Linking cortex and contraction-Integrating models along the corticomuscular pathway

Computational models of the neuromusculoskeletal system provide a deterministic approach to investigate input-output relationships in the human motor system. Neuromusculoskeletal models are typically used to estimate muscle activations and forces that are consistent with observed motion under health...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in physiology Vol. 14; p. 1095260
Main Authors Haggie, Lysea, Schmid, Laura, Röhrle, Oliver, Besier, Thor, McMorland, Angus, Saini, Harnoor
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 10.05.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Computational models of the neuromusculoskeletal system provide a deterministic approach to investigate input-output relationships in the human motor system. Neuromusculoskeletal models are typically used to estimate muscle activations and forces that are consistent with observed motion under healthy and pathological conditions. However, many movement pathologies originate in the brain, including stroke, cerebral palsy, and Parkinson's disease, while most neuromusculoskeletal models deal exclusively with the peripheral nervous system and do not incorporate models of the motor cortex, cerebellum, or spinal cord. An integrated understanding of motor control is necessary to reveal underlying neural-input and motor-output relationships. To facilitate the development of integrated corticomuscular motor pathway models, we provide an overview of the neuromusculoskeletal modelling landscape with a focus on integrating computational models of the motor cortex, spinal cord circuitry, -motoneurons  and skeletal muscle in regard to their role in generating voluntary muscle contraction. Further, we highlight the challenges and opportunities associated with an integrated corticomuscular pathway model, such as challenges in defining neuron connectivities, modelling standardisation, and opportunities in applying models to study emergent behaviour. Integrated corticomuscular pathway models have applications in brain-machine-interaction, education, and our understanding of neurological disease.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Jan Celichowski, Poznan University of Physical Education, Poland
Edited by: Gunnar Cedersund, Linköping University, Sweden
Reviewed by: Antonio Parziale, University of Salerno, Italy
These authors have contributed equally to this work and share first authorship
ISSN:1664-042X
1664-042X
DOI:10.3389/fphys.2023.1095260