Bacterial Modulation of Plant Ethylene Levels
A focus on the mechanisms by which ACC deaminase-containing bacteria facilitate plant growth.Bacteria that produce the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase, when present either on the surface of plant roots (rhizospheric) or within plant tissues (endophytic), play an active role...
Saved in:
Published in | Plant physiology (Bethesda) Vol. 169; no. 1; pp. 13 - 22 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
American Society of Plant Biologists
01.09.2015
|
Series | Focus on Ethylene |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A focus on the mechanisms by which ACC deaminase-containing bacteria facilitate plant growth.Bacteria that produce the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase, when present either on the surface of plant roots (rhizospheric) or within plant tissues (endophytic), play an active role in modulating ethylene levels in plants. This enzyme activity facilitates plant growth especially in the presence of various environmental stresses. Thus, plant growth-promoting bacteria that express ACC deaminase activity protect plants from growth inhibition by flooding and anoxia, drought, high salt, the presence of fungal and bacterial pathogens, nematodes, and the presence of metals and organic contaminants. Bacteria that express ACC deaminase activity also decrease the rate of flower wilting, promote the rooting of cuttings, and facilitate the nodulation of legumes. Here, the mechanisms behind bacterial ACC deaminase facilitation of plant growth and development are discussed, and numerous examples of the use of bacteria with this activity are summarized. |
---|---|
AbstractList | A focus on the mechanisms by which ACC deaminase-containing bacteria facilitate plant growth.Bacteria that produce the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase, when present either on the surface of plant roots (rhizospheric) or within plant tissues (endophytic), play an active role in modulating ethylene levels in plants. This enzyme activity facilitates plant growth especially in the presence of various environmental stresses. Thus, plant growth-promoting bacteria that express ACC deaminase activity protect plants from growth inhibition by flooding and anoxia, drought, high salt, the presence of fungal and bacterial pathogens, nematodes, and the presence of metals and organic contaminants. Bacteria that express ACC deaminase activity also decrease the rate of flower wilting, promote the rooting of cuttings, and facilitate the nodulation of legumes. Here, the mechanisms behind bacterial ACC deaminase facilitation of plant growth and development are discussed, and numerous examples of the use of bacteria with this activity are summarized. A focus on the mechanisms by which ACC deaminase-containing bacteria facilitate plant growth.Bacteria that produce the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase, when present either on the surface of plant roots (rhizospheric) or within plant tissues (endophytic), play an active role in modulating ethylene levels in plants. This enzyme activity facilitates plant growth especially in the presence of various environmental stresses. Thus, plant growth-promoting bacteria that express ACC deaminase activity protect plants from growth inhibition by flooding and anoxia, drought, high salt, the presence of fungal and bacterial pathogens, nematodes, and the presence of metals and organic contaminants. Bacteria that express ACC deaminase activity also decrease the rate of flower wilting, promote the rooting of cuttings, and facilitate the nodulation of legumes. Here, the mechanisms behind bacterial ACC deaminase facilitation of plant growth and development are discussed, and numerous examples of the use of bacteria with this activity are summarized.A focus on the mechanisms by which ACC deaminase-containing bacteria facilitate plant growth.Bacteria that produce the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase, when present either on the surface of plant roots (rhizospheric) or within plant tissues (endophytic), play an active role in modulating ethylene levels in plants. This enzyme activity facilitates plant growth especially in the presence of various environmental stresses. Thus, plant growth-promoting bacteria that express ACC deaminase activity protect plants from growth inhibition by flooding and anoxia, drought, high salt, the presence of fungal and bacterial pathogens, nematodes, and the presence of metals and organic contaminants. Bacteria that express ACC deaminase activity also decrease the rate of flower wilting, promote the rooting of cuttings, and facilitate the nodulation of legumes. Here, the mechanisms behind bacterial ACC deaminase facilitation of plant growth and development are discussed, and numerous examples of the use of bacteria with this activity are summarized. Bacterial ACC deaminase affects ethylene production and plant growth under stress. A focus on the mechanisms by which ACC deaminase-containing bacteria facilitate plant growth.Bacteria that produce the enzyme 1-aminocyclopropane-1-carboxylate ( ACC ) deaminase, when present either on the surface of plant roots (rhizospheric) or within plant tissues (endophytic), play an active role in modulating ethylene levels in plants. This enzyme activity facilitates plant growth especially in the presence of various environmental stresses. Thus, plant growth-promoting bacteria that express ACC deaminase activity protect plants from growth inhibition by flooding and anoxia, drought, high salt, the presence of fungal and bacterial pathogens, nematodes, and the presence of metals and organic contaminants. Bacteria that express ACC deaminase activity also decrease the rate of flower wilting, promote the rooting of cuttings, and facilitate the nodulation of legumes. Here, the mechanisms behind bacterial ACC deaminase facilitation of plant growth and development are discussed, and numerous examples of the use of bacteria with this activity are summarized. |
Author | Glick, Bernard R. Gamalero, Elisa |
Author_xml | – sequence: 1 givenname: Elisa surname: Gamalero fullname: Gamalero, Elisa – sequence: 2 givenname: Bernard R. surname: Glick fullname: Glick, Bernard R. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25897004$$D View this record in MEDLINE/PubMed |
BookMark | eNptkc1r3DAQxUXYkmy2PeWc4GMheDP6suVLoA1JW9iQHtqzkLXjxIvWciw5kP--ym62-SAgkEC_ee_NzCGZdL5DQo4ozCkFcdb3cyrnAEyJPTKlkrOcSaEmZAqQ3qBUdUAOQ1gBAOVU7JMDJlVVAogpyb8bG3Fojcuu_XJ0Jra-y3yT_Xami9llvHt02GG2wAd04TP51BgX8MvzPSN_ry7_XPzMFzc_fl18W-RWFFXM2dLW0lKsCyioEZyCNFwYa1ICC1Qwq1TJGgWcAxNlYVDWvEZkVVMqhZzPyPlWtx_rNS4tdnEwTvdDuzbDo_am1W9_uvZO3_oHLWRZ8nRm5OuzwODvRwxRr9tg0aWm0I9B0xKqkqZ4LKEnr73-m-xmlAC6BezgQxiw0baNmzkl69ZpCvppD7rvNZV6s4dUc_quZif7MX28pVch-uElgVBQPHXzD_HAkUA |
CitedBy_id | crossref_primary_10_3389_fsufs_2021_618092 crossref_primary_10_1007_s00203_022_03018_1 crossref_primary_10_1007_s11104_017_3360_4 crossref_primary_10_1186_s40168_018_0503_7 crossref_primary_10_3390_biology9110381 crossref_primary_10_1016_j_chemosphere_2017_12_117 crossref_primary_10_1016_j_pbi_2022_102258 crossref_primary_10_1080_07388551_2023_2183379 crossref_primary_10_1002_jobm_202000370 crossref_primary_10_1007_s11104_024_07073_z crossref_primary_10_1007_s42452_024_05703_w crossref_primary_10_3389_fmicb_2018_00148 crossref_primary_10_1186_s12866_019_1450_6 crossref_primary_10_1155_2022_8693479 crossref_primary_10_1002_anie_202319344 crossref_primary_10_3390_biotech13030032 crossref_primary_10_3390_microorganisms12071473 crossref_primary_10_3390_microorganisms9071533 crossref_primary_10_1007_s13205_023_03643_7 crossref_primary_10_3390_agronomy12092082 crossref_primary_10_1042_BCJ20180615 crossref_primary_10_3389_fmicb_2018_02213 crossref_primary_10_1016_j_micres_2019_02_004 crossref_primary_10_1093_pcp_pcac067 crossref_primary_10_3389_fpls_2017_00859 crossref_primary_10_3389_fpls_2019_00287 crossref_primary_10_1007_s10343_022_00804_1 crossref_primary_10_1007_s00284_021_02375_2 crossref_primary_10_1186_s40793_023_00477_x crossref_primary_10_1007_s42729_020_00342_7 crossref_primary_10_3389_fpls_2023_1173695 crossref_primary_10_1016_j_plgene_2019_100175 crossref_primary_10_1007_s13205_022_03299_9 crossref_primary_10_1016_j_apsoil_2024_105351 crossref_primary_10_1039_C9RA00333A crossref_primary_10_1080_01490451_2022_2027049 crossref_primary_10_3389_fmicb_2020_01149 crossref_primary_10_1186_s12864_022_08662_x crossref_primary_10_3389_fmicb_2021_611881 crossref_primary_10_3390_microorganisms13010187 crossref_primary_10_1007_s00253_017_8550_8 crossref_primary_10_1080_01904167_2021_1952221 crossref_primary_10_3390_app10207025 crossref_primary_10_3390_plants11131654 crossref_primary_10_1007_s11356_016_7982_5 crossref_primary_10_1007_s00284_024_03962_9 crossref_primary_10_1093_plcell_koac163 crossref_primary_10_1099_ijsem_0_005215 crossref_primary_10_1007_s42398_019_00044_6 crossref_primary_10_3390_agronomy12092069 crossref_primary_10_1016_j_sajb_2017_07_007 crossref_primary_10_1007_s13199_024_00980_w crossref_primary_10_1016_j_envres_2022_114924 crossref_primary_10_1007_s11274_017_2364_9 crossref_primary_10_1016_j_envexpbot_2020_104124 crossref_primary_10_3390_agriculture14101838 crossref_primary_10_3389_fmicb_2020_01952 crossref_primary_10_3390_agronomy11020219 crossref_primary_10_1007_s12517_023_11647_z crossref_primary_10_3390_jox13040037 crossref_primary_10_3390_su131910986 crossref_primary_10_3390_su12156286 crossref_primary_10_1016_j_biotechadv_2023_108205 crossref_primary_10_3389_fmicb_2018_01297 crossref_primary_10_1007_s42535_020_00115_8 crossref_primary_10_1128_msystems_00766_21 crossref_primary_10_3390_microorganisms7110541 crossref_primary_10_3390_agronomy14102225 crossref_primary_10_1016_j_ecolind_2018_05_084 crossref_primary_10_3389_fpls_2022_921668 crossref_primary_10_1007_s11104_021_04865_5 crossref_primary_10_1007_s11104_023_06046_y crossref_primary_10_33073_pjm_2021_024 crossref_primary_10_1016_j_ecoenv_2018_03_013 crossref_primary_10_1111_pce_14403 crossref_primary_10_3390_horticulturae10010012 crossref_primary_10_1016_j_micres_2021_126755 crossref_primary_10_3390_agronomy11081609 crossref_primary_10_3390_plants11202783 crossref_primary_10_1007_s42729_024_02121_0 crossref_primary_10_3390_soilsystems8030087 crossref_primary_10_1007_s11104_017_3320_z crossref_primary_10_3390_microorganisms8040541 crossref_primary_10_3389_fmicb_2021_752288 crossref_primary_10_3390_horticulturae10070732 crossref_primary_10_1104_pp_15_01242 crossref_primary_10_1007_s11104_019_04202_x crossref_primary_10_22207_JPAM_17_3_59 crossref_primary_10_3389_fmicb_2020_01619 crossref_primary_10_3390_plants12203530 crossref_primary_10_3389_fsufs_2022_768250 crossref_primary_10_1038_s41598_024_73818_6 crossref_primary_10_1038_s41598_019_52567_x crossref_primary_10_1186_s12870_022_03859_4 crossref_primary_10_1007_s11274_020_2804_9 crossref_primary_10_1080_15226514_2018_1523870 crossref_primary_10_3389_fmicb_2016_01966 crossref_primary_10_1134_S0026261720010117 crossref_primary_10_1016_j_jare_2021_11_020 crossref_primary_10_3389_fpls_2019_01072 crossref_primary_10_1088_1755_1315_976_1_012037 crossref_primary_10_3390_agronomy13051226 crossref_primary_10_1007_s13205_019_1911_5 crossref_primary_10_1016_j_chemosphere_2022_136635 crossref_primary_10_1016_j_apsoil_2021_104142 crossref_primary_10_3389_fsufs_2021_617157 crossref_primary_10_3390_ijms22063154 crossref_primary_10_1007_s11368_021_03123_6 crossref_primary_10_14393_BJ_v40n0a2024_73324 crossref_primary_10_3934_microbiol_2017_3_502 crossref_primary_10_1007_s13205_019_1809_2 crossref_primary_10_1038_s43017_022_00366_w crossref_primary_10_7717_peerj_16836 crossref_primary_10_1264_jsme2_ME20024 crossref_primary_10_3390_microorganisms8071037 crossref_primary_10_3390_plants10112544 crossref_primary_10_38001_ijlsb_492415 crossref_primary_10_1371_journal_pone_0308744 crossref_primary_10_3389_fmicb_2019_01506 crossref_primary_10_3390_microorganisms11020502 crossref_primary_10_3390_agronomy9100655 crossref_primary_10_3390_microorganisms9071491 crossref_primary_10_3389_fmicb_2021_616828 crossref_primary_10_1093_femsec_fiaa062 crossref_primary_10_4014_jmb_1911_11063 crossref_primary_10_1111_aab_12420 crossref_primary_10_1139_cjm_2022_0073 crossref_primary_10_1038_s41396_022_01288_7 crossref_primary_10_3390_microorganisms9122467 crossref_primary_10_3389_fpls_2022_978066 crossref_primary_10_3389_fpls_2024_1423949 crossref_primary_10_1111_tpj_15135 crossref_primary_10_13080_z_a_2020_107_014 crossref_primary_10_3389_fmicb_2025_1562341 crossref_primary_10_3390_plants12112197 crossref_primary_10_1016_j_rhisph_2020_100241 crossref_primary_10_3390_metabo11070457 crossref_primary_10_1038_s41598_022_14570_7 crossref_primary_10_1016_j_micres_2024_127895 crossref_primary_10_1016_j_scitotenv_2020_140682 crossref_primary_10_3389_fspas_2021_735834 crossref_primary_10_3390_horticulturae6040081 crossref_primary_10_1007_s12298_023_01328_2 crossref_primary_10_1016_j_csbj_2022_11_046 crossref_primary_10_47836_pjtas_44_2_01 crossref_primary_10_3390_ijms222111461 crossref_primary_10_1002_mbo3_801 crossref_primary_10_1007_s13213_017_1285_z crossref_primary_10_1016_j_jia_2023_11_031 crossref_primary_10_34133_2022_9858049 crossref_primary_10_18470_1992_1098_2021_4_86_103 crossref_primary_10_1186_s12870_023_04259_y crossref_primary_10_1007_s00425_022_03997_x crossref_primary_10_1016_j_jbiotec_2020_10_024 crossref_primary_10_3389_fmicb_2023_1132770 crossref_primary_10_1264_jsme2_ME19147 crossref_primary_10_1007_s00284_023_03570_z crossref_primary_10_3390_plants12030637 crossref_primary_10_1080_00103624_2023_2276265 crossref_primary_10_1111_pbi_14554 crossref_primary_10_3390_plants13172371 crossref_primary_10_1016_j_micres_2020_126612 crossref_primary_10_1080_01904167_2023_2206425 crossref_primary_10_3389_fmicb_2021_743512 crossref_primary_10_3389_fpls_2016_00070 crossref_primary_10_3389_fpls_2018_00004 crossref_primary_10_1016_j_envexpbot_2016_10_015 crossref_primary_10_1134_S0003683822010094 crossref_primary_10_1590_0103_8478cr20230151 crossref_primary_10_1371_journal_pone_0164635 crossref_primary_10_3390_agronomy9110712 crossref_primary_10_3390_agronomy14092172 crossref_primary_10_3390_microorganisms10122462 crossref_primary_10_3390_plants10112342 crossref_primary_10_1007_s00253_019_10045_4 crossref_primary_10_1016_j_scitotenv_2022_160478 crossref_primary_10_3390_plants12061395 crossref_primary_10_14720_aas_2019_113_1_16 crossref_primary_10_3389_fpls_2018_00114 crossref_primary_10_3390_microorganisms12030448 crossref_primary_10_1016_j_crmicr_2024_100285 crossref_primary_10_3389_fpls_2015_01121 crossref_primary_10_1007_s44279_024_00131_1 crossref_primary_10_3390_life13051102 crossref_primary_10_3390_horticulturae4040053 crossref_primary_10_1128_mra_00617_22 crossref_primary_10_3390_plants8020042 crossref_primary_10_1007_s00344_023_11163_0 crossref_primary_10_1186_s12870_023_04600_5 crossref_primary_10_3390_plants10051012 crossref_primary_10_1016_j_ecoenv_2018_03_063 crossref_primary_10_15421_022014 crossref_primary_10_1002_ange_202319344 crossref_primary_10_3390_ijerph18052435 crossref_primary_10_1016_j_crmicr_2021_100094 crossref_primary_10_1104_pp_15_00672 crossref_primary_10_1007_s12088_024_01225_6 crossref_primary_10_1007_s00203_021_02204_x crossref_primary_10_1002_fes3_79 crossref_primary_10_1016_j_micres_2021_126809 crossref_primary_10_3390_jox14010021 crossref_primary_10_1111_tpj_16674 crossref_primary_10_1007_s40626_022_00237_1 crossref_primary_10_18393_ejss_1331974 crossref_primary_10_3389_fpls_2022_894985 crossref_primary_10_1038_s41396_023_01428_7 crossref_primary_10_1186_s12870_023_04403_8 crossref_primary_10_3389_fsufs_2021_606158 crossref_primary_10_1016_j_postharvbio_2023_112546 crossref_primary_10_3389_fgene_2017_00006 crossref_primary_10_1039_C7CS00664K crossref_primary_10_1016_j_apsoil_2020_103784 crossref_primary_10_1016_j_postharvbio_2024_112969 crossref_primary_10_1016_j_micres_2019_01_004 crossref_primary_10_3390_app10175767 crossref_primary_10_3390_plants8040097 crossref_primary_10_1080_15592324_2020_1763005 crossref_primary_10_3389_fmicb_2018_03049 crossref_primary_10_22207_JPAM_18_1_13 crossref_primary_10_3390_agronomy11122482 |
Cites_doi | 10.1146/annurev.arplant.56.032604.144214 10.1139/w11-006 10.1139/w05-094 10.4141/P03-087 10.1016/j.soilbio.2009.11.024 10.1111/j.1574-6941.2008.00485.x 10.1139/m96-032 10.1111/j.1574-6941.2007.00410.x 10.1111/j.1574-6968.2012.02648.x 10.1007/s00344-013-9347-3 10.1016/j.plaphy.2011.01.015 10.1016/j.tplants.2006.02.005 10.1111/1574-6976.12028 10.1016/S0168-1656(01)00332-7 10.1016/j.bbapap.2004.09.015 10.1139/m97-118 10.1089/ind.2006.2.194 10.1186/2193-1801-2-6 10.1007/s10658-007-9162-4 10.1134/S0003683806020013 10.1016/j.jprot.2013.03.011 10.1016/j.biotechadv.2010.02.001 10.1094/MPMI-08-11-0213 10.1016/j.biotechadv.2006.01.006 10.1128/AEM.71.11.7556-7558.2005 10.1371/journal.pone.0038122 10.1016/j.micres.2013.09.009 10.1371/journal.pone.0017968 10.1016/j.plaphy.2012.07.008 10.1146/annurev.micro.61.080706.093316 10.1104/pp.112.212597 10.1016/j.plantsci.2003.10.025 10.1007/s11274-007-9572-7 10.1111/j.1365-2672.2009.04414.x 10.1007/s13199-012-0177-z 10.1021/es801540h 10.5424/sjar/2013111-2686 10.1111/j.1574-6941.2006.00082.x 10.1128/AEM.64.10.3663-3668.1998 10.1016/j.tplants.2006.02.006 10.1016/S1002-0160(08)60055-7 10.1093/oxfordjournals.jbchem.a022050 10.1128/AEM.71.11.7271-7278.2005 10.1139/W09-010 10.1111/j.1462-2920.2004.00658.x 10.2136/sssaj2008.0240 10.1139/w01-014 10.1007/s00248-008-9407-6 10.1139/m95-015 10.1146/annurev.publhealth.25.101802.123020 10.1104/pp.106.080093 10.1128/AEM.02745-05 10.1128/JB.173.17.5260-5265.1991 10.1016/j.plaphy.2004.05.009 10.3390/ijerph8051402 10.2136/sssaj2000.6451644x 10.3732/ajb.1200572 10.1006/jtbi.1997.0532 10.1016/j.plaphy.2014.04.003 10.1104/pp.65.2.322 10.1016/S1002-0160(14)60032-1 10.1007/s13199-012-0162-6 10.1016/j.envpol.2003.09.031 10.1016/S0045-6535(99)00412-9 10.1016/j.jplph.2014.03.007 10.1111/j.1365-2672.2012.05409.x 10.1128/AEM.69.8.4396-4402.2003 10.1007/s10526-012-9500-0 10.1139/w11-044 10.1016/j.plantsci.2012.03.008 10.1038/nbt.2387 10.1007/s11104-013-1981-9 10.1016/j.envpol.2007.02.019 10.1080/15226514.2013.821447 10.1139/w00-128 10.3389/fpls.2013.00165 10.1007/PL00007047 10.2307/3545919 10.1007/978-1-4020-6014-4_79 10.1371/journal.pone.0099168 10.1139/w05-027 10.1111/j.1365-3059.2010.02326.x 10.1111/j.1574-6941.2008.00474.x 10.1007/s11104-012-1402-5 10.1139/m94-162 10.1139/w00-071 10.1016/S0038-0717(97)00187-9 10.1111/j.1469-8137.2008.02657.x 10.1016/S0981-9428(00)01212-2 10.1016/j.pbi.2011.04.004 |
ContentType | Journal Article |
Copyright | Copyright © 2015 American Society of Plant Biologists 2015 American Society of Plant Biologists. All Rights Reserved. 2015 American Society of Plant Biologists. All Rights Reserved. 2015 |
Copyright_xml | – notice: Copyright © 2015 American Society of Plant Biologists – notice: 2015 American Society of Plant Biologists. All Rights Reserved. – notice: 2015 American Society of Plant Biologists. All Rights Reserved. 2015 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1104/pp.15.00284 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Botany |
EISSN | 1532-2548 |
EndPage | 22 |
ExternalDocumentID | PMC4577377 25897004 10_1104_pp_15_00284 24806377 |
Genre | Journal Article Review |
GroupedDBID | --- -DZ -~X 0R~ 123 29O 2AX 2WC 2~F 4.4 5VS 5WD 85S 8R4 8R5 AAHBH AAHKG AAPXW AARHZ AAUAY AAVAP AAXTN ABBHK ABDFA ABEJV ABGNP ABJNI ABMNT ABPLY ABPPZ ABPTD ABTLG ABVGC ABXSQ ABXVV ABXZS ACBTR ACGOD ACHIC ACNCT ACPRK ACUFI ADBBV ADGKP ADIPN ADIYS ADQBN ADULT ADVEK ADYHW AEEJZ AENEX AEUPB AFAZZ AFFZL AFGWE AFRAH AGORE AGUYK AHMBA AHXOZ AICQM AJBYB AJEEA AJNCP ALIPV ALMA_UNASSIGNED_HOLDINGS ALXQX AQVQM ATGXG BAWUL BCRHZ BEYMZ BTFSW CBGCD CS3 DATOO DIK DU5 E3Z EBS ECGQY EJD F5P FLUFQ FOEOM H13 IPSME JAAYA JBMMH JBS JENOY JHFFW JKQEH JLS JLXEF JPM JST JXSIZ KOP KQ8 KSI KSN MV1 NOMLY NU- OBOKY OJZSN OK1 OWPYF P2P Q2X RHI ROX RPB RWL RXW SA0 TAE TN5 TR2 W8F WH7 WOQ XSW YBU YKV YNT YSK YZZ ZCA ZCN ~02 ~KM AAYXX CITATION 3V. 53G 7X2 7X7 88A 88E 88I 8AF 8AO 8CJ 8FE 8FH 8FI 8FJ 8FW 8G5 AAWDT AAYJJ ABUWG ACFRR ACIPB ACUTJ ACZBC ADYWZ AEUYN AFFDN AFKRA AFYAG AGMDO AIDAL AIDBO ANFBD AQDSO AS~ ATCPS AZQEC BBNVY BENPR BHPHI BPHCQ BVXVI C1A CCPQU CGR CUY CVF D1J DOOOF DWQXO ECM EIF FYUFA GNUQQ GTFYD GUQSH HCIFZ HMCUK HTVGU ISR JSODD LK8 LU7 M0K M0L M1P M2O M2P M2Q M7P MVM NPM P0- PQQKQ PROAC PSQYO QZG RHF RPM S0X TCN UBC UKHRP UKR VQA VXZ WHG XOL Y6R ZCG 7X8 5PM |
ID | FETCH-LOGICAL-c469t-2dcb5c1eb6061a43105a34aca000c0142c8872f803302476ae5b3bee29f788e33 |
ISSN | 0032-0889 1532-2548 |
IngestDate | Thu Aug 21 14:31:35 EDT 2025 Fri Jul 11 07:40:17 EDT 2025 Wed Feb 19 01:58:44 EST 2025 Tue Jul 01 03:08:08 EDT 2025 Thu Apr 24 23:11:02 EDT 2025 Fri May 30 11:58:51 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model 2015 American Society of Plant Biologists. All Rights Reserved. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c469t-2dcb5c1eb6061a43105a34aca000c0142c8872f803302476ae5b3bee29f788e33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 www.plantphysiol.org/cgi/doi/10.1104/pp.15.00284 |
OpenAccessLink | http://doi.org/10.1104/pp.15.00284 |
PMID | 25897004 |
PQID | 1709716062 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4577377 proquest_miscellaneous_1709716062 pubmed_primary_25897004 crossref_citationtrail_10_1104_pp_15_00284 crossref_primary_10_1104_pp_15_00284 jstor_primary_24806377 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-09-01 |
PublicationDateYYYYMMDD | 2015-09-01 |
PublicationDate_xml | – month: 09 year: 2015 text: 2015-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationSeriesTitle | Focus on Ethylene |
PublicationTitle | Plant physiology (Bethesda) |
PublicationTitleAlternate | Plant Physiol |
PublicationYear | 2015 |
Publisher | American Society of Plant Biologists |
Publisher_xml | – name: American Society of Plant Biologists |
References | Glick (2021052607463875900_b47) 1998; 190 Ali (2021052607463875900_b5) 2012; 113 Abeles (2021052607463875900_b1) 1992 Chi (2021052607463875900_b23) 2005; 71 Gamalero (2021052607463875900_b37) 2008; 64 Mayak (2021052607463875900_b71) 2004; 166 Indiragandhi (2021052607463875900_b59) 2008; 24 Ma (2021052607463875900_b69) 2003; 69 Sheehy (2021052607463875900_b97) 1991; 173 Hontzeas (2021052607463875900_b55) 2006; 24 Wang (2021052607463875900_b104) 2000; 46 Ramadoss (2021052607463875900_b89) 2013; 2 Thakore (2021052607463875900_b100) 2006; 2 Gutiérrez-Zamora (2021052607463875900_b50) 2001; 91 Bashan (2021052607463875900_b14) 1998; 30 Bal (2021052607463875900_b10) 2013; 366 Zafarul Hye (2021052607463875900_b108) 2014; 16 Leach (2021052607463875900_b64) 2008; 151 Bradford (2021052607463875900_b19) 1980; 65 Tsakelova (2021052607463875900_b110) 2006; 42 Nascimento (2021052607463875900_b78) 2012; 336 Lupway (2021052607463875900_b68) 2004; 84 Prayitno (2021052607463875900_b87) 2006; 142 Sarma (2021052607463875900_b95) 2014; 377 Nadeem (2021052607463875900_b77) 2010; 74 Bayliss (2021052607463875900_b15) 1997; 43 Karthikeyan (2021052607463875900_b61) 2012; 56 Li (2021052607463875900_b65) 2013; 84 El-Tarabily (2021052607463875900_b32) 2013; 103 Pilon-Smits (2021052607463875900_b86) 2005; 56 Montero-Calasanz (2021052607463875900_b75) 2013; 11 van Loon (2021052607463875900_b103) 2006; 11 Glick (2021052607463875900_b46) 2007; 119 2021052607463875900_b35 Siddikee (2021052607463875900_b98) 2011; 49 Barnawal (2021052607463875900_b11) 2012; 58 Zamioudis (2021052607463875900_b109) 2013; 162 Shakir (2021052607463875900_b96) 2012; 31 Hirsch (2021052607463875900_b52) 2012; 30 Hao (2021052607463875900_b51) 2011; 57 Gamalero (2021052607463875900_b38) 2010; 108 Ahmad (2021052607463875900_b2) 2011; 57 García-Fraile (2021052607463875900_b41) 2012; 7 Else (2021052607463875900_b31) 1998; 25 2021052607463875900_b40 Glick (2021052607463875900_b42) 1995; 41 Mayak (2021052607463875900_b72) 2004; 42 Penrose (2021052607463875900_b84) 2001; 47 Honma (2021052607463875900_b53) 1983; 47 Gurska (2021052607463875900_b49) 2009; 43 Barnawal (2021052607463875900_b13) 2013; 32 2021052607463875900_b44 Reed (2021052607463875900_b90) 2005; 51 Reinhold-Hurek (2021052607463875900_b93) 2011; 14 Gamalero (2021052607463875900_b36) 2009; 55 Wilson (2021052607463875900_b105) 1995; 72 Glick (2021052607463875900_b43) 2010; 28 Bakker (2021052607463875900_b9) 2013; 4 Hontzeas (2021052607463875900_b57) 2004; 1703 Blaha (2021052607463875900_b18) 2006; 56 Pierik (2021052607463875900_b85) 2006; 11 Honma (2021052607463875900_b54) 1978; 42 Minami (2021052607463875900_b74) 1998; 123 Murset (2021052607463875900_b76) 2012; 57 Czarny (2021052607463875900_b27) 2007 Li (2021052607463875900_b66) 2005; 51 Chookietwattana (2021052607463875900_b24) 2012; 31 Gamalero (2021052607463875900_b39) 2010 2021052607463875900_b107 2021052607463875900_b106 Gaiero (2021052607463875900_b33) 2013; 100 Barnawal (2021052607463875900_b12) 2014; 171 Nascimento (2021052607463875900_b79) 2014; 9 Amutharaj (2021052607463875900_b7) 2012; 1 Duan (2021052607463875900_b30) 2009; 57 Chang (2021052607463875900_b22) 2014; 16 Prigent-Combaret (2021052607463875900_b88) 2008; 65 Burd (2021052607463875900_b21) 1998; 64 Khan (2021052607463875900_b62) 2000; 41 Danhorn (2021052607463875900_b29) 2007; 61 Damalas (2021052607463875900_b28) 2011; 8 Alavanja (2021052607463875900_b4) 2004; 25 Biswas (2021052607463875900_b17) 2000; 64 Glick (2021052607463875900_b45) 2014; 169 Nukui (2021052607463875900_b81) 2006; 72 Kuklinsky-Sobral (2021052607463875900_b63) 2004; 6 Hontzeas (2021052607463875900_b56) 2005; 71 Akhgar (2021052607463875900_b3) 2014; 24 Patten (2021052607463875900_b82) 1996; 42 Grichko (2021052607463875900_b48) 2001; 39 Nascimento (2021052607463875900_b80) 2013; 58 Reed (2021052607463875900_b91) 2013 Jacobson (2021052607463875900_b60) 1994; 40 Mayak (2021052607463875900_b70) 1999; 18 Arshad (2021052607463875900_b8) 2008; 18 Belimov (2021052607463875900_b16) 2009; 181 Toklikishvili (2021052607463875900_b102) 2010; 59 Mendes (2021052607463875900_b73) 2013; 37 Ali (2021052607463875900_b6) 2014; 80 Sairam (2021052607463875900_b94) 2004; 86 Galland (2021052607463875900_b34) 2012; 190 Compant (2021052607463875900_b26) 2008; 63 Reid (2021052607463875900_b92) 1991 Bruto (2021052607463875900_b20) 2014 Huang (2021052607463875900_b58) 2004; 130 Penrose (2021052607463875900_b83) 2001; 47 Timmusk (2021052607463875900_b101) 2011; 6 Compant (2021052607463875900_b25) 2010; 42 Stearns (2021052607463875900_b99) 2012; 25 22608521 - Plant Sci. 2012 Jul;190:74-81 23755059 - Front Plant Sci. 2013 May 30;4:165 16820494 - Appl Environ Microbiol. 2006 Jul;72(7):4964-9 16524684 - Biotechnol Adv. 2006 Jul-Aug;24(4):420-6 18081592 - FEMS Microbiol Ecol. 2008 Jan;63(1):84-93 20149857 - Biotechnol Adv. 2010 May-Jun;28(3):367-74 25179219 - Sci Rep. 2014;4:6261 11566384 - J Biotechnol. 2001 Oct 4;91(2-3):117-26 21300550 - Plant Physiol Biochem. 2011 Apr;49(4):427-34 10819202 - Chemosphere. 2000 Jul;41(1-2):197-207 16269768 - Appl Environ Microbiol. 2005 Nov;71(11):7271-8 24095256 - Microbiol Res. 2014 Jan 20;169(1):30-9 21491979 - Can J Microbiol. 2011 Apr;57(4):278-86 16689877 - FEMS Microbiol Ecol. 2006 Jun;56(3):455-70 9473391 - J Theor Biol. 1998 Jan 7;190(1):63-8 18400007 - FEMS Microbiol Ecol. 2008 Aug;65(2):202-19 15246071 - Plant Physiol Biochem. 2004 Jun;42(6):565-72 16121231 - Can J Microbiol. 2005 Jun;51(6):511-4 19483778 - Can J Microbiol. 2009 May;55(5):501-14 24933907 - Int J Phytoremediation. 2014;16(7-12):1133-47 19566717 - J Appl Microbiol. 2010 Jan;108(1):236-45 12902221 - Appl Environ Microbiol. 2003 Aug;69(8):4396-402 16661182 - Plant Physiol. 1980 Feb;65(2):322-6 21770816 - Can J Microbiol. 2011 Jul;57(7):578-89 23542149 - Plant Physiol. 2013 May;162(1):304-18 24278762 - Scientifica (Cairo). 2012;2012:963401 17604888 - Environ Pollut. 2008 Jan;151(1):139-47 19121036 - New Phytol. 2009 Jan;181(2):413-23 15862088 - Annu Rev Plant Biol. 2005;56:15-39 15560822 - Environ Microbiol. 2004 Dec;6(12):1244-51 23051815 - Nat Biotechnol. 2012 Oct;30(10):961-2 18548183 - Microb Ecol. 2009 Apr;57(3):423-36 17506679 - Annu Rev Microbiol. 2007;61:401-22 11068676 - Can J Microbiol. 2000 Oct;46(10):898-907 9336944 - Can J Microbiol. 1997 Sep;43(9):809-18 21448272 - PLoS One. 2011;6(3):e17968 9604000 - J Biochem. 1998 Jun;123(6):1112-8 22675441 - PLoS One. 2012;7(5):e38122 10552131 - J Plant Growth Regul. 1999 Oct;18(2):49-53 15015917 - Annu Rev Public Health. 2004;25:155-97 16269802 - Appl Environ Microbiol. 2005 Nov;71(11):7556-8 16531096 - Trends Plant Sci. 2006 Apr;11(4):184-91 21536480 - Curr Opin Plant Biol. 2011 Aug;14(4):435-43 22846334 - Plant Physiol Biochem. 2012 Sep;58:227-35 24769617 - Plant Physiol Biochem. 2014 Jul;80:160-7 21655127 - Int J Environ Res Public Health. 2011 May;8(5):1402-19 15049453 - Can J Microbiol. 2001 Jan;47(1):77-80 1885510 - J Bacteriol. 1991 Sep;173(17):5260-5 23935113 - Am J Bot. 2013 Sep;100(9):1738-50 8868227 - Can J Microbiol. 1996 Mar;42(3):207-20 16462865 - Can J Microbiol. 2005 Dec;51(12):1061-9 16531097 - Trends Plant Sci. 2006 Apr;11(4):176-83 24913045 - J Plant Physiol. 2014 Jul 1;171(11):884-94 15588698 - Biochim Biophys Acta. 2004 Dec 1;1703(1):11-9 22846039 - FEMS Microbiol Lett. 2012 Nov;336(1):26-37 19603664 - Environ Sci Technol. 2009 Jun 15;43(12):4472-9 24905353 - PLoS One. 2014;9(6):e99168 11358177 - Can J Microbiol. 2001 Apr;47(4):368-72 23790204 - FEMS Microbiol Rev. 2013 Sep;37(5):634-63 22816486 - J Appl Microbiol. 2012 Nov;113(5):1139-44 23568019 - J Proteomics. 2013 Jun 12;84:119-31 15182977 - Environ Pollut. 2004 Aug;130(3):465-76 16761564 - Prikl Biokhim Mikrobiol. 2006 Mar-Apr;42(2):133-43 9758782 - Appl Environ Microbiol. 1998 Oct;64(10):3663-8 23449812 - Springerplus. 2013 Dec;2(1):6 16844840 - Plant Physiol. 2006 Sep;142(1):168-80 22352713 - Mol Plant Microbe Interact. 2012 May;25(5):668-76 18400004 - FEMS Microbiol Ecol. 2008 Jun;64(3):459-67 |
References_xml | – volume: 56 start-page: 15 year: 2005 ident: 2021052607463875900_b86 article-title: Phytoremediation publication-title: Annu Rev Plant Biol doi: 10.1146/annurev.arplant.56.032604.144214 – volume: 57 start-page: 278 year: 2011 ident: 2021052607463875900_b51 article-title: An ACC deaminase containing A. tumefaciens strain D3 shows biocontrol activity to crown gall disease publication-title: Can J Microbiol doi: 10.1139/w11-006 – volume: 51 start-page: 1061 year: 2005 ident: 2021052607463875900_b90 article-title: Growth of canola (Brassica napus) in the presence of plant growth-promoting bacteria and either copper or polycyclic aromatic hydrocarbons publication-title: Can J Microbiol doi: 10.1139/w05-094 – volume: 84 start-page: 37 year: 2004 ident: 2021052607463875900_b68 article-title: Endophytic rhizobia in barley, wheat, and canola roots publication-title: Can J Plant Sci doi: 10.4141/P03-087 – volume: 42 start-page: 669 year: 2010 ident: 2021052607463875900_b25 article-title: Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2009.11.024 – ident: 2021052607463875900_b35 – volume: 64 start-page: 459 year: 2008 ident: 2021052607463875900_b37 article-title: Synergistic interactions between the ACC deaminase-producing bacterium Pseudomonas putida UW4 and the AM fungus Gigaspora rosea positively affect cucumber plant growth publication-title: FEMS Microbiol Ecol doi: 10.1111/j.1574-6941.2008.00485.x – volume: 42 start-page: 207 year: 1996 ident: 2021052607463875900_b82 article-title: Bacterial biosynthesis of indole-3-acetic acid publication-title: Can J Microbiol doi: 10.1139/m96-032 – ident: 2021052607463875900_b106 – volume: 63 start-page: 84 year: 2008 ident: 2021052607463875900_b26 article-title: Endophytic colonization of Vitis vinifera L. by Burkholderia phytofirmans strain PsJN: from the rhizosphere to inflorescence tissues publication-title: FEMS Microbiol Ecol doi: 10.1111/j.1574-6941.2007.00410.x – volume: 336 start-page: 26 year: 2012 ident: 2021052607463875900_b78 article-title: ACC deaminase genes are conserved among Mesorhizobium species able to nodulate the same host plant publication-title: FEMS Microbiol Lett doi: 10.1111/j.1574-6968.2012.02648.x – volume: 32 start-page: 809 year: 2013 ident: 2021052607463875900_b13 article-title: ACC deaminase-containing Bacillus subtilis reduces stress ethylene-induced damage and improves mycorrhizal colonization and rhizobial nodulation in Trigonella foenum-graecum under drought stress publication-title: J Plant Growth Regul doi: 10.1007/s00344-013-9347-3 – start-page: 763 volume-title: Handbook of Phytoremediation. year: 2010 ident: 2021052607463875900_b39 article-title: Bacterial ACC deaminase and IAA: interactions and consequences for plant growth in polluted environments – volume: 49 start-page: 427 year: 2011 ident: 2021052607463875900_b98 article-title: Enhancement of growth and salt tolerance of red pepper seedlings (Capsicum annuum L.) by regulating stress ethylene synthesis with halotolerant bacteria containing ACC deaminase activity publication-title: Plant Physiol Biochem doi: 10.1016/j.plaphy.2011.01.015 – volume: 11 start-page: 184 year: 2006 ident: 2021052607463875900_b103 article-title: Ethylene as a modulator of disease resistance in plants publication-title: Trends Plant Sci doi: 10.1016/j.tplants.2006.02.005 – volume: 37 start-page: 634 year: 2013 ident: 2021052607463875900_b73 article-title: The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms publication-title: FEMS Microbiol Rev doi: 10.1111/1574-6976.12028 – volume: 91 start-page: 117 year: 2001 ident: 2021052607463875900_b50 article-title: Natural endophytic association between Rhizobium etli and maize (Zea mays L.) publication-title: J Biotechnol doi: 10.1016/S0168-1656(01)00332-7 – volume: 1703 start-page: 11 year: 2004 ident: 2021052607463875900_b57 article-title: Expression and characterization of 1-aminocyclopropane-1-carboxylate deaminase from the rhizobacterium Pseudomonas putida UW4: a key enzyme in bacterial plant growth promotion publication-title: Biochim Biophys Acta doi: 10.1016/j.bbapap.2004.09.015 – volume: 43 start-page: 809 year: 1997 ident: 2021052607463875900_b15 article-title: Bacterial genetic loci implicated in the Pseudomonas putida GR12-2R3-anola mutualism: identification of an exudate-inducible sugar transporter publication-title: Can J Microbiol doi: 10.1139/m97-118 – ident: 2021052607463875900_b44 – volume: 2 start-page: 194 year: 2006 ident: 2021052607463875900_b100 article-title: The biopesticide market for global agricultural use publication-title: Ind Biotechnol (New Rochelle NY) doi: 10.1089/ind.2006.2.194 – volume: 2 start-page: 6 year: 2013 ident: 2021052607463875900_b89 article-title: Mitigation of salt stress in wheat seedlings by halotolerant bacteria isolated from saline habitats publication-title: Springerplus doi: 10.1186/2193-1801-2-6 – volume: 119 start-page: 329 year: 2007 ident: 2021052607463875900_b46 article-title: Promotion of plant growth by ACC deaminase-containing soil bacteria publication-title: Eur J Plant Pathol doi: 10.1007/s10658-007-9162-4 – volume: 42 start-page: 117 year: 2006 ident: 2021052607463875900_b110 article-title: Microbial producers of plant growth stimulators and their practical use: a review. publication-title: Appl Biochem Microbiol doi: 10.1134/S0003683806020013 – volume: 84 start-page: 119 year: 2013 ident: 2021052607463875900_b65 article-title: Identification of plant growth-promoting bacteria-responsive proteins in cucumber roots under hypoxic stress using a proteomic approach publication-title: J Proteomics doi: 10.1016/j.jprot.2013.03.011 – volume: 28 start-page: 367 year: 2010 ident: 2021052607463875900_b43 article-title: Using soil bacteria to facilitate phytoremediation publication-title: Biotechnol Adv doi: 10.1016/j.biotechadv.2010.02.001 – volume: 25 start-page: 668 year: 2012 ident: 2021052607463875900_b99 article-title: Effects of bacterial ACC deaminase on Brassica napus gene expression publication-title: Mol Plant Microbe Interact doi: 10.1094/MPMI-08-11-0213 – volume: 24 start-page: 420 year: 2006 ident: 2021052607463875900_b55 article-title: Reaction mechanisms of the bacterial enzyme 1-aminocyclopropane-1-carboxylate deaminase publication-title: Biotechnol Adv doi: 10.1016/j.biotechadv.2006.01.006 – volume: 71 start-page: 7556 year: 2005 ident: 2021052607463875900_b56 article-title: Evidence for horizontal gene transfer (HGT) of ACC deaminase genes publication-title: Appl Environ Microbiol doi: 10.1128/AEM.71.11.7556-7558.2005 – volume: 31 start-page: 30 year: 2012 ident: 2021052607463875900_b24 article-title: Selection of efficient salt-tolerant bacteria containing ACC deaminase for promotion of tomato growth under salinity stress publication-title: Soil Environ – volume: 7 start-page: e38122 year: 2012 ident: 2021052607463875900_b41 article-title: Rhizobium promotes non-legumes growth and quality in several production steps: towards a biofertilization of edible raw vegetables healthy for humans publication-title: PLoS ONE doi: 10.1371/journal.pone.0038122 – volume: 169 start-page: 30 year: 2014 ident: 2021052607463875900_b45 article-title: Bacteria with ACC deaminase can promote plant growth and help to feed the world publication-title: Microbiol Res doi: 10.1016/j.micres.2013.09.009 – volume: 6 start-page: e17968 year: 2011 ident: 2021052607463875900_b101 article-title: Bacterial distribution in the rhizosphere of wild barley under contrasting microclimates publication-title: PLoS ONE doi: 10.1371/journal.pone.0017968 – volume: 58 start-page: 227 year: 2012 ident: 2021052607463875900_b11 article-title: 1-Aminocyclopropane-1-carboxylic acid (ACC) deaminase-containing rhizobacteria protect Ocimum sanctum plants during waterlogging stress via reduced ethylene generation publication-title: Plant Physiol Biochem doi: 10.1016/j.plaphy.2012.07.008 – volume: 61 start-page: 401 year: 2007 ident: 2021052607463875900_b29 article-title: Biofilm formation by plant-associated bacteria publication-title: Annu Rev Microbiol doi: 10.1146/annurev.micro.61.080706.093316 – volume: 162 start-page: 304 year: 2013 ident: 2021052607463875900_b109 article-title: Unraveling root developmental programs initiated by beneficial Pseudomonas spp. bacteria publication-title: Plant Physiol doi: 10.1104/pp.112.212597 – volume: 166 start-page: 525 year: 2004 ident: 2021052607463875900_b71 article-title: Plant growth-promoting bacteria that confer resistance to water stress in tomato and pepper publication-title: Plant Sci doi: 10.1016/j.plantsci.2003.10.025 – volume: 24 start-page: 1037 year: 2008 ident: 2021052607463875900_b59 article-title: Induction of defense responses in tomato against Pseudomonas syringae pv. tomato by regulating the stress ethylene level with Methylobacterium oryzae CBMB20 containing 1-aminocyclopropane-1-carboxylate deaminase publication-title: World J Microbiol Biotechnol doi: 10.1007/s11274-007-9572-7 – volume: 108 start-page: 236 year: 2010 ident: 2021052607463875900_b38 article-title: Interactions between Pseudomonas putida UW4 and Gigaspora rosea BEG9 and their consequences for the growth of cucumber under salt-stress conditions publication-title: J Appl Microbiol doi: 10.1111/j.1365-2672.2009.04414.x – volume: 57 start-page: 43 year: 2012 ident: 2021052607463875900_b76 article-title: Disparate role of rhizobial ACC deaminase in root-nodule symbioses publication-title: Symbiosis doi: 10.1007/s13199-012-0177-z – volume: 43 start-page: 4472 year: 2009 ident: 2021052607463875900_b49 article-title: Field test of a multi-process phytoremediation system at a petroleum sludge contaminated land farm publication-title: Environ Sci Technol doi: 10.1021/es801540h – volume-title: Ethylene in Plant Biology year: 1992 ident: 2021052607463875900_b1 – volume: 11 start-page: 146 year: 2013 ident: 2021052607463875900_b75 article-title: Alternative rooting induction of semi-hardwood olive cuttings by several auxin-producing bacteria for organic agriculture systems publication-title: Span J Agric Res doi: 10.5424/sjar/2013111-2686 – volume: 56 start-page: 455 year: 2006 ident: 2021052607463875900_b18 article-title: Phylogeny of the 1-aminocyclopropane-1-carboxylic acid deaminase-encoding gene acdS in phytobeneficial and pathogenic Proteobacteria and relation with strain biogeography publication-title: FEMS Microbiol Ecol doi: 10.1111/j.1574-6941.2006.00082.x – volume: 64 start-page: 3663 year: 1998 ident: 2021052607463875900_b21 article-title: A plant growth-promoting bacterium that decreases nickel toxicity in seedlings publication-title: Appl Environ Microbiol doi: 10.1128/AEM.64.10.3663-3668.1998 – volume: 11 start-page: 176 year: 2006 ident: 2021052607463875900_b85 article-title: The Janus face of ethylene: growth inhibition and stimulation publication-title: Trends Plant Sci doi: 10.1016/j.tplants.2006.02.006 – volume: 1 start-page: 57 year: 2012 ident: 2021052607463875900_b7 article-title: Intergeneric microbial coaggregates: bioinoculation effect of ACC deaminase positive wild type strains of Pseuodomonas and Paenibacillus, as coaggregates, on the maximization of ISR against Pyricularia oryzae in upland rice cv. ASD-19 publication-title: CIBTech J Microbiol – volume: 18 start-page: 611 year: 2008 ident: 2021052607463875900_b8 article-title: Inoculation with Pseudomonas spp. containing ACC deaminase partially eliminates the effects of drought stress on growth, yield, and ripening of pea (Pisum sativum L.) publication-title: Pedosphere doi: 10.1016/S1002-0160(08)60055-7 – volume: 123 start-page: 1112 year: 1998 ident: 2021052607463875900_b74 article-title: Properties, sequence, and synthesis in Escherichia coli of 1-aminocyclopropane-1-carboxylate deaminase from Hansenula saturnus publication-title: J Biochem doi: 10.1093/oxfordjournals.jbchem.a022050 – volume: 71 start-page: 7271 year: 2005 ident: 2021052607463875900_b23 article-title: Ascending migration of endophytic rhizobia, from roots to leaves, inside rice plants and assessment of benefits to rice growth physiology publication-title: Appl Environ Microbiol doi: 10.1128/AEM.71.11.7271-7278.2005 – start-page: 6261 volume-title: Sci Rpts year: 2014 ident: 2021052607463875900_b20 article-title: Analysis of genes contributing to plant-beneficial functions in plant growth-promoting rhizobacteria and related Proteobacteria – volume: 55 start-page: 501 year: 2009 ident: 2021052607463875900_b36 article-title: Effects of plant growth-promoting bacteria and AM fungi on the response of plants to heavy metal stress publication-title: Can J Microbiol doi: 10.1139/W09-010 – volume: 6 start-page: 1244 year: 2004 ident: 2021052607463875900_b63 article-title: Isolation and characterization of soybean-associated bacteria and their potential for plant growth promotion publication-title: Environ Microbiol doi: 10.1111/j.1462-2920.2004.00658.x – volume: 74 start-page: 533 year: 2010 ident: 2021052607463875900_b77 article-title: Rhizobacteria capable of producing ACC-deaminase may mitigate salt stress in wheat publication-title: Soil Sci Soc Am J doi: 10.2136/sssaj2008.0240 – volume: 47 start-page: 368 year: 2001 ident: 2021052607463875900_b83 article-title: Levels of ACC and related compounds in exudate and extracts of canola seeds treated with ACC deaminase-containing plant growth-promoting bacteria publication-title: Can J Microbiol doi: 10.1139/w01-014 – volume: 57 start-page: 423 year: 2009 ident: 2021052607463875900_b30 article-title: 1-Aminocyclopropane-1-carboxylate (ACC) deaminase genes in rhizobia from southern Saskatchewan publication-title: Microb Ecol doi: 10.1007/s00248-008-9407-6 – volume: 41 start-page: 109 year: 1995 ident: 2021052607463875900_b42 article-title: The enhancement of plant growth by free-living bacteria publication-title: Can J Microbiol doi: 10.1139/m95-015 – volume: 25 start-page: 155 year: 2004 ident: 2021052607463875900_b4 article-title: Health effects of chronic pesticide exposure: cancer and neurotoxicity publication-title: Annu Rev Public Health doi: 10.1146/annurev.publhealth.25.101802.123020 – volume: 142 start-page: 168 year: 2006 ident: 2021052607463875900_b87 article-title: The ethylene-insensitive sickle mutant of Medicago truncatula shows altered auxin transport regulation during nodulation publication-title: Plant Physiol doi: 10.1104/pp.106.080093 – volume: 72 start-page: 4964 year: 2006 ident: 2021052607463875900_b81 article-title: Expression of the 1-aminocyclopropane-1-carboxylic acid deaminase gene requires symbiotic nitrogen-fixing regulator gene nifA2 in Mesorhizobium loti MAFF303099 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.02745-05 – start-page: 181 volume-title: Applications of Microbial Engineering. year: 2013 ident: 2021052607463875900_b91 article-title: Applications of plant growth-promoting bacteria for plant and soil systems – volume: 173 start-page: 5260 year: 1991 ident: 2021052607463875900_b97 article-title: Isolation, sequence, and expression in Escherichia coli of the Pseudomonas sp. strain ACP gene encoding 1-aminocyclopropane-1-carboxylate deaminase publication-title: J Bacteriol doi: 10.1128/JB.173.17.5260-5265.1991 – volume: 42 start-page: 565 year: 2004 ident: 2021052607463875900_b72 article-title: Plant growth-promoting bacteria confer resistance in tomato plants to salt stress publication-title: Plant Physiol Biochem doi: 10.1016/j.plaphy.2004.05.009 – volume: 8 start-page: 1402 year: 2011 ident: 2021052607463875900_b28 article-title: Pesticide exposure, safety issues, and risk assessment indicators publication-title: Int J Environ Res Public Health doi: 10.3390/ijerph8051402 – volume: 64 start-page: 1644 year: 2000 ident: 2021052607463875900_b17 article-title: Rhizobia inoculation improves nutrient uptake and growth in lowland rice publication-title: Soil Sci Soc Am J doi: 10.2136/sssaj2000.6451644x – volume: 100 start-page: 1738 year: 2013 ident: 2021052607463875900_b33 article-title: Inside the root microbiome: bacterial root endophytes and plant growth promotion publication-title: Am J Bot doi: 10.3732/ajb.1200572 – volume: 190 start-page: 63 year: 1998 ident: 2021052607463875900_b47 article-title: A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria publication-title: J Theor Biol doi: 10.1006/jtbi.1997.0532 – volume: 103 start-page: 40 year: 2013 ident: 2021052607463875900_b32 article-title: Biocontrol of damping-off and root and crown rots of cucumber caused by Pythium aphanidermatum by ACC-deaminase producing endophytic actinomycetes publication-title: Phytopathology – volume: 80 start-page: 160 year: 2014 ident: 2021052607463875900_b6 article-title: Amelioration of high salinity stress damage by plant growth-promoting bacterial endophytes that contain ACC deaminase publication-title: Plant Physiol Biochem doi: 10.1016/j.plaphy.2014.04.003 – volume: 47 start-page: 617 year: 1983 ident: 2021052607463875900_b53 article-title: Enzymatic determination of 1-aminocyclopropane-1-carboxylate deam-inase publication-title: Agric Biol Chem – volume: 65 start-page: 322 year: 1980 ident: 2021052607463875900_b19 article-title: Xylem transport of 1-aminocyclopropane-1-carboxylic acid, an ethylene precursor, in waterlogged tomato plants publication-title: Plant Physiol doi: 10.1104/pp.65.2.322 – volume: 24 start-page: 461 year: 2014 ident: 2021052607463875900_b3 article-title: Characterization of 1-aminocyclopropane-1-carboxylate (ACC) deaminase-containing Pseudomonas spp. in the rhizosphere of salt-stressed canola publication-title: Pedosphere doi: 10.1016/S1002-0160(14)60032-1 – volume: 25 start-page: 453 year: 1998 ident: 2021052607463875900_b31 article-title: Transport of 1-aminocyclopropane-1-carboxylic acid (ACC) in the transpiration stream of tomato (Lycopersicon esculentum) in relation to foliar ethylene production and petiole epinasty publication-title: Aust J Plant Physiol – volume: 56 start-page: 77 year: 2012 ident: 2021052607463875900_b61 article-title: ACC deaminase containing diazotrophic endophytic bacteria ameliorate salt stress in Catharanthus roseus through reduced ethylene levels and induction of antioxidative defense systems publication-title: Symbiosis doi: 10.1007/s13199-012-0162-6 – ident: 2021052607463875900_b40 – volume: 130 start-page: 465 year: 2004 ident: 2021052607463875900_b58 article-title: A multi-process phytoremediation system for removal of polycyclic aromatic hydrocarbons from contaminated soils publication-title: Environ Pollut doi: 10.1016/j.envpol.2003.09.031 – volume: 41 start-page: 197 year: 2000 ident: 2021052607463875900_b62 article-title: Role of plants, mycorrhizae and phytochelators in heavy metal contaminated land remediation publication-title: Chemosphere doi: 10.1016/S0045-6535(99)00412-9 – volume: 171 start-page: 884 year: 2014 ident: 2021052607463875900_b12 article-title: ACC deaminase-containing Arthrobacter protophormiae induces NaCl stress tolerance through reduced ACC oxidase activity and ethylene production resulting in improved nodulation and mycorrhization in Pisum sativum publication-title: J Plant Physiol doi: 10.1016/j.jplph.2014.03.007 – volume: 113 start-page: 1139 year: 2012 ident: 2021052607463875900_b5 article-title: Delay of carnation flower senescence by bacterial endophytes expressing ACC deaminase publication-title: J Appl Microbiol doi: 10.1111/j.1365-2672.2012.05409.x – volume: 69 start-page: 4396 year: 2003 ident: 2021052607463875900_b69 article-title: Rhizobium leguminosarum biovar viciae 1-aminocyclopropane-1-carboxylate deaminase promotes nodulation of pea plants publication-title: Appl Environ Microbiol doi: 10.1128/AEM.69.8.4396-4402.2003 – volume: 58 start-page: 427 year: 2013 ident: 2021052607463875900_b80 article-title: The use of the ACC deaminase producing bacterium Pseudomonas putida UW4 as a biocontrol agent for pine wilt disease publication-title: BioControl doi: 10.1007/s10526-012-9500-0 – volume: 57 start-page: 578 year: 2011 ident: 2021052607463875900_b2 article-title: Inducing salt tolerance in mung bean through coinoculation with rhizobia and plant-growth-promoting rhizobacteria containing 1-aminocyclopropane-1-carboxylate deaminase publication-title: Can J Microbiol doi: 10.1139/w11-044 – volume: 86 start-page: 407 year: 2004 ident: 2021052607463875900_b94 article-title: Physiology and molecular biology of salinity stress tolerance in plants publication-title: Curr Sci – volume: 190 start-page: 74 year: 2012 ident: 2021052607463875900_b34 article-title: The ethylene pathway contributes to root hair elongation induced by the beneficial bacteria Phyllobacterium brassicacearum STM196 publication-title: Plant Sci doi: 10.1016/j.plantsci.2012.03.008 – volume: 30 start-page: 961 year: 2012 ident: 2021052607463875900_b52 article-title: Who’s who in the plant root microbiome? publication-title: Nat Biotechnol doi: 10.1038/nbt.2387 – volume: 377 start-page: 111 year: 2014 ident: 2021052607463875900_b95 article-title: Alleviation of drought stress in mung bean by strain Pseudomonas aeruginosa GGRJ21 publication-title: Plant Soil doi: 10.1007/s11104-013-1981-9 – volume: 151 start-page: 139 year: 2008 ident: 2021052607463875900_b64 article-title: Pesticide Environmental Accounting: a method for assessing the external costs of individual pesticide applications publication-title: Environ Pollut doi: 10.1016/j.envpol.2007.02.019 – volume: 16 start-page: 1133 year: 2014 ident: 2021052607463875900_b22 article-title: Plant growth-promoting bacteria facilitate the growth of barley and oats in salt-impacted soil: implications for phytoremediation of saline soils publication-title: Int J Phytoremediation doi: 10.1080/15226514.2013.821447 – volume: 47 start-page: 77 year: 2001 ident: 2021052607463875900_b84 article-title: Determination of 1-aminocycopropane-1-carboxylic acid (ACC) to assess the effects of ACC deaminase-containing bacteria on roots of canola seedlings publication-title: Can J Microbiol doi: 10.1139/w00-128 – ident: 2021052607463875900_b107 – volume: 4 start-page: 165 year: 2013 ident: 2021052607463875900_b9 article-title: The rhizosphere revisited: root microbiomics publication-title: Front Plant Sci doi: 10.3389/fpls.2013.00165 – volume: 18 start-page: 49 year: 1999 ident: 2021052607463875900_b70 article-title: Effect of wild-type and mutant plant growth-promoting rhizobacteria on the rooting of mung bean cuttings publication-title: J Plant Growth Regul doi: 10.1007/PL00007047 – start-page: 215 volume-title: The Plant Hormone Ethylene. year: 1991 ident: 2021052607463875900_b92 article-title: Ethylene in flower development and senescence – volume: 72 start-page: 274 year: 1995 ident: 2021052607463875900_b105 article-title: Endophyte: the evolution of a term and clarification of its use and definition publication-title: Oikos doi: 10.2307/3545919 – start-page: 377 volume-title: Advances in Plant Ethylene Research. year: 2007 ident: 2021052607463875900_b27 article-title: Response of canola plants at the transcriptional level to expression of a bacterial ACC deaminase in the roots doi: 10.1007/978-1-4020-6014-4_79 – volume: 9 start-page: e99168 year: 2014 ident: 2021052607463875900_b79 article-title: New insights into 1-aminocyclopropane-1-carboxylate (ACC) deaminase phylogeny, evolution and ecological significance publication-title: PLoS ONE doi: 10.1371/journal.pone.0099168 – volume: 51 start-page: 511 year: 2005 ident: 2021052607463875900_b66 article-title: The effect of native and ACC deaminase-containing Azospirillum brasilense Cd1843 on the rooting of carnation cuttings publication-title: Can J Microbiol doi: 10.1139/w05-027 – volume: 16 start-page: 591 year: 2014 ident: 2021052607463875900_b108 article-title: Application of ACC-deaminase containing rhizobacteria with fertilizer improves maize production under drought and salinity stress publication-title: Int J Agric Biol – volume: 59 start-page: 1023 year: 2010 ident: 2021052607463875900_b102 article-title: Inhibitory effect of ACC deaminase-producing bacteria on crown gall formation in tomato plants infected by Agrobacterium tumefaciens or A. vitis publication-title: Plant Pathol doi: 10.1111/j.1365-3059.2010.02326.x – volume: 65 start-page: 202 year: 2008 ident: 2021052607463875900_b88 article-title: Physical organization and phylogenetic analysis of acdR as leucine-responsive regulator of the 1-aminocyclopropane-1-carboxylate deaminase gene acdS in phytobeneficial Azospirillum lipoferum 4B and other Proteobacteria publication-title: FEMS Microbiol Ecol doi: 10.1111/j.1574-6941.2008.00474.x – volume: 366 start-page: 93 year: 2013 ident: 2021052607463875900_b10 article-title: Isolation of ACC deaminase PGPR from rice rhizosphere and evaluating their plant growth promoting activity under salt stress publication-title: Plant Soil doi: 10.1007/s11104-012-1402-5 – volume: 31 start-page: 108 year: 2012 ident: 2021052607463875900_b96 article-title: Rhizosphere bacteria containing ACC deaminase conferred drought tolerance in wheat grown under semi-arid climate publication-title: Soil Environ – volume: 40 start-page: 1019 year: 1994 ident: 2021052607463875900_b60 article-title: Partial purification and characterization of ACC deaminase from the plant growth-promoting rhizobacterium Pseudomonas putida GR12-2 publication-title: Can J Microbiol doi: 10.1139/m94-162 – volume: 46 start-page: 898 year: 2000 ident: 2021052607463875900_b104 article-title: Effect of transferring 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase genes into Pseudomonas fluorescens strain CHA0 and its gacA derivative CHA96 on their growth-promoting and disease-suppressive capacities publication-title: Can J Microbiol doi: 10.1139/w00-071 – volume: 30 start-page: 1225 year: 1998 ident: 2021052607463875900_b14 article-title: Proposal for the division of plant growth-promoting rhizobacteria into two classifications: biocontrol-PGPB (Plant Growth-Promoting Bacteria) and PGPB publication-title: Soil Biol Biochem doi: 10.1016/S0038-0717(97)00187-9 – volume: 42 start-page: 1825 year: 1978 ident: 2021052607463875900_b54 article-title: Metabolism of 1-aminocyclopropane-1-carboxylic acid publication-title: Agric Biol Chem – volume: 181 start-page: 413 year: 2009 ident: 2021052607463875900_b16 article-title: Rhizosphere bacteria containing 1-aminocyclopropane-1-carboxylate deaminase increase yield of plants grown in drying soil via both local and systemic hormone signalling publication-title: New Phytol doi: 10.1111/j.1469-8137.2008.02657.x – volume: 39 start-page: 11 year: 2001 ident: 2021052607463875900_b48 article-title: Amelioration of flooding stress by ACC deaminase-containing plant growth-promoting bacteria publication-title: Plant Physiol Biochem doi: 10.1016/S0981-9428(00)01212-2 – volume: 14 start-page: 435 year: 2011 ident: 2021052607463875900_b93 article-title: Living inside plants: bacterial endophytes publication-title: Curr Opin Plant Biol doi: 10.1016/j.pbi.2011.04.004 – reference: 19483778 - Can J Microbiol. 2009 May;55(5):501-14 – reference: 24905353 - PLoS One. 2014;9(6):e99168 – reference: 22352713 - Mol Plant Microbe Interact. 2012 May;25(5):668-76 – reference: 12902221 - Appl Environ Microbiol. 2003 Aug;69(8):4396-402 – reference: 15560822 - Environ Microbiol. 2004 Dec;6(12):1244-51 – reference: 22675441 - PLoS One. 2012;7(5):e38122 – reference: 23755059 - Front Plant Sci. 2013 May 30;4:165 – reference: 9336944 - Can J Microbiol. 1997 Sep;43(9):809-18 – reference: 15246071 - Plant Physiol Biochem. 2004 Jun;42(6):565-72 – reference: 16761564 - Prikl Biokhim Mikrobiol. 2006 Mar-Apr;42(2):133-43 – reference: 22846334 - Plant Physiol Biochem. 2012 Sep;58:227-35 – reference: 16462865 - Can J Microbiol. 2005 Dec;51(12):1061-9 – reference: 19603664 - Environ Sci Technol. 2009 Jun 15;43(12):4472-9 – reference: 21536480 - Curr Opin Plant Biol. 2011 Aug;14(4):435-43 – reference: 16531096 - Trends Plant Sci. 2006 Apr;11(4):184-91 – reference: 8868227 - Can J Microbiol. 1996 Mar;42(3):207-20 – reference: 21448272 - PLoS One. 2011;6(3):e17968 – reference: 24933907 - Int J Phytoremediation. 2014;16(7-12):1133-47 – reference: 22846039 - FEMS Microbiol Lett. 2012 Nov;336(1):26-37 – reference: 21770816 - Can J Microbiol. 2011 Jul;57(7):578-89 – reference: 24095256 - Microbiol Res. 2014 Jan 20;169(1):30-9 – reference: 19566717 - J Appl Microbiol. 2010 Jan;108(1):236-45 – reference: 16531097 - Trends Plant Sci. 2006 Apr;11(4):176-83 – reference: 15862088 - Annu Rev Plant Biol. 2005;56:15-39 – reference: 9604000 - J Biochem. 1998 Jun;123(6):1112-8 – reference: 23790204 - FEMS Microbiol Rev. 2013 Sep;37(5):634-63 – reference: 23935113 - Am J Bot. 2013 Sep;100(9):1738-50 – reference: 18400007 - FEMS Microbiol Ecol. 2008 Aug;65(2):202-19 – reference: 23449812 - Springerplus. 2013 Dec;2(1):6 – reference: 16844840 - Plant Physiol. 2006 Sep;142(1):168-80 – reference: 18400004 - FEMS Microbiol Ecol. 2008 Jun;64(3):459-67 – reference: 24769617 - Plant Physiol Biochem. 2014 Jul;80:160-7 – reference: 16820494 - Appl Environ Microbiol. 2006 Jul;72(7):4964-9 – reference: 11068676 - Can J Microbiol. 2000 Oct;46(10):898-907 – reference: 21491979 - Can J Microbiol. 2011 Apr;57(4):278-86 – reference: 16524684 - Biotechnol Adv. 2006 Jul-Aug;24(4):420-6 – reference: 22608521 - Plant Sci. 2012 Jul;190:74-81 – reference: 10819202 - Chemosphere. 2000 Jul;41(1-2):197-207 – reference: 24278762 - Scientifica (Cairo). 2012;2012:963401 – reference: 25179219 - Sci Rep. 2014;4:6261 – reference: 15588698 - Biochim Biophys Acta. 2004 Dec 1;1703(1):11-9 – reference: 15182977 - Environ Pollut. 2004 Aug;130(3):465-76 – reference: 22816486 - J Appl Microbiol. 2012 Nov;113(5):1139-44 – reference: 17604888 - Environ Pollut. 2008 Jan;151(1):139-47 – reference: 15015917 - Annu Rev Public Health. 2004;25:155-97 – reference: 17506679 - Annu Rev Microbiol. 2007;61:401-22 – reference: 9473391 - J Theor Biol. 1998 Jan 7;190(1):63-8 – reference: 9758782 - Appl Environ Microbiol. 1998 Oct;64(10):3663-8 – reference: 1885510 - J Bacteriol. 1991 Sep;173(17):5260-5 – reference: 21655127 - Int J Environ Res Public Health. 2011 May;8(5):1402-19 – reference: 16269802 - Appl Environ Microbiol. 2005 Nov;71(11):7556-8 – reference: 16269768 - Appl Environ Microbiol. 2005 Nov;71(11):7271-8 – reference: 16121231 - Can J Microbiol. 2005 Jun;51(6):511-4 – reference: 10552131 - J Plant Growth Regul. 1999 Oct;18(2):49-53 – reference: 23051815 - Nat Biotechnol. 2012 Oct;30(10):961-2 – reference: 23542149 - Plant Physiol. 2013 May;162(1):304-18 – reference: 11358177 - Can J Microbiol. 2001 Apr;47(4):368-72 – reference: 18548183 - Microb Ecol. 2009 Apr;57(3):423-36 – reference: 24913045 - J Plant Physiol. 2014 Jul 1;171(11):884-94 – reference: 23568019 - J Proteomics. 2013 Jun 12;84:119-31 – reference: 15049453 - Can J Microbiol. 2001 Jan;47(1):77-80 – reference: 11566384 - J Biotechnol. 2001 Oct 4;91(2-3):117-26 – reference: 20149857 - Biotechnol Adv. 2010 May-Jun;28(3):367-74 – reference: 21300550 - Plant Physiol Biochem. 2011 Apr;49(4):427-34 – reference: 19121036 - New Phytol. 2009 Jan;181(2):413-23 – reference: 16661182 - Plant Physiol. 1980 Feb;65(2):322-6 – reference: 16689877 - FEMS Microbiol Ecol. 2006 Jun;56(3):455-70 – reference: 18081592 - FEMS Microbiol Ecol. 2008 Jan;63(1):84-93 |
SSID | ssj0001314 |
Score | 2.5832725 |
SecondaryResourceType | review_article |
Snippet | A focus on the mechanisms by which ACC deaminase-containing bacteria facilitate plant growth.Bacteria that produce the enzyme 1-aminocyclopropane-1-carboxylate... Bacterial ACC deaminase affects ethylene production and plant growth under stress. A focus on the mechanisms by which ACC deaminase-containing bacteria... |
SourceID | pubmedcentral proquest pubmed crossref jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 13 |
SubjectTerms | Bacteria Bacteria - enzymology Bacterial Proteins - metabolism Biology Carbon-Carbon Lyases - metabolism Droughts Endophytes Endosymbionts Enzymes Ethylenes - metabolism Fabaceae - growth & development Fabaceae - microbiology Floods Flowers - growth & development Flowers - microbiology Genes Microorganisms Oxygen - metabolism Plant Development Plant growth Plant Growth Regulators - metabolism Plant roots Plants Plants - microbiology Rhizosphere Soil bacteria Stress, Physiological Symbiosis Update on Ethylene Level Modulation UPDATES - FOCUS ISSUE |
Title | Bacterial Modulation of Plant Ethylene Levels |
URI | https://www.jstor.org/stable/24806377 https://www.ncbi.nlm.nih.gov/pubmed/25897004 https://www.proquest.com/docview/1709716062 https://pubmed.ncbi.nlm.nih.gov/PMC4577377 |
Volume | 169 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagcOCCeJWmPBSknpBcEseOkyOLSgsITq3UW2Q7tqi0TaLuFqn99YwfcTawSMAlWiVOrJ0vmvlmMg-EDjIKNtroHDNtJLYMGtdg57DhRBiw6KaU9ovu12_lyRn9fM7Op9GIrrpkLQ_V7da6kv9BFc4BrrZK9h-QjQ-FE_Ab8IUjIAzHv8J44Vst2_Lavg1zuFxS2xLkZVPZb8Cm2JKdH75pcqShfoGLavgeTMAzF7b0d9WKjdjAsbgE--ErYY6WF6uowo-XYQD7woYTr9qQdhiiBzmL6VGg_EeNRzB4idVMJfrxKTPsvYLzhaO_692M2mHBw2HuQlR-6tsGAsOlg4Cwqrb99CfjE1MCx0t30T0CjN95x5--RKOaFzkN5ZWw17uNnWw753DvjFv49NJtjsOv-a8bhOL0EXoYPIH0vYf1Mbqjuyfo_qIHtn7zFOGIbTphm_YmddClI7apx_YZOvt4dPrhBIfRFljRsl5j0irJVK4l-I-5ABKXMVFQoQT8VQVeK1Gg_ImpsqIAEsVLoZkspNakNryqdFHsop2u7_QeSgvBqFK2Ko0b8M6FlC2jMuO1FrogtUjQ21EojQp93-34kWXj_L-MNsPQ5KxxwkzQQVw8-HYn25ftOunGNYRWwHU5T9CbUdwN6Cn78Ul0ur9eNTl33cqykiTouRf_dHfAL0F8BkxcYHugz690F99dL3TKOId99__4zBfowfTev0Q766tr_Qp45Fq-dm_YT2mDbzo |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bacterial+Modulation+of+Plant+Ethylene+Levels&rft.jtitle=Plant+physiology+%28Bethesda%29&rft.au=Gamalero%2C+Elisa&rft.au=Glick%2C+Bernard+R&rft.date=2015-09-01&rft.eissn=1532-2548&rft.volume=169&rft.issue=1&rft.spage=13&rft_id=info:doi/10.1104%2Fpp.15.00284&rft_id=info%3Apmid%2F25897004&rft.externalDocID=25897004 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-0889&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-0889&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-0889&client=summon |