Identifying fatigue of climbing workers using physiological data based on the XGBoost algorithm

High-voltage workers often experience fatigue due to the physically demanding nature of climbing in dynamic and complex environments, which negatively impacts their motor and mental abilities. Effective monitoring is necessary to ensure safety. This study proposed an experimental method to quantify...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in public health Vol. 12; p. 1462675
Main Authors Xu, Yonggang, Jian, Qingzhi, Zhu, Kunshuang, Wang, Mingjun, Hou, Wei, Gong, Zichao, Xu, Mingkai, Cui, Kai
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 09.10.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract High-voltage workers often experience fatigue due to the physically demanding nature of climbing in dynamic and complex environments, which negatively impacts their motor and mental abilities. Effective monitoring is necessary to ensure safety. This study proposed an experimental method to quantify fatigue in climbing operations. We collected subjective fatigue (using the RPE scale) and objective fatigue data, including systolic blood pressure (SBP), diastolic blood pressure (DBP), blood oxygen saturation (SpO ), vital capacity (VC), grip strength (GS), response time (RT), critical fusion frequency (CFF), and heart rate (HR) from 33 high-voltage workers before and after climbing tasks. The XGBoost algorithm was applied to establish a fatigue identification model. The analysis showed that the physiological indicators of SpO , VC, GS, RT, and CFF can effectively evaluate fatigue in climbing operations. The XGBoost fatigue identification model, based on subjective fatigue and the five physiological indicators, achieved an average accuracy of 89.75%. This study provides a basis for personalized management of fatigue in climbing operations, enabling timely detection of their fatigue states and implementation of corresponding measures to minimize the likelihood of accidents.
AbstractList BackgroundHigh-voltage workers often experience fatigue due to the physically demanding nature of climbing in dynamic and complex environments, which negatively impacts their motor and mental abilities. Effective monitoring is necessary to ensure safety.MethodsThis study proposed an experimental method to quantify fatigue in climbing operations. We collected subjective fatigue (using the RPE scale) and objective fatigue data, including systolic blood pressure (SBP), diastolic blood pressure (DBP), blood oxygen saturation (SpO2), vital capacity (VC), grip strength (GS), response time (RT), critical fusion frequency (CFF), and heart rate (HR) from 33 high-voltage workers before and after climbing tasks. The XGBoost algorithm was applied to establish a fatigue identification model.ResultsThe analysis showed that the physiological indicators of SpO2, VC, GS, RT, and CFF can effectively evaluate fatigue in climbing operations. The XGBoost fatigue identification model, based on subjective fatigue and the five physiological indicators, achieved an average accuracy of 89.75%.ConclusionThis study provides a basis for personalized management of fatigue in climbing operations, enabling timely detection of their fatigue states and implementation of corresponding measures to minimize the likelihood of accidents.
High-voltage workers often experience fatigue due to the physically demanding nature of climbing in dynamic and complex environments, which negatively impacts their motor and mental abilities. Effective monitoring is necessary to ensure safety. This study proposed an experimental method to quantify fatigue in climbing operations. We collected subjective fatigue (using the RPE scale) and objective fatigue data, including systolic blood pressure (SBP), diastolic blood pressure (DBP), blood oxygen saturation (SpO ), vital capacity (VC), grip strength (GS), response time (RT), critical fusion frequency (CFF), and heart rate (HR) from 33 high-voltage workers before and after climbing tasks. The XGBoost algorithm was applied to establish a fatigue identification model. The analysis showed that the physiological indicators of SpO , VC, GS, RT, and CFF can effectively evaluate fatigue in climbing operations. The XGBoost fatigue identification model, based on subjective fatigue and the five physiological indicators, achieved an average accuracy of 89.75%. This study provides a basis for personalized management of fatigue in climbing operations, enabling timely detection of their fatigue states and implementation of corresponding measures to minimize the likelihood of accidents.
High-voltage workers often experience fatigue due to the physically demanding nature of climbing in dynamic and complex environments, which negatively impacts their motor and mental abilities. Effective monitoring is necessary to ensure safety.BackgroundHigh-voltage workers often experience fatigue due to the physically demanding nature of climbing in dynamic and complex environments, which negatively impacts their motor and mental abilities. Effective monitoring is necessary to ensure safety.This study proposed an experimental method to quantify fatigue in climbing operations. We collected subjective fatigue (using the RPE scale) and objective fatigue data, including systolic blood pressure (SBP), diastolic blood pressure (DBP), blood oxygen saturation (SpO2), vital capacity (VC), grip strength (GS), response time (RT), critical fusion frequency (CFF), and heart rate (HR) from 33 high-voltage workers before and after climbing tasks. The XGBoost algorithm was applied to establish a fatigue identification model.MethodsThis study proposed an experimental method to quantify fatigue in climbing operations. We collected subjective fatigue (using the RPE scale) and objective fatigue data, including systolic blood pressure (SBP), diastolic blood pressure (DBP), blood oxygen saturation (SpO2), vital capacity (VC), grip strength (GS), response time (RT), critical fusion frequency (CFF), and heart rate (HR) from 33 high-voltage workers before and after climbing tasks. The XGBoost algorithm was applied to establish a fatigue identification model.The analysis showed that the physiological indicators of SpO2, VC, GS, RT, and CFF can effectively evaluate fatigue in climbing operations. The XGBoost fatigue identification model, based on subjective fatigue and the five physiological indicators, achieved an average accuracy of 89.75%.ResultsThe analysis showed that the physiological indicators of SpO2, VC, GS, RT, and CFF can effectively evaluate fatigue in climbing operations. The XGBoost fatigue identification model, based on subjective fatigue and the five physiological indicators, achieved an average accuracy of 89.75%.This study provides a basis for personalized management of fatigue in climbing operations, enabling timely detection of their fatigue states and implementation of corresponding measures to minimize the likelihood of accidents.ConclusionThis study provides a basis for personalized management of fatigue in climbing operations, enabling timely detection of their fatigue states and implementation of corresponding measures to minimize the likelihood of accidents.
Author Zhu, Kunshuang
Hou, Wei
Xu, Yonggang
Cui, Kai
Jian, Qingzhi
Wang, Mingjun
Gong, Zichao
Xu, Mingkai
AuthorAffiliation 2 State Grid Shandong Electric Power Company , Jinan , China
1 Emergency Management Center of State Grid Shandong Electric Power Company , Jinan , China
3 School of Modern Postal, Xi'an University of Posts and Telecommunications , Xi'an , China
AuthorAffiliation_xml – name: 1 Emergency Management Center of State Grid Shandong Electric Power Company , Jinan , China
– name: 2 State Grid Shandong Electric Power Company , Jinan , China
– name: 3 School of Modern Postal, Xi'an University of Posts and Telecommunications , Xi'an , China
Author_xml – sequence: 1
  givenname: Yonggang
  surname: Xu
  fullname: Xu, Yonggang
– sequence: 2
  givenname: Qingzhi
  surname: Jian
  fullname: Jian, Qingzhi
– sequence: 3
  givenname: Kunshuang
  surname: Zhu
  fullname: Zhu, Kunshuang
– sequence: 4
  givenname: Mingjun
  surname: Wang
  fullname: Wang, Mingjun
– sequence: 5
  givenname: Wei
  surname: Hou
  fullname: Hou, Wei
– sequence: 6
  givenname: Zichao
  surname: Gong
  fullname: Gong, Zichao
– sequence: 7
  givenname: Mingkai
  surname: Xu
  fullname: Xu, Mingkai
– sequence: 8
  givenname: Kai
  surname: Cui
  fullname: Cui, Kai
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39444965$$D View this record in MEDLINE/PubMed
BookMark eNp9kk1v1DAQhi1URD_oH-CAfOSyiz8T-4SggnalSlxA4mY5_khcnHixk6L993i7W9Ry4GR7PO8zo5n3HJxMaXIAvMFoTamQ7_126YY1QYStMWtI0_IX4IwQ2awIb_jJk_spuCzlDiGEEWWI4FfglErGmGz4GVAb66Y5-F2Yeuj1HPrFweShiWHs9rHfKf90ucCl7F_bYVdCiqkPRkdo9axhp4uzME1wHhz8cf0ppTJDHfuUwzyMr8FLr2Nxl8fzAnz_8vnb1c3q9uv15urj7cqwRs4rSr312Eoja9fScepJZzzBLTGaciu0F1gIRhluO98JbJj0rehsSzVzHaP0AmwOXJv0ndrmMOq8U0kH9RBIuVc6z8FEpyTmrko5sw4xotsOC2IkkpQZhBgXlfXhwKojHp01dUBZx2fQ5z9TGFSf7hXGdaikwZXw7kjI6dfiyqzGUIyLUU8uLUVRTBDikrdtTX37tNjfKo8rqgnikGByKiU7r0yY66LSvnaICiO1N4R6MITaG0IdDVGl5B_pI_0_oj8T8rsm
CitedBy_id crossref_primary_10_3390_s24237633
Cites_doi 10.1016/j.nucengdes.2023.112534
10.1016/j.psychsport.2021.101924
10.1109/TCSS.2022.3158585
10.1007/s00408-016-9931-y
10.1016/j.aei.2022.101646
10.1177/0018720817695194
10.1080/00140139.2015.1110622
10.1016/j.ergon.2021.103083
10.1016/j.ins.2019.11.004
10.1016/j.autcon.2023.104887
10.1016/j.aap.2021.106240
10.1186/1471-2458-8-48
10.1016/j.cie.2009.06.003
10.1038/s41598-021-84803-8
10.3389/fnbeh.2023.1175067
10.1089/ham.2007.1015
10.20944/preprints202202.0231.v1
10.1016/j.ssci.2020.104656
10.1016/j.mlwa.2021.100154
10.1016/B978-0-12-396971-2.00007-5
10.1016/j.ins.2013.07.007
10.1080/00140130500241753
10.3390/ijerph192114360
10.1007/s11332-024-01256-y
10.1016/j.eswa.2024.123633
10.1016/j.apergo.2008.04.017
10.1109/ISITDI55734.2022.9944484
10.1002/cphy.c130012
10.1007/s10115-023-02010-5
10.1016/j.autcon.2017.03.003
10.1007/978-3-319-77932-4_10
10.1007/s11069-014-1235-z
10.11836/JEOM22301
10.1016/j.apergo.2014.02.001
10.1016/j.compbiomed.2021.104413
10.1016/j.apergo.2020.103262
10.1109/THMS.2019.2938156
10.1038/jhh.2014.84
10.1016/j.neubiorev.2018.10.024
10.1016/j.psychsport.2022.102253
10.1007/s40279-022-01690-3
10.1155/2022/3169285
10.1111/sms.13914
10.1016/B978-0-444-53702-7.00007-5
10.1016/j.promfg.2015.11.009
10.3390/w14203303
10.1152/japplphysiol.00066.2013
10.1111/psyp.13872
10.1016/j.promfg.2015.07.570
10.1016/j.jksuci.2020.10.013
10.1016/j.bspc.2020.101865
10.1016/j.jvoice.2018.12.011
ContentType Journal Article
Copyright Copyright © 2024 Xu, Jian, Zhu, Wang, Hou, Gong, Xu and Cui.
Copyright © 2024 Xu, Jian, Zhu, Wang, Hou, Gong, Xu and Cui. 2024 Xu, Jian, Zhu, Wang, Hou, Gong, Xu and Cui
Copyright_xml – notice: Copyright © 2024 Xu, Jian, Zhu, Wang, Hou, Gong, Xu and Cui.
– notice: Copyright © 2024 Xu, Jian, Zhu, Wang, Hou, Gong, Xu and Cui. 2024 Xu, Jian, Zhu, Wang, Hou, Gong, Xu and Cui
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.3389/fpubh.2024.1462675
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Open Access Full Text
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
EISSN 2296-2565
ExternalDocumentID oai_doaj_org_article_915e8bd54de042a7b182c90934c00458
PMC11496261
39444965
10_3389_fpubh_2024_1462675
Genre Journal Article
GroupedDBID 53G
5VS
9T4
AAFWJ
AAYXX
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CITATION
DIK
EMOBN
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
OK1
RNS
RPM
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
RIG
7X8
5PM
ID FETCH-LOGICAL-c469t-33fdf1d9c92969e53f2bcf2172ca35d8af818843417bfb81c49f78bd73a4eb433
IEDL.DBID M48
ISSN 2296-2565
IngestDate Wed Aug 27 01:13:33 EDT 2025
Thu Aug 21 18:31:04 EDT 2025
Fri Jul 11 10:56:58 EDT 2025
Thu Apr 03 07:05:56 EDT 2025
Tue Jul 01 02:59:06 EDT 2025
Thu Apr 24 22:50:59 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords climbing workers
machine learning
XGBoost
fatigue identification
physiological data
Language English
License Copyright © 2024 Xu, Jian, Zhu, Wang, Hou, Gong, Xu and Cui.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c469t-33fdf1d9c92969e53f2bcf2172ca35d8af818843417bfb81c49f78bd73a4eb433
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Reviewed by: Dheiver Francisco Santos, Boticario Group, Brazil
Edited by: Rawad Hodeify, American University of Ras Al Khaimah, United Arab Emirates
Verónica Barroso-García, University of Valladolid, Spain
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fpubh.2024.1462675
PMID 39444965
PQID 3120059577
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_915e8bd54de042a7b182c90934c00458
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11496261
proquest_miscellaneous_3120059577
pubmed_primary_39444965
crossref_citationtrail_10_3389_fpubh_2024_1462675
crossref_primary_10_3389_fpubh_2024_1462675
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-10-09
PublicationDateYYYYMMDD 2024-10-09
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-09
  day: 09
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in public health
PublicationTitleAlternate Front Public Health
PublicationYear 2024
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Palit (B55) 2015; 4
Hunter (B43) 2020; 34
Wang (B35) 2023; 151
Liew (B51) 2021; 6
Killgore (B47) 2010; 185
Ajayi (B14) 2020; 125
Bok (B19) 2022; 52
Wu (B36) 2007; 8
Li (B46) 2021; 82
Li (B48) 2022; 4
Hajifar (B33) 2021; 90
Zhou (B11) 2023; 3
Harris (B56) 2021; 54
Nybo (B40) 2014; 4
B2
Rusli (B6) 2008; 8
Ponce-Bordón (B57) 2022; 63
Theng (B50) 2024; 66
Caldwell (B41) 2019; 96
Li (B1) 2023; 47
Taylor (B26) 2013; 114
Xu (B28) 2023; 46
Meng (B5) 2014; 74
Putra (B24) 2022
Mehta (B16) 2017; 59
Sharman J (B37) 2015; 29
Völker (B7) 2016; 59
Chang (B8) 2009; 40
Tian (B45) 2010; 2
Liu (B34) 2016; 35
Mun (B21) 2019; 61
Al-Shair (B42) 2016; 194
Li (B44) 2016; 6
Jeon (B12) 2022; 53
Starling-Smith (B27) 2024
Łuczak (B31) 2005; 48
Budholiya (B52) 2022; 34
Shi (B3) 2022; 2022
Morris (B53) 2021; 159
Ma (B10) 2009; 57
Butlewski (B39) 2015; 3
Migliaccio (B29) 2022; 19
Jagannath (B23) 2014; 45
Thabtah (B61) 2020; 513
Chen (B25) 2021; 133
Lea (B18) 2021; 11
Jiang (B49) 2024; 249
Guo (B17) 2023; 414
Liang (B9) 2023
Song (B30) 2020; 58
Yang (B15) 2022; 2022
Cheng (B13) 2022; 9
Aryal (B32) 2017; 82
Richard (B20) 2021; 31
Guest (B22) 2021; 58
Avolio (B38) 2018; 1065
Goel (B54) 2013; 119
Fan (B59) 2023; 17
Radwanski (B4) 2022; 14
Monteiro (B58) 2019; 49
López (B60) 2013; 250
References_xml – volume: 46
  start-page: 41
  year: 2023
  ident: B28
  article-title: Design of fatigue driving detection system based on improved PERCLOS
  publication-title: Modern Electron Tech.
– volume: 414
  start-page: 112534
  year: 2023
  ident: B17
  article-title: Effects of video display terminal fatigue on situational awareness ability of operators and modeling study
  publication-title: Nucl Eng Des.
  doi: 10.1016/j.nucengdes.2023.112534
– volume: 54
  start-page: 101924
  year: 2021
  ident: B56
  article-title: Mental fatigue, anticipated effort, and subjective valuations of exercising predict choice to exercise or not: a mixed-methods study
  publication-title: Psychol Sport Exerc.
  doi: 10.1016/j.psychsport.2021.101924
– volume: 9
  start-page: 1644
  year: 2022
  ident: B13
  article-title: Measuring and computing cognitive statuses of construction workers based on electroencephalogram: a critical review
  publication-title: IEEE Trans Comput Soc Syst.
  doi: 10.1109/TCSS.2022.3158585
– volume: 194
  start-page: 889
  year: 2016
  ident: B42
  article-title: The effect of fatigue and fatigue intensity on exercise tolerance in moderate COPD
  publication-title: Lung.
  doi: 10.1007/s00408-016-9931-y
– volume: 53
  start-page: 101646
  year: 2022
  ident: B12
  article-title: Multi-class classification of construction hazards via cognitive states assessment using wearable EEG
  publication-title: Adv Eng Inform.
  doi: 10.1016/j.aei.2022.101646
– volume: 3
  start-page: 195
  year: 2023
  ident: B11
  article-title: Experimental study on climbing operation fatigue of construction workers based on physiological indexes
  publication-title: J Saf Sci Technol.
– volume: 47
  start-page: 3710
  year: 2023
  ident: B1
  article-title: Exploring key technologies for health management and intelligent operation and maintenance of power equipment in novel power systems
  publication-title: Power Syst Technol.
– volume: 59
  start-page: 722
  year: 2017
  ident: B16
  article-title: Relationship between BMI and fatigability is task dependent
  publication-title: Hum Factors.
  doi: 10.1177/0018720817695194
– volume: 59
  start-page: 1259
  year: 2016
  ident: B7
  article-title: On the relationship between subjective and objective measures of fatigue
  publication-title: Ergonomics.
  doi: 10.1080/00140139.2015.1110622
– volume: 82
  start-page: 103083
  year: 2021
  ident: B46
  article-title: A method for fatigue detection based on driver's steering wheel grip
  publication-title: Int J Ind Ergonom.
  doi: 10.1016/j.ergon.2021.103083
– volume: 513
  start-page: 429
  year: 2020
  ident: B61
  article-title: Data imbalance in classification: experimental evaluation
  publication-title: Inf Sci.
  doi: 10.1016/j.ins.2019.11.004
– volume: 151
  start-page: 104887
  year: 2023
  ident: B35
  article-title: Identifying mental fatigue of construction workers using EEG and deep learning
  publication-title: Autom Constr.
  doi: 10.1016/j.autcon.2023.104887
– volume: 159
  start-page: 106240
  year: 2021
  ident: B53
  article-title: Effectiveness of resampling methods in coping with imbalanced crash data: Crash type analysis and predictive modeling
  publication-title: Accid Anal Prev.
  doi: 10.1016/j.aap.2021.106240
– volume: 8
  start-page: 48
  year: 2008
  ident: B6
  article-title: Working conditions, self-perceived stress, anxiety, depression and quality of life: a structural equation modeling approach
  publication-title: BMC Public Health.
  doi: 10.1186/1471-2458-8-48
– volume: 57
  start-page: 1235
  year: 2009
  ident: B10
  article-title: Multi-objective optimization method for posture prediction and analysis with consideration of fatigue effect and its application case
  publication-title: Comput Ind Eng.
  doi: 10.1016/j.cie.2009.06.003
– volume: 11
  start-page: 5334
  year: 2021
  ident: B18
  article-title: Validity and reliability of the ‘Isometric Exercise Scale' (IES) for measuring ratings of perceived exertion during continuous isometric exercise
  publication-title: Sci Rep.
  doi: 10.1038/s41598-021-84803-8
– volume: 17
  start-page: 1175067
  year: 2023
  ident: B59
  article-title: Effects of mindfulness and fatigue on emotional processing: an event-related potentials study
  publication-title: Front Behav Neurosci
  doi: 10.3389/fnbeh.2023.1175067
– ident: B2
– volume: 8
  start-page: 88
  year: 2007
  ident: B36
  article-title: Who should not go high: chronic disease and work at altitude during construction of the Qinghai-Tibet Railroad
  publication-title: High Alt Med Biol
  doi: 10.1089/ham.2007.1015
– volume: 2022
  start-page: 2022020231
  year: 2022
  ident: B15
  article-title: The application of a behavior-based safety program at power plant sites: a pre-post study
  publication-title: Preprints.
  doi: 10.20944/preprints202202.0231.v1
– volume: 125
  start-page: 104656
  year: 2020
  ident: B14
  article-title: Optimized big data analytics for health and safety hazards prediction in power infrastructure operations
  publication-title: Saf Sci.
  doi: 10.1016/j.ssci.2020.104656
– volume: 6
  start-page: 100154
  year: 2021
  ident: B51
  article-title: An investigation of XGBoost-based algorithm for breast cancer classification
  publication-title: Mach Learn Appl.
  doi: 10.1016/j.mlwa.2021.100154
– volume: 119
  start-page: 155
  year: 2013
  ident: B54
  article-title: Chapter Seven - Circadian rhythms, sleep deprivation, and human performance
  publication-title: Prog Mol Biol Transl Sci.
  doi: 10.1016/B978-0-12-396971-2.00007-5
– volume: 250
  start-page: 113
  year: 2013
  ident: B60
  article-title: An insight into classification with imbalanced data: empirical results and current trends on using data intrinsic characteristics
  publication-title: Inf Sci.
  doi: 10.1016/j.ins.2013.07.007
– volume: 48
  start-page: 1770
  year: 2005
  ident: B31
  article-title: Longitudinal changes in critical flicker fusion frequency: an indicator of human workload
  publication-title: Ergonomics.
  doi: 10.1080/00140130500241753
– volume: 6
  start-page: 102
  year: 2016
  ident: B44
  article-title: Influence of body function index to constitution and geographical distribution
  publication-title: Sports Sci.
– volume: 19
  start-page: 14360
  year: 2022
  ident: B29
  article-title: Effects of mental fatigue on reaction time in sportsmen
  publication-title: Int J Environ Res Public Health.
  doi: 10.3390/ijerph192114360
– year: 2024
  ident: B27
  article-title: Reliability of an intermittent handgrip fatiguing protocol
  publication-title: Sport Sci Health.
  doi: 10.1007/s11332-024-01256-y
– volume: 2
  start-page: 3
  year: 2010
  ident: B45
  article-title: The establishment of the comprehensive system for assessing the exercise capacity of the Chinese people
  publication-title: China Sport Sci Technol.
– volume: 249
  start-page: 123633
  year: 2024
  ident: B49
  article-title: Feature selection for classification with Spearman's rank correlation coefficient-based self-information in divergence-based fuzzy rough sets
  publication-title: Expert Syst Appl.
  doi: 10.1016/j.eswa.2024.123633
– volume: 40
  start-page: 591
  year: 2009
  ident: B8
  article-title: Work fatigue and physiological symptoms in different occupations of high-elevation construction workers
  publication-title: Appl Ergonom.
  doi: 10.1016/j.apergo.2008.04.017
– start-page: 22
  volume-title: 2022 International Symposium on Information Technology and Digital Innovation (ISITDI)
  year: 2022
  ident: B24
  article-title: Fatigue warning system during physical exercise based on heart rate and oxygen saturation using non-invasive wearable sensor
  doi: 10.1109/ISITDI55734.2022.9944484
– volume: 4
  start-page: 657
  year: 2014
  ident: B40
  article-title: Performance in the heat: Physiological factors of importance for hyperthermia-induced fatigue
  publication-title: Compr Physiol
  doi: 10.1002/cphy.c130012
– volume: 66
  start-page: 1575
  year: 2024
  ident: B50
  article-title: Feature selection techniques for machine learning: a survey of more than two decades of research
  publication-title: Knowl Inf Syst.
  doi: 10.1007/s10115-023-02010-5
– volume: 82
  start-page: 154
  year: 2017
  ident: B32
  article-title: Monitoring fatigue in construction workers using physiological measurements
  publication-title: Autom Constr.
  doi: 10.1016/j.autcon.2017.03.003
– volume: 1065
  start-page: 1
  year: 2018
  ident: B38
  article-title: Arterial flow, pulse pressure and pulse wave velocity in men and women at various ages
  publication-title: Adv Exp Med Biol.
  doi: 10.1007/978-3-319-77932-4_10
– volume: 74
  start-page: 1127
  year: 2014
  ident: B5
  article-title: Effects of fatigue on the physiological parameters of labor employees
  publication-title: Nat Hazards.
  doi: 10.1007/s11069-014-1235-z
– year: 2023
  ident: B9
  article-title: Local muscle load and fatigue of simulated high-voltage cable climbing task of operation inspection personnel by surface electromyography
  publication-title: J Environ Occup Med
  doi: 10.11836/JEOM22301
– volume: 45
  start-page: 1140
  year: 2014
  ident: B23
  article-title: Assessment of early onset of driver fatigue using multimodal fatigue measures in a static simulator
  publication-title: Appl Ergon.
  doi: 10.1016/j.apergo.2014.02.001
– volume: 61
  start-page: 471
  year: 2019
  ident: B21
  article-title: Predicting post-experiment fatigue among healthy young adults: random forest regression analysis
  publication-title: Psychol Test Assess Model.
– volume: 133
  start-page: 104413
  year: 2021
  ident: B25
  article-title: Psychophysiological data-driven multi-feature information fusion and recognition of miner fatigue in high-altitude and cold areas
  publication-title: Comput Biol Med.
  doi: 10.1016/j.compbiomed.2021.104413
– volume: 90
  start-page: 103262
  year: 2021
  ident: B33
  article-title: forecasting framework for predicting perceived fatigue: using time series methods to forecast ratings of perceived exertion with features from wearable sensors
  publication-title: Appl Ergon.
  doi: 10.1016/j.apergo.2020.103262
– volume: 49
  start-page: 599
  year: 2019
  ident: B58
  article-title: Using EEG for mental fatigue assessment: a comprehensive look into the current state of the art
  publication-title: IEEE Trans Hum-Mach Syst.
  doi: 10.1109/THMS.2019.2938156
– volume: 29
  start-page: 351
  year: 2015
  ident: B37
  article-title: Exercise blood pressure: clinical relevance and correct measurement
  publication-title: J Hum Hypertens.
  doi: 10.1038/jhh.2014.84
– volume: 4
  start-page: 88
  year: 2022
  ident: B48
  article-title: A study on meta-analysis of health effects of exercise intervention in ordinary adults
  publication-title: J Sports Sci.
– volume: 96
  start-page: 272
  year: 2019
  ident: B41
  article-title: Fatigue and its management in the workplace
  publication-title: Neurosci Biobehav Rev.
  doi: 10.1016/j.neubiorev.2018.10.024
– volume: 63
  start-page: 102253
  year: 2022
  ident: B57
  article-title: How does the manipulation of time pressure during soccer tasks influence physical load and mental fatigue?
  publication-title: Psychol Sport Exerc.
  doi: 10.1016/j.psychsport.2022.102253
– volume: 52
  start-page: 2085
  year: 2022
  ident: B19
  article-title: An examination and critique of subjective methods to determine exercise intensity: the talk test, feeling scale, and rating of perceived exertion
  publication-title: Sports Med.
  doi: 10.1007/s40279-022-01690-3
– volume: 2022
  start-page: 3169285
  year: 2022
  ident: B3
  article-title: Assessment of power plant based on unsafe behavior of workers through backpropagation neural network model
  publication-title: Mob Inform Syst.
  doi: 10.1155/2022/3169285
– volume: 31
  start-page: 956
  year: 2021
  ident: B20
  article-title: Elevated peak systolic blood pressure in endurance-trained athletes: physiology or pathology?
  publication-title: Scand J Med Sci Sports.
  doi: 10.1111/sms.13914
– volume: 185
  start-page: 105
  year: 2010
  ident: B47
  article-title: Effects of sleep deprivation on cognition
  publication-title: Prog Brain Res.
  doi: 10.1016/B978-0-444-53702-7.00007-5
– volume: 4
  start-page: 17
  year: 2015
  ident: B55
  article-title: The effect of pop musical tempo during post treadmill exercise recovery time
  publication-title: Procedia Manuf.
  doi: 10.1016/j.promfg.2015.11.009
– volume: 14
  start-page: 3303
  year: 2022
  ident: B4
  article-title: An analysis of the risks during personnel transfers between units operating on the water
  publication-title: Water.
  doi: 10.3390/w14203303
– volume: 114
  start-page: 1569
  year: 2013
  ident: B26
  article-title: Expiratory muscle fatigue does not regulate operating lung volumes during high-intensity exercise in healthy humans
  publication-title: J Appl Physiol.
  doi: 10.1152/japplphysiol.00066.2013
– volume: 58
  start-page: e13872
  year: 2021
  ident: B22
  article-title: Attenuated cardiovascular reactivity is related to higher anxiety and fatigue symptoms in truck drivers
  publication-title: Psychophysiology.
  doi: 10.1111/psyp.13872
– volume: 35
  start-page: 837
  year: 2016
  ident: B34
  article-title: Multi-index evaluation of athletes' central fatigue induced by one-hour flanker task based on encephalofluctuogram technology
  publication-title: Chin J Sports Med
– volume: 3
  start-page: 4732
  year: 2015
  ident: B39
  article-title: Fatigue of miners as a key factor in the work safety system
  publication-title: Procedia Manuf.
  doi: 10.1016/j.promfg.2015.07.570
– volume: 34
  start-page: 4514
  year: 2022
  ident: B52
  article-title: An optimized XGBoost based diagnostic system for effective prediction of heart disease
  publication-title: J King Saud Univ Comput Inf Sci.
  doi: 10.1016/j.jksuci.2020.10.013
– volume: 58
  start-page: 101865
  year: 2020
  ident: B30
  article-title: A new method for muscular visual fatigue detection using electrooculogram
  publication-title: Biomed Signal Process Control.
  doi: 10.1016/j.bspc.2020.101865
– volume: 34
  start-page: 539
  year: 2020
  ident: B43
  article-title: The effect of pulmonary function on the incidence of vocal fatigue among teachers
  publication-title: J Voice.
  doi: 10.1016/j.jvoice.2018.12.011
SSID ssj0001034021
Score 2.277689
Snippet High-voltage workers often experience fatigue due to the physically demanding nature of climbing in dynamic and complex environments, which negatively impacts...
BackgroundHigh-voltage workers often experience fatigue due to the physically demanding nature of climbing in dynamic and complex environments, which...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1462675
SubjectTerms Adult
Algorithms
Blood Pressure - physiology
climbing workers
Fatigue
fatigue identification
Female
Hand Strength - physiology
Heart Rate - physiology
Humans
machine learning
Male
physiological data
Public Health
Reaction Time - physiology
XGBoost
Young Adult
SummonAdditionalLinks – databaseName: DOAJ Open Access Full Text
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iSRDxbX0RwZsUbZO0zVHFB4KeFPYWmte6sLai3f_vTNJddkX04jVt6TAzycw3mQchp5w5XTjmUylKk3JmirQSQsN2t0JYay94aKX0-FTcv_CHgRjMjfrCnLDYHjgy7lxmwlXaCm4d6FddanCIjQQczg26I6HMF2zeHJgK0ZULBsAoi1UygMLkOZZb4eVDzvFwyAtMLJyzRKFh_09e5vdkyTnrc7tO1nq3kV5GcjfIkms2yWqMudFYSrRFVKy6DZVL1APLhxNHW0_NePSmcQ2TsMDdo5jsPqQhqDE9-yimilK0aZa2DQW3kA7urtr2s6P1eNh-jLrXt23ycnvzfH2f9gMUUgOot0sZ89ZnVhrwgQrpBPO5Nh5HUpmaCVvVHsx1BdLISu11lRkufQnMLlnNneaM7ZDlpm3cHqFljUDOgDkvSq5zAM6AHG3uAdWiSWMJyabMVKbvLo5DLsYKUAYKQAUBKBSA6gWQkLPZN--xt8avb1-hjGZvYl_ssADaonptUX9pS0JOphJWsI_wcqRuXDv5VCzD-BpobJmQ3Sjx2a-weBj76iekWtCFBVoWnzSj19CrG-CmBPKz_f-g_oCsIEdCLqE8JMvdx8QdgU_U6eOg_l91xwhd
  priority: 102
  providerName: Directory of Open Access Journals
Title Identifying fatigue of climbing workers using physiological data based on the XGBoost algorithm
URI https://www.ncbi.nlm.nih.gov/pubmed/39444965
https://www.proquest.com/docview/3120059577
https://pubmed.ncbi.nlm.nih.gov/PMC11496261
https://doaj.org/article/915e8bd54de042a7b182c90934c00458
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3ra9RAEB9qBSlIqa8aH2UFv0n0kt3NJh-KWLEWoX7y4L4t2df14JroXQ70v3dmkxxeaf2a5yYzk_n9JvMAeCu4N4XnIa2ksqngtkhLKQ2au5PSOTcRsZXS5ffiYiq-zeRsD8ZxR8MLXN9K7Wie1HS1fP_715-PaPCnxDjR336gSir6r5ALsvscIfA9uI-eSdFEg8sB7seYy4QjXcr62pk7Tj2AB1QrSm3Ud1xV7Oh_Gwy9mU35j3s6P4LDAVeyT70iPII93zyGh31QjvW1Rk9A92W5sbSJBZTJfONZG5hdLq4NbaMsLcSDjLLh5yxGPcaPI6NcUkZOz7G2YYgb2ezrWduuO1Yv5-1q0V1dP4Xp-Zcfny_SYcJCapEWdynnwYXMVRZBUlF5yUNubKCZVbbm0pV1QH9eorgyZYIpMyuqoErjFK-FN4LzZ7DftI1_DkzVxPQs-vtCCZMjs0Zq6fKAtJd8Hk8gG1-mtkP7cZqCsdRIQ0gWOspCkyz0IIsE3m3P-dk33_jv0Wcko-2R1Dg7bmhXcz3Yoa4y6fEBpHAel1Urg_zKVpOKC0votkzgzShhjYZGf0_qxrebteYZBeBQpVUCx73Et7caNSaBckcXdtayu6dZXMVm3shHK1x-9uLOi76EA3rMmEFYvYL9brXxrxEJdeYkRhBOopL_BTKcBd4
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identifying+fatigue+of+climbing+workers+using+physiological+data+based+on+the+XGBoost+algorithm&rft.jtitle=Frontiers+in+public+health&rft.au=Xu%2C+Yonggang&rft.au=Jian%2C+Qingzhi&rft.au=Zhu%2C+Kunshuang&rft.au=Wang%2C+Mingjun&rft.date=2024-10-09&rft.eissn=2296-2565&rft.volume=12&rft.spage=1462675&rft_id=info:doi/10.3389%2Ffpubh.2024.1462675&rft_id=info%3Apmid%2F39444965&rft.externalDocID=39444965
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-2565&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-2565&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-2565&client=summon