Bacterial Modulation of Plant Ethylene Levels

A focus on the mechanisms by which ACC deaminase-containing bacteria facilitate plant growth.Bacteria that produce the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase, when present either on the surface of plant roots (rhizospheric) or within plant tissues (endophytic), play an active role...

Full description

Saved in:
Bibliographic Details
Published inPlant physiology (Bethesda) Vol. 169; no. 1; pp. 13 - 22
Main Authors Gamalero, Elisa, Glick, Bernard R.
Format Journal Article
LanguageEnglish
Published United States American Society of Plant Biologists 01.09.2015
SeriesFocus on Ethylene
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A focus on the mechanisms by which ACC deaminase-containing bacteria facilitate plant growth.Bacteria that produce the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase, when present either on the surface of plant roots (rhizospheric) or within plant tissues (endophytic), play an active role in modulating ethylene levels in plants. This enzyme activity facilitates plant growth especially in the presence of various environmental stresses. Thus, plant growth-promoting bacteria that express ACC deaminase activity protect plants from growth inhibition by flooding and anoxia, drought, high salt, the presence of fungal and bacterial pathogens, nematodes, and the presence of metals and organic contaminants. Bacteria that express ACC deaminase activity also decrease the rate of flower wilting, promote the rooting of cuttings, and facilitate the nodulation of legumes. Here, the mechanisms behind bacterial ACC deaminase facilitation of plant growth and development are discussed, and numerous examples of the use of bacteria with this activity are summarized.
AbstractList A focus on the mechanisms by which ACC deaminase-containing bacteria facilitate plant growth.Bacteria that produce the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase, when present either on the surface of plant roots (rhizospheric) or within plant tissues (endophytic), play an active role in modulating ethylene levels in plants. This enzyme activity facilitates plant growth especially in the presence of various environmental stresses. Thus, plant growth-promoting bacteria that express ACC deaminase activity protect plants from growth inhibition by flooding and anoxia, drought, high salt, the presence of fungal and bacterial pathogens, nematodes, and the presence of metals and organic contaminants. Bacteria that express ACC deaminase activity also decrease the rate of flower wilting, promote the rooting of cuttings, and facilitate the nodulation of legumes. Here, the mechanisms behind bacterial ACC deaminase facilitation of plant growth and development are discussed, and numerous examples of the use of bacteria with this activity are summarized.
A focus on the mechanisms by which ACC deaminase-containing bacteria facilitate plant growth.Bacteria that produce the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase, when present either on the surface of plant roots (rhizospheric) or within plant tissues (endophytic), play an active role in modulating ethylene levels in plants. This enzyme activity facilitates plant growth especially in the presence of various environmental stresses. Thus, plant growth-promoting bacteria that express ACC deaminase activity protect plants from growth inhibition by flooding and anoxia, drought, high salt, the presence of fungal and bacterial pathogens, nematodes, and the presence of metals and organic contaminants. Bacteria that express ACC deaminase activity also decrease the rate of flower wilting, promote the rooting of cuttings, and facilitate the nodulation of legumes. Here, the mechanisms behind bacterial ACC deaminase facilitation of plant growth and development are discussed, and numerous examples of the use of bacteria with this activity are summarized.A focus on the mechanisms by which ACC deaminase-containing bacteria facilitate plant growth.Bacteria that produce the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase, when present either on the surface of plant roots (rhizospheric) or within plant tissues (endophytic), play an active role in modulating ethylene levels in plants. This enzyme activity facilitates plant growth especially in the presence of various environmental stresses. Thus, plant growth-promoting bacteria that express ACC deaminase activity protect plants from growth inhibition by flooding and anoxia, drought, high salt, the presence of fungal and bacterial pathogens, nematodes, and the presence of metals and organic contaminants. Bacteria that express ACC deaminase activity also decrease the rate of flower wilting, promote the rooting of cuttings, and facilitate the nodulation of legumes. Here, the mechanisms behind bacterial ACC deaminase facilitation of plant growth and development are discussed, and numerous examples of the use of bacteria with this activity are summarized.
Bacterial ACC deaminase affects ethylene production and plant growth under stress. A focus on the mechanisms by which ACC deaminase-containing bacteria facilitate plant growth.Bacteria that produce the enzyme 1-aminocyclopropane-1-carboxylate ( ACC ) deaminase, when present either on the surface of plant roots (rhizospheric) or within plant tissues (endophytic), play an active role in modulating ethylene levels in plants. This enzyme activity facilitates plant growth especially in the presence of various environmental stresses. Thus, plant growth-promoting bacteria that express ACC deaminase activity protect plants from growth inhibition by flooding and anoxia, drought, high salt, the presence of fungal and bacterial pathogens, nematodes, and the presence of metals and organic contaminants. Bacteria that express ACC deaminase activity also decrease the rate of flower wilting, promote the rooting of cuttings, and facilitate the nodulation of legumes. Here, the mechanisms behind bacterial ACC deaminase facilitation of plant growth and development are discussed, and numerous examples of the use of bacteria with this activity are summarized.
Author Glick, Bernard R.
Gamalero, Elisa
Author_xml – sequence: 1
  givenname: Elisa
  surname: Gamalero
  fullname: Gamalero, Elisa
– sequence: 2
  givenname: Bernard R.
  surname: Glick
  fullname: Glick, Bernard R.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25897004$$D View this record in MEDLINE/PubMed
BookMark eNptkc1r3DAQxUXYkmy2PeWc4GMheDP6suVLoA1JW9iQHtqzkLXjxIvWciw5kP--ym62-SAgkEC_ee_NzCGZdL5DQo4ozCkFcdb3cyrnAEyJPTKlkrOcSaEmZAqQ3qBUdUAOQ1gBAOVU7JMDJlVVAogpyb8bG3Fojcuu_XJ0Jra-y3yT_Xami9llvHt02GG2wAd04TP51BgX8MvzPSN_ry7_XPzMFzc_fl18W-RWFFXM2dLW0lKsCyioEZyCNFwYa1ICC1Qwq1TJGgWcAxNlYVDWvEZkVVMqhZzPyPlWtx_rNS4tdnEwTvdDuzbDo_am1W9_uvZO3_oHLWRZ8nRm5OuzwODvRwxRr9tg0aWm0I9B0xKqkqZ4LKEnr73-m-xmlAC6BezgQxiw0baNmzkl69ZpCvppD7rvNZV6s4dUc_quZif7MX28pVch-uElgVBQPHXzD_HAkUA
CitedBy_id crossref_primary_10_3389_fsufs_2021_618092
crossref_primary_10_1007_s00203_022_03018_1
crossref_primary_10_1007_s11104_017_3360_4
crossref_primary_10_1186_s40168_018_0503_7
crossref_primary_10_3390_biology9110381
crossref_primary_10_1016_j_chemosphere_2017_12_117
crossref_primary_10_1016_j_pbi_2022_102258
crossref_primary_10_1080_07388551_2023_2183379
crossref_primary_10_1002_jobm_202000370
crossref_primary_10_1007_s11104_024_07073_z
crossref_primary_10_1007_s42452_024_05703_w
crossref_primary_10_3389_fmicb_2018_00148
crossref_primary_10_1186_s12866_019_1450_6
crossref_primary_10_1155_2022_8693479
crossref_primary_10_1002_anie_202319344
crossref_primary_10_3390_biotech13030032
crossref_primary_10_3390_microorganisms12071473
crossref_primary_10_3390_microorganisms9071533
crossref_primary_10_1007_s13205_023_03643_7
crossref_primary_10_3390_agronomy12092082
crossref_primary_10_1042_BCJ20180615
crossref_primary_10_3389_fmicb_2018_02213
crossref_primary_10_1016_j_micres_2019_02_004
crossref_primary_10_1093_pcp_pcac067
crossref_primary_10_3389_fpls_2017_00859
crossref_primary_10_3389_fpls_2019_00287
crossref_primary_10_1007_s10343_022_00804_1
crossref_primary_10_1007_s00284_021_02375_2
crossref_primary_10_1186_s40793_023_00477_x
crossref_primary_10_1007_s42729_020_00342_7
crossref_primary_10_3389_fpls_2023_1173695
crossref_primary_10_1016_j_plgene_2019_100175
crossref_primary_10_1007_s13205_022_03299_9
crossref_primary_10_1016_j_apsoil_2024_105351
crossref_primary_10_1039_C9RA00333A
crossref_primary_10_1080_01490451_2022_2027049
crossref_primary_10_3389_fmicb_2020_01149
crossref_primary_10_1186_s12864_022_08662_x
crossref_primary_10_3389_fmicb_2021_611881
crossref_primary_10_3390_microorganisms13010187
crossref_primary_10_1007_s00253_017_8550_8
crossref_primary_10_1080_01904167_2021_1952221
crossref_primary_10_3390_app10207025
crossref_primary_10_3390_plants11131654
crossref_primary_10_1007_s11356_016_7982_5
crossref_primary_10_1007_s00284_024_03962_9
crossref_primary_10_1093_plcell_koac163
crossref_primary_10_1099_ijsem_0_005215
crossref_primary_10_1007_s42398_019_00044_6
crossref_primary_10_3390_agronomy12092069
crossref_primary_10_1016_j_sajb_2017_07_007
crossref_primary_10_1007_s13199_024_00980_w
crossref_primary_10_1016_j_envres_2022_114924
crossref_primary_10_1007_s11274_017_2364_9
crossref_primary_10_1016_j_envexpbot_2020_104124
crossref_primary_10_3390_agriculture14101838
crossref_primary_10_3389_fmicb_2020_01952
crossref_primary_10_3390_agronomy11020219
crossref_primary_10_1007_s12517_023_11647_z
crossref_primary_10_3390_jox13040037
crossref_primary_10_3390_su131910986
crossref_primary_10_3390_su12156286
crossref_primary_10_1016_j_biotechadv_2023_108205
crossref_primary_10_3389_fmicb_2018_01297
crossref_primary_10_1007_s42535_020_00115_8
crossref_primary_10_1128_msystems_00766_21
crossref_primary_10_3390_microorganisms7110541
crossref_primary_10_3390_agronomy14102225
crossref_primary_10_1016_j_ecolind_2018_05_084
crossref_primary_10_3389_fpls_2022_921668
crossref_primary_10_1007_s11104_021_04865_5
crossref_primary_10_1007_s11104_023_06046_y
crossref_primary_10_33073_pjm_2021_024
crossref_primary_10_1016_j_ecoenv_2018_03_013
crossref_primary_10_1111_pce_14403
crossref_primary_10_3390_horticulturae10010012
crossref_primary_10_1016_j_micres_2021_126755
crossref_primary_10_3390_agronomy11081609
crossref_primary_10_3390_plants11202783
crossref_primary_10_1007_s42729_024_02121_0
crossref_primary_10_3390_soilsystems8030087
crossref_primary_10_1007_s11104_017_3320_z
crossref_primary_10_3390_microorganisms8040541
crossref_primary_10_3389_fmicb_2021_752288
crossref_primary_10_3390_horticulturae10070732
crossref_primary_10_1104_pp_15_01242
crossref_primary_10_1007_s11104_019_04202_x
crossref_primary_10_22207_JPAM_17_3_59
crossref_primary_10_3389_fmicb_2020_01619
crossref_primary_10_3390_plants12203530
crossref_primary_10_3389_fsufs_2022_768250
crossref_primary_10_1038_s41598_024_73818_6
crossref_primary_10_1038_s41598_019_52567_x
crossref_primary_10_1186_s12870_022_03859_4
crossref_primary_10_1007_s11274_020_2804_9
crossref_primary_10_1080_15226514_2018_1523870
crossref_primary_10_3389_fmicb_2016_01966
crossref_primary_10_1134_S0026261720010117
crossref_primary_10_1016_j_jare_2021_11_020
crossref_primary_10_3389_fpls_2019_01072
crossref_primary_10_1088_1755_1315_976_1_012037
crossref_primary_10_3390_agronomy13051226
crossref_primary_10_1007_s13205_019_1911_5
crossref_primary_10_1016_j_chemosphere_2022_136635
crossref_primary_10_1016_j_apsoil_2021_104142
crossref_primary_10_3389_fsufs_2021_617157
crossref_primary_10_3390_ijms22063154
crossref_primary_10_1007_s11368_021_03123_6
crossref_primary_10_14393_BJ_v40n0a2024_73324
crossref_primary_10_3934_microbiol_2017_3_502
crossref_primary_10_1007_s13205_019_1809_2
crossref_primary_10_1038_s43017_022_00366_w
crossref_primary_10_7717_peerj_16836
crossref_primary_10_1264_jsme2_ME20024
crossref_primary_10_3390_microorganisms8071037
crossref_primary_10_3390_plants10112544
crossref_primary_10_38001_ijlsb_492415
crossref_primary_10_1371_journal_pone_0308744
crossref_primary_10_3389_fmicb_2019_01506
crossref_primary_10_3390_microorganisms11020502
crossref_primary_10_3390_agronomy9100655
crossref_primary_10_3390_microorganisms9071491
crossref_primary_10_3389_fmicb_2021_616828
crossref_primary_10_1093_femsec_fiaa062
crossref_primary_10_4014_jmb_1911_11063
crossref_primary_10_1111_aab_12420
crossref_primary_10_1139_cjm_2022_0073
crossref_primary_10_1038_s41396_022_01288_7
crossref_primary_10_3390_microorganisms9122467
crossref_primary_10_3389_fpls_2022_978066
crossref_primary_10_3389_fpls_2024_1423949
crossref_primary_10_1111_tpj_15135
crossref_primary_10_13080_z_a_2020_107_014
crossref_primary_10_3389_fmicb_2025_1562341
crossref_primary_10_3390_plants12112197
crossref_primary_10_1016_j_rhisph_2020_100241
crossref_primary_10_3390_metabo11070457
crossref_primary_10_1038_s41598_022_14570_7
crossref_primary_10_1016_j_micres_2024_127895
crossref_primary_10_1016_j_scitotenv_2020_140682
crossref_primary_10_3389_fspas_2021_735834
crossref_primary_10_3390_horticulturae6040081
crossref_primary_10_1007_s12298_023_01328_2
crossref_primary_10_1016_j_csbj_2022_11_046
crossref_primary_10_47836_pjtas_44_2_01
crossref_primary_10_3390_ijms222111461
crossref_primary_10_1002_mbo3_801
crossref_primary_10_1007_s13213_017_1285_z
crossref_primary_10_1016_j_jia_2023_11_031
crossref_primary_10_34133_2022_9858049
crossref_primary_10_18470_1992_1098_2021_4_86_103
crossref_primary_10_1186_s12870_023_04259_y
crossref_primary_10_1007_s00425_022_03997_x
crossref_primary_10_1016_j_jbiotec_2020_10_024
crossref_primary_10_3389_fmicb_2023_1132770
crossref_primary_10_1264_jsme2_ME19147
crossref_primary_10_1007_s00284_023_03570_z
crossref_primary_10_3390_plants12030637
crossref_primary_10_1080_00103624_2023_2276265
crossref_primary_10_1111_pbi_14554
crossref_primary_10_3390_plants13172371
crossref_primary_10_1016_j_micres_2020_126612
crossref_primary_10_1080_01904167_2023_2206425
crossref_primary_10_3389_fmicb_2021_743512
crossref_primary_10_3389_fpls_2016_00070
crossref_primary_10_3389_fpls_2018_00004
crossref_primary_10_1016_j_envexpbot_2016_10_015
crossref_primary_10_1134_S0003683822010094
crossref_primary_10_1590_0103_8478cr20230151
crossref_primary_10_1371_journal_pone_0164635
crossref_primary_10_3390_agronomy9110712
crossref_primary_10_3390_agronomy14092172
crossref_primary_10_3390_microorganisms10122462
crossref_primary_10_3390_plants10112342
crossref_primary_10_1007_s00253_019_10045_4
crossref_primary_10_1016_j_scitotenv_2022_160478
crossref_primary_10_3390_plants12061395
crossref_primary_10_14720_aas_2019_113_1_16
crossref_primary_10_3389_fpls_2018_00114
crossref_primary_10_3390_microorganisms12030448
crossref_primary_10_1016_j_crmicr_2024_100285
crossref_primary_10_3389_fpls_2015_01121
crossref_primary_10_1007_s44279_024_00131_1
crossref_primary_10_3390_life13051102
crossref_primary_10_3390_horticulturae4040053
crossref_primary_10_1128_mra_00617_22
crossref_primary_10_3390_plants8020042
crossref_primary_10_1007_s00344_023_11163_0
crossref_primary_10_1186_s12870_023_04600_5
crossref_primary_10_3390_plants10051012
crossref_primary_10_1016_j_ecoenv_2018_03_063
crossref_primary_10_15421_022014
crossref_primary_10_1002_ange_202319344
crossref_primary_10_3390_ijerph18052435
crossref_primary_10_1016_j_crmicr_2021_100094
crossref_primary_10_1104_pp_15_00672
crossref_primary_10_1007_s12088_024_01225_6
crossref_primary_10_1007_s00203_021_02204_x
crossref_primary_10_1002_fes3_79
crossref_primary_10_1016_j_micres_2021_126809
crossref_primary_10_3390_jox14010021
crossref_primary_10_1111_tpj_16674
crossref_primary_10_1007_s40626_022_00237_1
crossref_primary_10_18393_ejss_1331974
crossref_primary_10_3389_fpls_2022_894985
crossref_primary_10_1038_s41396_023_01428_7
crossref_primary_10_1186_s12870_023_04403_8
crossref_primary_10_3389_fsufs_2021_606158
crossref_primary_10_1016_j_postharvbio_2023_112546
crossref_primary_10_3389_fgene_2017_00006
crossref_primary_10_1039_C7CS00664K
crossref_primary_10_1016_j_apsoil_2020_103784
crossref_primary_10_1016_j_postharvbio_2024_112969
crossref_primary_10_1016_j_micres_2019_01_004
crossref_primary_10_3390_app10175767
crossref_primary_10_3390_plants8040097
crossref_primary_10_1080_15592324_2020_1763005
crossref_primary_10_3389_fmicb_2018_03049
crossref_primary_10_22207_JPAM_18_1_13
crossref_primary_10_3390_agronomy11122482
Cites_doi 10.1146/annurev.arplant.56.032604.144214
10.1139/w11-006
10.1139/w05-094
10.4141/P03-087
10.1016/j.soilbio.2009.11.024
10.1111/j.1574-6941.2008.00485.x
10.1139/m96-032
10.1111/j.1574-6941.2007.00410.x
10.1111/j.1574-6968.2012.02648.x
10.1007/s00344-013-9347-3
10.1016/j.plaphy.2011.01.015
10.1016/j.tplants.2006.02.005
10.1111/1574-6976.12028
10.1016/S0168-1656(01)00332-7
10.1016/j.bbapap.2004.09.015
10.1139/m97-118
10.1089/ind.2006.2.194
10.1186/2193-1801-2-6
10.1007/s10658-007-9162-4
10.1134/S0003683806020013
10.1016/j.jprot.2013.03.011
10.1016/j.biotechadv.2010.02.001
10.1094/MPMI-08-11-0213
10.1016/j.biotechadv.2006.01.006
10.1128/AEM.71.11.7556-7558.2005
10.1371/journal.pone.0038122
10.1016/j.micres.2013.09.009
10.1371/journal.pone.0017968
10.1016/j.plaphy.2012.07.008
10.1146/annurev.micro.61.080706.093316
10.1104/pp.112.212597
10.1016/j.plantsci.2003.10.025
10.1007/s11274-007-9572-7
10.1111/j.1365-2672.2009.04414.x
10.1007/s13199-012-0177-z
10.1021/es801540h
10.5424/sjar/2013111-2686
10.1111/j.1574-6941.2006.00082.x
10.1128/AEM.64.10.3663-3668.1998
10.1016/j.tplants.2006.02.006
10.1016/S1002-0160(08)60055-7
10.1093/oxfordjournals.jbchem.a022050
10.1128/AEM.71.11.7271-7278.2005
10.1139/W09-010
10.1111/j.1462-2920.2004.00658.x
10.2136/sssaj2008.0240
10.1139/w01-014
10.1007/s00248-008-9407-6
10.1139/m95-015
10.1146/annurev.publhealth.25.101802.123020
10.1104/pp.106.080093
10.1128/AEM.02745-05
10.1128/JB.173.17.5260-5265.1991
10.1016/j.plaphy.2004.05.009
10.3390/ijerph8051402
10.2136/sssaj2000.6451644x
10.3732/ajb.1200572
10.1006/jtbi.1997.0532
10.1016/j.plaphy.2014.04.003
10.1104/pp.65.2.322
10.1016/S1002-0160(14)60032-1
10.1007/s13199-012-0162-6
10.1016/j.envpol.2003.09.031
10.1016/S0045-6535(99)00412-9
10.1016/j.jplph.2014.03.007
10.1111/j.1365-2672.2012.05409.x
10.1128/AEM.69.8.4396-4402.2003
10.1007/s10526-012-9500-0
10.1139/w11-044
10.1016/j.plantsci.2012.03.008
10.1038/nbt.2387
10.1007/s11104-013-1981-9
10.1016/j.envpol.2007.02.019
10.1080/15226514.2013.821447
10.1139/w00-128
10.3389/fpls.2013.00165
10.1007/PL00007047
10.2307/3545919
10.1007/978-1-4020-6014-4_79
10.1371/journal.pone.0099168
10.1139/w05-027
10.1111/j.1365-3059.2010.02326.x
10.1111/j.1574-6941.2008.00474.x
10.1007/s11104-012-1402-5
10.1139/m94-162
10.1139/w00-071
10.1016/S0038-0717(97)00187-9
10.1111/j.1469-8137.2008.02657.x
10.1016/S0981-9428(00)01212-2
10.1016/j.pbi.2011.04.004
ContentType Journal Article
Copyright Copyright © 2015 American Society of Plant Biologists
2015 American Society of Plant Biologists. All Rights Reserved.
2015 American Society of Plant Biologists. All Rights Reserved. 2015
Copyright_xml – notice: Copyright © 2015 American Society of Plant Biologists
– notice: 2015 American Society of Plant Biologists. All Rights Reserved.
– notice: 2015 American Society of Plant Biologists. All Rights Reserved. 2015
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1104/pp.15.00284
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Botany
EISSN 1532-2548
EndPage 22
ExternalDocumentID PMC4577377
25897004
10_1104_pp_15_00284
24806377
Genre Journal Article
Review
GroupedDBID ---
-DZ
-~X
0R~
123
29O
2AX
2WC
2~F
4.4
5VS
5WD
85S
8R4
8R5
AAHBH
AAHKG
AAPXW
AARHZ
AAUAY
AAVAP
AAXTN
ABBHK
ABDFA
ABEJV
ABGNP
ABJNI
ABMNT
ABPLY
ABPPZ
ABPTD
ABTLG
ABVGC
ABXSQ
ABXVV
ABXZS
ACBTR
ACGOD
ACHIC
ACNCT
ACPRK
ACUFI
ADBBV
ADGKP
ADIPN
ADIYS
ADQBN
ADULT
ADVEK
ADYHW
AEEJZ
AENEX
AEUPB
AFAZZ
AFFZL
AFGWE
AFRAH
AGORE
AGUYK
AHMBA
AHXOZ
AICQM
AJBYB
AJEEA
AJNCP
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALXQX
AQVQM
ATGXG
BAWUL
BCRHZ
BEYMZ
BTFSW
CBGCD
CS3
DATOO
DIK
DU5
E3Z
EBS
ECGQY
EJD
F5P
FLUFQ
FOEOM
H13
IPSME
JAAYA
JBMMH
JBS
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
JXSIZ
KOP
KQ8
KSI
KSN
MV1
NOMLY
NU-
OBOKY
OJZSN
OK1
OWPYF
P2P
Q2X
RHI
ROX
RPB
RWL
RXW
SA0
TAE
TN5
TR2
W8F
WH7
WOQ
XSW
YBU
YKV
YNT
YSK
YZZ
ZCA
ZCN
~02
~KM
AAYXX
CITATION
3V.
53G
7X2
7X7
88A
88E
88I
8AF
8AO
8CJ
8FE
8FH
8FI
8FJ
8FW
8G5
AAWDT
AAYJJ
ABUWG
ACFRR
ACIPB
ACUTJ
ACZBC
ADYWZ
AEUYN
AFFDN
AFKRA
AFYAG
AGMDO
AIDAL
AIDBO
ANFBD
AQDSO
AS~
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
BPHCQ
BVXVI
C1A
CCPQU
CGR
CUY
CVF
D1J
DOOOF
DWQXO
ECM
EIF
FYUFA
GNUQQ
GTFYD
GUQSH
HCIFZ
HMCUK
HTVGU
ISR
JSODD
LK8
LU7
M0K
M0L
M1P
M2O
M2P
M2Q
M7P
MVM
NPM
P0-
PQQKQ
PROAC
PSQYO
QZG
RHF
RPM
S0X
TCN
UBC
UKHRP
UKR
VQA
VXZ
WHG
XOL
Y6R
ZCG
7X8
5PM
ID FETCH-LOGICAL-c469t-2dcb5c1eb6061a43105a34aca000c0142c8872f803302476ae5b3bee29f788e33
ISSN 0032-0889
1532-2548
IngestDate Thu Aug 21 14:31:35 EDT 2025
Fri Jul 11 07:40:17 EDT 2025
Wed Feb 19 01:58:44 EST 2025
Tue Jul 01 03:08:08 EDT 2025
Thu Apr 24 23:11:02 EDT 2025
Fri May 30 11:58:51 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
2015 American Society of Plant Biologists. All Rights Reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c469t-2dcb5c1eb6061a43105a34aca000c0142c8872f803302476ae5b3bee29f788e33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
www.plantphysiol.org/cgi/doi/10.1104/pp.15.00284
OpenAccessLink http://doi.org/10.1104/pp.15.00284
PMID 25897004
PQID 1709716062
PQPubID 23479
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4577377
proquest_miscellaneous_1709716062
pubmed_primary_25897004
crossref_citationtrail_10_1104_pp_15_00284
crossref_primary_10_1104_pp_15_00284
jstor_primary_24806377
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-09-01
PublicationDateYYYYMMDD 2015-09-01
PublicationDate_xml – month: 09
  year: 2015
  text: 2015-09-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationSeriesTitle Focus on Ethylene
PublicationTitle Plant physiology (Bethesda)
PublicationTitleAlternate Plant Physiol
PublicationYear 2015
Publisher American Society of Plant Biologists
Publisher_xml – name: American Society of Plant Biologists
References Glick (2021052607463875900_b47) 1998; 190
Ali (2021052607463875900_b5) 2012; 113
Abeles (2021052607463875900_b1) 1992
Chi (2021052607463875900_b23) 2005; 71
Gamalero (2021052607463875900_b37) 2008; 64
Mayak (2021052607463875900_b71) 2004; 166
Indiragandhi (2021052607463875900_b59) 2008; 24
Ma (2021052607463875900_b69) 2003; 69
Sheehy (2021052607463875900_b97) 1991; 173
Hontzeas (2021052607463875900_b55) 2006; 24
Wang (2021052607463875900_b104) 2000; 46
Ramadoss (2021052607463875900_b89) 2013; 2
Thakore (2021052607463875900_b100) 2006; 2
Gutiérrez-Zamora (2021052607463875900_b50) 2001; 91
Bashan (2021052607463875900_b14) 1998; 30
Bal (2021052607463875900_b10) 2013; 366
Zafarul Hye (2021052607463875900_b108) 2014; 16
Leach (2021052607463875900_b64) 2008; 151
Bradford (2021052607463875900_b19) 1980; 65
Tsakelova (2021052607463875900_b110) 2006; 42
Nascimento (2021052607463875900_b78) 2012; 336
Lupway (2021052607463875900_b68) 2004; 84
Prayitno (2021052607463875900_b87) 2006; 142
Sarma (2021052607463875900_b95) 2014; 377
Nadeem (2021052607463875900_b77) 2010; 74
Bayliss (2021052607463875900_b15) 1997; 43
Karthikeyan (2021052607463875900_b61) 2012; 56
Li (2021052607463875900_b65) 2013; 84
El-Tarabily (2021052607463875900_b32) 2013; 103
Pilon-Smits (2021052607463875900_b86) 2005; 56
Montero-Calasanz (2021052607463875900_b75) 2013; 11
van Loon (2021052607463875900_b103) 2006; 11
Glick (2021052607463875900_b46) 2007; 119
2021052607463875900_b35
Siddikee (2021052607463875900_b98) 2011; 49
Barnawal (2021052607463875900_b11) 2012; 58
Zamioudis (2021052607463875900_b109) 2013; 162
Shakir (2021052607463875900_b96) 2012; 31
Hirsch (2021052607463875900_b52) 2012; 30
Hao (2021052607463875900_b51) 2011; 57
Gamalero (2021052607463875900_b38) 2010; 108
Ahmad (2021052607463875900_b2) 2011; 57
García-Fraile (2021052607463875900_b41) 2012; 7
Else (2021052607463875900_b31) 1998; 25
2021052607463875900_b40
Glick (2021052607463875900_b42) 1995; 41
Mayak (2021052607463875900_b72) 2004; 42
Penrose (2021052607463875900_b84) 2001; 47
Honma (2021052607463875900_b53) 1983; 47
Gurska (2021052607463875900_b49) 2009; 43
Barnawal (2021052607463875900_b13) 2013; 32
2021052607463875900_b44
Reed (2021052607463875900_b90) 2005; 51
Reinhold-Hurek (2021052607463875900_b93) 2011; 14
Gamalero (2021052607463875900_b36) 2009; 55
Wilson (2021052607463875900_b105) 1995; 72
Glick (2021052607463875900_b43) 2010; 28
Bakker (2021052607463875900_b9) 2013; 4
Hontzeas (2021052607463875900_b57) 2004; 1703
Blaha (2021052607463875900_b18) 2006; 56
Pierik (2021052607463875900_b85) 2006; 11
Honma (2021052607463875900_b54) 1978; 42
Minami (2021052607463875900_b74) 1998; 123
Murset (2021052607463875900_b76) 2012; 57
Czarny (2021052607463875900_b27) 2007
Li (2021052607463875900_b66) 2005; 51
Chookietwattana (2021052607463875900_b24) 2012; 31
Gamalero (2021052607463875900_b39) 2010
2021052607463875900_b107
2021052607463875900_b106
Gaiero (2021052607463875900_b33) 2013; 100
Barnawal (2021052607463875900_b12) 2014; 171
Nascimento (2021052607463875900_b79) 2014; 9
Amutharaj (2021052607463875900_b7) 2012; 1
Duan (2021052607463875900_b30) 2009; 57
Chang (2021052607463875900_b22) 2014; 16
Prigent-Combaret (2021052607463875900_b88) 2008; 65
Burd (2021052607463875900_b21) 1998; 64
Khan (2021052607463875900_b62) 2000; 41
Danhorn (2021052607463875900_b29) 2007; 61
Damalas (2021052607463875900_b28) 2011; 8
Alavanja (2021052607463875900_b4) 2004; 25
Biswas (2021052607463875900_b17) 2000; 64
Glick (2021052607463875900_b45) 2014; 169
Nukui (2021052607463875900_b81) 2006; 72
Kuklinsky-Sobral (2021052607463875900_b63) 2004; 6
Hontzeas (2021052607463875900_b56) 2005; 71
Akhgar (2021052607463875900_b3) 2014; 24
Patten (2021052607463875900_b82) 1996; 42
Grichko (2021052607463875900_b48) 2001; 39
Nascimento (2021052607463875900_b80) 2013; 58
Reed (2021052607463875900_b91) 2013
Jacobson (2021052607463875900_b60) 1994; 40
Mayak (2021052607463875900_b70) 1999; 18
Arshad (2021052607463875900_b8) 2008; 18
Belimov (2021052607463875900_b16) 2009; 181
Toklikishvili (2021052607463875900_b102) 2010; 59
Mendes (2021052607463875900_b73) 2013; 37
Ali (2021052607463875900_b6) 2014; 80
Sairam (2021052607463875900_b94) 2004; 86
Galland (2021052607463875900_b34) 2012; 190
Compant (2021052607463875900_b26) 2008; 63
Reid (2021052607463875900_b92) 1991
Bruto (2021052607463875900_b20) 2014
Huang (2021052607463875900_b58) 2004; 130
Penrose (2021052607463875900_b83) 2001; 47
Timmusk (2021052607463875900_b101) 2011; 6
Compant (2021052607463875900_b25) 2010; 42
Stearns (2021052607463875900_b99) 2012; 25
22608521 - Plant Sci. 2012 Jul;190:74-81
23755059 - Front Plant Sci. 2013 May 30;4:165
16820494 - Appl Environ Microbiol. 2006 Jul;72(7):4964-9
16524684 - Biotechnol Adv. 2006 Jul-Aug;24(4):420-6
18081592 - FEMS Microbiol Ecol. 2008 Jan;63(1):84-93
20149857 - Biotechnol Adv. 2010 May-Jun;28(3):367-74
25179219 - Sci Rep. 2014;4:6261
11566384 - J Biotechnol. 2001 Oct 4;91(2-3):117-26
21300550 - Plant Physiol Biochem. 2011 Apr;49(4):427-34
10819202 - Chemosphere. 2000 Jul;41(1-2):197-207
16269768 - Appl Environ Microbiol. 2005 Nov;71(11):7271-8
24095256 - Microbiol Res. 2014 Jan 20;169(1):30-9
21491979 - Can J Microbiol. 2011 Apr;57(4):278-86
16689877 - FEMS Microbiol Ecol. 2006 Jun;56(3):455-70
9473391 - J Theor Biol. 1998 Jan 7;190(1):63-8
18400007 - FEMS Microbiol Ecol. 2008 Aug;65(2):202-19
15246071 - Plant Physiol Biochem. 2004 Jun;42(6):565-72
16121231 - Can J Microbiol. 2005 Jun;51(6):511-4
19483778 - Can J Microbiol. 2009 May;55(5):501-14
24933907 - Int J Phytoremediation. 2014;16(7-12):1133-47
19566717 - J Appl Microbiol. 2010 Jan;108(1):236-45
12902221 - Appl Environ Microbiol. 2003 Aug;69(8):4396-402
16661182 - Plant Physiol. 1980 Feb;65(2):322-6
21770816 - Can J Microbiol. 2011 Jul;57(7):578-89
23542149 - Plant Physiol. 2013 May;162(1):304-18
24278762 - Scientifica (Cairo). 2012;2012:963401
17604888 - Environ Pollut. 2008 Jan;151(1):139-47
19121036 - New Phytol. 2009 Jan;181(2):413-23
15862088 - Annu Rev Plant Biol. 2005;56:15-39
15560822 - Environ Microbiol. 2004 Dec;6(12):1244-51
23051815 - Nat Biotechnol. 2012 Oct;30(10):961-2
18548183 - Microb Ecol. 2009 Apr;57(3):423-36
17506679 - Annu Rev Microbiol. 2007;61:401-22
11068676 - Can J Microbiol. 2000 Oct;46(10):898-907
9336944 - Can J Microbiol. 1997 Sep;43(9):809-18
21448272 - PLoS One. 2011;6(3):e17968
9604000 - J Biochem. 1998 Jun;123(6):1112-8
22675441 - PLoS One. 2012;7(5):e38122
10552131 - J Plant Growth Regul. 1999 Oct;18(2):49-53
15015917 - Annu Rev Public Health. 2004;25:155-97
16269802 - Appl Environ Microbiol. 2005 Nov;71(11):7556-8
16531096 - Trends Plant Sci. 2006 Apr;11(4):184-91
21536480 - Curr Opin Plant Biol. 2011 Aug;14(4):435-43
22846334 - Plant Physiol Biochem. 2012 Sep;58:227-35
24769617 - Plant Physiol Biochem. 2014 Jul;80:160-7
21655127 - Int J Environ Res Public Health. 2011 May;8(5):1402-19
15049453 - Can J Microbiol. 2001 Jan;47(1):77-80
1885510 - J Bacteriol. 1991 Sep;173(17):5260-5
23935113 - Am J Bot. 2013 Sep;100(9):1738-50
8868227 - Can J Microbiol. 1996 Mar;42(3):207-20
16462865 - Can J Microbiol. 2005 Dec;51(12):1061-9
16531097 - Trends Plant Sci. 2006 Apr;11(4):176-83
24913045 - J Plant Physiol. 2014 Jul 1;171(11):884-94
15588698 - Biochim Biophys Acta. 2004 Dec 1;1703(1):11-9
22846039 - FEMS Microbiol Lett. 2012 Nov;336(1):26-37
19603664 - Environ Sci Technol. 2009 Jun 15;43(12):4472-9
24905353 - PLoS One. 2014;9(6):e99168
11358177 - Can J Microbiol. 2001 Apr;47(4):368-72
23790204 - FEMS Microbiol Rev. 2013 Sep;37(5):634-63
22816486 - J Appl Microbiol. 2012 Nov;113(5):1139-44
23568019 - J Proteomics. 2013 Jun 12;84:119-31
15182977 - Environ Pollut. 2004 Aug;130(3):465-76
16761564 - Prikl Biokhim Mikrobiol. 2006 Mar-Apr;42(2):133-43
9758782 - Appl Environ Microbiol. 1998 Oct;64(10):3663-8
23449812 - Springerplus. 2013 Dec;2(1):6
16844840 - Plant Physiol. 2006 Sep;142(1):168-80
22352713 - Mol Plant Microbe Interact. 2012 May;25(5):668-76
18400004 - FEMS Microbiol Ecol. 2008 Jun;64(3):459-67
References_xml – volume: 56
  start-page: 15
  year: 2005
  ident: 2021052607463875900_b86
  article-title: Phytoremediation
  publication-title: Annu Rev Plant Biol
  doi: 10.1146/annurev.arplant.56.032604.144214
– volume: 57
  start-page: 278
  year: 2011
  ident: 2021052607463875900_b51
  article-title: An ACC deaminase containing A. tumefaciens strain D3 shows biocontrol activity to crown gall disease
  publication-title: Can J Microbiol
  doi: 10.1139/w11-006
– volume: 51
  start-page: 1061
  year: 2005
  ident: 2021052607463875900_b90
  article-title: Growth of canola (Brassica napus) in the presence of plant growth-promoting bacteria and either copper or polycyclic aromatic hydrocarbons
  publication-title: Can J Microbiol
  doi: 10.1139/w05-094
– volume: 84
  start-page: 37
  year: 2004
  ident: 2021052607463875900_b68
  article-title: Endophytic rhizobia in barley, wheat, and canola roots
  publication-title: Can J Plant Sci
  doi: 10.4141/P03-087
– volume: 42
  start-page: 669
  year: 2010
  ident: 2021052607463875900_b25
  article-title: Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2009.11.024
– ident: 2021052607463875900_b35
– volume: 64
  start-page: 459
  year: 2008
  ident: 2021052607463875900_b37
  article-title: Synergistic interactions between the ACC deaminase-producing bacterium Pseudomonas putida UW4 and the AM fungus Gigaspora rosea positively affect cucumber plant growth
  publication-title: FEMS Microbiol Ecol
  doi: 10.1111/j.1574-6941.2008.00485.x
– volume: 42
  start-page: 207
  year: 1996
  ident: 2021052607463875900_b82
  article-title: Bacterial biosynthesis of indole-3-acetic acid
  publication-title: Can J Microbiol
  doi: 10.1139/m96-032
– ident: 2021052607463875900_b106
– volume: 63
  start-page: 84
  year: 2008
  ident: 2021052607463875900_b26
  article-title: Endophytic colonization of Vitis vinifera L. by Burkholderia phytofirmans strain PsJN: from the rhizosphere to inflorescence tissues
  publication-title: FEMS Microbiol Ecol
  doi: 10.1111/j.1574-6941.2007.00410.x
– volume: 336
  start-page: 26
  year: 2012
  ident: 2021052607463875900_b78
  article-title: ACC deaminase genes are conserved among Mesorhizobium species able to nodulate the same host plant
  publication-title: FEMS Microbiol Lett
  doi: 10.1111/j.1574-6968.2012.02648.x
– volume: 32
  start-page: 809
  year: 2013
  ident: 2021052607463875900_b13
  article-title: ACC deaminase-containing Bacillus subtilis reduces stress ethylene-induced damage and improves mycorrhizal colonization and rhizobial nodulation in Trigonella foenum-graecum under drought stress
  publication-title: J Plant Growth Regul
  doi: 10.1007/s00344-013-9347-3
– start-page: 763
  volume-title: Handbook of Phytoremediation.
  year: 2010
  ident: 2021052607463875900_b39
  article-title: Bacterial ACC deaminase and IAA: interactions and consequences for plant growth in polluted environments
– volume: 49
  start-page: 427
  year: 2011
  ident: 2021052607463875900_b98
  article-title: Enhancement of growth and salt tolerance of red pepper seedlings (Capsicum annuum L.) by regulating stress ethylene synthesis with halotolerant bacteria containing ACC deaminase activity
  publication-title: Plant Physiol Biochem
  doi: 10.1016/j.plaphy.2011.01.015
– volume: 11
  start-page: 184
  year: 2006
  ident: 2021052607463875900_b103
  article-title: Ethylene as a modulator of disease resistance in plants
  publication-title: Trends Plant Sci
  doi: 10.1016/j.tplants.2006.02.005
– volume: 37
  start-page: 634
  year: 2013
  ident: 2021052607463875900_b73
  article-title: The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms
  publication-title: FEMS Microbiol Rev
  doi: 10.1111/1574-6976.12028
– volume: 91
  start-page: 117
  year: 2001
  ident: 2021052607463875900_b50
  article-title: Natural endophytic association between Rhizobium etli and maize (Zea mays L.)
  publication-title: J Biotechnol
  doi: 10.1016/S0168-1656(01)00332-7
– volume: 1703
  start-page: 11
  year: 2004
  ident: 2021052607463875900_b57
  article-title: Expression and characterization of 1-aminocyclopropane-1-carboxylate deaminase from the rhizobacterium Pseudomonas putida UW4: a key enzyme in bacterial plant growth promotion
  publication-title: Biochim Biophys Acta
  doi: 10.1016/j.bbapap.2004.09.015
– volume: 43
  start-page: 809
  year: 1997
  ident: 2021052607463875900_b15
  article-title: Bacterial genetic loci implicated in the Pseudomonas putida GR12-2R3-anola mutualism: identification of an exudate-inducible sugar transporter
  publication-title: Can J Microbiol
  doi: 10.1139/m97-118
– ident: 2021052607463875900_b44
– volume: 2
  start-page: 194
  year: 2006
  ident: 2021052607463875900_b100
  article-title: The biopesticide market for global agricultural use
  publication-title: Ind Biotechnol (New Rochelle NY)
  doi: 10.1089/ind.2006.2.194
– volume: 2
  start-page: 6
  year: 2013
  ident: 2021052607463875900_b89
  article-title: Mitigation of salt stress in wheat seedlings by halotolerant bacteria isolated from saline habitats
  publication-title: Springerplus
  doi: 10.1186/2193-1801-2-6
– volume: 119
  start-page: 329
  year: 2007
  ident: 2021052607463875900_b46
  article-title: Promotion of plant growth by ACC deaminase-containing soil bacteria
  publication-title: Eur J Plant Pathol
  doi: 10.1007/s10658-007-9162-4
– volume: 42
  start-page: 117
  year: 2006
  ident: 2021052607463875900_b110
  article-title: Microbial producers of plant growth stimulators and their practical use: a review.
  publication-title: Appl Biochem Microbiol
  doi: 10.1134/S0003683806020013
– volume: 84
  start-page: 119
  year: 2013
  ident: 2021052607463875900_b65
  article-title: Identification of plant growth-promoting bacteria-responsive proteins in cucumber roots under hypoxic stress using a proteomic approach
  publication-title: J Proteomics
  doi: 10.1016/j.jprot.2013.03.011
– volume: 28
  start-page: 367
  year: 2010
  ident: 2021052607463875900_b43
  article-title: Using soil bacteria to facilitate phytoremediation
  publication-title: Biotechnol Adv
  doi: 10.1016/j.biotechadv.2010.02.001
– volume: 25
  start-page: 668
  year: 2012
  ident: 2021052607463875900_b99
  article-title: Effects of bacterial ACC deaminase on Brassica napus gene expression
  publication-title: Mol Plant Microbe Interact
  doi: 10.1094/MPMI-08-11-0213
– volume: 24
  start-page: 420
  year: 2006
  ident: 2021052607463875900_b55
  article-title: Reaction mechanisms of the bacterial enzyme 1-aminocyclopropane-1-carboxylate deaminase
  publication-title: Biotechnol Adv
  doi: 10.1016/j.biotechadv.2006.01.006
– volume: 71
  start-page: 7556
  year: 2005
  ident: 2021052607463875900_b56
  article-title: Evidence for horizontal gene transfer (HGT) of ACC deaminase genes
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.71.11.7556-7558.2005
– volume: 31
  start-page: 30
  year: 2012
  ident: 2021052607463875900_b24
  article-title: Selection of efficient salt-tolerant bacteria containing ACC deaminase for promotion of tomato growth under salinity stress
  publication-title: Soil Environ
– volume: 7
  start-page: e38122
  year: 2012
  ident: 2021052607463875900_b41
  article-title: Rhizobium promotes non-legumes growth and quality in several production steps: towards a biofertilization of edible raw vegetables healthy for humans
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0038122
– volume: 169
  start-page: 30
  year: 2014
  ident: 2021052607463875900_b45
  article-title: Bacteria with ACC deaminase can promote plant growth and help to feed the world
  publication-title: Microbiol Res
  doi: 10.1016/j.micres.2013.09.009
– volume: 6
  start-page: e17968
  year: 2011
  ident: 2021052607463875900_b101
  article-title: Bacterial distribution in the rhizosphere of wild barley under contrasting microclimates
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0017968
– volume: 58
  start-page: 227
  year: 2012
  ident: 2021052607463875900_b11
  article-title: 1-Aminocyclopropane-1-carboxylic acid (ACC) deaminase-containing rhizobacteria protect Ocimum sanctum plants during waterlogging stress via reduced ethylene generation
  publication-title: Plant Physiol Biochem
  doi: 10.1016/j.plaphy.2012.07.008
– volume: 61
  start-page: 401
  year: 2007
  ident: 2021052607463875900_b29
  article-title: Biofilm formation by plant-associated bacteria
  publication-title: Annu Rev Microbiol
  doi: 10.1146/annurev.micro.61.080706.093316
– volume: 162
  start-page: 304
  year: 2013
  ident: 2021052607463875900_b109
  article-title: Unraveling root developmental programs initiated by beneficial Pseudomonas spp. bacteria
  publication-title: Plant Physiol
  doi: 10.1104/pp.112.212597
– volume: 166
  start-page: 525
  year: 2004
  ident: 2021052607463875900_b71
  article-title: Plant growth-promoting bacteria that confer resistance to water stress in tomato and pepper
  publication-title: Plant Sci
  doi: 10.1016/j.plantsci.2003.10.025
– volume: 24
  start-page: 1037
  year: 2008
  ident: 2021052607463875900_b59
  article-title: Induction of defense responses in tomato against Pseudomonas syringae pv. tomato by regulating the stress ethylene level with Methylobacterium oryzae CBMB20 containing 1-aminocyclopropane-1-carboxylate deaminase
  publication-title: World J Microbiol Biotechnol
  doi: 10.1007/s11274-007-9572-7
– volume: 108
  start-page: 236
  year: 2010
  ident: 2021052607463875900_b38
  article-title: Interactions between Pseudomonas putida UW4 and Gigaspora rosea BEG9 and their consequences for the growth of cucumber under salt-stress conditions
  publication-title: J Appl Microbiol
  doi: 10.1111/j.1365-2672.2009.04414.x
– volume: 57
  start-page: 43
  year: 2012
  ident: 2021052607463875900_b76
  article-title: Disparate role of rhizobial ACC deaminase in root-nodule symbioses
  publication-title: Symbiosis
  doi: 10.1007/s13199-012-0177-z
– volume: 43
  start-page: 4472
  year: 2009
  ident: 2021052607463875900_b49
  article-title: Field test of a multi-process phytoremediation system at a petroleum sludge contaminated land farm
  publication-title: Environ Sci Technol
  doi: 10.1021/es801540h
– volume-title: Ethylene in Plant Biology
  year: 1992
  ident: 2021052607463875900_b1
– volume: 11
  start-page: 146
  year: 2013
  ident: 2021052607463875900_b75
  article-title: Alternative rooting induction of semi-hardwood olive cuttings by several auxin-producing bacteria for organic agriculture systems
  publication-title: Span J Agric Res
  doi: 10.5424/sjar/2013111-2686
– volume: 56
  start-page: 455
  year: 2006
  ident: 2021052607463875900_b18
  article-title: Phylogeny of the 1-aminocyclopropane-1-carboxylic acid deaminase-encoding gene acdS in phytobeneficial and pathogenic Proteobacteria and relation with strain biogeography
  publication-title: FEMS Microbiol Ecol
  doi: 10.1111/j.1574-6941.2006.00082.x
– volume: 64
  start-page: 3663
  year: 1998
  ident: 2021052607463875900_b21
  article-title: A plant growth-promoting bacterium that decreases nickel toxicity in seedlings
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.64.10.3663-3668.1998
– volume: 11
  start-page: 176
  year: 2006
  ident: 2021052607463875900_b85
  article-title: The Janus face of ethylene: growth inhibition and stimulation
  publication-title: Trends Plant Sci
  doi: 10.1016/j.tplants.2006.02.006
– volume: 1
  start-page: 57
  year: 2012
  ident: 2021052607463875900_b7
  article-title: Intergeneric microbial coaggregates: bioinoculation effect of ACC deaminase positive wild type strains of Pseuodomonas and Paenibacillus, as coaggregates, on the maximization of ISR against Pyricularia oryzae in upland rice cv. ASD-19
  publication-title: CIBTech J Microbiol
– volume: 18
  start-page: 611
  year: 2008
  ident: 2021052607463875900_b8
  article-title: Inoculation with Pseudomonas spp. containing ACC deaminase partially eliminates the effects of drought stress on growth, yield, and ripening of pea (Pisum sativum L.)
  publication-title: Pedosphere
  doi: 10.1016/S1002-0160(08)60055-7
– volume: 123
  start-page: 1112
  year: 1998
  ident: 2021052607463875900_b74
  article-title: Properties, sequence, and synthesis in Escherichia coli of 1-aminocyclopropane-1-carboxylate deaminase from Hansenula saturnus
  publication-title: J Biochem
  doi: 10.1093/oxfordjournals.jbchem.a022050
– volume: 71
  start-page: 7271
  year: 2005
  ident: 2021052607463875900_b23
  article-title: Ascending migration of endophytic rhizobia, from roots to leaves, inside rice plants and assessment of benefits to rice growth physiology
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.71.11.7271-7278.2005
– start-page: 6261
  volume-title: Sci Rpts
  year: 2014
  ident: 2021052607463875900_b20
  article-title: Analysis of genes contributing to plant-beneficial functions in plant growth-promoting rhizobacteria and related Proteobacteria
– volume: 55
  start-page: 501
  year: 2009
  ident: 2021052607463875900_b36
  article-title: Effects of plant growth-promoting bacteria and AM fungi on the response of plants to heavy metal stress
  publication-title: Can J Microbiol
  doi: 10.1139/W09-010
– volume: 6
  start-page: 1244
  year: 2004
  ident: 2021052607463875900_b63
  article-title: Isolation and characterization of soybean-associated bacteria and their potential for plant growth promotion
  publication-title: Environ Microbiol
  doi: 10.1111/j.1462-2920.2004.00658.x
– volume: 74
  start-page: 533
  year: 2010
  ident: 2021052607463875900_b77
  article-title: Rhizobacteria capable of producing ACC-deaminase may mitigate salt stress in wheat
  publication-title: Soil Sci Soc Am J
  doi: 10.2136/sssaj2008.0240
– volume: 47
  start-page: 368
  year: 2001
  ident: 2021052607463875900_b83
  article-title: Levels of ACC and related compounds in exudate and extracts of canola seeds treated with ACC deaminase-containing plant growth-promoting bacteria
  publication-title: Can J Microbiol
  doi: 10.1139/w01-014
– volume: 57
  start-page: 423
  year: 2009
  ident: 2021052607463875900_b30
  article-title: 1-Aminocyclopropane-1-carboxylate (ACC) deaminase genes in rhizobia from southern Saskatchewan
  publication-title: Microb Ecol
  doi: 10.1007/s00248-008-9407-6
– volume: 41
  start-page: 109
  year: 1995
  ident: 2021052607463875900_b42
  article-title: The enhancement of plant growth by free-living bacteria
  publication-title: Can J Microbiol
  doi: 10.1139/m95-015
– volume: 25
  start-page: 155
  year: 2004
  ident: 2021052607463875900_b4
  article-title: Health effects of chronic pesticide exposure: cancer and neurotoxicity
  publication-title: Annu Rev Public Health
  doi: 10.1146/annurev.publhealth.25.101802.123020
– volume: 142
  start-page: 168
  year: 2006
  ident: 2021052607463875900_b87
  article-title: The ethylene-insensitive sickle mutant of Medicago truncatula shows altered auxin transport regulation during nodulation
  publication-title: Plant Physiol
  doi: 10.1104/pp.106.080093
– volume: 72
  start-page: 4964
  year: 2006
  ident: 2021052607463875900_b81
  article-title: Expression of the 1-aminocyclopropane-1-carboxylic acid deaminase gene requires symbiotic nitrogen-fixing regulator gene nifA2 in Mesorhizobium loti MAFF303099
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.02745-05
– start-page: 181
  volume-title: Applications of Microbial Engineering.
  year: 2013
  ident: 2021052607463875900_b91
  article-title: Applications of plant growth-promoting bacteria for plant and soil systems
– volume: 173
  start-page: 5260
  year: 1991
  ident: 2021052607463875900_b97
  article-title: Isolation, sequence, and expression in Escherichia coli of the Pseudomonas sp. strain ACP gene encoding 1-aminocyclopropane-1-carboxylate deaminase
  publication-title: J Bacteriol
  doi: 10.1128/JB.173.17.5260-5265.1991
– volume: 42
  start-page: 565
  year: 2004
  ident: 2021052607463875900_b72
  article-title: Plant growth-promoting bacteria confer resistance in tomato plants to salt stress
  publication-title: Plant Physiol Biochem
  doi: 10.1016/j.plaphy.2004.05.009
– volume: 8
  start-page: 1402
  year: 2011
  ident: 2021052607463875900_b28
  article-title: Pesticide exposure, safety issues, and risk assessment indicators
  publication-title: Int J Environ Res Public Health
  doi: 10.3390/ijerph8051402
– volume: 64
  start-page: 1644
  year: 2000
  ident: 2021052607463875900_b17
  article-title: Rhizobia inoculation improves nutrient uptake and growth in lowland rice
  publication-title: Soil Sci Soc Am J
  doi: 10.2136/sssaj2000.6451644x
– volume: 100
  start-page: 1738
  year: 2013
  ident: 2021052607463875900_b33
  article-title: Inside the root microbiome: bacterial root endophytes and plant growth promotion
  publication-title: Am J Bot
  doi: 10.3732/ajb.1200572
– volume: 190
  start-page: 63
  year: 1998
  ident: 2021052607463875900_b47
  article-title: A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria
  publication-title: J Theor Biol
  doi: 10.1006/jtbi.1997.0532
– volume: 103
  start-page: 40
  year: 2013
  ident: 2021052607463875900_b32
  article-title: Biocontrol of damping-off and root and crown rots of cucumber caused by Pythium aphanidermatum by ACC-deaminase producing endophytic actinomycetes
  publication-title: Phytopathology
– volume: 80
  start-page: 160
  year: 2014
  ident: 2021052607463875900_b6
  article-title: Amelioration of high salinity stress damage by plant growth-promoting bacterial endophytes that contain ACC deaminase
  publication-title: Plant Physiol Biochem
  doi: 10.1016/j.plaphy.2014.04.003
– volume: 47
  start-page: 617
  year: 1983
  ident: 2021052607463875900_b53
  article-title: Enzymatic determination of 1-aminocyclopropane-1-carboxylate deam-inase
  publication-title: Agric Biol Chem
– volume: 65
  start-page: 322
  year: 1980
  ident: 2021052607463875900_b19
  article-title: Xylem transport of 1-aminocyclopropane-1-carboxylic acid, an ethylene precursor, in waterlogged tomato plants
  publication-title: Plant Physiol
  doi: 10.1104/pp.65.2.322
– volume: 24
  start-page: 461
  year: 2014
  ident: 2021052607463875900_b3
  article-title: Characterization of 1-aminocyclopropane-1-carboxylate (ACC) deaminase-containing Pseudomonas spp. in the rhizosphere of salt-stressed canola
  publication-title: Pedosphere
  doi: 10.1016/S1002-0160(14)60032-1
– volume: 25
  start-page: 453
  year: 1998
  ident: 2021052607463875900_b31
  article-title: Transport of 1-aminocyclopropane-1-carboxylic acid (ACC) in the transpiration stream of tomato (Lycopersicon esculentum) in relation to foliar ethylene production and petiole epinasty
  publication-title: Aust J Plant Physiol
– volume: 56
  start-page: 77
  year: 2012
  ident: 2021052607463875900_b61
  article-title: ACC deaminase containing diazotrophic endophytic bacteria ameliorate salt stress in Catharanthus roseus through reduced ethylene levels and induction of antioxidative defense systems
  publication-title: Symbiosis
  doi: 10.1007/s13199-012-0162-6
– ident: 2021052607463875900_b40
– volume: 130
  start-page: 465
  year: 2004
  ident: 2021052607463875900_b58
  article-title: A multi-process phytoremediation system for removal of polycyclic aromatic hydrocarbons from contaminated soils
  publication-title: Environ Pollut
  doi: 10.1016/j.envpol.2003.09.031
– volume: 41
  start-page: 197
  year: 2000
  ident: 2021052607463875900_b62
  article-title: Role of plants, mycorrhizae and phytochelators in heavy metal contaminated land remediation
  publication-title: Chemosphere
  doi: 10.1016/S0045-6535(99)00412-9
– volume: 171
  start-page: 884
  year: 2014
  ident: 2021052607463875900_b12
  article-title: ACC deaminase-containing Arthrobacter protophormiae induces NaCl stress tolerance through reduced ACC oxidase activity and ethylene production resulting in improved nodulation and mycorrhization in Pisum sativum
  publication-title: J Plant Physiol
  doi: 10.1016/j.jplph.2014.03.007
– volume: 113
  start-page: 1139
  year: 2012
  ident: 2021052607463875900_b5
  article-title: Delay of carnation flower senescence by bacterial endophytes expressing ACC deaminase
  publication-title: J Appl Microbiol
  doi: 10.1111/j.1365-2672.2012.05409.x
– volume: 69
  start-page: 4396
  year: 2003
  ident: 2021052607463875900_b69
  article-title: Rhizobium leguminosarum biovar viciae 1-aminocyclopropane-1-carboxylate deaminase promotes nodulation of pea plants
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.69.8.4396-4402.2003
– volume: 58
  start-page: 427
  year: 2013
  ident: 2021052607463875900_b80
  article-title: The use of the ACC deaminase producing bacterium Pseudomonas putida UW4 as a biocontrol agent for pine wilt disease
  publication-title: BioControl
  doi: 10.1007/s10526-012-9500-0
– volume: 57
  start-page: 578
  year: 2011
  ident: 2021052607463875900_b2
  article-title: Inducing salt tolerance in mung bean through coinoculation with rhizobia and plant-growth-promoting rhizobacteria containing 1-aminocyclopropane-1-carboxylate deaminase
  publication-title: Can J Microbiol
  doi: 10.1139/w11-044
– volume: 86
  start-page: 407
  year: 2004
  ident: 2021052607463875900_b94
  article-title: Physiology and molecular biology of salinity stress tolerance in plants
  publication-title: Curr Sci
– volume: 190
  start-page: 74
  year: 2012
  ident: 2021052607463875900_b34
  article-title: The ethylene pathway contributes to root hair elongation induced by the beneficial bacteria Phyllobacterium brassicacearum STM196
  publication-title: Plant Sci
  doi: 10.1016/j.plantsci.2012.03.008
– volume: 30
  start-page: 961
  year: 2012
  ident: 2021052607463875900_b52
  article-title: Who’s who in the plant root microbiome?
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.2387
– volume: 377
  start-page: 111
  year: 2014
  ident: 2021052607463875900_b95
  article-title: Alleviation of drought stress in mung bean by strain Pseudomonas aeruginosa GGRJ21
  publication-title: Plant Soil
  doi: 10.1007/s11104-013-1981-9
– volume: 151
  start-page: 139
  year: 2008
  ident: 2021052607463875900_b64
  article-title: Pesticide Environmental Accounting: a method for assessing the external costs of individual pesticide applications
  publication-title: Environ Pollut
  doi: 10.1016/j.envpol.2007.02.019
– volume: 16
  start-page: 1133
  year: 2014
  ident: 2021052607463875900_b22
  article-title: Plant growth-promoting bacteria facilitate the growth of barley and oats in salt-impacted soil: implications for phytoremediation of saline soils
  publication-title: Int J Phytoremediation
  doi: 10.1080/15226514.2013.821447
– volume: 47
  start-page: 77
  year: 2001
  ident: 2021052607463875900_b84
  article-title: Determination of 1-aminocycopropane-1-carboxylic acid (ACC) to assess the effects of ACC deaminase-containing bacteria on roots of canola seedlings
  publication-title: Can J Microbiol
  doi: 10.1139/w00-128
– ident: 2021052607463875900_b107
– volume: 4
  start-page: 165
  year: 2013
  ident: 2021052607463875900_b9
  article-title: The rhizosphere revisited: root microbiomics
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2013.00165
– volume: 18
  start-page: 49
  year: 1999
  ident: 2021052607463875900_b70
  article-title: Effect of wild-type and mutant plant growth-promoting rhizobacteria on the rooting of mung bean cuttings
  publication-title: J Plant Growth Regul
  doi: 10.1007/PL00007047
– start-page: 215
  volume-title: The Plant Hormone Ethylene.
  year: 1991
  ident: 2021052607463875900_b92
  article-title: Ethylene in flower development and senescence
– volume: 72
  start-page: 274
  year: 1995
  ident: 2021052607463875900_b105
  article-title: Endophyte: the evolution of a term and clarification of its use and definition
  publication-title: Oikos
  doi: 10.2307/3545919
– start-page: 377
  volume-title: Advances in Plant Ethylene Research.
  year: 2007
  ident: 2021052607463875900_b27
  article-title: Response of canola plants at the transcriptional level to expression of a bacterial ACC deaminase in the roots
  doi: 10.1007/978-1-4020-6014-4_79
– volume: 9
  start-page: e99168
  year: 2014
  ident: 2021052607463875900_b79
  article-title: New insights into 1-aminocyclopropane-1-carboxylate (ACC) deaminase phylogeny, evolution and ecological significance
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0099168
– volume: 51
  start-page: 511
  year: 2005
  ident: 2021052607463875900_b66
  article-title: The effect of native and ACC deaminase-containing Azospirillum brasilense Cd1843 on the rooting of carnation cuttings
  publication-title: Can J Microbiol
  doi: 10.1139/w05-027
– volume: 16
  start-page: 591
  year: 2014
  ident: 2021052607463875900_b108
  article-title: Application of ACC-deaminase containing rhizobacteria with fertilizer improves maize production under drought and salinity stress
  publication-title: Int J Agric Biol
– volume: 59
  start-page: 1023
  year: 2010
  ident: 2021052607463875900_b102
  article-title: Inhibitory effect of ACC deaminase-producing bacteria on crown gall formation in tomato plants infected by Agrobacterium tumefaciens or A. vitis
  publication-title: Plant Pathol
  doi: 10.1111/j.1365-3059.2010.02326.x
– volume: 65
  start-page: 202
  year: 2008
  ident: 2021052607463875900_b88
  article-title: Physical organization and phylogenetic analysis of acdR as leucine-responsive regulator of the 1-aminocyclopropane-1-carboxylate deaminase gene acdS in phytobeneficial Azospirillum lipoferum 4B and other Proteobacteria
  publication-title: FEMS Microbiol Ecol
  doi: 10.1111/j.1574-6941.2008.00474.x
– volume: 366
  start-page: 93
  year: 2013
  ident: 2021052607463875900_b10
  article-title: Isolation of ACC deaminase PGPR from rice rhizosphere and evaluating their plant growth promoting activity under salt stress
  publication-title: Plant Soil
  doi: 10.1007/s11104-012-1402-5
– volume: 31
  start-page: 108
  year: 2012
  ident: 2021052607463875900_b96
  article-title: Rhizosphere bacteria containing ACC deaminase conferred drought tolerance in wheat grown under semi-arid climate
  publication-title: Soil Environ
– volume: 40
  start-page: 1019
  year: 1994
  ident: 2021052607463875900_b60
  article-title: Partial purification and characterization of ACC deaminase from the plant growth-promoting rhizobacterium Pseudomonas putida GR12-2
  publication-title: Can J Microbiol
  doi: 10.1139/m94-162
– volume: 46
  start-page: 898
  year: 2000
  ident: 2021052607463875900_b104
  article-title: Effect of transferring 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase genes into Pseudomonas fluorescens strain CHA0 and its gacA derivative CHA96 on their growth-promoting and disease-suppressive capacities
  publication-title: Can J Microbiol
  doi: 10.1139/w00-071
– volume: 30
  start-page: 1225
  year: 1998
  ident: 2021052607463875900_b14
  article-title: Proposal for the division of plant growth-promoting rhizobacteria into two classifications: biocontrol-PGPB (Plant Growth-Promoting Bacteria) and PGPB
  publication-title: Soil Biol Biochem
  doi: 10.1016/S0038-0717(97)00187-9
– volume: 42
  start-page: 1825
  year: 1978
  ident: 2021052607463875900_b54
  article-title: Metabolism of 1-aminocyclopropane-1-carboxylic acid
  publication-title: Agric Biol Chem
– volume: 181
  start-page: 413
  year: 2009
  ident: 2021052607463875900_b16
  article-title: Rhizosphere bacteria containing 1-aminocyclopropane-1-carboxylate deaminase increase yield of plants grown in drying soil via both local and systemic hormone signalling
  publication-title: New Phytol
  doi: 10.1111/j.1469-8137.2008.02657.x
– volume: 39
  start-page: 11
  year: 2001
  ident: 2021052607463875900_b48
  article-title: Amelioration of flooding stress by ACC deaminase-containing plant growth-promoting bacteria
  publication-title: Plant Physiol Biochem
  doi: 10.1016/S0981-9428(00)01212-2
– volume: 14
  start-page: 435
  year: 2011
  ident: 2021052607463875900_b93
  article-title: Living inside plants: bacterial endophytes
  publication-title: Curr Opin Plant Biol
  doi: 10.1016/j.pbi.2011.04.004
– reference: 19483778 - Can J Microbiol. 2009 May;55(5):501-14
– reference: 24905353 - PLoS One. 2014;9(6):e99168
– reference: 22352713 - Mol Plant Microbe Interact. 2012 May;25(5):668-76
– reference: 12902221 - Appl Environ Microbiol. 2003 Aug;69(8):4396-402
– reference: 15560822 - Environ Microbiol. 2004 Dec;6(12):1244-51
– reference: 22675441 - PLoS One. 2012;7(5):e38122
– reference: 23755059 - Front Plant Sci. 2013 May 30;4:165
– reference: 9336944 - Can J Microbiol. 1997 Sep;43(9):809-18
– reference: 15246071 - Plant Physiol Biochem. 2004 Jun;42(6):565-72
– reference: 16761564 - Prikl Biokhim Mikrobiol. 2006 Mar-Apr;42(2):133-43
– reference: 22846334 - Plant Physiol Biochem. 2012 Sep;58:227-35
– reference: 16462865 - Can J Microbiol. 2005 Dec;51(12):1061-9
– reference: 19603664 - Environ Sci Technol. 2009 Jun 15;43(12):4472-9
– reference: 21536480 - Curr Opin Plant Biol. 2011 Aug;14(4):435-43
– reference: 16531096 - Trends Plant Sci. 2006 Apr;11(4):184-91
– reference: 8868227 - Can J Microbiol. 1996 Mar;42(3):207-20
– reference: 21448272 - PLoS One. 2011;6(3):e17968
– reference: 24933907 - Int J Phytoremediation. 2014;16(7-12):1133-47
– reference: 22846039 - FEMS Microbiol Lett. 2012 Nov;336(1):26-37
– reference: 21770816 - Can J Microbiol. 2011 Jul;57(7):578-89
– reference: 24095256 - Microbiol Res. 2014 Jan 20;169(1):30-9
– reference: 19566717 - J Appl Microbiol. 2010 Jan;108(1):236-45
– reference: 16531097 - Trends Plant Sci. 2006 Apr;11(4):176-83
– reference: 15862088 - Annu Rev Plant Biol. 2005;56:15-39
– reference: 9604000 - J Biochem. 1998 Jun;123(6):1112-8
– reference: 23790204 - FEMS Microbiol Rev. 2013 Sep;37(5):634-63
– reference: 23935113 - Am J Bot. 2013 Sep;100(9):1738-50
– reference: 18400007 - FEMS Microbiol Ecol. 2008 Aug;65(2):202-19
– reference: 23449812 - Springerplus. 2013 Dec;2(1):6
– reference: 16844840 - Plant Physiol. 2006 Sep;142(1):168-80
– reference: 18400004 - FEMS Microbiol Ecol. 2008 Jun;64(3):459-67
– reference: 24769617 - Plant Physiol Biochem. 2014 Jul;80:160-7
– reference: 16820494 - Appl Environ Microbiol. 2006 Jul;72(7):4964-9
– reference: 11068676 - Can J Microbiol. 2000 Oct;46(10):898-907
– reference: 21491979 - Can J Microbiol. 2011 Apr;57(4):278-86
– reference: 16524684 - Biotechnol Adv. 2006 Jul-Aug;24(4):420-6
– reference: 22608521 - Plant Sci. 2012 Jul;190:74-81
– reference: 10819202 - Chemosphere. 2000 Jul;41(1-2):197-207
– reference: 24278762 - Scientifica (Cairo). 2012;2012:963401
– reference: 25179219 - Sci Rep. 2014;4:6261
– reference: 15588698 - Biochim Biophys Acta. 2004 Dec 1;1703(1):11-9
– reference: 15182977 - Environ Pollut. 2004 Aug;130(3):465-76
– reference: 22816486 - J Appl Microbiol. 2012 Nov;113(5):1139-44
– reference: 17604888 - Environ Pollut. 2008 Jan;151(1):139-47
– reference: 15015917 - Annu Rev Public Health. 2004;25:155-97
– reference: 17506679 - Annu Rev Microbiol. 2007;61:401-22
– reference: 9473391 - J Theor Biol. 1998 Jan 7;190(1):63-8
– reference: 9758782 - Appl Environ Microbiol. 1998 Oct;64(10):3663-8
– reference: 1885510 - J Bacteriol. 1991 Sep;173(17):5260-5
– reference: 21655127 - Int J Environ Res Public Health. 2011 May;8(5):1402-19
– reference: 16269802 - Appl Environ Microbiol. 2005 Nov;71(11):7556-8
– reference: 16269768 - Appl Environ Microbiol. 2005 Nov;71(11):7271-8
– reference: 16121231 - Can J Microbiol. 2005 Jun;51(6):511-4
– reference: 10552131 - J Plant Growth Regul. 1999 Oct;18(2):49-53
– reference: 23051815 - Nat Biotechnol. 2012 Oct;30(10):961-2
– reference: 23542149 - Plant Physiol. 2013 May;162(1):304-18
– reference: 11358177 - Can J Microbiol. 2001 Apr;47(4):368-72
– reference: 18548183 - Microb Ecol. 2009 Apr;57(3):423-36
– reference: 24913045 - J Plant Physiol. 2014 Jul 1;171(11):884-94
– reference: 23568019 - J Proteomics. 2013 Jun 12;84:119-31
– reference: 15049453 - Can J Microbiol. 2001 Jan;47(1):77-80
– reference: 11566384 - J Biotechnol. 2001 Oct 4;91(2-3):117-26
– reference: 20149857 - Biotechnol Adv. 2010 May-Jun;28(3):367-74
– reference: 21300550 - Plant Physiol Biochem. 2011 Apr;49(4):427-34
– reference: 19121036 - New Phytol. 2009 Jan;181(2):413-23
– reference: 16661182 - Plant Physiol. 1980 Feb;65(2):322-6
– reference: 16689877 - FEMS Microbiol Ecol. 2006 Jun;56(3):455-70
– reference: 18081592 - FEMS Microbiol Ecol. 2008 Jan;63(1):84-93
SSID ssj0001314
Score 2.5832725
SecondaryResourceType review_article
Snippet A focus on the mechanisms by which ACC deaminase-containing bacteria facilitate plant growth.Bacteria that produce the enzyme 1-aminocyclopropane-1-carboxylate...
Bacterial ACC deaminase affects ethylene production and plant growth under stress. A focus on the mechanisms by which ACC deaminase-containing bacteria...
SourceID pubmedcentral
proquest
pubmed
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 13
SubjectTerms Bacteria
Bacteria - enzymology
Bacterial Proteins - metabolism
Biology
Carbon-Carbon Lyases - metabolism
Droughts
Endophytes
Endosymbionts
Enzymes
Ethylenes - metabolism
Fabaceae - growth & development
Fabaceae - microbiology
Floods
Flowers - growth & development
Flowers - microbiology
Genes
Microorganisms
Oxygen - metabolism
Plant Development
Plant growth
Plant Growth Regulators - metabolism
Plant roots
Plants
Plants - microbiology
Rhizosphere
Soil bacteria
Stress, Physiological
Symbiosis
Update on Ethylene Level Modulation
UPDATES - FOCUS ISSUE
Title Bacterial Modulation of Plant Ethylene Levels
URI https://www.jstor.org/stable/24806377
https://www.ncbi.nlm.nih.gov/pubmed/25897004
https://www.proquest.com/docview/1709716062
https://pubmed.ncbi.nlm.nih.gov/PMC4577377
Volume 169
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagcOCCeJWmPBSknpBcEseOkyOLSgsITq3UW2Q7tqi0TaLuFqn99YwfcTawSMAlWiVOrJ0vmvlmMg-EDjIKNtroHDNtJLYMGtdg57DhRBiw6KaU9ovu12_lyRn9fM7Op9GIrrpkLQ_V7da6kv9BFc4BrrZK9h-QjQ-FE_Ab8IUjIAzHv8J44Vst2_Lavg1zuFxS2xLkZVPZb8Cm2JKdH75pcqShfoGLavgeTMAzF7b0d9WKjdjAsbgE--ErYY6WF6uowo-XYQD7woYTr9qQdhiiBzmL6VGg_EeNRzB4idVMJfrxKTPsvYLzhaO_692M2mHBw2HuQlR-6tsGAsOlg4Cwqrb99CfjE1MCx0t30T0CjN95x5--RKOaFzkN5ZWw17uNnWw753DvjFv49NJtjsOv-a8bhOL0EXoYPIH0vYf1Mbqjuyfo_qIHtn7zFOGIbTphm_YmddClI7apx_YZOvt4dPrhBIfRFljRsl5j0irJVK4l-I-5ABKXMVFQoQT8VQVeK1Gg_ImpsqIAEsVLoZkspNakNryqdFHsop2u7_QeSgvBqFK2Ko0b8M6FlC2jMuO1FrogtUjQ21EojQp93-34kWXj_L-MNsPQ5KxxwkzQQVw8-HYn25ftOunGNYRWwHU5T9CbUdwN6Cn78Ul0ur9eNTl33cqykiTouRf_dHfAL0F8BkxcYHugz690F99dL3TKOId99__4zBfowfTev0Q766tr_Qp45Fq-dm_YT2mDbzo
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bacterial+Modulation+of+Plant+Ethylene+Levels&rft.jtitle=Plant+physiology+%28Bethesda%29&rft.au=Gamalero%2C+Elisa&rft.au=Glick%2C+Bernard+R&rft.date=2015-09-01&rft.eissn=1532-2548&rft.volume=169&rft.issue=1&rft.spage=13&rft_id=info:doi/10.1104%2Fpp.15.00284&rft_id=info%3Apmid%2F25897004&rft.externalDocID=25897004
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-0889&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-0889&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-0889&client=summon