14
  start-page: 40
  year: 2011
  ident: ref_27
  article-title: Acute retroviral syndrome and high baseline viral load are predictors of rapid HIV progression among untreated Argentinean seroconverters
  publication-title: J. Int. AIDS Soc.
  doi: 10.1186/1758-2652-14-40
– volume: 39
  start-page: 633
  year: 2013
  ident: ref_14
  article-title: Systemic effects of inflammation on health during chronic HIV infection
  publication-title: Immunity
  doi: 10.1016/j.immuni.2013.10.001
– volume: 20
  start-page: 21579
  year: 2017
  ident: ref_2
  article-title: Clinical and public health implications of acute and early HIV detection and treatment: A scoping review
  publication-title: J. Int. AIDS Soc.
  doi: 10.7448/IAS.20.1.21579
– volume: 87
  start-page: 7445
  year: 2013
  ident: ref_28
  article-title: Early Gag immunodominance of the HIV-specific T-cell response during acute/early infection is associated with higher CD8+ T-cell antiviral activity and correlates with preservation of the CD4+ T-cell compartment
  publication-title: J. Virol.
  doi: 10.1128/JVI.00865-13
– volume: 20
  start-page: 37
  year: 1960
  ident: ref_38
  article-title: A Coefficient of Agreement for Nominal Scales
  publication-title: Educ. Psychol. Meas.
  doi: 10.1177/001316446002000104
– volume: 204
  start-page: 768
  year: 2011
  ident: ref_24
  article-title: Limited immunogenicity of HIV CD8+ T-cell epitopes in acute Clade C virus infection
  publication-title: J. Infect. Dis.
  doi: 10.1093/infdis/jir394
– volume: 82
  start-page: 2853
  year: 2008
  ident: ref_34
  article-title: Magnitude, breadth, and functional profile of T-cell responses during human immunodeficiency virus primary infection with B and BF viral variants
  publication-title: J. Virol.
  doi: 10.1128/JVI.02260-07
– volume: 23
  start-page: 143
  year: 2012
  ident: ref_59
  article-title: The role of cytokines in the establishment, persistence and eradication of the HIV reservoir
  publication-title: Cytokine Growth Factor Rev.
  doi: 10.1016/j.cytogfr.2012.05.001
– volume: 28
  start-page: 467
  year: 2014
  ident: ref_46
  article-title: Elevated IP10 levels are associated with immune activation and low CD4(+) T-cell counts in HIV controller patients
  publication-title: Aids
  doi: 10.1097/QAD.0000000000000174
– volume: 81
  start-page: 2440
  year: 2007
  ident: ref_20
  article-title: CD8 T-cell recognition of multiple epitopes within specific Gag regions is associated with maintenance of a low steady-state viremia in human immunodeficiency virus type 1-seropositive patients
  publication-title: J. Virol.
  doi: 10.1128/JVI.01847-06
– volume: 23
  start-page: 207
  year: 2012
  ident: ref_43
  article-title: The role of cytokines in the pathogenesis and treatment of HIV infection
  publication-title: Cytokine Growth Factor Rev.
  doi: 10.1016/j.cytogfr.2012.05.007
– volume: 21
  start-page: 219
  year: 2010
  ident: ref_45
  article-title: IL-15 in HIV infection: Pathogenic or therapeutic potential?
  publication-title: Eur. Cytokine Netw.
– ident: ref_41
  doi: 10.1371/journal.pone.0019617
– volume: 10
  start-page: 11
  year: 2010
  ident: ref_40
  article-title: The immune response during acute HIV-1 infection: Clues for vaccine development
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri2674
– ident: ref_30
  doi: 10.1371/journal.pone.0113146
– ident: ref_10
  doi: 10.1186/1472-6947-12-148
– volume: 3
  start-page: ofw025
  year: 2016
  ident: ref_50
  article-title: Systemic Cytokine Levels Do Not Predict CD4(+) T-Cell Recovery After Suppressive Combination Antiretroviral Therapy in Chronic Human Immunodeficiency Virus Infection
  publication-title: Open Forum Infect. Dis.
  doi: 10.1093/ofid/ofw025
– volume: 3
  start-page: e03821
  year: 2014
  ident: ref_11
  article-title: HIV-1 DNA predicts disease progression and post-treatment virological control
  publication-title: eLife
  doi: 10.7554/eLife.03821
– ident: ref_8
– ident: ref_29
  doi: 10.1371/journal.pone.0104235
– volume: 12
  start-page: 1365
  year: 2006
  ident: ref_42
  article-title: Microbial translocation is a cause of systemic immune activation in chronic HIV infection
  publication-title: Nat. Med.
  doi: 10.1038/nm1511
– volume: 23
  start-page: 115
  year: 2003
  ident: ref_4
  article-title: Natural history and pathogenesis of human immunodeficiency virus infection
  publication-title: Semin. Liver Dis.
  doi: 10.1055/s-2003-39942
– volume: 13
  start-page: 46
  year: 2007
  ident: ref_21
  article-title: CD8+ T-cell responses to different HIV proteins have discordant associations with viral load
  publication-title: Nat. Med.
  doi: 10.1038/nm1520
– volume: 86
  start-page: 3667
  year: 2012
  ident: ref_25
  article-title: Differential Gag-specific polyfunctional T cell maturation patterns in HIV-1 elite controllers
  publication-title: J. Virol.
  doi: 10.1128/JVI.07034-11
– volume: 2014
  start-page: 198413
  year: 2014
  ident: ref_49
  article-title: Circulating biomarkers of immune activation distinguish viral suppression from nonsuppression in HAART-treated patients with advanced HIV-1 subtype C infection
  publication-title: Mediat. Inflamm.
  doi: 10.1155/2014/198413
– volume: 63
  start-page: e115
  year: 2013
  ident: ref_47
  article-title: Plasma interferon-gamma-inducible protein 10 can be used to predict viral load in HIV-1-infected individuals
  publication-title: J. Acquir. Immune Defic. Syndr.
  doi: 10.1097/QAI.0b013e3182930ea8
– volume: 384
  start-page: 258
  year: 2014
  ident: ref_1
  article-title: HIV infection: Epidemiology, pathogenesis, treatment, and prevention
  publication-title: Lancet
  doi: 10.1016/S0140-6736(14)60164-1
– volume: 11
  start-page: 68
  year: 2016
  ident: ref_57
  article-title: HIV DNA Set Point is Rapidly Established in Acute HIV Infection and Dramatically Reduced by Early ART
  publication-title: EBioMedicine
  doi: 10.1016/j.ebiom.2016.07.024
– ident: ref_54
  doi: 10.1016/j.jmii.2016.09.003
– volume: 29
  start-page: 2435
  year: 2015
  ident: ref_56
  article-title: CD4+ cell dynamics in untreated HIV-1 infection: Overall rates, and effects of age, viral load, sex and calendar time
  publication-title: Aids
  doi: 10.1097/QAD.0000000000000854
– volume: 25
  start-page: 1823
  year: 2011
  ident: ref_17
  article-title: The effect of HIV infection and HAART on inflammatory biomarkers in a population-based cohort of women
  publication-title: Aids
  doi: 10.1097/QAD.0b013e3283489d1f
– ident: ref_7
– volume: 69
  start-page: 489
  year: 2017
  ident: ref_26
  article-title: Host genetic variation and HIV disease: From mapping to mechanism
  publication-title: Immunogenetics
  doi: 10.1007/s00251-017-1000-z
– volume: 78
  start-page: 3233
  year: 2004
  ident: ref_23
  article-title: Hierarchical targeting of subtype C human immunodeficiency virus type 1 proteins by CD8+ T cells: Correlation with viral load
  publication-title: J. Virol.
  doi: 10.1128/JVI.78.7.3233-3243.2004
– volume: 90
  start-page: 670
  year: 2016
  ident: ref_36
  article-title: Env-Specific IgA from Viremic HIV-Infected Subjects Compromises Antibody-Dependent Cellular Cytotoxicity
  publication-title: J. Virol.
  doi: 10.1128/JVI.02363-15
– ident: ref_37
– volume: 25
  start-page: 333
  year: 2012
  ident: ref_52
  article-title: Plasma IP-10 is associated with rapid disease progression in early HIV-1 infection
  publication-title: Viral Immunol.
  doi: 10.1089/vim.2012.0011
– volume: 83
  start-page: 3719
  year: 2009
  ident: ref_44
  article-title: Induction of a striking systemic cytokine cascade prior to peak viremia in acute human immunodeficiency virus type 1 infection, in contrast to more modest and delayed responses in acute hepatitis B and C virus infections
  publication-title: J. Virol.
  doi: 10.1128/JVI.01844-08
– volume: 15
  start-page: 893
  year: 2009
  ident: ref_58
  article-title: HIV reservoir size and persistence are driven by T cell survival and homeostatic proliferation
  publication-title: Nat. Med.
  doi: 10.1038/nm.1972
– ident: ref_48
  doi: 10.1371/journal.pone.0030881
– volume: 26
  start-page: 1281
  year: 2012
  ident: ref_3
  article-title: CD8(+) T cells in preventing HIV infection and disease
  publication-title: Aids
  doi: 10.1097/QAD.0b013e328353bcaf
– volume: 301
  start-page: 89
  year: 2005
  ident: ref_35
  article-title: Simultaneous detection of multiple cytokines and chemokines from nonhuman primates using luminex technology
  publication-title: J. Immunol. Methods
  doi: 10.1016/j.jim.2005.03.015
– ident: ref_6
– volume: 4
  start-page: e251
  year: 2017
  ident: ref_55
  article-title: Comparison of dynamic monitoring strategies based on CD4 cell counts in virally suppressed, HIV-positive individuals on combination antiretroviral therapy in high-income countries: A prospective, observational study
  publication-title: Lancet HIV
  doi: 10.1016/S2352-3018(17)30043-7
– ident: ref_16
  doi: 10.1371/journal.pone.0046143
– ident: ref_33
– volume: 1
  start-page: 182
  year: 2004
  ident: ref_5
  article-title: Biomarkers: Potential uses and limitations
  publication-title: NeuroRx J. Am. Soc. Exp. NeuroTher.
– ident: ref_18
  doi: 10.1371/journal.ppat.1002055
– volume: 73
  start-page: 138
  year: 2016
  ident: ref_51
  article-title: Plasma IP-10 Is Increased in Immunological NonResponders and Associated With Activated Regulatory T Cells and Persisting Low CD4 Counts
  publication-title: J. Acquir. Immune Defic. Syndr.
  doi: 10.1097/QAI.0000000000001080
– volume: 80
  start-page: 3122
  year: 2006
  ident: ref_19
  article-title: Relative dominance of Gag p24-specific cytotoxic T lymphocytes is associated with human immunodeficiency virus control
  publication-title: J. Virol.
  doi: 10.1128/JVI.80.6.3122-3125.2006
– volume: 5
  start-page: 11511
  year: 2015
  ident: ref_31
  article-title: Th17 and Th17/Treg ratio at early HIV infection associate with protective HIV-specific CD8(+) T-cell responses and disease progression
  publication-title: Sci. Rep.
  doi: 10.1038/srep11511
– volume: 6
  start-page: 36234
  year: 2016
  ident: ref_39
  article-title: Cytokine cascade and networks among MSM HIV seroconverters: Implications for early immunotherapy
  publication-title: Sci. Rep.
  doi: 10.1038/srep36234
– volume: 27
  start-page: 697
  year: 2013
  ident: ref_12
  article-title: Early immunologic and virologic predictors of clinical HIV-1 disease progression
  publication-title: Aids
  doi: 10.1097/QAD.0b013e32835ce2e9
– volume: 104
  start-page: 942
  year: 2004
  ident: ref_13
  article-title: Immune activation set point during early HIV infection predicts subsequent CD4+ T-cell changes independent of viral load
  publication-title: Blood
  doi: 10.1182/blood-2003-09-3333
– volume: 83
  start-page: 7641
  year: 2009
  ident: ref_22
  article-title: Human immunodeficiency virus type 1-specific CD8+ T-cell responses during primary infection are major determinants of the viral set point and loss of CD4+ T cells
  publication-title: J. Virol.
  doi: 10.1128/JVI.00182-09
– volume: 30
  start-page: 45
  year: 2012
  ident: ref_53
  article-title: Emerging technologies for point-of-care CD4 T-lymphocyte counting
  publication-title: Trends Biotechnol.
  doi: 10.1016/j.tibtech.2011.06.015
– volume: 308
  start-page: 387
  year: 2012
  ident: ref_32
  article-title: Antiretroviral treatment of adult HIV infection: 2012 recommendations of the International Antiviral Society-USA panel
  publication-title: JAMA
  doi: 10.1001/jama.2012.7961
SSID ssj0066907
Score 2.193389
Snippet Progression of HIV infection is variable among individuals, and definition disease progression biomarkers is still needed. Here, we aimed to categorize the...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 34
SubjectTerms Acute Disease
acute infection
Adult
Biomarkers
Biomarkers - blood
CCR5 protein
CD4 antigen
CD4 Lymphocyte Count
CD4-Positive T-Lymphocytes - immunology
Cell activation
Chemokine CXCL10 - blood
Cytokines
Cytokines - immunology
Data processing
decision trees
Disease Progression
Female
Genotypes
Histocompatibility antigen HLA
HIV
HIV Infections - blood
HIV Infections - diagnosis
HIV-1
HLA
Human immunodeficiency virus
Humans
Immune response
immune responses
Infections
Inflammation
Interleukin 2
Interleukin 2 receptors
Learning algorithms
Lymphocytes T
Macrophage inflammatory protein
Macrophages
Male
Plasma levels
Receptors, CCR5 - blood
soluble plasma factors
T cell receptors
Tumor necrosis factor-TNF
Tumor necrosis factor-α
Viral Load
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fS9xAEB5EKPhStGqbassqPgglXJLd7I--FD2VU1B80OJbuN1sULA58XKC_70z2VzwROiLbyGZh83s7M58ybffAOy5LDHeaRsLa5NYOFyKVtNJLoRhpbJeiVZd__xCjq7F2U1-86rVF3HCgjxwcNxAulJwhUm7QuDgjUPElooslaW22srM0u6bmGQOpsIeLAnzBR0hjqB-8ERKQyTFspB9WpH-9yrLtwTJVxnnZBU-d6UiOwhDXIMlX3-BT6F55PM6jPHqH5FrHqdsUrFLIloFkQ3WNv5mo9O_7MDNGj9oVYzZace7qn-zC5wfzFlsGBjoU9ZM2PBI_GJXMX3JZ3RSvfmzAdcnx1fDUdw1TIgdotyGdHKNyZ0vTepLLE0qrbgXFnP4mEvlsJaRDhGdVtonCGNSXgrM55xj2WW5KCu-Ccv1pPbfgGXo9SqTzmR6LBDSaDTlkrYAZZLSVxHszx1ZuE5NnJpa3BeIKsjnRe_zCHZ704cgofGe0SHNRm9AqtftDYyFoouF4n-xEMH2fC6LbilOqc9mpnJEdXkEO_1jXETkz3HtJ7NpQcSxHENGqgi-hqnvR4L1UPs3OAK1EBQLQ118Ut_dtkLduTK5EOr7R7zbFqxgrUbEwzjl27DcPM78D6yHGvuzDf0X4ZYEIQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwEB1BERKXqnyHlsogDkgo2k3s2A6XqixUWyQqDi3aW7T-CCBB0m6ySPx7Zhxv6KKK22rjg-UZe95zXt4AvLL5tPRWm1QYM02Fxa1oNH3JhTTMKeOVCO76n87k_EJ8XBSLeOHWRVnl5kwMB7VrLd2RT0hMoAoE58XR5VVKXaPo7WpsoXEb7gTrMsxntRgJlyTmN7gJcaT2k1_kN0SGLFs1KFj134Qv_5VJXqs7J3uwGwEjOx4ifB9u-eYB3B1aSP5-CEv89ZMkNquOtTX7THKrwWqDhfbfbH76hR3bde8nwcuYnUb1VfOWnWGUsHKx2aBD71jfstl78Yadp3Sfz-h79f7oEVycfDifzdPYNiG1yHV7cssty8J6V2beIUCpteJeGKzkSy6VRUQjLfI6rbSfIpnJuBNY1TlH8GW4cDV_DDtN2_inwHIneJ1LW-Z6KZDYaBzKJR0Eqpw6XyfwerOQlY2e4tTa4keF3ILWvBrXPIGX49DLwUjjpkHvKBrjAPK-Dn-0q69V3EqVtDgrhTCuRirpS4scPhN5Jp022sjcJHCwiWUVN2RX_U2fBF6Mj3Er0XouG9-uu4rkYwWmjFQJPBlCP84EUVF4J5yA2kqKraluP2m-fwt23YXCzBTq2f-ntQ_3EIuRsDDN-AHs9Ku1f454pzeHIan_AOeq_I4
  priority: 102
  providerName: ProQuest
Title Biomarkers of Progression after HIV Acute/Early Infection: Nothing Compares to CD4+ T-cell Count?
URI https://www.ncbi.nlm.nih.gov/pubmed/29342870
https://www.proquest.com/docview/2002759665
https://www.proquest.com/docview/1989590767
https://pubmed.ncbi.nlm.nih.gov/PMC5795447
https://doaj.org/article/6cd437441f104e9c88814216d8b8b62b
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1Lb9QwEB71ISQuqDwbWlYGceASuokdO0FCVbu0bJG6qlAX7S1aOw4glQR2s1V75G_xc_glzDgPEbRcoigZRZZnJjOfPf4G4KUJh4k1sfaF1kNfGHRFHdNJLoRhmdJWCceufz6R46n4MItmG9D22GwmcLkW2lE_qeni6vXNj9tDdPi3hDgRsh9cE48QEa1swjYGJEkY7Fx0mwmSAGBNKtQXJyLghLutvl5UcuT96zLOfwsn_4pEpztwr0kh2VGt8_uwYYsHcKduKnn7EAzefaOim8WSlTm7oAKsmnyDuYbgbHz2iR2ZVWUPHLsxO2vqsYo3bIJ6w1jGRnVl-pJVJRu9E79__mKXPq3xMzrDXh0-gunpyeVo7DetFHyD-LciBt0kiYzNksBmmLTkseJWaIzucy6VwSxHGsR6sYrtEAFOwDOBkZ5zTMg0F1nOH8NWURZ2F1iYCZ6H0iRhPBcIdmIU5ZJ-DioZZjb34FU7lalpeMap3cVViniDFJB2CvDgRSf6vSbXWCd0TProBIgP2z0oF5_Txr1SaXBUClO7HOGlTQzi-kCEgcxiHWsZag_2W22mrY1RB85QRYj3Ig-ed6_RvWg-54UtV8uUSsoitB-pPHhSK78bSWs8HqieWfSG2n9TfP3iKLwjlURCqKf__eYe3MXUjOoM_YDvw1a1WNlnmP5UegCbaqYGsH18Mrn4OHCLCHh9PwsGzuz_AHLpBC8
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ta9RAEB7qFbFfxHejVVdRECRckt1kN4KU9tpyZ9ujyFX6Ld5uNlXQpF5ySv-Uv9GZvOlJ8Vu_hctyLLOzM_Nkn30G4KUJvNgapV2htecKg1tRK7rJhTAsldpKUavrH02j8Yl4fxqersGv7i4M0Sq7mFgH6rQw9I18SGQCGWJxHm6df3epaxSdrnYtNBq3OLAXPxGyle8mu7i-r4Jgf282GrttVwHXIBSsSEw2jkNj09i3KebvTEluhcZEN-eRNJjwI4OwR0llPaz1fZ4KTHoI-1WouUgzjv97DdYF3WgdwPrO3vT4Qxf7I8KajX4R57E3_EEKRyQBs5L16uYAl1W0_xIz_8p0-7fgZluisu3Gp27Dms3vwPWmaeXFXZjj0zci9SxKVmTsmAhejbgHqxuOs_HkI9s2y8oOa_VkNmn5XvlbNkW_wFzJRg3zvWRVwUa74g2buXSCwOiGfLV1D06uxKT3YZAXuX0ILEgFz4LIxIGaC4RSCofyiEKPjL3UZg687gyZmFbFnJppfE0QzZDNk97mDrzoh5430h2XDdqh1egHkNp2_UOxOEvazZtEBmclsXDMELza2CilfBH4Uaq00lGgHdjs1jJpQ0CZ_HFYB573r3Hzkj3nuS2WZUKEtRBdJpIOPGiWvp8J1mH1KbQDcsUpVqa6-ib_8rkWCA9lHAohH_1_Ws_gxnh2dJgcTqYHj2EDK0GiNbo-34RBtVjaJ1htVfpp6-IMPl31rvoN_d036A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1tb9MwED6NTiC-IN4JDDAIJCQUNYmd2EFC09auahlUFdrQvoXacQAJktGkoP01fh13eYOiiW_7ViVWZJ3vfM_Vj58DeGYCL7ZGaVdo7bnCYChqRTe5sAxLpbZS1Or67-bR9Fi8OQlPtuBXdxeGaJXdnlhv1Glh6D_yIZEJZIjgPBxmLS1iMZ7snn53qYMUnbR27TQaFzm0Zz-xfCtfz8a41s-DYHJwNJq6bYcB12BZWJGwbByHxqaxb1PM5ZmS3AqNSW_JI2kw-UcGSyAllfUQ9_s8FZgAOUecorlIM47fvQTbEh-KAWzvH8wX77s8EFHd2WgZcR57wx-kdkRyMBsZsG4UcB66_Zek-VfWm1yHay1cZXuNf92ALZvfhMtNA8uzW7DEX9-I4LMqWZGxBZG9GqEPVjcfZ9PZB7Zn1pUd1krKbNZyv_JXbI4-gnmTjRoWfMmqgo3G4iU7cuk0gdFt-Wr3NhxfiEnvwCAvcnsPWJAKngWRiQO1FFhWKRzKI9qGZOylNnPgRWfIxLSK5tRY42uClQ3ZPOlt7sDTfuhpI-Nx3qB9Wo1-AClv1w-K1aekDeQkMjgriSAyw0LWxkYp5YvAj1KllY4C7cBOt5ZJux2UyR_ndeBJ_xoDmey5zG2xLhMir4XoMpF04G6z9P1MEJPVJ9IOyA2n2Jjq5pv8y-daLDyUcSiEvP__aT2GKxhNydvZ_PABXEVQSAxH1-c7MKhWa_sQgVelH7UezuDjRQfVb5AuPBQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biomarkers+of+Progression+after+HIV+Acute%2FEarly+Infection%3A+Nothing+Compares+to+CD4%E2%81%BA+T-cell+Count%3F&rft.jtitle=Viruses&rft.au=Turk%2C+Gabriela&rft.au=Ghiglione%2C+Yanina&rft.au=Hormanstorfer%2C+Macarena&rft.au=Laufer%2C+Natalia&rft.date=2018-01-13&rft.eissn=1999-4915&rft.volume=10&rft.issue=1&rft_id=info:doi/10.3390%2Fv10010034&rft_id=info%3Apmid%2F29342870&rft.externalDocID=29342870
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-4915&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-4915&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-4915&client=summon