Low-intensity ultrasound neuromodulation: An overview of mechanisms and emerging human applications

There is an emerging need for noninvasive neuromodulation techniques to improve patient outcomes while minimizing adverse events and morbidity. Low-intensity focused ultrasound (LIFUS) is gaining traction as a non-surgical experimental approach of modulating brain activity. Several LIFUS sonication...

Full description

Saved in:
Bibliographic Details
Published inBrain stimulation Vol. 11; no. 6; pp. 1209 - 1217
Main Authors Fomenko, Anton, Neudorfer, Clemens, Dallapiazza, Robert F., Kalia, Suneil K., Lozano, Andres M.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.11.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract There is an emerging need for noninvasive neuromodulation techniques to improve patient outcomes while minimizing adverse events and morbidity. Low-intensity focused ultrasound (LIFUS) is gaining traction as a non-surgical experimental approach of modulating brain activity. Several LIFUS sonication parameters have been found to potentiate neural firing, suppress cortical and epileptic discharges, and alter behavior when delivered to cortical and subcortical mammalian brain regions. This review introduces the elements of an effective sonication protocol and summarizes key preclinical studies on LIFUS as a neuromodulation modality. The state of the art in human ultrasound neuromodulation is then comprehensively summarized, and current hypotheses regarding the underlying mechanism of action on neural activity are presented. Peer-reviewed literature on human ultrasound neuromodulation was obtained by searching several electronic databases. The abstracts of all reports were read and publications which examined low-intensity transcranial ultrasound applied to human subjects were selected for review. LIFUS can noninvasively influence human brain activity by suppressing cortical evoked potentials, influencing cortical oscillatory dynamics, and altering outcomes of sensory/motor tasks compared to sham sonication. Proposed mechanisms include cavitation, direct effects on neural ion channels, and plasma membrane deformation. Though optimal sonication paradigms and transcranial delivery methods are still being established, future applications may include non-invasive human brain mapping experiments, and nonsurgical treatments for functional neurological disorders. •Low-intensity ultrasound can noninvasively modulate mammalian brain activity.•Pulsing parameters and intensity determine excitatory or inhibitory neural effects.•Human US neuromodulation has been achieved in cortical and deep structures.•Ultrasound holds promise as a precise, nonsurgical and safe brain stimulation tool.
AbstractList There is an emerging need for noninvasive neuromodulation techniques to improve patient outcomes while minimizing adverse events and morbidity. Low-intensity focused ultrasound (LIFUS) is gaining traction as a non-surgical experimental approach of modulating brain activity. Several LIFUS sonication parameters have been found to potentiate neural firing, suppress cortical and epileptic discharges, and alter behavior when delivered to cortical and subcortical mammalian brain regions. This review introduces the elements of an effective sonication protocol and summarizes key preclinical studies on LIFUS as a neuromodulation modality. The state of the art in human ultrasound neuromodulation is then comprehensively summarized, and current hypotheses regarding the underlying mechanism of action on neural activity are presented. Peer-reviewed literature on human ultrasound neuromodulation was obtained by searching several electronic databases. The abstracts of all reports were read and publications which examined low-intensity transcranial ultrasound applied to human subjects were selected for review. LIFUS can noninvasively influence human brain activity by suppressing cortical evoked potentials, influencing cortical oscillatory dynamics, and altering outcomes of sensory/motor tasks compared to sham sonication. Proposed mechanisms include cavitation, direct effects on neural ion channels, and plasma membrane deformation. Though optimal sonication paradigms and transcranial delivery methods are still being established, future applications may include non-invasive human brain mapping experiments, and nonsurgical treatments for functional neurological disorders.
There is an emerging need for noninvasive neuromodulation techniques to improve patient outcomes while minimizing adverse events and morbidity. Low-intensity focused ultrasound (LIFUS) is gaining traction as a non-surgical experimental approach of modulating brain activity. Several LIFUS sonication parameters have been found to potentiate neural firing, suppress cortical and epileptic discharges, and alter behavior when delivered to cortical and subcortical mammalian brain regions.BACKGROUNDThere is an emerging need for noninvasive neuromodulation techniques to improve patient outcomes while minimizing adverse events and morbidity. Low-intensity focused ultrasound (LIFUS) is gaining traction as a non-surgical experimental approach of modulating brain activity. Several LIFUS sonication parameters have been found to potentiate neural firing, suppress cortical and epileptic discharges, and alter behavior when delivered to cortical and subcortical mammalian brain regions.This review introduces the elements of an effective sonication protocol and summarizes key preclinical studies on LIFUS as a neuromodulation modality. The state of the art in human ultrasound neuromodulation is then comprehensively summarized, and current hypotheses regarding the underlying mechanism of action on neural activity are presented.OBJECTIVEThis review introduces the elements of an effective sonication protocol and summarizes key preclinical studies on LIFUS as a neuromodulation modality. The state of the art in human ultrasound neuromodulation is then comprehensively summarized, and current hypotheses regarding the underlying mechanism of action on neural activity are presented.Peer-reviewed literature on human ultrasound neuromodulation was obtained by searching several electronic databases. The abstracts of all reports were read and publications which examined low-intensity transcranial ultrasound applied to human subjects were selected for review.METHODSPeer-reviewed literature on human ultrasound neuromodulation was obtained by searching several electronic databases. The abstracts of all reports were read and publications which examined low-intensity transcranial ultrasound applied to human subjects were selected for review.LIFUS can noninvasively influence human brain activity by suppressing cortical evoked potentials, influencing cortical oscillatory dynamics, and altering outcomes of sensory/motor tasks compared to sham sonication. Proposed mechanisms include cavitation, direct effects on neural ion channels, and plasma membrane deformation.RESULTSLIFUS can noninvasively influence human brain activity by suppressing cortical evoked potentials, influencing cortical oscillatory dynamics, and altering outcomes of sensory/motor tasks compared to sham sonication. Proposed mechanisms include cavitation, direct effects on neural ion channels, and plasma membrane deformation.Though optimal sonication paradigms and transcranial delivery methods are still being established, future applications may include non-invasive human brain mapping experiments, and nonsurgical treatments for functional neurological disorders.CONCLUSIONSThough optimal sonication paradigms and transcranial delivery methods are still being established, future applications may include non-invasive human brain mapping experiments, and nonsurgical treatments for functional neurological disorders.
There is an emerging need for noninvasive neuromodulation techniques to improve patient outcomes while minimizing adverse events and morbidity. Low-intensity focused ultrasound (LIFUS) is gaining traction as a non-surgical experimental approach of modulating brain activity. Several LIFUS sonication parameters have been found to potentiate neural firing, suppress cortical and epileptic discharges, and alter behavior when delivered to cortical and subcortical mammalian brain regions. This review introduces the elements of an effective sonication protocol and summarizes key preclinical studies on LIFUS as a neuromodulation modality. The state of the art in human ultrasound neuromodulation is then comprehensively summarized, and current hypotheses regarding the underlying mechanism of action on neural activity are presented. Peer-reviewed literature on human ultrasound neuromodulation was obtained by searching several electronic databases. The abstracts of all reports were read and publications which examined low-intensity transcranial ultrasound applied to human subjects were selected for review. LIFUS can noninvasively influence human brain activity by suppressing cortical evoked potentials, influencing cortical oscillatory dynamics, and altering outcomes of sensory/motor tasks compared to sham sonication. Proposed mechanisms include cavitation, direct effects on neural ion channels, and plasma membrane deformation. Though optimal sonication paradigms and transcranial delivery methods are still being established, future applications may include non-invasive human brain mapping experiments, and nonsurgical treatments for functional neurological disorders. •Low-intensity ultrasound can noninvasively modulate mammalian brain activity.•Pulsing parameters and intensity determine excitatory or inhibitory neural effects.•Human US neuromodulation has been achieved in cortical and deep structures.•Ultrasound holds promise as a precise, nonsurgical and safe brain stimulation tool.
Author Kalia, Suneil K.
Fomenko, Anton
Neudorfer, Clemens
Dallapiazza, Robert F.
Lozano, Andres M.
Author_xml – sequence: 1
  givenname: Anton
  orcidid: 0000-0003-4131-6784
  surname: Fomenko
  fullname: Fomenko, Anton
  email: Anton.fomenko@uhnresearch.ca
  organization: Toronto Western Research Institute, Krembil Discovery Tower, University Health Network, 60 Leonard Avenue, Toronto, ON, M5T OS8, Canada
– sequence: 2
  givenname: Clemens
  surname: Neudorfer
  fullname: Neudorfer, Clemens
  organization: Toronto Western Research Institute, Krembil Discovery Tower, University Health Network, 60 Leonard Avenue, Toronto, ON, M5T OS8, Canada
– sequence: 3
  givenname: Robert F.
  surname: Dallapiazza
  fullname: Dallapiazza, Robert F.
  organization: Toronto Western Research Institute, Krembil Discovery Tower, University Health Network, 60 Leonard Avenue, Toronto, ON, M5T OS8, Canada
– sequence: 4
  givenname: Suneil K.
  surname: Kalia
  fullname: Kalia, Suneil K.
  organization: Toronto Western Research Institute, Krembil Discovery Tower, University Health Network, 60 Leonard Avenue, Toronto, ON, M5T OS8, Canada
– sequence: 5
  givenname: Andres M.
  surname: Lozano
  fullname: Lozano, Andres M.
  organization: Toronto Western Research Institute, Krembil Discovery Tower, University Health Network, 60 Leonard Avenue, Toronto, ON, M5T OS8, Canada
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30166265$$D View this record in MEDLINE/PubMed
BookMark eNqFkE1PHSEUQEmjqV_9AW4alt3ME4YZBtqVMfUjeYkbTdwRBu4orwy8wozm_fuiz7pwoclNuItzSO45QDshBkDomJIFJZSfrBZ9youaULEgZSj7gvap6HjVdG2zU3bJ2kpwereHDnJeEdJKKbqvaI8Vm9e83UdmGZ8qFyYI2U0bPPsp6RznYHGAOcUx2tnrycXwE58GHB8hPTp4wnHAI5gHHVweM9YFhxHSvQv3-GEedcB6vfbOvJj5CO0O2mf49voeotvz3zdnl9Xy-uLq7HRZmYbLqarN0NacaAFcgmk6SQSx2hIrQDBuNDW95ExbrpkcZF8zIwlYZqhu6EBszw7Rj-2_6xT_zpAnNbpswHsdIM5Z1aRcz1suZEG_v6JzP4JV6-RGnTbqf5gC0C1gUsw5wfCGUKKe46uVKvHVc3xFylBWnO6dY9z0kqBEdf5D89fWhJKnBE4qGwfBgHUJzKRsdB_a8p1tvAulvv8Dm0_cfw9UtFY
CitedBy_id crossref_primary_10_1109_TBME_2021_3073951
crossref_primary_10_1007_s12239_021_0001_y
crossref_primary_10_3389_fnins_2021_620863
crossref_primary_10_4103_NRR_NRR_D_24_00539
crossref_primary_10_1186_s41983_024_00824_w
crossref_primary_10_3390_brainsci12020208
crossref_primary_10_1016_j_brs_2020_02_017
crossref_primary_10_1016_j_neuroimage_2021_118557
crossref_primary_10_1109_MSSC_2020_2987506
crossref_primary_10_1002_ana_26294
crossref_primary_10_3389_fneur_2023_1279875
crossref_primary_10_1016_j_neuroimage_2023_120227
crossref_primary_10_1109_TUFFC_2022_3160880
crossref_primary_10_1016_j_measurement_2024_115700
crossref_primary_10_1093_cercor_bhad398
crossref_primary_10_2139_ssrn_3345552
crossref_primary_10_1016_j_brs_2022_05_002
crossref_primary_10_1038_s41378_022_00396_w
crossref_primary_10_3389_fnins_2021_727715
crossref_primary_10_7554_eLife_54497
crossref_primary_10_1016_j_ultrasmedbio_2020_01_007
crossref_primary_10_3389_fnins_2020_00445
crossref_primary_10_1016_j_intimp_2024_113680
crossref_primary_10_1016_j_ultras_2020_106218
crossref_primary_10_1080_14737175_2020_1779590
crossref_primary_10_3389_fneur_2018_01007
crossref_primary_10_7554_eLife_40541
crossref_primary_10_3389_fpubh_2021_788613
crossref_primary_10_1016_j_clinph_2021_12_010
crossref_primary_10_3389_fncel_2022_839023
crossref_primary_10_1016_j_ultras_2019_105970
crossref_primary_10_1186_s12974_023_02773_2
crossref_primary_10_1016_j_mtbio_2023_100556
crossref_primary_10_1016_j_drugalcdep_2023_109919
crossref_primary_10_1016_j_neuroimage_2021_118093
crossref_primary_10_1016_j_brs_2019_09_011
crossref_primary_10_1016_j_celrep_2022_111197
crossref_primary_10_1088_1741_2552_ac409f
crossref_primary_10_3389_fpsyt_2022_825802
crossref_primary_10_1080_07388551_2021_1993126
crossref_primary_10_1016_j_neures_2020_01_002
crossref_primary_10_1073_pnas_2404877121
crossref_primary_10_1126_sciadv_adn0260
crossref_primary_10_1038_s41928_024_01240_x
crossref_primary_10_1152_jn_00701_2020
crossref_primary_10_1111_cns_14303
crossref_primary_10_1073_pnas_2300291120
crossref_primary_10_1016_j_ultras_2021_106591
crossref_primary_10_1088_1361_6560_ada19d
crossref_primary_10_1016_j_brs_2022_10_001
crossref_primary_10_1126_sciadv_abf6312
crossref_primary_10_1097_j_pain_0000000000003556
crossref_primary_10_1126_sciadv_adj8608
crossref_primary_10_1016_j_neubiorev_2022_104867
crossref_primary_10_1016_j_brs_2023_07_056
crossref_primary_10_1093_cercor_bhae413
crossref_primary_10_1088_1741_2552_ac7893
crossref_primary_10_1093_cercor_bhad330
crossref_primary_10_3390_electronics13061154
crossref_primary_10_1016_j_brs_2020_08_014
crossref_primary_10_1016_j_neuroscience_2023_07_019
crossref_primary_10_1016_j_isci_2024_110269
crossref_primary_10_1038_s41598_020_78553_2
crossref_primary_10_1109_OJEMB_2023_3263690
crossref_primary_10_1109_TUFFC_2021_3057873
crossref_primary_10_1007_s11517_025_03290_5
crossref_primary_10_2139_ssrn_4131980
crossref_primary_10_1109_TBME_2021_3085170
crossref_primary_10_3389_fneur_2023_1117188
crossref_primary_10_3389_fnins_2022_994570
crossref_primary_10_1016_j_brs_2023_04_021
crossref_primary_10_3390_jcm10122698
crossref_primary_10_23736_S0390_5616_24_06306_9
crossref_primary_10_1109_TUFFC_2021_3131752
crossref_primary_10_3389_fnins_2022_886584
crossref_primary_10_1109_TBME_2023_3313987
crossref_primary_10_1109_JMEMS_2021_3125377
crossref_primary_10_1109_TNSRE_2022_3188516
crossref_primary_10_1109_TUFFC_2023_3280455
crossref_primary_10_1016_j_brs_2019_07_024
crossref_primary_10_3390_brainsci12101277
crossref_primary_10_1016_j_neuroimage_2022_119682
crossref_primary_10_1109_OJEMB_2019_2963474
crossref_primary_10_1016_j_bbi_2025_03_027
crossref_primary_10_1016_j_clinph_2024_05_007
crossref_primary_10_2174_1570159X18666200720175253
crossref_primary_10_3340_jkns_2018_0180
crossref_primary_10_1177_15357597221086111
crossref_primary_10_1007_s12311_021_01300_4
crossref_primary_10_1016_j_cmpb_2022_106777
crossref_primary_10_1126_sciadv_aaz4193
crossref_primary_10_1016_j_jocn_2021_05_062
crossref_primary_10_52662_nf_2023_00094
crossref_primary_10_1002_bem_70004
crossref_primary_10_1016_j_medj_2021_05_002
crossref_primary_10_1016_j_ultrasmedbio_2021_02_028
crossref_primary_10_1039_D2BM02059A
crossref_primary_10_1093_cercor_bhac413
crossref_primary_10_1016_j_neuroimage_2023_120423
crossref_primary_10_1002_ird3_70003
crossref_primary_10_1176_appi_focus_20210028
crossref_primary_10_1055_s_0042_1755562
crossref_primary_10_1002_uog_20269
crossref_primary_10_1109_TBCAS_2023_3288891
crossref_primary_10_1186_s13063_024_08092_y
crossref_primary_10_15212_bioi_2020_0026
crossref_primary_10_1016_j_brs_2021_01_006
crossref_primary_10_1109_TBME_2022_3231343
crossref_primary_10_1007_s40519_019_00746_0
crossref_primary_10_1109_TNSRE_2022_3199813
crossref_primary_10_1109_TUFFC_2020_3014183
crossref_primary_10_1016_j_ultsonch_2019_104745
crossref_primary_10_1155_2021_8855055
crossref_primary_10_1016_j_neuroimage_2023_119979
crossref_primary_10_1002_advs_202205634
crossref_primary_10_1007_s10439_019_02431_w
crossref_primary_10_3389_fncel_2022_971148
crossref_primary_10_1016_j_brs_2024_12_002
crossref_primary_10_3389_fneur_2019_00549
crossref_primary_10_3390_ijms25115687
crossref_primary_10_4103_ATN_ATN_D_24_00003
crossref_primary_10_33069_cim_2019_0009
crossref_primary_10_1167_tvst_11_1_18
crossref_primary_10_1176_appi_ajp_2021_21101034
crossref_primary_10_1016_j_clinph_2025_01_004
crossref_primary_10_1016_j_ultrasmedbio_2021_05_007
crossref_primary_10_1007_s12264_024_01186_2
crossref_primary_10_1016_j_ultras_2023_107172
crossref_primary_10_1016_j_ultrasmedbio_2024_09_008
crossref_primary_10_34133_research_0200
crossref_primary_10_1016_j_jneumeth_2022_109536
crossref_primary_10_3389_fncel_2024_1360870
crossref_primary_10_1016_j_neubiorev_2023_105501
crossref_primary_10_1088_1741_2552_acb50d
crossref_primary_10_1088_1741_2552_acd7a4
crossref_primary_10_1161_STROKEAHA_124_046679
crossref_primary_10_3389_fnins_2022_854992
crossref_primary_10_14801_jkiit_2024_22_7_153
crossref_primary_10_1016_j_brs_2023_03_002
crossref_primary_10_3389_fnhum_2024_1385427
crossref_primary_10_1109_TUFFC_2022_3144335
crossref_primary_10_1039_D4LC00826J
crossref_primary_10_3390_diagnostics10080566
crossref_primary_10_1021_acsami_1c15611
crossref_primary_10_1016_j_brs_2022_12_003
crossref_primary_10_1016_j_brs_2021_12_005
crossref_primary_10_1039_D3TB01354E
crossref_primary_10_1016_j_bbrc_2022_04_123
crossref_primary_10_1016_j_ultrasmedbio_2023_02_003
crossref_primary_10_1186_s12967_022_03824_7
crossref_primary_10_1016_j_mattod_2022_12_004
crossref_primary_10_1016_j_metrad_2024_100065
crossref_primary_10_1002_advs_202302404
crossref_primary_10_1109_TUFFC_2020_3005670
crossref_primary_10_34133_2022_9829316
crossref_primary_10_1002_mp_16090
crossref_primary_10_1016_j_neuron_2019_01_019
crossref_primary_10_1152_ajprenal_00145_2020
crossref_primary_10_1093_cercor_bhac037
crossref_primary_10_3390_brainsci13030451
crossref_primary_10_1039_D2NR05256C
crossref_primary_10_1016_j_isci_2019_10_037
crossref_primary_10_1016_j_ultrasmedbio_2022_01_022
crossref_primary_10_1085_jgp_202012672
crossref_primary_10_1109_TBME_2022_3233345
crossref_primary_10_1002_brb3_70318
crossref_primary_10_1016_j_brs_2022_01_002
crossref_primary_10_1016_j_brs_2023_01_1674
crossref_primary_10_1109_TUFFC_2022_3140889
crossref_primary_10_1007_s00415_023_12114_1
crossref_primary_10_1016_j_heliyon_2023_e22522
crossref_primary_10_1109_TUFFC_2020_2968479
crossref_primary_10_1162_jocn_a_01591
crossref_primary_10_1007_s10143_024_03078_5
crossref_primary_10_1002_adma_202303180
crossref_primary_10_1016_j_actbio_2022_07_034
crossref_primary_10_3389_fnins_2022_964060
crossref_primary_10_1016_j_brainres_2024_149405
crossref_primary_10_1109_TIM_2024_3366278
crossref_primary_10_4103_1673_5374_255961
crossref_primary_10_1007_s12239_020_0001_3
crossref_primary_10_1109_TUFFC_2021_3108448
crossref_primary_10_1117_1_JBO_29_S1_S11520
crossref_primary_10_1016_j_neurom_2021_12_012
crossref_primary_10_1002_adma_202307664
crossref_primary_10_1007_s12239_020_0081_0
Cites_doi 10.1016/j.conb.2018.04.011
10.1016/j.celrep.2016.10.033
10.1016/j.brs.2014.06.011
10.1016/S0301-5629(98)00111-2
10.7863/jum.2009.28.2.139
10.1021/nn101985a
10.1146/annurev.bioeng.6.040803.140126
10.1002/adhm.201600245
10.1002/mrm.20043
10.1016/j.neuroimage.2011.02.058
10.1088/1741-2560/13/5/056002
10.1109/TUFFC.2017.2651648
10.1121/1.424383
10.1109/TBME.2009.2028653
10.1021/acsnano.5b03162
10.1016/j.cub.2013.10.029
10.1016/j.brs.2012.05.002
10.1016/j.yebeh.2015.04.008
10.1038/srep08743
10.1016/j.ultrasmedbio.2012.09.009
10.1523/JNEUROSCI.1458-17.2018
10.1186/2050-5736-3-S1-O23
10.1073/pnas.1320768111
10.7863/jum.1993.12.12.747
10.1186/2050-5736-3-S1-O27
10.1016/j.ultrasmedbio.2006.07.018
10.1109/TNSRE.2017.2765001
10.3389/fnins.2017.00607
10.1016/j.ultras.2004.12.003
10.3389/fnins.2016.00348
10.1002/ana.24933
10.1038/nn.3620
10.1038/srep24170
10.1038/srep34026
10.1016/j.nurt.2007.05.012
10.1016/0014-4886(64)90005-6
10.1002/ima.20284
10.1038/nprot.2011.371
10.1007/s001620050068
10.1016/j.neuron.2010.05.008
10.1136/jnnp-2014-307642
10.1016/j.neuron.2018.07.049
10.1002/mrm.20118
10.1118/1.4812423
10.1016/j.ultrasmedbio.2014.01.020
10.1088/0031-9155/47/8/301
10.1038/s41598-018-28320-1
10.1002/cne.901030304
10.1016/j.brs.2017.07.007
10.1186/s12868-016-0303-6
10.1152/ajplegacy.1929.91.1.284
10.1097/WNR.0b013e32834b2957
10.1016/j.neuron.2018.05.009
10.1126/science.127.3289.83
10.1523/ENEURO.0136-15.2016
10.1016/j.ultrasmedbio.2015.10.001
10.1016/j.brs.2014.08.008
10.1088/0031-9155/34/11/003
10.1121/1.4976339
10.1088/1741-2552/aa843e
10.1128/AEM.02230-09
10.1371/journal.pone.0003511
10.1056/NEJMoa1300962
10.1001/archneur.1962.00450230036005
10.1016/S0165-0270(97)02242-5
10.1177/1073858409348066
10.1073/pnas.1015771108
10.3389/fnins.2016.00105
10.1088/1741-2560/13/3/031003
10.1186/1471-2202-12-23
10.1038/nrn3383
10.1121/1.1912808
10.1016/j.brs.2016.07.008
10.1038/ncomms9264
10.1098/rstb.2002.1100
10.1016/j.pbiomolbio.2006.07.008
10.1097/WNR.0000000000000330
ContentType Journal Article
Copyright 2018 Elsevier Inc.
Copyright © 2018 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2018 Elsevier Inc.
– notice: Copyright © 2018 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.brs.2018.08.013
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1876-4754
EndPage 1217
ExternalDocumentID 30166265
10_1016_j_brs_2018_08_013
S1935861X18302961
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
1B1
1P~
1~.
1~5
23N
4.4
457
4G.
4H-
53G
5GY
5VS
7-5
71M
8P~
AAEDT
AAEDW
AAFWJ
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABIVO
ABJNI
ABMAC
ABMZM
ABTEW
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADVLN
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPKN
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGUBO
AGWIK
AGYEJ
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
AXJTR
BKOJK
BLXMC
BNPGV
CS3
EBS
EFJIC
EFKBS
EJD
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
GBLVA
GROUPED_DOAJ
HVGLF
HZ~
IHE
J1W
KOM
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OK1
OP~
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SEL
SES
SSH
SSN
SSZ
T5K
Z5R
~G-
AACTN
AADPK
AAIAV
ABLVK
ABYKQ
AFCTW
AFKWA
AJBFU
AJOXV
AMFUW
EFLBG
LCYCR
NCXOZ
RIG
AAYXX
AGRNS
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c469t-2cf5260a8e69ec479080dad0d8e836ca1cb963ad6a39f9b23c90ed3c1a41f0db3
IEDL.DBID .~1
ISSN 1935-861X
1876-4754
IngestDate Fri Jul 11 07:05:55 EDT 2025
Thu Apr 03 06:58:51 EDT 2025
Thu Apr 24 23:12:10 EDT 2025
Tue Jul 01 01:50:28 EDT 2025
Fri Feb 23 02:27:48 EST 2024
Tue Aug 26 16:35:45 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Transcranial ultrasound
Focused ultrasound
Brain stimulation
Neuromodulation
Language English
License Copyright © 2018 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c469t-2cf5260a8e69ec479080dad0d8e836ca1cb963ad6a39f9b23c90ed3c1a41f0db3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0003-4131-6784
PMID 30166265
PQID 2098765689
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_2098765689
pubmed_primary_30166265
crossref_primary_10_1016_j_brs_2018_08_013
crossref_citationtrail_10_1016_j_brs_2018_08_013
elsevier_sciencedirect_doi_10_1016_j_brs_2018_08_013
elsevier_clinicalkey_doi_10_1016_j_brs_2018_08_013
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November-December 2018
2018-11-00
2018 Nov - Dec
20181101
PublicationDateYYYYMMDD 2018-11-01
PublicationDate_xml – month: 11
  year: 2018
  text: November-December 2018
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Brain stimulation
PublicationTitleAlternate Brain Stimul
PublicationYear 2018
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Clement, Hynynen (bib14) 2002; 47
Duck (bib29) 2007; 93
Krasovitski, Frenkel, Shoham, Kimmel (bib75) 2011; 108
Tyler, Tufail, Finsterwald, Tauchmann, Olson, Majestic (bib10) 2008; 3
United States Food and Drug Administration (bib28) 2017
Lee, Lee, Park, Foley, Purcell-Estabrook, Kim (bib48) 2016
Lee, Chung, Jung, Song, Yoo (bib55) 2016; 17
Tyler (bib82) 2011; 17
Mueller, Legon, Opitz, Sato, Tyler (bib53) 2014; 7
Tsui, Wang, Huang (bib20) 2005; 43
Younan, Deffieux, Larrat, Fink, Tanter, Aubry (bib13) 2013
Wagner T, Fregni F. Non-invasive Neurostimulation in Parkinson’s Disease. Clin ID NCT01615718 n.d.
Fry, Ades, Fry (bib3) 1958; 127
Mueller, Ai, Bansal, Legon (bib17) 2017
Sanguinetti, Smith, Allen, Hameroff (bib59) 2014
Constans, Deffieux, Pouget, Tanter, Aubry (bib62) 2017; 64
Li, Su, Jiang, Cai, Yan, Gu (bib86) 2017
Kim, Chiu, Lee, Fischer, Yoo (bib21) 2014; 7
Min, Bystritsky, Jung, Fischer, Zhang, Maeng (bib39) 2011; 12
(accessed February 10, 2018).
Mueller, Ai, Bansal, Legon (bib27) 2016
Hakimova, Kim, Chu, Lee, Jeong, Jeon (bib38) 2015; 49
Elias, Huss, Voss, Loomba, Khaled, Zadicario (bib63) 2013; 369
Chang, Jung, Zadicario, Rachmilevitch, Tlusty, Vitek (bib16) 2015; 124
Rothwell (bib67) 1997; 74
Coakley, Dunn (bib71) 1971; 50
Nelson, Fowlkes, Abramowicz, Church (bib77) 2009; 28
Yoo, Jung, Zhang, Mcdannold, Bystritsky, Jolesz (bib44) 2010; 97
Tang, Clement (bib46) 2010; 57
Lee, Kim, Lee, Park, Yoo (bib47) 2015; 3
Wattiez, Constans, Deffieux, Daye, Tanter, Aubry (bib36) 2017; 10
Kim, Park, Lee, Lee, Chiu, Yoo (bib43) 2015; 26
Meng, Volpini, Black, Lozano, Hynynen, Lipsman (bib93) 2017; 81
Sun, Hynynen (bib15) 1998; 104
Tufail, Yoshihiro, Pati, Li, Tyler (bib34) 2011; 6
Monti, Schnakers, Korb, Bystritsky, Vespa (bib57) 2016; 9
Robertson, Cox, Jaros, Treeby (bib65) 2017
Tsivgoulis, Alexandrov (bib95) 2007; 4
King, Brown, Pauly (bib33) 2014; 40
Dallapiazza, Timbie, Holmberg, Gatesman, Lopes, Price (bib32) 2017
Fry (bib2) 1954; 100
Johns (bib84) 2002; 37
Romo, Hernandez, Zainos, Brody, Salinas (bib60) 2002; 357
Horder, Barnett, Vella, Edwards, Wood (bib25) 1998; 24
Deffieux, Younan, Wattiez, Tanter, Pouget, Aubry (bib37) 2013; 23
Ai, Mueller, Grant, Eryaman, Legon (bib18) 2016
Kubanek, Shukla, Das, Baccus, Goodman (bib68) 2018; 38
Yang, Phipps, Newton, Chaplin, Gore, Caskey (bib50) 2018
Ciofani, Danti, D’Alessandro, Ricotti, Moscato, Bertoni (bib90) 2010; 4
Ishibashi, Shimada, Kawato, Kaji, Maeno, Sato (bib72) 2010; 76
Genchi, Ceseracciu, Marino, Labardi, Marras, Pignatelli (bib91) 2016; 5
Plaksin, Kimmel, Shoham (bib26) 2016; 3
Shealy, Henneman (bib73) 1962; 6
Yoo, Kim, Min, Franck, Park (bib40) 2011; 22
Colombo, Feyen, Antognazza, Lanzani, Benfenati (bib89) 2016; 10
Chang, Jung, Kweon, Zadicario, Rachmilevitch, Chang (bib64) 2015; 86
Kubanek, Shi, Marsh, Chen, Deng, Cui (bib80) 2016; 6
Legon, Bansal, Tyshynsky, Ai, Mueller (bib58) 2018; 8
Magee, Davies (bib74) 1993; 12
Sato, Shapiro, Tsao (bib42) 2018
Plaksin, Shoham, Kimmel (bib76) 2014; 4
Qiu, Zhou, Chen, Su, Li, Zhao (bib5) 2017
Sassaroli, Vykhodtseva (bib78) 2016; 4
Tyler (bib83) 2012; 13
Guo, Hamilton, Offutt, Gloeckner, Li, Kim (bib41) 2018
Manlapaz, Åström, Ballantine, Lele (bib51) 1964; 10
Yuan, Yan, Ma, Li (bib30) 2016; 10
Li, Qiu, Zhang, Jiang, Su, Cai (bib4) 2018
Tufail, Matyushov, Baldwin, Tauchmann, Georges, Yoshihiro (bib24) 2010; 66
Naor, Krupa, Shoham (bib9) 2016; 13
Dallapiazza, Timbie, Elias (bib8) 2017
Lee, Kim, Jung, Song, Chung, Yoo (bib54) 2015; 5
Harvey (bib1) 1929; 91
McDannold, King, Hynynen (bib61) 2004; 51
Lee, Kim, Jung, Chung, Song, Lee (bib56) 2016; 6
Stern J. Low-intensity Focused Ultrasound Pulsation (LIFUP) for Treatment of Temporal Lobe Epilepsy. Clin ID NCT02151175 n.d.
Howard (bib11) 2005; 21
King, Brown, Newsome, Pauly (bib12) 2013; 39
Legon, Ai, Bansal, Mueller (bib19) 2018
Barnard, Fry, Fry, Krumins (bib22) 1955; 103
Hynynen, Clement, McDannold, Vykhodtseva, King, White (bib6) 2004; 52
Downs, Teichert, Buch, Karakatsani, Sierra, Chen (bib31) 2017; 11
Ibsen, Tong, Schutt, Esener, Chalasani (bib87) 2015; 6
Syeda, Florendo, Cox, Kefauver, Santos, Martinac (bib81) 2016; 17
Riley (bib85) 1998; 10
Bystritsky, Korb, Stern, Cohen (bib66) 2015; 3
Hameroff, Trakas, Duffield, Annabi, Gerace, Boyle (bib23) 2013; 6
Brohawn, Su, MacKinnon (bib79) 2014; 111
Marino, Arai, Hou, Sinibaldi, Pellegrino, Chang (bib88) 2015; 9
Tyler, Lani, Hwang (bib7) 2018; 50
Dinno, Dyson, Young, Mortimer, Hart, Crum (bib69) 1989; 34
Choi, Pernot, Small, Konofagou (bib49) 2007; 33
Dalecki (bib70) 2004; 6
Yoo, Bystritsky, Lee, Zhang, Fischer, Min (bib35) 2011; 56
Min, Yang, Bohlke, Park, Vago, Maher (bib45) 2011
Legon, Sato, Opitz, Mueller, Barbour, Williams (bib52) 2014; 17
Tang (10.1016/j.brs.2018.08.013_bib46) 2010; 57
Nelson (10.1016/j.brs.2018.08.013_bib77) 2009; 28
Barnard (10.1016/j.brs.2018.08.013_bib22) 1955; 103
Ai (10.1016/j.brs.2018.08.013_bib18) 2016
Shealy (10.1016/j.brs.2018.08.013_bib73) 1962; 6
Kim (10.1016/j.brs.2018.08.013_bib43) 2015; 26
Meng (10.1016/j.brs.2018.08.013_bib93) 2017; 81
Tyler (10.1016/j.brs.2018.08.013_bib7) 2018; 50
Marino (10.1016/j.brs.2018.08.013_bib88) 2015; 9
Tsui (10.1016/j.brs.2018.08.013_bib20) 2005; 43
Hameroff (10.1016/j.brs.2018.08.013_bib23) 2013; 6
Wattiez (10.1016/j.brs.2018.08.013_bib36) 2017; 10
Sassaroli (10.1016/j.brs.2018.08.013_bib78) 2016; 4
Genchi (10.1016/j.brs.2018.08.013_bib91) 2016; 5
Hakimova (10.1016/j.brs.2018.08.013_bib38) 2015; 49
Yuan (10.1016/j.brs.2018.08.013_bib30) 2016; 10
Sato (10.1016/j.brs.2018.08.013_bib42) 2018
Johns (10.1016/j.brs.2018.08.013_bib84) 2002; 37
Sanguinetti (10.1016/j.brs.2018.08.013_bib59) 2014
Tyler (10.1016/j.brs.2018.08.013_bib10) 2008; 3
McDannold (10.1016/j.brs.2018.08.013_bib61) 2004; 51
Harvey (10.1016/j.brs.2018.08.013_bib1) 1929; 91
Tyler (10.1016/j.brs.2018.08.013_bib82) 2011; 17
Yoo (10.1016/j.brs.2018.08.013_bib35) 2011; 56
10.1016/j.brs.2018.08.013_bib94
Hynynen (10.1016/j.brs.2018.08.013_bib6) 2004; 52
King (10.1016/j.brs.2018.08.013_bib12) 2013; 39
Howard (10.1016/j.brs.2018.08.013_bib11) 2005; 21
Tufail (10.1016/j.brs.2018.08.013_bib34) 2011; 6
Rothwell (10.1016/j.brs.2018.08.013_bib67) 1997; 74
Ibsen (10.1016/j.brs.2018.08.013_bib87) 2015; 6
Kubanek (10.1016/j.brs.2018.08.013_bib68) 2018; 38
Dallapiazza (10.1016/j.brs.2018.08.013_bib8) 2017
Colombo (10.1016/j.brs.2018.08.013_bib89) 2016; 10
Plaksin (10.1016/j.brs.2018.08.013_bib76) 2014; 4
Li (10.1016/j.brs.2018.08.013_bib86) 2017
Downs (10.1016/j.brs.2018.08.013_bib31) 2017; 11
Legon (10.1016/j.brs.2018.08.013_bib58) 2018; 8
Elias (10.1016/j.brs.2018.08.013_bib63) 2013; 369
Bystritsky (10.1016/j.brs.2018.08.013_bib66) 2015; 3
Fry (10.1016/j.brs.2018.08.013_bib3) 1958; 127
Romo (10.1016/j.brs.2018.08.013_bib60) 2002; 357
Guo (10.1016/j.brs.2018.08.013_bib41) 2018
Yoo (10.1016/j.brs.2018.08.013_bib44) 2010; 97
Qiu (10.1016/j.brs.2018.08.013_bib5) 2017
Horder (10.1016/j.brs.2018.08.013_bib25) 1998; 24
Dallapiazza (10.1016/j.brs.2018.08.013_bib32) 2017
Legon (10.1016/j.brs.2018.08.013_bib52) 2014; 17
Lee (10.1016/j.brs.2018.08.013_bib55) 2016; 17
Plaksin (10.1016/j.brs.2018.08.013_bib26) 2016; 3
Sun (10.1016/j.brs.2018.08.013_bib15) 1998; 104
Coakley (10.1016/j.brs.2018.08.013_bib71) 1971; 50
Brohawn (10.1016/j.brs.2018.08.013_bib79) 2014; 111
Min (10.1016/j.brs.2018.08.013_bib39) 2011; 12
Mueller (10.1016/j.brs.2018.08.013_bib53) 2014; 7
Duck (10.1016/j.brs.2018.08.013_bib29) 2007; 93
Min (10.1016/j.brs.2018.08.013_bib45) 2011
Tyler (10.1016/j.brs.2018.08.013_bib83) 2012; 13
Lee (10.1016/j.brs.2018.08.013_bib56) 2016; 6
Mueller (10.1016/j.brs.2018.08.013_bib27) 2016
Choi (10.1016/j.brs.2018.08.013_bib49) 2007; 33
United States Food and Drug Administration (10.1016/j.brs.2018.08.013_bib28) 2017
Fry (10.1016/j.brs.2018.08.013_bib2) 1954; 100
Robertson (10.1016/j.brs.2018.08.013_bib65) 2017
King (10.1016/j.brs.2018.08.013_bib33) 2014; 40
Lee (10.1016/j.brs.2018.08.013_bib48) 2016
Syeda (10.1016/j.brs.2018.08.013_bib81) 2016; 17
Deffieux (10.1016/j.brs.2018.08.013_bib37) 2013; 23
10.1016/j.brs.2018.08.013_bib92
Tufail (10.1016/j.brs.2018.08.013_bib24) 2010; 66
Yoo (10.1016/j.brs.2018.08.013_bib40) 2011; 22
Lee (10.1016/j.brs.2018.08.013_bib54) 2015; 5
Kubanek (10.1016/j.brs.2018.08.013_bib80) 2016; 6
Li (10.1016/j.brs.2018.08.013_bib4) 2018
Dinno (10.1016/j.brs.2018.08.013_bib69) 1989; 34
Chang (10.1016/j.brs.2018.08.013_bib16) 2015; 124
Naor (10.1016/j.brs.2018.08.013_bib9) 2016; 13
Mueller (10.1016/j.brs.2018.08.013_bib17) 2017
Constans (10.1016/j.brs.2018.08.013_bib62) 2017; 64
Tsivgoulis (10.1016/j.brs.2018.08.013_bib95) 2007; 4
Chang (10.1016/j.brs.2018.08.013_bib64) 2015; 86
Younan (10.1016/j.brs.2018.08.013_bib13) 2013
Dalecki (10.1016/j.brs.2018.08.013_bib70) 2004; 6
Ciofani (10.1016/j.brs.2018.08.013_bib90) 2010; 4
Ishibashi (10.1016/j.brs.2018.08.013_bib72) 2010; 76
Krasovitski (10.1016/j.brs.2018.08.013_bib75) 2011; 108
Clement (10.1016/j.brs.2018.08.013_bib14) 2002; 47
Monti (10.1016/j.brs.2018.08.013_bib57) 2016; 9
Legon (10.1016/j.brs.2018.08.013_bib19) 2018
Kim (10.1016/j.brs.2018.08.013_bib21) 2014; 7
Manlapaz (10.1016/j.brs.2018.08.013_bib51) 1964; 10
Riley (10.1016/j.brs.2018.08.013_bib85) 1998; 10
Lee (10.1016/j.brs.2018.08.013_bib47) 2015; 3
Magee (10.1016/j.brs.2018.08.013_bib74) 1993; 12
Yang (10.1016/j.brs.2018.08.013_bib50) 2018
References_xml – volume: 7
  start-page: 900
  year: 2014
  end-page: 908
  ident: bib53
  article-title: Transcranial focused ultrasound modulates intrinsic and evoked EEG dynamics
  publication-title: Brain Stimul
– start-page: 1
  year: 2018
  end-page: 12
  ident: bib19
  article-title: Neuromodulation with single-element transcranial focused ultrasound in human thalamus
  publication-title: Hum Brain Mapp
– year: 2018
  ident: bib4
  article-title: Noninvasive ultrasonic neuromodulation in freely moving mice
  publication-title: IEEE Trans Biomed Eng
– volume: 6
  start-page: 409
  year: 2013
  end-page: 415
  ident: bib23
  article-title: Transcranial ultrasound (TUS) effects on mental states: a pilot study
  publication-title: Brain Stimul
– volume: 17
  start-page: 25
  year: 2011
  end-page: 36
  ident: bib82
  article-title: Noninvasive neuromodulation with ultrasound? A continuum mechanics hypothesis
  publication-title: Neuroscience
– volume: 57
  start-page: 203
  year: 2010
  end-page: 205
  ident: bib46
  article-title: Standing-wave suppression for transcranial ultrasound by random modulation
  publication-title: IEEE Trans Biomed Eng
– volume: 111
  start-page: 3614
  year: 2014
  end-page: 3619
  ident: bib79
  article-title: Mechanosensitivity is mediated directly by the lipid membrane in TRAAK and TREK1 K
  publication-title: Proc Natl Acad Sci Unit States Am
– volume: 81
  start-page: 611
  year: 2017
  end-page: 617
  ident: bib93
  article-title: Focused ultrasound as a novel strategy for Alzheimer disease therapeutics
  publication-title: Ann Neurol
– volume: 91
  start-page: 284
  year: 1929
  end-page: 290
  ident: bib1
  article-title: The effect of high frequency sound waces on heart muscle and other irritable tissues
  publication-title: Am J Physiol Leg Content
– volume: 6
  start-page: 34026
  year: 2016
  ident: bib56
  article-title: Transcranial focused ultrasound stimulation of human primary visual cortex
  publication-title: Sci Rep
– volume: 10
  year: 2016
  ident: bib89
  article-title: Nanoparticles: a challenging vehicle for neural stimulation
  publication-title: Front Neurosci
– start-page: 1
  year: 2017
  end-page: 4
  ident: bib86
  article-title: Local field potentials responses of ultrasonic neuromodulation in freely moving mouse
  publication-title: IEEE Int
– volume: 10
  start-page: 349
  year: 1998
  end-page: 356
  ident: bib85
  article-title: Acoustic streaming
  publication-title: Theor Comput Fluid Dynam
– volume: 127
  start-page: 83
  year: 1958
  end-page: 84
  ident: bib3
  article-title: Production of reversible changes in the central nervous system by ultrasound
  publication-title: Science (80- )
– volume: 33
  start-page: 95
  year: 2007
  end-page: 104
  ident: bib49
  article-title: Noninvasive, transcranial and localized opening of the blood-brain barrier using focused ultrasound in mice
  publication-title: Ultrasound Med Biol
– volume: 104
  start-page: 1705
  year: 1998
  ident: bib15
  article-title: Focusing of therapeutic ultrasound through a human skull: a numerical study
  publication-title: J Acoust Soc Am
– volume: 10
  start-page: 1024
  year: 2017
  end-page: 1031
  ident: bib36
  article-title: Transcranial ultrasonic stimulation modulates single-neuron discharge in macaques performing an antisaccade task
  publication-title: Brain Stimul
– year: 2017
  ident: bib5
  article-title: A portable ultrasound system for non-invasive ultrasonic neuro-stimulation
  publication-title: IEEE Trans Neural Syst Rehabil Eng
– volume: 124
  start-page: 1
  year: 2015
  end-page: 6
  ident: bib16
  article-title: Factors associated with successful magnetic resonance–guided focused ultrasound treatment: efficiency of acoustic energy delivery through the skull
  publication-title: J Neurosurg
– volume: 12
  start-page: 747
  year: 1993
  end-page: 750
  ident: bib74
  article-title: Auditory phenomena during transcranial Doppler insonation of the basilar artery
  publication-title: J Ultrasound Med
– volume: 40
  start-page: 1512
  year: 2014
  end-page: 1522
  ident: bib33
  article-title: Localization of ultrasound-induced in vivo neurostimulation in the mouse model
  publication-title: Ultrasound Med Biol
– volume: 17
  start-page: 68
  year: 2016
  ident: bib55
  article-title: Simultaneous acoustic stimulation of human primary and secondary somatosensory cortices using transcranial focused ultrasound
  publication-title: BMC Neurosci
– volume: 13
  start-page: 867
  year: 2012
  end-page: 878
  ident: bib83
  article-title: The mechanobiology of brain function
  publication-title: Nat Rev Neurosci
– volume: 6
  year: 2016
  ident: bib80
  article-title: Ultrasound modulates ion channel currents
  publication-title: Sci Rep
– volume: 103
  start-page: 459
  year: 1955
  end-page: 484
  ident: bib22
  article-title: Effects of high intensity ultrasound on the central nervous system of the cat
  publication-title: J Comp Neurol
– volume: 93
  start-page: 176
  year: 2007
  end-page: 191
  ident: bib29
  article-title: Medical and non-medical protection standards for ultrasound and infrasound
  publication-title: Prog Biophys Mol Biol
– volume: 76
  start-page: 751
  year: 2010
  end-page: 756
  ident: bib72
  article-title: Inhibitory effects of low-energy pulsed ultrasonic stimulation on cell surface protein antigen C through heat shock proteins GroEL and DnaK in streptococcus mutans
  publication-title: Appl Environ Microbiol
– volume: 13
  year: 2016
  ident: bib9
  article-title: Ultrasonic neuromodulation
  publication-title: J Neural Eng
– volume: 7
  start-page: 748
  year: 2014
  end-page: 756
  ident: bib21
  article-title: Focused ultrasound-mediated non-invasive brain stimulation: examination of sonication parameters
  publication-title: Brain Stimul
– volume: 26
  start-page: 211
  year: 2015
  end-page: 215
  ident: bib43
  article-title: Suppression of EEG visual-evoked potentials in rats through neuromodulatory focused ultrasound
  publication-title: Neuroreport
– year: 2018
  ident: bib42
  article-title: Ultrasonic neuromodulation causes widespread cortical activation via an indirect auditory mechanism
  publication-title: Neuron
– volume: 5
  start-page: 8743
  year: 2015
  ident: bib54
  article-title: Image-guided transcranial focused ultrasound stimulates human primary somatosensory cortex
  publication-title: Sci Rep
– volume: 50
  start-page: 1539
  year: 1971
  end-page: 1545
  ident: bib71
  article-title: Degradation of DNA in high-intensity focused ultrasonic fields at 1 MHz
  publication-title: J Acoust Soc Am
– reference: (accessed February 10, 2018).
– volume: 86
  start-page: 257
  year: 2015
  end-page: 264
  ident: bib64
  article-title: Unilateral magnetic resonance guided focused ultrasound thalamotomy for essential tremor: practices and clinicoradiological outcomes
  publication-title: J Neurol Neurosurg Psychiatry
– volume: 50
  start-page: 222
  year: 2018
  end-page: 231
  ident: bib7
  article-title: Ultrasonic modulation of neural circuit activity
  publication-title: Curr Opin Neurobiol
– volume: 369
  start-page: 640
  year: 2013
  end-page: 648
  ident: bib63
  article-title: A pilot study of focused ultrasound thalamotomy for essential tremor
  publication-title: N Engl J Med
– volume: 38
  start-page: 3081
  year: 2018
  end-page: 3091
  ident: bib68
  article-title: Ultrasound elicits behavioral responses through mechanical effects on neurons and ion channels in a simple nervous system
  publication-title: J Neurosci
– volume: 51
  start-page: 1061
  year: 2004
  end-page: 1065
  ident: bib61
  article-title: MRI monitoring of heating produced by ultrasound absorption in the skull: in vivo study in pigs
  publication-title: Magn Reson Med
– volume: 97
  start-page: 1797
  year: 2010
  ident: bib44
  article-title: Non-invasive suppression of animal-model chronic epilepsy using image-guided focused ultrasound
  publication-title: Proc Int Soc Mag Reson Med
– volume: 3
  start-page: O23
  year: 2015
  ident: bib47
  article-title: FUS-mediated functional neuromodulation for neurophysiologic assessment in a large animal model
  publication-title: J Ther Ultrasound
– volume: 64
  start-page: 717
  year: 2017
  end-page: 724
  ident: bib62
  article-title: A 200-1380-kHz quadrifrequency focused ultrasound transducer for neurostimulation in rodents and primates: transcranial in vitro calibration and numerical study of the influence of skull cavity
  publication-title: IEEE Trans Ultrason Ferroelectrics Freq Contr
– volume: 108
  start-page: 3258
  year: 2011
  end-page: 3263
  ident: bib75
  article-title: Intramembrane cavitation as a unifying mechanism for ultrasound-induced bioeffects
  publication-title: Proc Natl Acad Sci Unit States Am
– start-page: 1
  year: 2017
  end-page: 10
  ident: bib32
  article-title: Noninvasive neuromodulation and thalamic mapping with low-intensity focused ultrasound
  publication-title: J Neurosurg
– year: 2017
  ident: bib17
  article-title: Numerical evaluation of the skull for human neuromodulation with transcranial focused ultrasound
  publication-title: J Neural Eng
– year: 2017
  ident: bib28
  article-title: Marketing clearance of diagnostic ultrasound systems and transducers. Draft guidance for industry and food and drug administration staff
– volume: 22
  start-page: 783
  year: 2011
  end-page: 787
  ident: bib40
  article-title: Transcranial focused ultrasound to the thalamus alters anesthesia time in rats
  publication-title: Neuroreport
– volume: 100
  start-page: 85
  year: 1954
  end-page: 96
  ident: bib2
  article-title: Intense ultrasound--a new tool for neurological research
  publication-title: Br J Psychiatry
– volume: 4
  year: 2014
  ident: bib76
  article-title: Intramembrane cavitation as a predictive bio-piezoelectric mechanism for ultrasonic brain stimulation
  publication-title: Phys Rev X
– year: 2011
  ident: bib45
  article-title: Focused ultrasound modulates the level of cortical neurotransmitters: potential as a new functional brain mapping technique
  publication-title: Int J Imag Syst Technol
– volume: 3
  year: 2008
  ident: bib10
  article-title: Remote excitation of neuronal circuits using low-intensity, low-frequency ultrasound
  publication-title: PLoS One
– reference: Wagner T, Fregni F. Non-invasive Neurostimulation in Parkinson’s Disease. Clin ID NCT01615718 n.d.
– volume: 11
  year: 2017
  ident: bib31
  article-title: Toward a cognitive neural prosthesis using focused ultrasound
  publication-title: Front Neurosci
– volume: 6
  start-page: 1453
  year: 2011
  end-page: 1470
  ident: bib34
  article-title: Ultrasonic neuromodulation by brain stimulation with transcranial ultrasound
  publication-title: Nat Protoc
– year: 2017
  ident: bib65
  article-title: Accurate simulation of transcranial ultrasound propagation for ultrasonic neuromodulation and stimulation
  publication-title: J Acoust Soc Am
– volume: 17
  start-page: 1739
  year: 2016
  end-page: 1746
  ident: bib81
  article-title: Piezo 1 channels are inherently mechanosensitive
  publication-title: Cell Rep
– volume: 28
  start-page: 139
  year: 2009
  end-page: 150
  ident: bib77
  article-title: Ultrasound biosafety considerations for the practicing sonographer and sonologist
  publication-title: J Ultrasound Med
– volume: 52
  start-page: 100
  year: 2004
  end-page: 107
  ident: bib6
  article-title: 500-Element ultrasound phased array system for noninvasive focal surgery of the brain: a preliminary rabbit study with ex vivo human skulls
  publication-title: Magn Reson Med
– volume: 4
  year: 2016
  ident: bib78
  article-title: Acoustic neuromodulation from a basic science prospective
  publication-title: J Ther Ultrasound
– volume: 5
  start-page: 1808
  year: 2016
  end-page: 1820
  ident: bib91
  article-title: P(VDF-TrFE)/BaTiO3Nanoparticle composite films mediate piezoelectric stimulation and promote differentiation of SH-SY5Y neuroblastoma cells
  publication-title: Adv Health Care Mater
– volume: 357
  start-page: 1039
  year: 2002
  end-page: 1051
  ident: bib60
  article-title: Exploring the cortical evidence of a sensory-discrimination process
  publication-title: Philos Trans R Soc B Biol Sci
– volume: 56
  start-page: 1267
  year: 2011
  end-page: 1275
  ident: bib35
  article-title: Focused ultrasound modulates region-specific brain activity
  publication-title: Neuroimage
– year: 2018
  ident: bib41
  article-title: Ultrasound produces extensive brain activation via a cochlear pathway
  publication-title: Neuron
– volume: 6
  start-page: 229
  year: 2004
  end-page: 248
  ident: bib70
  article-title: Mechanical bioeffects of ultrasound
  publication-title: Annu Rev Biomed Eng
– volume: 9
  start-page: 7678
  year: 2015
  end-page: 7689
  ident: bib88
  article-title: Piezoelectric nanoparticle-assisted wireless neuronal stimulation
  publication-title: ACS Nano
– volume: 74
  start-page: 113
  year: 1997
  end-page: 122
  ident: bib67
  article-title: Techniques and mechanisms of action of transcranial stimulation of the human motor cortex
  publication-title: J Neurosci Meth
– start-page: 355
  year: 2014
  end-page: 363
  ident: bib59
  article-title: Human brain stimulation with transcranial ultrasound
  publication-title: Bioelectromagnetics Subtle Energy Med
– volume: 39
  start-page: 312
  year: 2013
  end-page: 331
  ident: bib12
  article-title: Effective parameters for ultrasound-induced in vivo neurostimulation
  publication-title: Ultrasound Med Biol
– year: 2016
  ident: bib18
  article-title: Transcranial focused ultrasound for BOLD fMRI signal modulation in humans
  publication-title: Proc Annu Conf Int IEEE Eng Med Biol Soc
– volume: 12
  year: 2011
  ident: bib39
  article-title: Focused ultrasound-mediated suppression of chemically-induced acute epileptic EEG activity
  publication-title: BMC Neurosci
– year: 2018
  ident: bib50
  article-title: Neuromodulation of sensory networks in monkey brain by focused ultrasound with MRI guidance and detection
  publication-title: Sci Rep
– volume: 3
  start-page: O27
  year: 2015
  ident: bib66
  article-title: Safety and feasibility of focused ultrasound neurmodulation in temporal lobe epilepsy
  publication-title: J Ther Ultrasound
– volume: 6
  start-page: 374
  year: 1962
  end-page: 386
  ident: bib73
  article-title: Reversible effects of ultrasound on spinal reflexes
  publication-title: Arch Neurol
– volume: 47
  start-page: 1219
  year: 2002
  end-page: 1236
  ident: bib14
  article-title: A non-invasive method for focusing ultrasound through the human skull
  publication-title: Phys Med Biol
– volume: 9
  start-page: 940
  year: 2016
  end-page: 941
  ident: bib57
  article-title: Non-invasive ultrasonic thalamic stimulation in disorders of consciousness after severe brain injury: a first-in-man report
  publication-title: Brain Stimul
– start-page: 101
  year: 2017
  end-page: 110
  ident: bib8
  article-title: Ultrasound neuromodulation
  publication-title: Innov. Neuromodulation
– volume: 6
  year: 2015
  ident: bib87
  article-title: Sonogenetics is a non-invasive approach to activating neurons in Caenorhabditis elegans
  publication-title: Nat Commun
– volume: 66
  start-page: 681
  year: 2010
  end-page: 694
  ident: bib24
  article-title: Transcranial pulsed ultrasound stimulates intact brain circuits
  publication-title: Neuron
– volume: 34
  start-page: 1543
  year: 1989
  end-page: 1552
  ident: bib69
  article-title: The significance of membrane changes in the safe and effective use of therapeutic and diagnostic ultrasound
  publication-title: Phys Med Biol
– volume: 3
  year: 2016
  ident: bib26
  article-title: Cell-type-selective effects of intramembrane cavitation as a unifying theoretical framework for ultrasonic neuromodulation
  publication-title: ENeuro
– volume: 4
  start-page: 6267
  year: 2010
  end-page: 6277
  ident: bib90
  article-title: Enhancement of neurite outgrowth in neuronal-like cells following boron nitride nanotube-mediated stimulation
  publication-title: ACS Nano
– year: 2013
  ident: bib13
  article-title: Influence of the pressure field distribution in transcranial ultrasonic neurostimulation
  publication-title: Med Phys
– year: 2016
  ident: bib27
  article-title: Computational exploration of wave propagation and heating from transcranial focused ultrasound for neuromodulation
  publication-title: J Neural Eng
– volume: 10
  year: 2016
  ident: bib30
  article-title: Noninvasive focused ultrasound stimulation can modulate phase-amplitude coupling between neuronal oscillations in the rat hippocampus
  publication-title: Front Neurosci
– volume: 17
  start-page: 322
  year: 2014
  end-page: 329
  ident: bib52
  article-title: Transcranial focused ultrasound modulates the activity of primary somatosensory cortex in humans
  publication-title: Nat Neurosci
– volume: 21
  start-page: 253
  year: 2005
  end-page: 257
  ident: bib11
  article-title: A review of current ultrasound exposure limits
  publication-title: J Occup Health Saf Aust N Z
– volume: 24
  start-page: 1467
  year: 1998
  end-page: 1474
  ident: bib25
  article-title: In vivo heating of the Guinea-pig fetal brain by pulsed ultrasound and estimates of thermal index
  publication-title: Ultrasound Med Biol
– volume: 10
  start-page: 345
  year: 1964
  end-page: 356
  ident: bib51
  article-title: Effects of ultrasonic radiation in experimental focal epilepsy in the cat
  publication-title: Exp Neurol
– reference: Stern J. Low-intensity Focused Ultrasound Pulsation (LIFUP) for Treatment of Temporal Lobe Epilepsy. Clin ID NCT02151175 n.d.
– volume: 43
  start-page: 560
  year: 2005
  end-page: 565
  ident: bib20
  article-title: In vitro effects of ultrasound with different energies on the conduction properties of neural tissue
  publication-title: Ultrasonics
– volume: 37
  start-page: 293
  year: 2002
  end-page: 299
  ident: bib84
  article-title: Nonthermal effects of therapeutic ultrasound: the frequency resonance hypothesis
  publication-title: J Athl Train
– volume: 49
  start-page: 26
  year: 2015
  end-page: 32
  ident: bib38
  article-title: Ultrasound stimulation inhibits recurrent seizures and improves behavioral outcome in an experimental model of mesial temporal lobe epilepsy
  publication-title: Epilepsy Behav
– year: 2016
  ident: bib48
  article-title: Image-guided focused ultrasound-mediated regional brain stimulation in sheep
  publication-title: Ultrasound Med Biol
– volume: 23
  start-page: 2430
  year: 2013
  end-page: 2433
  ident: bib37
  article-title: Low-intensity focused ultrasound modulates monkey visuomotor behavior
  publication-title: Curr Biol
– volume: 8
  start-page: 10007
  year: 2018
  ident: bib58
  article-title: Transcranial focused ultrasound neuromodulation of the human primary motor cortex
  publication-title: Sci Rep
– volume: 4
  start-page: 420
  year: 2007
  end-page: 427
  ident: bib95
  article-title: Ultrasound-enhanced thrombolysis in acute ischemic stroke: potential, failures, and safety
  publication-title: Neurother
– volume: 50
  start-page: 222
  year: 2018
  ident: 10.1016/j.brs.2018.08.013_bib7
  article-title: Ultrasonic modulation of neural circuit activity
  publication-title: Curr Opin Neurobiol
  doi: 10.1016/j.conb.2018.04.011
– volume: 17
  start-page: 1739
  year: 2016
  ident: 10.1016/j.brs.2018.08.013_bib81
  article-title: Piezo 1 channels are inherently mechanosensitive
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2016.10.033
– volume: 7
  start-page: 748
  year: 2014
  ident: 10.1016/j.brs.2018.08.013_bib21
  article-title: Focused ultrasound-mediated non-invasive brain stimulation: examination of sonication parameters
  publication-title: Brain Stimul
  doi: 10.1016/j.brs.2014.06.011
– volume: 24
  start-page: 1467
  year: 1998
  ident: 10.1016/j.brs.2018.08.013_bib25
  article-title: In vivo heating of the Guinea-pig fetal brain by pulsed ultrasound and estimates of thermal index
  publication-title: Ultrasound Med Biol
  doi: 10.1016/S0301-5629(98)00111-2
– volume: 28
  start-page: 139
  year: 2009
  ident: 10.1016/j.brs.2018.08.013_bib77
  article-title: Ultrasound biosafety considerations for the practicing sonographer and sonologist
  publication-title: J Ultrasound Med
  doi: 10.7863/jum.2009.28.2.139
– volume: 4
  start-page: 6267
  year: 2010
  ident: 10.1016/j.brs.2018.08.013_bib90
  article-title: Enhancement of neurite outgrowth in neuronal-like cells following boron nitride nanotube-mediated stimulation
  publication-title: ACS Nano
  doi: 10.1021/nn101985a
– volume: 6
  start-page: 229
  year: 2004
  ident: 10.1016/j.brs.2018.08.013_bib70
  article-title: Mechanical bioeffects of ultrasound
  publication-title: Annu Rev Biomed Eng
  doi: 10.1146/annurev.bioeng.6.040803.140126
– year: 2018
  ident: 10.1016/j.brs.2018.08.013_bib4
  article-title: Noninvasive ultrasonic neuromodulation in freely moving mice
  publication-title: IEEE Trans Biomed Eng
– start-page: 1
  year: 2017
  ident: 10.1016/j.brs.2018.08.013_bib32
  article-title: Noninvasive neuromodulation and thalamic mapping with low-intensity focused ultrasound
  publication-title: J Neurosurg
– volume: 5
  start-page: 1808
  year: 2016
  ident: 10.1016/j.brs.2018.08.013_bib91
  article-title: P(VDF-TrFE)/BaTiO3Nanoparticle composite films mediate piezoelectric stimulation and promote differentiation of SH-SY5Y neuroblastoma cells
  publication-title: Adv Health Care Mater
  doi: 10.1002/adhm.201600245
– volume: 4
  year: 2016
  ident: 10.1016/j.brs.2018.08.013_bib78
  article-title: Acoustic neuromodulation from a basic science prospective
  publication-title: J Ther Ultrasound
– volume: 51
  start-page: 1061
  year: 2004
  ident: 10.1016/j.brs.2018.08.013_bib61
  article-title: MRI monitoring of heating produced by ultrasound absorption in the skull: in vivo study in pigs
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.20043
– volume: 4
  year: 2014
  ident: 10.1016/j.brs.2018.08.013_bib76
  article-title: Intramembrane cavitation as a predictive bio-piezoelectric mechanism for ultrasonic brain stimulation
  publication-title: Phys Rev X
– volume: 56
  start-page: 1267
  year: 2011
  ident: 10.1016/j.brs.2018.08.013_bib35
  article-title: Focused ultrasound modulates region-specific brain activity
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.02.058
– year: 2016
  ident: 10.1016/j.brs.2018.08.013_bib27
  article-title: Computational exploration of wave propagation and heating from transcranial focused ultrasound for neuromodulation
  publication-title: J Neural Eng
  doi: 10.1088/1741-2560/13/5/056002
– start-page: 1
  year: 2017
  ident: 10.1016/j.brs.2018.08.013_bib86
  article-title: Local field potentials responses of ultrasonic neuromodulation in freely moving mouse
  publication-title: IEEE Int
– volume: 64
  start-page: 717
  year: 2017
  ident: 10.1016/j.brs.2018.08.013_bib62
  article-title: A 200-1380-kHz quadrifrequency focused ultrasound transducer for neurostimulation in rodents and primates: transcranial in vitro calibration and numerical study of the influence of skull cavity
  publication-title: IEEE Trans Ultrason Ferroelectrics Freq Contr
  doi: 10.1109/TUFFC.2017.2651648
– start-page: 101
  year: 2017
  ident: 10.1016/j.brs.2018.08.013_bib8
  article-title: Ultrasound neuromodulation
– volume: 104
  start-page: 1705
  year: 1998
  ident: 10.1016/j.brs.2018.08.013_bib15
  article-title: Focusing of therapeutic ultrasound through a human skull: a numerical study
  publication-title: J Acoust Soc Am
  doi: 10.1121/1.424383
– volume: 57
  start-page: 203
  year: 2010
  ident: 10.1016/j.brs.2018.08.013_bib46
  article-title: Standing-wave suppression for transcranial ultrasound by random modulation
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2009.2028653
– start-page: 355
  year: 2014
  ident: 10.1016/j.brs.2018.08.013_bib59
  article-title: Human brain stimulation with transcranial ultrasound
  publication-title: Bioelectromagnetics Subtle Energy Med
– volume: 9
  start-page: 7678
  year: 2015
  ident: 10.1016/j.brs.2018.08.013_bib88
  article-title: Piezoelectric nanoparticle-assisted wireless neuronal stimulation
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b03162
– volume: 23
  start-page: 2430
  year: 2013
  ident: 10.1016/j.brs.2018.08.013_bib37
  article-title: Low-intensity focused ultrasound modulates monkey visuomotor behavior
  publication-title: Curr Biol
  doi: 10.1016/j.cub.2013.10.029
– volume: 6
  start-page: 409
  year: 2013
  ident: 10.1016/j.brs.2018.08.013_bib23
  article-title: Transcranial ultrasound (TUS) effects on mental states: a pilot study
  publication-title: Brain Stimul
  doi: 10.1016/j.brs.2012.05.002
– volume: 49
  start-page: 26
  year: 2015
  ident: 10.1016/j.brs.2018.08.013_bib38
  article-title: Ultrasound stimulation inhibits recurrent seizures and improves behavioral outcome in an experimental model of mesial temporal lobe epilepsy
  publication-title: Epilepsy Behav
  doi: 10.1016/j.yebeh.2015.04.008
– volume: 5
  start-page: 8743
  year: 2015
  ident: 10.1016/j.brs.2018.08.013_bib54
  article-title: Image-guided transcranial focused ultrasound stimulates human primary somatosensory cortex
  publication-title: Sci Rep
  doi: 10.1038/srep08743
– volume: 39
  start-page: 312
  year: 2013
  ident: 10.1016/j.brs.2018.08.013_bib12
  article-title: Effective parameters for ultrasound-induced in vivo neurostimulation
  publication-title: Ultrasound Med Biol
  doi: 10.1016/j.ultrasmedbio.2012.09.009
– volume: 38
  start-page: 3081
  year: 2018
  ident: 10.1016/j.brs.2018.08.013_bib68
  article-title: Ultrasound elicits behavioral responses through mechanical effects on neurons and ion channels in a simple nervous system
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.1458-17.2018
– volume: 3
  start-page: O23
  year: 2015
  ident: 10.1016/j.brs.2018.08.013_bib47
  article-title: FUS-mediated functional neuromodulation for neurophysiologic assessment in a large animal model
  publication-title: J Ther Ultrasound
  doi: 10.1186/2050-5736-3-S1-O23
– volume: 111
  start-page: 3614
  year: 2014
  ident: 10.1016/j.brs.2018.08.013_bib79
  article-title: Mechanosensitivity is mediated directly by the lipid membrane in TRAAK and TREK1 K + channels
  publication-title: Proc Natl Acad Sci Unit States Am
  doi: 10.1073/pnas.1320768111
– volume: 12
  start-page: 747
  year: 1993
  ident: 10.1016/j.brs.2018.08.013_bib74
  article-title: Auditory phenomena during transcranial Doppler insonation of the basilar artery
  publication-title: J Ultrasound Med
  doi: 10.7863/jum.1993.12.12.747
– volume: 37
  start-page: 293
  year: 2002
  ident: 10.1016/j.brs.2018.08.013_bib84
  article-title: Nonthermal effects of therapeutic ultrasound: the frequency resonance hypothesis
  publication-title: J Athl Train
– volume: 3
  start-page: O27
  year: 2015
  ident: 10.1016/j.brs.2018.08.013_bib66
  article-title: Safety and feasibility of focused ultrasound neurmodulation in temporal lobe epilepsy
  publication-title: J Ther Ultrasound
  doi: 10.1186/2050-5736-3-S1-O27
– volume: 33
  start-page: 95
  year: 2007
  ident: 10.1016/j.brs.2018.08.013_bib49
  article-title: Noninvasive, transcranial and localized opening of the blood-brain barrier using focused ultrasound in mice
  publication-title: Ultrasound Med Biol
  doi: 10.1016/j.ultrasmedbio.2006.07.018
– year: 2017
  ident: 10.1016/j.brs.2018.08.013_bib5
  article-title: A portable ultrasound system for non-invasive ultrasonic neuro-stimulation
  publication-title: IEEE Trans Neural Syst Rehabil Eng
  doi: 10.1109/TNSRE.2017.2765001
– volume: 100
  start-page: 85
  year: 1954
  ident: 10.1016/j.brs.2018.08.013_bib2
  article-title: Intense ultrasound--a new tool for neurological research
  publication-title: Br J Psychiatry
– volume: 11
  year: 2017
  ident: 10.1016/j.brs.2018.08.013_bib31
  article-title: Toward a cognitive neural prosthesis using focused ultrasound
  publication-title: Front Neurosci
  doi: 10.3389/fnins.2017.00607
– volume: 43
  start-page: 560
  year: 2005
  ident: 10.1016/j.brs.2018.08.013_bib20
  article-title: In vitro effects of ultrasound with different energies on the conduction properties of neural tissue
  publication-title: Ultrasonics
  doi: 10.1016/j.ultras.2004.12.003
– year: 2018
  ident: 10.1016/j.brs.2018.08.013_bib50
  article-title: Neuromodulation of sensory networks in monkey brain by focused ultrasound with MRI guidance and detection
  publication-title: Sci Rep
– volume: 10
  year: 2016
  ident: 10.1016/j.brs.2018.08.013_bib30
  article-title: Noninvasive focused ultrasound stimulation can modulate phase-amplitude coupling between neuronal oscillations in the rat hippocampus
  publication-title: Front Neurosci
  doi: 10.3389/fnins.2016.00348
– volume: 81
  start-page: 611
  year: 2017
  ident: 10.1016/j.brs.2018.08.013_bib93
  article-title: Focused ultrasound as a novel strategy for Alzheimer disease therapeutics
  publication-title: Ann Neurol
  doi: 10.1002/ana.24933
– volume: 17
  start-page: 322
  year: 2014
  ident: 10.1016/j.brs.2018.08.013_bib52
  article-title: Transcranial focused ultrasound modulates the activity of primary somatosensory cortex in humans
  publication-title: Nat Neurosci
  doi: 10.1038/nn.3620
– volume: 6
  year: 2016
  ident: 10.1016/j.brs.2018.08.013_bib80
  article-title: Ultrasound modulates ion channel currents
  publication-title: Sci Rep
  doi: 10.1038/srep24170
– volume: 6
  start-page: 34026
  year: 2016
  ident: 10.1016/j.brs.2018.08.013_bib56
  article-title: Transcranial focused ultrasound stimulation of human primary visual cortex
  publication-title: Sci Rep
  doi: 10.1038/srep34026
– ident: 10.1016/j.brs.2018.08.013_bib92
– volume: 4
  start-page: 420
  year: 2007
  ident: 10.1016/j.brs.2018.08.013_bib95
  article-title: Ultrasound-enhanced thrombolysis in acute ischemic stroke: potential, failures, and safety
  publication-title: Neurother
  doi: 10.1016/j.nurt.2007.05.012
– volume: 10
  start-page: 345
  year: 1964
  ident: 10.1016/j.brs.2018.08.013_bib51
  article-title: Effects of ultrasonic radiation in experimental focal epilepsy in the cat
  publication-title: Exp Neurol
  doi: 10.1016/0014-4886(64)90005-6
– year: 2011
  ident: 10.1016/j.brs.2018.08.013_bib45
  article-title: Focused ultrasound modulates the level of cortical neurotransmitters: potential as a new functional brain mapping technique
  publication-title: Int J Imag Syst Technol
  doi: 10.1002/ima.20284
– volume: 6
  start-page: 1453
  year: 2011
  ident: 10.1016/j.brs.2018.08.013_bib34
  article-title: Ultrasonic neuromodulation by brain stimulation with transcranial ultrasound
  publication-title: Nat Protoc
  doi: 10.1038/nprot.2011.371
– volume: 10
  start-page: 349
  year: 1998
  ident: 10.1016/j.brs.2018.08.013_bib85
  article-title: Acoustic streaming
  publication-title: Theor Comput Fluid Dynam
  doi: 10.1007/s001620050068
– volume: 124
  start-page: 1
  year: 2015
  ident: 10.1016/j.brs.2018.08.013_bib16
  article-title: Factors associated with successful magnetic resonance–guided focused ultrasound treatment: efficiency of acoustic energy delivery through the skull
  publication-title: J Neurosurg
– volume: 66
  start-page: 681
  year: 2010
  ident: 10.1016/j.brs.2018.08.013_bib24
  article-title: Transcranial pulsed ultrasound stimulates intact brain circuits
  publication-title: Neuron
  doi: 10.1016/j.neuron.2010.05.008
– volume: 86
  start-page: 257
  year: 2015
  ident: 10.1016/j.brs.2018.08.013_bib64
  article-title: Unilateral magnetic resonance guided focused ultrasound thalamotomy for essential tremor: practices and clinicoradiological outcomes
  publication-title: J Neurol Neurosurg Psychiatry
  doi: 10.1136/jnnp-2014-307642
– year: 2018
  ident: 10.1016/j.brs.2018.08.013_bib41
  article-title: Ultrasound produces extensive brain activation via a cochlear pathway
  publication-title: Neuron
  doi: 10.1016/j.neuron.2018.07.049
– volume: 52
  start-page: 100
  year: 2004
  ident: 10.1016/j.brs.2018.08.013_bib6
  article-title: 500-Element ultrasound phased array system for noninvasive focal surgery of the brain: a preliminary rabbit study with ex vivo human skulls
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.20118
– year: 2013
  ident: 10.1016/j.brs.2018.08.013_bib13
  article-title: Influence of the pressure field distribution in transcranial ultrasonic neurostimulation
  publication-title: Med Phys
  doi: 10.1118/1.4812423
– year: 2016
  ident: 10.1016/j.brs.2018.08.013_bib18
  article-title: Transcranial focused ultrasound for BOLD fMRI signal modulation in humans
  publication-title: Proc Annu Conf Int IEEE Eng Med Biol Soc
– volume: 40
  start-page: 1512
  year: 2014
  ident: 10.1016/j.brs.2018.08.013_bib33
  article-title: Localization of ultrasound-induced in vivo neurostimulation in the mouse model
  publication-title: Ultrasound Med Biol
  doi: 10.1016/j.ultrasmedbio.2014.01.020
– volume: 47
  start-page: 1219
  year: 2002
  ident: 10.1016/j.brs.2018.08.013_bib14
  article-title: A non-invasive method for focusing ultrasound through the human skull
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/47/8/301
– volume: 8
  start-page: 10007
  year: 2018
  ident: 10.1016/j.brs.2018.08.013_bib58
  article-title: Transcranial focused ultrasound neuromodulation of the human primary motor cortex
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-28320-1
– volume: 103
  start-page: 459
  year: 1955
  ident: 10.1016/j.brs.2018.08.013_bib22
  article-title: Effects of high intensity ultrasound on the central nervous system of the cat
  publication-title: J Comp Neurol
  doi: 10.1002/cne.901030304
– volume: 10
  start-page: 1024
  year: 2017
  ident: 10.1016/j.brs.2018.08.013_bib36
  article-title: Transcranial ultrasonic stimulation modulates single-neuron discharge in macaques performing an antisaccade task
  publication-title: Brain Stimul
  doi: 10.1016/j.brs.2017.07.007
– volume: 17
  start-page: 68
  year: 2016
  ident: 10.1016/j.brs.2018.08.013_bib55
  article-title: Simultaneous acoustic stimulation of human primary and secondary somatosensory cortices using transcranial focused ultrasound
  publication-title: BMC Neurosci
  doi: 10.1186/s12868-016-0303-6
– volume: 91
  start-page: 284
  year: 1929
  ident: 10.1016/j.brs.2018.08.013_bib1
  article-title: The effect of high frequency sound waces on heart muscle and other irritable tissues
  publication-title: Am J Physiol Leg Content
  doi: 10.1152/ajplegacy.1929.91.1.284
– volume: 22
  start-page: 783
  year: 2011
  ident: 10.1016/j.brs.2018.08.013_bib40
  article-title: Transcranial focused ultrasound to the thalamus alters anesthesia time in rats
  publication-title: Neuroreport
  doi: 10.1097/WNR.0b013e32834b2957
– volume: 97
  start-page: 1797
  year: 2010
  ident: 10.1016/j.brs.2018.08.013_bib44
  article-title: Non-invasive suppression of animal-model chronic epilepsy using image-guided focused ultrasound
  publication-title: Proc Int Soc Mag Reson Med
– start-page: 1
  year: 2018
  ident: 10.1016/j.brs.2018.08.013_bib19
  article-title: Neuromodulation with single-element transcranial focused ultrasound in human thalamus
  publication-title: Hum Brain Mapp
– year: 2018
  ident: 10.1016/j.brs.2018.08.013_bib42
  article-title: Ultrasonic neuromodulation causes widespread cortical activation via an indirect auditory mechanism
  publication-title: Neuron
  doi: 10.1016/j.neuron.2018.05.009
– volume: 127
  start-page: 83
  year: 1958
  ident: 10.1016/j.brs.2018.08.013_bib3
  article-title: Production of reversible changes in the central nervous system by ultrasound
  publication-title: Science (80- )
  doi: 10.1126/science.127.3289.83
– volume: 3
  year: 2016
  ident: 10.1016/j.brs.2018.08.013_bib26
  article-title: Cell-type-selective effects of intramembrane cavitation as a unifying theoretical framework for ultrasonic neuromodulation
  publication-title: ENeuro
  doi: 10.1523/ENEURO.0136-15.2016
– year: 2016
  ident: 10.1016/j.brs.2018.08.013_bib48
  article-title: Image-guided focused ultrasound-mediated regional brain stimulation in sheep
  publication-title: Ultrasound Med Biol
  doi: 10.1016/j.ultrasmedbio.2015.10.001
– volume: 7
  start-page: 900
  year: 2014
  ident: 10.1016/j.brs.2018.08.013_bib53
  article-title: Transcranial focused ultrasound modulates intrinsic and evoked EEG dynamics
  publication-title: Brain Stimul
  doi: 10.1016/j.brs.2014.08.008
– volume: 34
  start-page: 1543
  year: 1989
  ident: 10.1016/j.brs.2018.08.013_bib69
  article-title: The significance of membrane changes in the safe and effective use of therapeutic and diagnostic ultrasound
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/34/11/003
– year: 2017
  ident: 10.1016/j.brs.2018.08.013_bib65
  article-title: Accurate simulation of transcranial ultrasound propagation for ultrasonic neuromodulation and stimulation
  publication-title: J Acoust Soc Am
  doi: 10.1121/1.4976339
– year: 2017
  ident: 10.1016/j.brs.2018.08.013_bib17
  article-title: Numerical evaluation of the skull for human neuromodulation with transcranial focused ultrasound
  publication-title: J Neural Eng
  doi: 10.1088/1741-2552/aa843e
– volume: 76
  start-page: 751
  year: 2010
  ident: 10.1016/j.brs.2018.08.013_bib72
  article-title: Inhibitory effects of low-energy pulsed ultrasonic stimulation on cell surface protein antigen C through heat shock proteins GroEL and DnaK in streptococcus mutans
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.02230-09
– volume: 3
  year: 2008
  ident: 10.1016/j.brs.2018.08.013_bib10
  article-title: Remote excitation of neuronal circuits using low-intensity, low-frequency ultrasound
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0003511
– volume: 369
  start-page: 640
  year: 2013
  ident: 10.1016/j.brs.2018.08.013_bib63
  article-title: A pilot study of focused ultrasound thalamotomy for essential tremor
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1300962
– year: 2017
  ident: 10.1016/j.brs.2018.08.013_bib28
– volume: 6
  start-page: 374
  year: 1962
  ident: 10.1016/j.brs.2018.08.013_bib73
  article-title: Reversible effects of ultrasound on spinal reflexes
  publication-title: Arch Neurol
  doi: 10.1001/archneur.1962.00450230036005
– volume: 74
  start-page: 113
  year: 1997
  ident: 10.1016/j.brs.2018.08.013_bib67
  article-title: Techniques and mechanisms of action of transcranial stimulation of the human motor cortex
  publication-title: J Neurosci Meth
  doi: 10.1016/S0165-0270(97)02242-5
– volume: 17
  start-page: 25
  year: 2011
  ident: 10.1016/j.brs.2018.08.013_bib82
  article-title: Noninvasive neuromodulation with ultrasound? A continuum mechanics hypothesis
  publication-title: Neuroscience
  doi: 10.1177/1073858409348066
– volume: 21
  start-page: 253
  year: 2005
  ident: 10.1016/j.brs.2018.08.013_bib11
  article-title: A review of current ultrasound exposure limits
  publication-title: J Occup Health Saf Aust N Z
– volume: 108
  start-page: 3258
  year: 2011
  ident: 10.1016/j.brs.2018.08.013_bib75
  article-title: Intramembrane cavitation as a unifying mechanism for ultrasound-induced bioeffects
  publication-title: Proc Natl Acad Sci Unit States Am
  doi: 10.1073/pnas.1015771108
– volume: 10
  year: 2016
  ident: 10.1016/j.brs.2018.08.013_bib89
  article-title: Nanoparticles: a challenging vehicle for neural stimulation
  publication-title: Front Neurosci
  doi: 10.3389/fnins.2016.00105
– volume: 13
  year: 2016
  ident: 10.1016/j.brs.2018.08.013_bib9
  article-title: Ultrasonic neuromodulation
  publication-title: J Neural Eng
  doi: 10.1088/1741-2560/13/3/031003
– volume: 12
  year: 2011
  ident: 10.1016/j.brs.2018.08.013_bib39
  article-title: Focused ultrasound-mediated suppression of chemically-induced acute epileptic EEG activity
  publication-title: BMC Neurosci
  doi: 10.1186/1471-2202-12-23
– volume: 13
  start-page: 867
  year: 2012
  ident: 10.1016/j.brs.2018.08.013_bib83
  article-title: The mechanobiology of brain function
  publication-title: Nat Rev Neurosci
  doi: 10.1038/nrn3383
– volume: 50
  start-page: 1539
  year: 1971
  ident: 10.1016/j.brs.2018.08.013_bib71
  article-title: Degradation of DNA in high-intensity focused ultrasonic fields at 1 MHz
  publication-title: J Acoust Soc Am
  doi: 10.1121/1.1912808
– volume: 9
  start-page: 940
  year: 2016
  ident: 10.1016/j.brs.2018.08.013_bib57
  article-title: Non-invasive ultrasonic thalamic stimulation in disorders of consciousness after severe brain injury: a first-in-man report
  publication-title: Brain Stimul
  doi: 10.1016/j.brs.2016.07.008
– volume: 6
  year: 2015
  ident: 10.1016/j.brs.2018.08.013_bib87
  article-title: Sonogenetics is a non-invasive approach to activating neurons in Caenorhabditis elegans
  publication-title: Nat Commun
  doi: 10.1038/ncomms9264
– volume: 357
  start-page: 1039
  year: 2002
  ident: 10.1016/j.brs.2018.08.013_bib60
  article-title: Exploring the cortical evidence of a sensory-discrimination process
  publication-title: Philos Trans R Soc B Biol Sci
  doi: 10.1098/rstb.2002.1100
– volume: 93
  start-page: 176
  year: 2007
  ident: 10.1016/j.brs.2018.08.013_bib29
  article-title: Medical and non-medical protection standards for ultrasound and infrasound
  publication-title: Prog Biophys Mol Biol
  doi: 10.1016/j.pbiomolbio.2006.07.008
– volume: 26
  start-page: 211
  year: 2015
  ident: 10.1016/j.brs.2018.08.013_bib43
  article-title: Suppression of EEG visual-evoked potentials in rats through neuromodulatory focused ultrasound
  publication-title: Neuroreport
  doi: 10.1097/WNR.0000000000000330
– ident: 10.1016/j.brs.2018.08.013_bib94
SSID ssj0059987
Score 2.5755415
SecondaryResourceType review_article
Snippet There is an emerging need for noninvasive neuromodulation techniques to improve patient outcomes while minimizing adverse events and morbidity. Low-intensity...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1209
SubjectTerms Animals
Brain - physiology
Brain Mapping - methods
Brain Mapping - trends
Brain stimulation
Evoked Potentials - physiology
Focused ultrasound
Humans
Neuromodulation
Sonication - methods
Transcranial ultrasound
Ultrasonic Therapy - methods
Ultrasonic Therapy - trends
Title Low-intensity ultrasound neuromodulation: An overview of mechanisms and emerging human applications
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1935861X18302961
https://dx.doi.org/10.1016/j.brs.2018.08.013
https://www.ncbi.nlm.nih.gov/pubmed/30166265
https://www.proquest.com/docview/2098765689
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8RADB5EL17Et-uLEcSDULfTTqett0WU9XlRYW9lXoWV3VZ2u4gXf7vJtF30oILHlqQd0jSTTJIvhByLmJkoZ8bTUimPSxF5iTHMs0qlXPo2DiweDdw_iP4zvxlEgwVy0fbCYFllY_trm-6sdXOn20iz-zocdh8ZpvAEGzCEsEpdCMR5jFp-9jEv84ggnIjrzDKsAqjbzKar8VITROxmiUPxZOFPe9NPvqfbg65WyUrjPNJevb41smCLdbLRKyBwHr_TE-rKOd05-QbRd-WbN6wL1Kt3OhtVEznFGUrUQViOS9MM7jqnvYJiIScmCWiZ07HFbuDhdDylEsixgxgnGVE3zo9-zXhvkuery6eLvtdMVPA0hMGVF-g8ggBGJlakVvM4BX_RSOObxCah0JJpBT-kNEKGaZ6qINSpb02omeQs940Kt8hiURZ2h1Ah4Yki4gYRvRBjJvZjGficac0TJm2H-K0sM93AjePUi1HW1pW9ZCD-DMWf4SRMFnbI6Zzltcba-I04aD9Q1jaRgtnLYCf4jYnPmb5p2V9sR60GZPD3YUpFFracIRGoF7jESdoh27VqzJcOplNAuBjt_u-le2QZr-q-x32yWE1m9gAcoEodOg0_JEu969v-wyd8cwZs
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9tADLdQeWAvExtjK2PbIU17QIqaSy6XZG8VGipQ-jKQ-na6r0hFNEFtqon_HjsfFXuASXtNzsnJ5_PZZ_tngO8y5S4puAusNiYQWiZB5hwPvDG50KFPI09XA9czObkVl_NkvgNnfS0MpVV2ur_V6Y227p6MOm6OHhaL0W9OITzJ55wgrHJygXYJnSoZwO744moy6xVygh5F2gaXcSJI0Ac3mzQvsyLQbp41QJ48ful4esn8bI6h831429mPbNxO8R3s-PI9HIxL9J2Xj-wHazI6m6vyA7DT6k-waHPU60e2ua9Xek1tlFiDYrmsXNe76ycbl4xyOSlOwKqCLT0VBC_WyzXTOJyKiKmZEWs6-rHnQe8PcHv-6-ZsEnRNFQKLnnAdRLZI0IfRmZe5tyLN0WR02oUu81ksrebW4J7UTuo4L3ITxTYPvYst14IXoTPxIQzKqvSfgEmNX5SJcATqRTAzaZjqKBTcWpFx7YcQ9rxUtkMcp8YX96pPLbtTyH5F7FfUDJPHQzjdkjy0cBuvDY76BVJ9HSlqPoWHwWtEYkv0l6D9i-yklwCFG5CiKrr01YYGoXihVZzlQ_jYisZ26qg9JXqMydH__fQb7E1urqdqejG7-gxv6E1bBnkMg3q18V_QHqrN107enwBx2gkd
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low-intensity+ultrasound+neuromodulation%3A+An+overview+of+mechanisms+and+emerging+human+applications&rft.jtitle=Brain+stimulation&rft.au=Fomenko%2C+Anton&rft.au=Neudorfer%2C+Clemens&rft.au=Dallapiazza%2C+Robert+F.&rft.au=Kalia%2C+Suneil+K.&rft.date=2018-11-01&rft.pub=Elsevier+Inc&rft.issn=1935-861X&rft.eissn=1876-4754&rft.volume=11&rft.issue=6&rft.spage=1209&rft.epage=1217&rft_id=info:doi/10.1016%2Fj.brs.2018.08.013&rft.externalDocID=S1935861X18302961
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1935-861X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1935-861X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1935-861X&client=summon