Biomarkers of Progression after HIV Acute/Early Infection: Nothing Compares to CD4+ T-cell Count?
Progression of HIV infection is variable among individuals, and definition disease progression biomarkers is still needed. Here, we aimed to categorize the predictive potential of several variables using feature selection methods and decision trees. A total of seventy-five treatment-naïve subjects w...
Saved in:
Published in | Viruses Vol. 10; no. 1; p. 34 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
13.01.2018
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 1999-4915 1999-4915 |
DOI | 10.3390/v10010034 |
Cover
Abstract | Progression of HIV infection is variable among individuals, and definition disease progression biomarkers is still needed. Here, we aimed to categorize the predictive potential of several variables using feature selection methods and decision trees. A total of seventy-five treatment-naïve subjects were enrolled during acute/early HIV infection. CD4+ T-cell counts (CD4TC) and viral load (VL) levels were determined at enrollment and for one year. Immune activation, HIV-specific immune response, Human Leukocyte Antigen (HLA) and C-C chemokine receptor type 5 (CCR5) genotypes, and plasma levels of 39 cytokines were determined. Data were analyzed by machine learning and non-parametric methods. Variable hierarchization was performed by Weka correlation-based feature selection and J48 decision tree. Plasma interleukin (IL)-10, interferon gamma-induced protein (IP)-10, soluble IL-2 receptor alpha (sIL-2Rα) and tumor necrosis factor alpha (TNF-α) levels correlated directly with baseline VL, whereas IL-2, TNF-α, fibroblast growth factor (FGF)-2 and macrophage inflammatory protein (MIP)-1β correlated directly with CD4+ T-cell activation (p < 0.05). However, none of these cytokines had good predictive values to distinguish “progressors” from “non-progressors”. Similarly, immune activation, HIV-specific immune responses and HLA/CCR5 genotypes had low discrimination power. Baseline CD4TC was the most potent discerning variable with a cut-off of 438 cells/μL (accuracy = 0.93, κ-Cohen = 0.85). Limited discerning power of the other factors might be related to frequency, variability and/or sampling time. Future studies based on decision trees to identify biomarkers of post-treatment control are warrantied. |
---|---|
AbstractList | Progression of HIV infection is variable among individuals, and definition disease progression biomarkers is still needed. Here, we aimed to categorize the predictive potential of several variables using feature selection methods and decision trees. A total of seventy-five treatment-naïve subjects were enrolled during acute/early HIV infection. CD4⁺ T-cell counts (CD4TC) and viral load (VL) levels were determined at enrollment and for one year. Immune activation, HIV-specific immune response, Human Leukocyte Antigen (HLA) and C-C chemokine receptor type 5 (CCR5) genotypes, and plasma levels of 39 cytokines were determined. Data were analyzed by machine learning and non-parametric methods. Variable hierarchization was performed by Weka correlation-based feature selection and J48 decision tree. Plasma interleukin (IL)-10, interferon gamma-induced protein (IP)-10, soluble IL-2 receptor alpha (sIL-2Rα) and tumor necrosis factor alpha (TNF-α) levels correlated directly with baseline VL, whereas IL-2, TNF-α, fibroblast growth factor (FGF)-2 and macrophage inflammatory protein (MIP)-1β correlated directly with CD4⁺ T-cell activation (
< 0.05). However, none of these cytokines had good predictive values to distinguish "progressors" from "non-progressors". Similarly, immune activation, HIV-specific immune responses and HLA/CCR5 genotypes had low discrimination power. Baseline CD4TC was the most potent discerning variable with a cut-off of 438 cells/μL (accuracy = 0.93, κ-Cohen = 0.85). Limited discerning power of the other factors might be related to frequency, variability and/or sampling time. Future studies based on decision trees to identify biomarkers of post-treatment control are warrantied. Progression of HIV infection is variable among individuals, and definition disease progression biomarkers is still needed. Here, we aimed to categorize the predictive potential of several variables using feature selection methods and decision trees. A total of seventy-five treatment-naïve subjects were enrolled during acute/early HIV infection. CD4⁺ T-cell counts (CD4TC) and viral load (VL) levels were determined at enrollment and for one year. Immune activation, HIV-specific immune response, Human Leukocyte Antigen (HLA) and C-C chemokine receptor type 5 (CCR5) genotypes, and plasma levels of 39 cytokines were determined. Data were analyzed by machine learning and non-parametric methods. Variable hierarchization was performed by Weka correlation-based feature selection and J48 decision tree. Plasma interleukin (IL)-10, interferon gamma-induced protein (IP)-10, soluble IL-2 receptor alpha (sIL-2Rα) and tumor necrosis factor alpha (TNF-α) levels correlated directly with baseline VL, whereas IL-2, TNF-α, fibroblast growth factor (FGF)-2 and macrophage inflammatory protein (MIP)-1β correlated directly with CD4⁺ T-cell activation (p < 0.05). However, none of these cytokines had good predictive values to distinguish "progressors" from "non-progressors". Similarly, immune activation, HIV-specific immune responses and HLA/CCR5 genotypes had low discrimination power. Baseline CD4TC was the most potent discerning variable with a cut-off of 438 cells/μL (accuracy = 0.93, κ-Cohen = 0.85). Limited discerning power of the other factors might be related to frequency, variability and/or sampling time. Future studies based on decision trees to identify biomarkers of post-treatment control are warrantied.Progression of HIV infection is variable among individuals, and definition disease progression biomarkers is still needed. Here, we aimed to categorize the predictive potential of several variables using feature selection methods and decision trees. A total of seventy-five treatment-naïve subjects were enrolled during acute/early HIV infection. CD4⁺ T-cell counts (CD4TC) and viral load (VL) levels were determined at enrollment and for one year. Immune activation, HIV-specific immune response, Human Leukocyte Antigen (HLA) and C-C chemokine receptor type 5 (CCR5) genotypes, and plasma levels of 39 cytokines were determined. Data were analyzed by machine learning and non-parametric methods. Variable hierarchization was performed by Weka correlation-based feature selection and J48 decision tree. Plasma interleukin (IL)-10, interferon gamma-induced protein (IP)-10, soluble IL-2 receptor alpha (sIL-2Rα) and tumor necrosis factor alpha (TNF-α) levels correlated directly with baseline VL, whereas IL-2, TNF-α, fibroblast growth factor (FGF)-2 and macrophage inflammatory protein (MIP)-1β correlated directly with CD4⁺ T-cell activation (p < 0.05). However, none of these cytokines had good predictive values to distinguish "progressors" from "non-progressors". Similarly, immune activation, HIV-specific immune responses and HLA/CCR5 genotypes had low discrimination power. Baseline CD4TC was the most potent discerning variable with a cut-off of 438 cells/μL (accuracy = 0.93, κ-Cohen = 0.85). Limited discerning power of the other factors might be related to frequency, variability and/or sampling time. Future studies based on decision trees to identify biomarkers of post-treatment control are warrantied. Progression of HIV infection is variable among individuals, and definition disease progression biomarkers is still needed. Here, we aimed to categorize the predictive potential of several variables using feature selection methods and decision trees. A total of seventy-five treatment-naïve subjects were enrolled during acute/early HIV infection. CD4 + T-cell counts (CD4TC) and viral load (VL) levels were determined at enrollment and for one year. Immune activation, HIV-specific immune response, Human Leukocyte Antigen (HLA) and C-C chemokine receptor type 5 (CCR5) genotypes, and plasma levels of 39 cytokines were determined. Data were analyzed by machine learning and non-parametric methods. Variable hierarchization was performed by Weka correlation-based feature selection and J48 decision tree. Plasma interleukin (IL)-10, interferon gamma-induced protein (IP)-10, soluble IL-2 receptor alpha (sIL-2Rα) and tumor necrosis factor alpha (TNF-α) levels correlated directly with baseline VL, whereas IL-2, TNF-α, fibroblast growth factor (FGF)-2 and macrophage inflammatory protein (MIP)-1β correlated directly with CD4 + T-cell activation ( p < 0.05). However, none of these cytokines had good predictive values to distinguish “progressors” from “non-progressors”. Similarly, immune activation, HIV-specific immune responses and HLA/CCR5 genotypes had low discrimination power. Baseline CD4TC was the most potent discerning variable with a cut-off of 438 cells/μL (accuracy = 0.93, κ-Cohen = 0.85). Limited discerning power of the other factors might be related to frequency, variability and/or sampling time. Future studies based on decision trees to identify biomarkers of post-treatment control are warrantied. Progression of HIV infection is variable among individuals, and definition disease progression biomarkers is still needed. Here, we aimed to categorize the predictive potential of several variables using feature selection methods and decision trees. A total of seventy-five treatment-naïve subjects were enrolled during acute/early HIV infection. CD4+ T-cell counts (CD4TC) and viral load (VL) levels were determined at enrollment and for one year. Immune activation, HIV-specific immune response, Human Leukocyte Antigen (HLA) and C-C chemokine receptor type 5 (CCR5) genotypes, and plasma levels of 39 cytokines were determined. Data were analyzed by machine learning and non-parametric methods. Variable hierarchization was performed by Weka correlation-based feature selection and J48 decision tree. Plasma interleukin (IL)-10, interferon gamma-induced protein (IP)-10, soluble IL-2 receptor alpha (sIL-2Rα) and tumor necrosis factor alpha (TNF-α) levels correlated directly with baseline VL, whereas IL-2, TNF-α, fibroblast growth factor (FGF)-2 and macrophage inflammatory protein (MIP)-1β correlated directly with CD4+ T-cell activation (p < 0.05). However, none of these cytokines had good predictive values to distinguish “progressors” from “non-progressors”. Similarly, immune activation, HIV-specific immune responses and HLA/CCR5 genotypes had low discrimination power. Baseline CD4TC was the most potent discerning variable with a cut-off of 438 cells/μL (accuracy = 0.93, κ-Cohen = 0.85). Limited discerning power of the other factors might be related to frequency, variability and/or sampling time. Future studies based on decision trees to identify biomarkers of post-treatment control are warrantied. |
Author | Ruiz, María Turk, Gabriela Falivene, Juliana Holgado, María Trifone, César Coloccini, Romina Pando, María Giavedoni, Luis Figueroa, María Ghiglione, Yanina Hormanstorfer, Macarena Salido, Jimena Salomón, Horacio Gherardi, María Laufer, Natalia Pury, Pedro Caruso, María Rabinovich, Roberto Sued, Omar |
AuthorAffiliation | 3 Hospital Juan A. Fernández, Unidad Enfermedades Infecciosas, Buenos Aires C1425AGP, Argentina 1 CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Universidad de Buenos Aires- CONICET, Paraguay 2155 Piso 11, Buenos Aires C1121ABG, Argentina; yghiglione@fmed.uba.ar (Y.G.); nlaufer@fmed.uba.ar (N.L.); romina.coloccini@gmail.com (R.C.); jimenasalido@gmail.com (J.S.); trifonecesar@gmail.com (C.T.); mariajulia83@gmail.com (M.J.R.); juliana.falivene@gmail.com (J.F.); piaholgado@gmail.com (M.P.H.); pau_caruso@hotmail.com (M.P.C.); hsalomon@fmed.uba.ar (H.S.); mpando@fmed.uba.ar (M.A.P.); mgherardi@fmed.uba.ar (M.M.G.); rabinovichra@yahoo.com.ar (R.D.R.) 2 Fundación Huésped, Buenos Aires C1202ABB, Argentina; hormanstorferm@gmail.com (M.H.); maria.figueroa@huesped.org.ar (M.I.F.); omar.sued@huesped.org.ar (O.S.) 4 Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA; lgiavedoni@txbiome |
AuthorAffiliation_xml | – name: 4 Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA; lgiavedoni@txbiomed.org – name: 5 Facultad de Matemática, Astronomía, Física y Computación, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina; pury@famaf.unc.edu.ar – name: 1 CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Universidad de Buenos Aires- CONICET, Paraguay 2155 Piso 11, Buenos Aires C1121ABG, Argentina; yghiglione@fmed.uba.ar (Y.G.); nlaufer@fmed.uba.ar (N.L.); romina.coloccini@gmail.com (R.C.); jimenasalido@gmail.com (J.S.); trifonecesar@gmail.com (C.T.); mariajulia83@gmail.com (M.J.R.); juliana.falivene@gmail.com (J.F.); piaholgado@gmail.com (M.P.H.); pau_caruso@hotmail.com (M.P.C.); hsalomon@fmed.uba.ar (H.S.); mpando@fmed.uba.ar (M.A.P.); mgherardi@fmed.uba.ar (M.M.G.); rabinovichra@yahoo.com.ar (R.D.R.) – name: 3 Hospital Juan A. Fernández, Unidad Enfermedades Infecciosas, Buenos Aires C1425AGP, Argentina – name: 2 Fundación Huésped, Buenos Aires C1202ABB, Argentina; hormanstorferm@gmail.com (M.H.); maria.figueroa@huesped.org.ar (M.I.F.); omar.sued@huesped.org.ar (O.S.) |
Author_xml | – sequence: 1 givenname: Gabriela orcidid: 0000-0002-4808-670X surname: Turk fullname: Turk, Gabriela – sequence: 2 givenname: Yanina surname: Ghiglione fullname: Ghiglione, Yanina – sequence: 3 givenname: Macarena surname: Hormanstorfer fullname: Hormanstorfer, Macarena – sequence: 4 givenname: Natalia orcidid: 0000-0002-5690-9454 surname: Laufer fullname: Laufer, Natalia – sequence: 5 givenname: Romina surname: Coloccini fullname: Coloccini, Romina – sequence: 6 givenname: Jimena surname: Salido fullname: Salido, Jimena – sequence: 7 givenname: César surname: Trifone fullname: Trifone, César – sequence: 8 givenname: María surname: Ruiz fullname: Ruiz, María – sequence: 9 givenname: Juliana surname: Falivene fullname: Falivene, Juliana – sequence: 10 givenname: María orcidid: 0000-0003-3437-4863 surname: Holgado fullname: Holgado, María – sequence: 11 givenname: María surname: Caruso fullname: Caruso, María – sequence: 12 givenname: María surname: Figueroa fullname: Figueroa, María – sequence: 13 givenname: Horacio surname: Salomón fullname: Salomón, Horacio – sequence: 14 givenname: Luis orcidid: 0000-0001-5244-7187 surname: Giavedoni fullname: Giavedoni, Luis – sequence: 15 givenname: María surname: Pando fullname: Pando, María – sequence: 16 givenname: María surname: Gherardi fullname: Gherardi, María – sequence: 17 givenname: Roberto surname: Rabinovich fullname: Rabinovich, Roberto – sequence: 18 givenname: Pedro orcidid: 0000-0003-2229-0590 surname: Pury fullname: Pury, Pedro – sequence: 19 givenname: Omar surname: Sued fullname: Sued, Omar |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29342870$$D View this record in MEDLINE/PubMed |
BookMark | eNplkl1rFDEUhoNU7Ide-Ack4I0i4yaT714oda12oagX1duQyWS2WWeTNckU-u_Num1pKwQSznnPw5tzziHYCzE4AF5i9J4QhWZXGKF6CH0CDrBSqqEKs717731wmPMKIc4VEs_AfqsIbaVAB8B88nFt0m-XMowD_JHiMrmcfQzQDMUleLb4BU_sVNzs1KTxGi7C4Gyp-WP4LZZLH5ZwHtcbU6tgiXD-mb6DF41141jjUygfn4Ongxmze3FzH4GfX04v5mfN-fevi_nJeWMpV6UhUijFrOsVdj3HYpCCONpJ3BrChcUt4xZLKoV0iCOGSU8p4oQgyTpC-4EcgcWO20ez0pvk67eudTRe_wvEtNQmFW9Hp7ntKRGU4gEj6pSVUmLaYt7LTna87Srrw461mbq1660LJZnxAfRhJvhLvYxXmgnFKBUV8OYGkOKfyeWi1z5vm2KCi1PWWEnF6iz4Vvr6kXQVpxRqq3SLUCuY4pxV1av7ju6s3E6yCmY7gU0x5-QGbX0x20FVg37UGOntrui7XakVbx9V3EL_1_4FJxm6GA |
CitedBy_id | crossref_primary_10_1097_QAD_0000000000004075 crossref_primary_10_12677_acm_2025_153666 crossref_primary_10_3389_fimmu_2018_02443 crossref_primary_10_1038_s41598_020_73852_0 crossref_primary_10_1186_s12979_024_00497_2 crossref_primary_10_1080_10408363_2020_1857681 crossref_primary_10_3390_v14102218 crossref_primary_10_1016_j_cytogfr_2022_06_004 crossref_primary_10_3390_a17080362 crossref_primary_10_3390_ijms24021465 crossref_primary_10_1212_NXI_0000000000000551 |
Cites_doi | 10.1097/QAD.0b013e3283367836 10.1186/1758-2652-14-40 10.1016/j.immuni.2013.10.001 10.7448/IAS.20.1.21579 10.1128/JVI.00865-13 10.1177/001316446002000104 10.1093/infdis/jir394 10.1128/JVI.02260-07 10.1016/j.cytogfr.2012.05.001 10.1097/QAD.0000000000000174 10.1128/JVI.01847-06 10.1016/j.cytogfr.2012.05.007 10.1371/journal.pone.0019617 10.1038/nri2674 10.1371/journal.pone.0113146 10.1186/1472-6947-12-148 10.1093/ofid/ofw025 10.7554/eLife.03821 10.1371/journal.pone.0104235 10.1038/nm1511 10.1055/s-2003-39942 10.1038/nm1520 10.1128/JVI.07034-11 10.1155/2014/198413 10.1097/QAI.0b013e3182930ea8 10.1016/S0140-6736(14)60164-1 10.1016/j.ebiom.2016.07.024 10.1016/j.jmii.2016.09.003 10.1097/QAD.0000000000000854 10.1097/QAD.0b013e3283489d1f 10.1007/s00251-017-1000-z 10.1128/JVI.78.7.3233-3243.2004 10.1128/JVI.02363-15 10.1089/vim.2012.0011 10.1128/JVI.01844-08 10.1038/nm.1972 10.1371/journal.pone.0030881 10.1097/QAD.0b013e328353bcaf 10.1016/j.jim.2005.03.015 10.1016/S2352-3018(17)30043-7 10.1371/journal.pone.0046143 10.1371/journal.ppat.1002055 10.1097/QAI.0000000000001080 10.1128/JVI.80.6.3122-3125.2006 10.1038/srep11511 10.1038/srep36234 10.1097/QAD.0b013e32835ce2e9 10.1182/blood-2003-09-3333 10.1128/JVI.00182-09 10.1016/j.tibtech.2011.06.015 10.1001/jama.2012.7961 |
ContentType | Journal Article |
Copyright | Copyright MDPI AG 2018 2018 by the authors. 2018 |
Copyright_xml | – notice: Copyright MDPI AG 2018 – notice: 2018 by the authors. 2018 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7U9 7X7 7XB 88E 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/v10010034 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection Proquest Central Natural Science Collection ProQuest One ProQuest Central ProQuest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Proquest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection AIDS and Cancer Research Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: Proquest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1999-4915 |
ExternalDocumentID | oai_doaj_org_article_6cd437441f104e9c88814216d8b8b62b PMC5795447 29342870 10_3390_v10010034 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIH HHS grantid: P51 OD011133 |
GroupedDBID | --- 2WC 53G 5VS 7X7 88E 8FE 8FH 8FI 8FJ A8Z AADQD AAFWJ AAHBH AAYXX ABDBF ABUWG ACUHS ADRAZ AFKRA AFPKN AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BBNVY BENPR BHPHI BPHCQ BVXVI CCPQU CITATION DIK E3Z EBD ESX FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IPNFZ KQ8 LK8 M1P M48 M7P MODMG M~E O5R O5S OK1 PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RIG RPM TR2 TUS UKHRP CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB 3V. 7U9 7XB 8FK AZQEC DWQXO GNUQQ H94 K9. PKEHL PQEST PQUKI PRINS 7X8 ESTFP PUEGO 5PM |
ID | FETCH-LOGICAL-c469t-387995ced91ed617f873e4b812a367c1256c184878e060513d440633085b34df3 |
IEDL.DBID | M48 |
ISSN | 1999-4915 |
IngestDate | Wed Aug 27 01:31:01 EDT 2025 Thu Aug 21 18:02:22 EDT 2025 Mon Sep 08 05:43:56 EDT 2025 Fri Jul 25 12:01:19 EDT 2025 Mon Jul 21 05:55:20 EDT 2025 Tue Jul 01 01:33:39 EDT 2025 Thu Apr 24 22:53:22 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | HIV acute infection soluble plasma factors biomarkers decision trees disease progression HLA immune responses |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c469t-387995ced91ed617f873e4b812a367c1256c184878e060513d440633085b34df3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-2229-0590 0000-0002-5690-9454 0000-0001-5244-7187 0000-0003-3437-4863 0000-0002-4808-670X |
OpenAccessLink | https://doaj.org/article/6cd437441f104e9c88814216d8b8b62b |
PMID | 29342870 |
PQID | 2002759665 |
PQPubID | 2032319 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_6cd437441f104e9c88814216d8b8b62b pubmedcentral_primary_oai_pubmedcentral_nih_gov_5795447 proquest_miscellaneous_1989590767 proquest_journals_2002759665 pubmed_primary_29342870 crossref_citationtrail_10_3390_v10010034 crossref_primary_10_3390_v10010034 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-01-13 |
PublicationDateYYYYMMDD | 2018-01-13 |
PublicationDate_xml | – month: 01 year: 2018 text: 2018-01-13 day: 13 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Viruses |
PublicationTitleAlternate | Viruses |
PublicationYear | 2018 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Deeks (ref_13) 2004; 104 Brenchley (ref_42) 2006; 12 Stacey (ref_44) 2009; 83 Streeck (ref_22) 2009; 83 ref_10 ref_54 McDermott (ref_3) 2012; 26 Turk (ref_34) 2008; 82 Norris (ref_50) 2016; 3 Stiksrud (ref_51) 2016; 73 Williams (ref_11) 2014; 3 ref_18 ref_16 Giavedoni (ref_35) 2005; 301 Jiao (ref_52) 2012; 25 Turk (ref_28) 2013; 87 Zuniga (ref_19) 2006; 80 Keating (ref_17) 2011; 25 Ruiz (ref_36) 2016; 90 Cohen (ref_38) 1960; 20 Mayeux (ref_5) 2004; 1 Boyle (ref_53) 2012; 30 ref_29 Noel (ref_46) 2014; 28 Maartens (ref_1) 2014; 384 Caniglia (ref_55) 2017; 4 Roberts (ref_15) 2010; 24 Masemola (ref_23) 2004; 78 Socias (ref_27) 2011; 14 Radebe (ref_24) 2011; 204 Geldmacher (ref_20) 2007; 81 Burger (ref_4) 2003; 23 McMichael (ref_40) 2010; 10 Mahnke (ref_12) 2013; 27 ref_33 Casazza (ref_25) 2012; 86 ref_30 Ananworanich (ref_57) 2016; 11 Falivene (ref_31) 2015; 5 ref_37 Huang (ref_39) 2016; 6 Thompson (ref_32) 2012; 308 Kiepiela (ref_21) 2007; 13 ref_41 Malherbe (ref_49) 2014; 2014 Chomont (ref_58) 2009; 15 Rutstein (ref_2) 2017; 20 Mueller (ref_45) 2010; 21 Deeks (ref_14) 2013; 39 Catalfamo (ref_43) 2012; 23 Cori (ref_56) 2015; 29 ref_48 ref_9 ref_8 Naranbhai (ref_26) 2017; 69 Gray (ref_47) 2013; 63 Vandergeeten (ref_59) 2012; 23 ref_7 ref_6 |
References_xml | – volume: 24 start-page: 819 year: 2010 ident: ref_15 article-title: Plasma cytokine levels during acute HIV-1 infection predict HIV disease progression publication-title: Aids doi: 10.1097/QAD.0b013e3283367836 – ident: ref_9 – volume: 14 start-page: 40 year: 2011 ident: ref_27 article-title: Acute retroviral syndrome and high baseline viral load are predictors of rapid HIV progression among untreated Argentinean seroconverters publication-title: J. Int. AIDS Soc. doi: 10.1186/1758-2652-14-40 – volume: 39 start-page: 633 year: 2013 ident: ref_14 article-title: Systemic effects of inflammation on health during chronic HIV infection publication-title: Immunity doi: 10.1016/j.immuni.2013.10.001 – volume: 20 start-page: 21579 year: 2017 ident: ref_2 article-title: Clinical and public health implications of acute and early HIV detection and treatment: A scoping review publication-title: J. Int. AIDS Soc. doi: 10.7448/IAS.20.1.21579 – volume: 87 start-page: 7445 year: 2013 ident: ref_28 article-title: Early Gag immunodominance of the HIV-specific T-cell response during acute/early infection is associated with higher CD8+ T-cell antiviral activity and correlates with preservation of the CD4+ T-cell compartment publication-title: J. Virol. doi: 10.1128/JVI.00865-13 – volume: 20 start-page: 37 year: 1960 ident: ref_38 article-title: A Coefficient of Agreement for Nominal Scales publication-title: Educ. Psychol. Meas. doi: 10.1177/001316446002000104 – volume: 204 start-page: 768 year: 2011 ident: ref_24 article-title: Limited immunogenicity of HIV CD8+ T-cell epitopes in acute Clade C virus infection publication-title: J. Infect. Dis. doi: 10.1093/infdis/jir394 – volume: 82 start-page: 2853 year: 2008 ident: ref_34 article-title: Magnitude, breadth, and functional profile of T-cell responses during human immunodeficiency virus primary infection with B and BF viral variants publication-title: J. Virol. doi: 10.1128/JVI.02260-07 – volume: 23 start-page: 143 year: 2012 ident: ref_59 article-title: The role of cytokines in the establishment, persistence and eradication of the HIV reservoir publication-title: Cytokine Growth Factor Rev. doi: 10.1016/j.cytogfr.2012.05.001 – volume: 28 start-page: 467 year: 2014 ident: ref_46 article-title: Elevated IP10 levels are associated with immune activation and low CD4(+) T-cell counts in HIV controller patients publication-title: Aids doi: 10.1097/QAD.0000000000000174 – volume: 81 start-page: 2440 year: 2007 ident: ref_20 article-title: CD8 T-cell recognition of multiple epitopes within specific Gag regions is associated with maintenance of a low steady-state viremia in human immunodeficiency virus type 1-seropositive patients publication-title: J. Virol. doi: 10.1128/JVI.01847-06 – volume: 23 start-page: 207 year: 2012 ident: ref_43 article-title: The role of cytokines in the pathogenesis and treatment of HIV infection publication-title: Cytokine Growth Factor Rev. doi: 10.1016/j.cytogfr.2012.05.007 – volume: 21 start-page: 219 year: 2010 ident: ref_45 article-title: IL-15 in HIV infection: Pathogenic or therapeutic potential? publication-title: Eur. Cytokine Netw. – ident: ref_41 doi: 10.1371/journal.pone.0019617 – volume: 10 start-page: 11 year: 2010 ident: ref_40 article-title: The immune response during acute HIV-1 infection: Clues for vaccine development publication-title: Nat. Rev. Immunol. doi: 10.1038/nri2674 – ident: ref_30 doi: 10.1371/journal.pone.0113146 – ident: ref_10 doi: 10.1186/1472-6947-12-148 – volume: 3 start-page: ofw025 year: 2016 ident: ref_50 article-title: Systemic Cytokine Levels Do Not Predict CD4(+) T-Cell Recovery After Suppressive Combination Antiretroviral Therapy in Chronic Human Immunodeficiency Virus Infection publication-title: Open Forum Infect. Dis. doi: 10.1093/ofid/ofw025 – volume: 3 start-page: e03821 year: 2014 ident: ref_11 article-title: HIV-1 DNA predicts disease progression and post-treatment virological control publication-title: eLife doi: 10.7554/eLife.03821 – ident: ref_8 – ident: ref_29 doi: 10.1371/journal.pone.0104235 – volume: 12 start-page: 1365 year: 2006 ident: ref_42 article-title: Microbial translocation is a cause of systemic immune activation in chronic HIV infection publication-title: Nat. Med. doi: 10.1038/nm1511 – volume: 23 start-page: 115 year: 2003 ident: ref_4 article-title: Natural history and pathogenesis of human immunodeficiency virus infection publication-title: Semin. Liver Dis. doi: 10.1055/s-2003-39942 – volume: 13 start-page: 46 year: 2007 ident: ref_21 article-title: CD8+ T-cell responses to different HIV proteins have discordant associations with viral load publication-title: Nat. Med. doi: 10.1038/nm1520 – volume: 86 start-page: 3667 year: 2012 ident: ref_25 article-title: Differential Gag-specific polyfunctional T cell maturation patterns in HIV-1 elite controllers publication-title: J. Virol. doi: 10.1128/JVI.07034-11 – volume: 2014 start-page: 198413 year: 2014 ident: ref_49 article-title: Circulating biomarkers of immune activation distinguish viral suppression from nonsuppression in HAART-treated patients with advanced HIV-1 subtype C infection publication-title: Mediat. Inflamm. doi: 10.1155/2014/198413 – volume: 63 start-page: e115 year: 2013 ident: ref_47 article-title: Plasma interferon-gamma-inducible protein 10 can be used to predict viral load in HIV-1-infected individuals publication-title: J. Acquir. Immune Defic. Syndr. doi: 10.1097/QAI.0b013e3182930ea8 – volume: 384 start-page: 258 year: 2014 ident: ref_1 article-title: HIV infection: Epidemiology, pathogenesis, treatment, and prevention publication-title: Lancet doi: 10.1016/S0140-6736(14)60164-1 – volume: 11 start-page: 68 year: 2016 ident: ref_57 article-title: HIV DNA Set Point is Rapidly Established in Acute HIV Infection and Dramatically Reduced by Early ART publication-title: EBioMedicine doi: 10.1016/j.ebiom.2016.07.024 – ident: ref_54 doi: 10.1016/j.jmii.2016.09.003 – volume: 29 start-page: 2435 year: 2015 ident: ref_56 article-title: CD4+ cell dynamics in untreated HIV-1 infection: Overall rates, and effects of age, viral load, sex and calendar time publication-title: Aids doi: 10.1097/QAD.0000000000000854 – volume: 25 start-page: 1823 year: 2011 ident: ref_17 article-title: The effect of HIV infection and HAART on inflammatory biomarkers in a population-based cohort of women publication-title: Aids doi: 10.1097/QAD.0b013e3283489d1f – ident: ref_7 – volume: 69 start-page: 489 year: 2017 ident: ref_26 article-title: Host genetic variation and HIV disease: From mapping to mechanism publication-title: Immunogenetics doi: 10.1007/s00251-017-1000-z – volume: 78 start-page: 3233 year: 2004 ident: ref_23 article-title: Hierarchical targeting of subtype C human immunodeficiency virus type 1 proteins by CD8+ T cells: Correlation with viral load publication-title: J. Virol. doi: 10.1128/JVI.78.7.3233-3243.2004 – volume: 90 start-page: 670 year: 2016 ident: ref_36 article-title: Env-Specific IgA from Viremic HIV-Infected Subjects Compromises Antibody-Dependent Cellular Cytotoxicity publication-title: J. Virol. doi: 10.1128/JVI.02363-15 – ident: ref_37 – volume: 25 start-page: 333 year: 2012 ident: ref_52 article-title: Plasma IP-10 is associated with rapid disease progression in early HIV-1 infection publication-title: Viral Immunol. doi: 10.1089/vim.2012.0011 – volume: 83 start-page: 3719 year: 2009 ident: ref_44 article-title: Induction of a striking systemic cytokine cascade prior to peak viremia in acute human immunodeficiency virus type 1 infection, in contrast to more modest and delayed responses in acute hepatitis B and C virus infections publication-title: J. Virol. doi: 10.1128/JVI.01844-08 – volume: 15 start-page: 893 year: 2009 ident: ref_58 article-title: HIV reservoir size and persistence are driven by T cell survival and homeostatic proliferation publication-title: Nat. Med. doi: 10.1038/nm.1972 – ident: ref_48 doi: 10.1371/journal.pone.0030881 – volume: 26 start-page: 1281 year: 2012 ident: ref_3 article-title: CD8(+) T cells in preventing HIV infection and disease publication-title: Aids doi: 10.1097/QAD.0b013e328353bcaf – volume: 301 start-page: 89 year: 2005 ident: ref_35 article-title: Simultaneous detection of multiple cytokines and chemokines from nonhuman primates using luminex technology publication-title: J. Immunol. Methods doi: 10.1016/j.jim.2005.03.015 – ident: ref_6 – volume: 4 start-page: e251 year: 2017 ident: ref_55 article-title: Comparison of dynamic monitoring strategies based on CD4 cell counts in virally suppressed, HIV-positive individuals on combination antiretroviral therapy in high-income countries: A prospective, observational study publication-title: Lancet HIV doi: 10.1016/S2352-3018(17)30043-7 – ident: ref_16 doi: 10.1371/journal.pone.0046143 – ident: ref_33 – volume: 1 start-page: 182 year: 2004 ident: ref_5 article-title: Biomarkers: Potential uses and limitations publication-title: NeuroRx J. Am. Soc. Exp. NeuroTher. – ident: ref_18 doi: 10.1371/journal.ppat.1002055 – volume: 73 start-page: 138 year: 2016 ident: ref_51 article-title: Plasma IP-10 Is Increased in Immunological NonResponders and Associated With Activated Regulatory T Cells and Persisting Low CD4 Counts publication-title: J. Acquir. Immune Defic. Syndr. doi: 10.1097/QAI.0000000000001080 – volume: 80 start-page: 3122 year: 2006 ident: ref_19 article-title: Relative dominance of Gag p24-specific cytotoxic T lymphocytes is associated with human immunodeficiency virus control publication-title: J. Virol. doi: 10.1128/JVI.80.6.3122-3125.2006 – volume: 5 start-page: 11511 year: 2015 ident: ref_31 article-title: Th17 and Th17/Treg ratio at early HIV infection associate with protective HIV-specific CD8(+) T-cell responses and disease progression publication-title: Sci. Rep. doi: 10.1038/srep11511 – volume: 6 start-page: 36234 year: 2016 ident: ref_39 article-title: Cytokine cascade and networks among MSM HIV seroconverters: Implications for early immunotherapy publication-title: Sci. Rep. doi: 10.1038/srep36234 – volume: 27 start-page: 697 year: 2013 ident: ref_12 article-title: Early immunologic and virologic predictors of clinical HIV-1 disease progression publication-title: Aids doi: 10.1097/QAD.0b013e32835ce2e9 – volume: 104 start-page: 942 year: 2004 ident: ref_13 article-title: Immune activation set point during early HIV infection predicts subsequent CD4+ T-cell changes independent of viral load publication-title: Blood doi: 10.1182/blood-2003-09-3333 – volume: 83 start-page: 7641 year: 2009 ident: ref_22 article-title: Human immunodeficiency virus type 1-specific CD8+ T-cell responses during primary infection are major determinants of the viral set point and loss of CD4+ T cells publication-title: J. Virol. doi: 10.1128/JVI.00182-09 – volume: 30 start-page: 45 year: 2012 ident: ref_53 article-title: Emerging technologies for point-of-care CD4 T-lymphocyte counting publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2011.06.015 – volume: 308 start-page: 387 year: 2012 ident: ref_32 article-title: Antiretroviral treatment of adult HIV infection: 2012 recommendations of the International Antiviral Society-USA panel publication-title: JAMA doi: 10.1001/jama.2012.7961 |
SSID | ssj0066907 |
Score | 2.193389 |
Snippet | Progression of HIV infection is variable among individuals, and definition disease progression biomarkers is still needed. Here, we aimed to categorize the... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 34 |
SubjectTerms | Acute Disease acute infection Adult Biomarkers Biomarkers - blood CCR5 protein CD4 antigen CD4 Lymphocyte Count CD4-Positive T-Lymphocytes - immunology Cell activation Chemokine CXCL10 - blood Cytokines Cytokines - immunology Data processing decision trees Disease Progression Female Genotypes Histocompatibility antigen HLA HIV HIV Infections - blood HIV Infections - diagnosis HIV-1 HLA Human immunodeficiency virus Humans Immune response immune responses Infections Inflammation Interleukin 2 Interleukin 2 receptors Learning algorithms Lymphocytes T Macrophage inflammatory protein Macrophages Male Plasma levels Receptors, CCR5 - blood soluble plasma factors T cell receptors Tumor necrosis factor-TNF Tumor necrosis factor-α Viral Load |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fS9xAEB5EKPhStGqbassqPgglXJLd7I--FD2VU1B80OJbuN1sULA58XKC_70z2VzwROiLbyGZh83s7M58ybffAOy5LDHeaRsLa5NYOFyKVtNJLoRhpbJeiVZd__xCjq7F2U1-86rVF3HCgjxwcNxAulJwhUm7QuDgjUPElooslaW22srM0u6bmGQOpsIeLAnzBR0hjqB-8ERKQyTFspB9WpH-9yrLtwTJVxnnZBU-d6UiOwhDXIMlX3-BT6F55PM6jPHqH5FrHqdsUrFLIloFkQ3WNv5mo9O_7MDNGj9oVYzZace7qn-zC5wfzFlsGBjoU9ZM2PBI_GJXMX3JZ3RSvfmzAdcnx1fDUdw1TIgdotyGdHKNyZ0vTepLLE0qrbgXFnP4mEvlsJaRDhGdVtonCGNSXgrM55xj2WW5KCu-Ccv1pPbfgGXo9SqTzmR6LBDSaDTlkrYAZZLSVxHszx1ZuE5NnJpa3BeIKsjnRe_zCHZ704cgofGe0SHNRm9AqtftDYyFoouF4n-xEMH2fC6LbilOqc9mpnJEdXkEO_1jXETkz3HtJ7NpQcSxHENGqgi-hqnvR4L1UPs3OAK1EBQLQ118Ut_dtkLduTK5EOr7R7zbFqxgrUbEwzjl27DcPM78D6yHGvuzDf0X4ZYEIQ priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwEB1BERKXqnyHlsogDkgo2k3s2A6XqixUWyQqDi3aW7T-CCBB0m6ySPx7Zhxv6KKK22rjg-UZe95zXt4AvLL5tPRWm1QYM02Fxa1oNH3JhTTMKeOVCO76n87k_EJ8XBSLeOHWRVnl5kwMB7VrLd2RT0hMoAoE58XR5VVKXaPo7WpsoXEb7gTrMsxntRgJlyTmN7gJcaT2k1_kN0SGLFs1KFj134Qv_5VJXqs7J3uwGwEjOx4ifB9u-eYB3B1aSP5-CEv89ZMkNquOtTX7THKrwWqDhfbfbH76hR3bde8nwcuYnUb1VfOWnWGUsHKx2aBD71jfstl78Yadp3Sfz-h79f7oEVycfDifzdPYNiG1yHV7cssty8J6V2beIUCpteJeGKzkSy6VRUQjLfI6rbSfIpnJuBNY1TlH8GW4cDV_DDtN2_inwHIneJ1LW-Z6KZDYaBzKJR0Eqpw6XyfwerOQlY2e4tTa4keF3ILWvBrXPIGX49DLwUjjpkHvKBrjAPK-Dn-0q69V3EqVtDgrhTCuRirpS4scPhN5Jp022sjcJHCwiWUVN2RX_U2fBF6Mj3Er0XouG9-uu4rkYwWmjFQJPBlCP84EUVF4J5yA2kqKraluP2m-fwt23YXCzBTq2f-ntQ_3EIuRsDDN-AHs9Ku1f454pzeHIan_AOeq_I4 priority: 102 providerName: ProQuest |
Title | Biomarkers of Progression after HIV Acute/Early Infection: Nothing Compares to CD4+ T-cell Count? |
URI | https://www.ncbi.nlm.nih.gov/pubmed/29342870 https://www.proquest.com/docview/2002759665 https://www.proquest.com/docview/1989590767 https://pubmed.ncbi.nlm.nih.gov/PMC5795447 https://doaj.org/article/6cd437441f104e9c88814216d8b8b62b |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1Lb9QwEB71ISQuqDwbWlYGceASuokdO0FCVbu0bJG6qlAX7S1aOw4glQR2s1V75G_xc_glzDgPEbRcoigZRZZnJjOfPf4G4KUJh4k1sfaF1kNfGHRFHdNJLoRhmdJWCceufz6R46n4MItmG9D22GwmcLkW2lE_qeni6vXNj9tDdPi3hDgRsh9cE48QEa1swjYGJEkY7Fx0mwmSAGBNKtQXJyLghLutvl5UcuT96zLOfwsn_4pEpztwr0kh2VGt8_uwYYsHcKduKnn7EAzefaOim8WSlTm7oAKsmnyDuYbgbHz2iR2ZVWUPHLsxO2vqsYo3bIJ6w1jGRnVl-pJVJRu9E79__mKXPq3xMzrDXh0-gunpyeVo7DetFHyD-LciBt0kiYzNksBmmLTkseJWaIzucy6VwSxHGsR6sYrtEAFOwDOBkZ5zTMg0F1nOH8NWURZ2F1iYCZ6H0iRhPBcIdmIU5ZJ-DioZZjb34FU7lalpeMap3cVViniDFJB2CvDgRSf6vSbXWCd0TProBIgP2z0oF5_Txr1SaXBUClO7HOGlTQzi-kCEgcxiHWsZag_2W22mrY1RB85QRYj3Ig-ed6_RvWg-54UtV8uUSsoitB-pPHhSK78bSWs8HqieWfSG2n9TfP3iKLwjlURCqKf__eYe3MXUjOoM_YDvw1a1WNlnmP5UegCbaqYGsH18Mrn4OHCLCHh9PwsGzuz_AHLpBC8 |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ta9RAEB7qFbFfxHejVVdRECRckt1kN4KU9tpyZ9ujyFX6Ld5uNlXQpF5ySv-Uv9GZvOlJ8Vu_hctyLLOzM_Nkn30G4KUJvNgapV2htecKg1tRK7rJhTAsldpKUavrH02j8Yl4fxqersGv7i4M0Sq7mFgH6rQw9I18SGQCGWJxHm6df3epaxSdrnYtNBq3OLAXPxGyle8mu7i-r4Jgf282GrttVwHXIBSsSEw2jkNj09i3KebvTEluhcZEN-eRNJjwI4OwR0llPaz1fZ4KTHoI-1WouUgzjv97DdYF3WgdwPrO3vT4Qxf7I8KajX4R57E3_EEKRyQBs5L16uYAl1W0_xIz_8p0-7fgZluisu3Gp27Dms3vwPWmaeXFXZjj0zci9SxKVmTsmAhejbgHqxuOs_HkI9s2y8oOa_VkNmn5XvlbNkW_wFzJRg3zvWRVwUa74g2buXSCwOiGfLV1D06uxKT3YZAXuX0ILEgFz4LIxIGaC4RSCofyiEKPjL3UZg687gyZmFbFnJppfE0QzZDNk97mDrzoh5430h2XDdqh1egHkNp2_UOxOEvazZtEBmclsXDMELza2CilfBH4Uaq00lGgHdjs1jJpQ0CZ_HFYB573r3Hzkj3nuS2WZUKEtRBdJpIOPGiWvp8J1mH1KbQDcsUpVqa6-ib_8rkWCA9lHAohH_1_Ws_gxnh2dJgcTqYHj2EDK0GiNbo-34RBtVjaJ1htVfpp6-IMPl31rvoN_d036A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1tb9MwED6NTiC-IN4JDDAIJCQUNYmd2EFC09auahlUFdrQvoXacQAJktGkoP01fh13eYOiiW_7ViVWZJ3vfM_Vj58DeGYCL7ZGaVdo7bnCYChqRTe5sAxLpbZS1Or67-bR9Fi8OQlPtuBXdxeGaJXdnlhv1Glh6D_yIZEJZIjgPBxmLS1iMZ7snn53qYMUnbR27TQaFzm0Zz-xfCtfz8a41s-DYHJwNJq6bYcB12BZWJGwbByHxqaxb1PM5ZmS3AqNSW_JI2kw-UcGSyAllfUQ9_s8FZgAOUecorlIM47fvQTbEh-KAWzvH8wX77s8EFHd2WgZcR57wx-kdkRyMBsZsG4UcB66_Zek-VfWm1yHay1cZXuNf92ALZvfhMtNA8uzW7DEX9-I4LMqWZGxBZG9GqEPVjcfZ9PZB7Zn1pUd1krKbNZyv_JXbI4-gnmTjRoWfMmqgo3G4iU7cuk0gdFt-Wr3NhxfiEnvwCAvcnsPWJAKngWRiQO1FFhWKRzKI9qGZOylNnPgRWfIxLSK5tRY42uClQ3ZPOlt7sDTfuhpI-Nx3qB9Wo1-AClv1w-K1aekDeQkMjgriSAyw0LWxkYp5YvAj1KllY4C7cBOt5ZJux2UyR_ndeBJ_xoDmey5zG2xLhMir4XoMpF04G6z9P1MEJPVJ9IOyA2n2Jjq5pv8y-daLDyUcSiEvP__aT2GKxhNydvZ_PABXEVQSAxH1-c7MKhWa_sQgVelH7UezuDjRQfVb5AuPBQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biomarkers+of+Progression+after+HIV+Acute%2FEarly+Infection%3A+Nothing+Compares+to+CD4%E2%81%BA+T-cell+Count%3F&rft.jtitle=Viruses&rft.au=Turk%2C+Gabriela&rft.au=Ghiglione%2C+Yanina&rft.au=Hormanstorfer%2C+Macarena&rft.au=Laufer%2C+Natalia&rft.date=2018-01-13&rft.eissn=1999-4915&rft.volume=10&rft.issue=1&rft_id=info:doi/10.3390%2Fv10010034&rft_id=info%3Apmid%2F29342870&rft.externalDocID=29342870 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-4915&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-4915&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-4915&client=summon |