Low-intensity ultrasound neuromodulation: An overview of mechanisms and emerging human applications
There is an emerging need for noninvasive neuromodulation techniques to improve patient outcomes while minimizing adverse events and morbidity. Low-intensity focused ultrasound (LIFUS) is gaining traction as a non-surgical experimental approach of modulating brain activity. Several LIFUS sonication...
Saved in:
Published in | Brain stimulation Vol. 11; no. 6; pp. 1209 - 1217 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.11.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | There is an emerging need for noninvasive neuromodulation techniques to improve patient outcomes while minimizing adverse events and morbidity. Low-intensity focused ultrasound (LIFUS) is gaining traction as a non-surgical experimental approach of modulating brain activity. Several LIFUS sonication parameters have been found to potentiate neural firing, suppress cortical and epileptic discharges, and alter behavior when delivered to cortical and subcortical mammalian brain regions.
This review introduces the elements of an effective sonication protocol and summarizes key preclinical studies on LIFUS as a neuromodulation modality. The state of the art in human ultrasound neuromodulation is then comprehensively summarized, and current hypotheses regarding the underlying mechanism of action on neural activity are presented.
Peer-reviewed literature on human ultrasound neuromodulation was obtained by searching several electronic databases. The abstracts of all reports were read and publications which examined low-intensity transcranial ultrasound applied to human subjects were selected for review.
LIFUS can noninvasively influence human brain activity by suppressing cortical evoked potentials, influencing cortical oscillatory dynamics, and altering outcomes of sensory/motor tasks compared to sham sonication. Proposed mechanisms include cavitation, direct effects on neural ion channels, and plasma membrane deformation.
Though optimal sonication paradigms and transcranial delivery methods are still being established, future applications may include non-invasive human brain mapping experiments, and nonsurgical treatments for functional neurological disorders.
•Low-intensity ultrasound can noninvasively modulate mammalian brain activity.•Pulsing parameters and intensity determine excitatory or inhibitory neural effects.•Human US neuromodulation has been achieved in cortical and deep structures.•Ultrasound holds promise as a precise, nonsurgical and safe brain stimulation tool. |
---|---|
AbstractList | There is an emerging need for noninvasive neuromodulation techniques to improve patient outcomes while minimizing adverse events and morbidity. Low-intensity focused ultrasound (LIFUS) is gaining traction as a non-surgical experimental approach of modulating brain activity. Several LIFUS sonication parameters have been found to potentiate neural firing, suppress cortical and epileptic discharges, and alter behavior when delivered to cortical and subcortical mammalian brain regions.
This review introduces the elements of an effective sonication protocol and summarizes key preclinical studies on LIFUS as a neuromodulation modality. The state of the art in human ultrasound neuromodulation is then comprehensively summarized, and current hypotheses regarding the underlying mechanism of action on neural activity are presented.
Peer-reviewed literature on human ultrasound neuromodulation was obtained by searching several electronic databases. The abstracts of all reports were read and publications which examined low-intensity transcranial ultrasound applied to human subjects were selected for review.
LIFUS can noninvasively influence human brain activity by suppressing cortical evoked potentials, influencing cortical oscillatory dynamics, and altering outcomes of sensory/motor tasks compared to sham sonication. Proposed mechanisms include cavitation, direct effects on neural ion channels, and plasma membrane deformation.
Though optimal sonication paradigms and transcranial delivery methods are still being established, future applications may include non-invasive human brain mapping experiments, and nonsurgical treatments for functional neurological disorders. There is an emerging need for noninvasive neuromodulation techniques to improve patient outcomes while minimizing adverse events and morbidity. Low-intensity focused ultrasound (LIFUS) is gaining traction as a non-surgical experimental approach of modulating brain activity. Several LIFUS sonication parameters have been found to potentiate neural firing, suppress cortical and epileptic discharges, and alter behavior when delivered to cortical and subcortical mammalian brain regions.BACKGROUNDThere is an emerging need for noninvasive neuromodulation techniques to improve patient outcomes while minimizing adverse events and morbidity. Low-intensity focused ultrasound (LIFUS) is gaining traction as a non-surgical experimental approach of modulating brain activity. Several LIFUS sonication parameters have been found to potentiate neural firing, suppress cortical and epileptic discharges, and alter behavior when delivered to cortical and subcortical mammalian brain regions.This review introduces the elements of an effective sonication protocol and summarizes key preclinical studies on LIFUS as a neuromodulation modality. The state of the art in human ultrasound neuromodulation is then comprehensively summarized, and current hypotheses regarding the underlying mechanism of action on neural activity are presented.OBJECTIVEThis review introduces the elements of an effective sonication protocol and summarizes key preclinical studies on LIFUS as a neuromodulation modality. The state of the art in human ultrasound neuromodulation is then comprehensively summarized, and current hypotheses regarding the underlying mechanism of action on neural activity are presented.Peer-reviewed literature on human ultrasound neuromodulation was obtained by searching several electronic databases. The abstracts of all reports were read and publications which examined low-intensity transcranial ultrasound applied to human subjects were selected for review.METHODSPeer-reviewed literature on human ultrasound neuromodulation was obtained by searching several electronic databases. The abstracts of all reports were read and publications which examined low-intensity transcranial ultrasound applied to human subjects were selected for review.LIFUS can noninvasively influence human brain activity by suppressing cortical evoked potentials, influencing cortical oscillatory dynamics, and altering outcomes of sensory/motor tasks compared to sham sonication. Proposed mechanisms include cavitation, direct effects on neural ion channels, and plasma membrane deformation.RESULTSLIFUS can noninvasively influence human brain activity by suppressing cortical evoked potentials, influencing cortical oscillatory dynamics, and altering outcomes of sensory/motor tasks compared to sham sonication. Proposed mechanisms include cavitation, direct effects on neural ion channels, and plasma membrane deformation.Though optimal sonication paradigms and transcranial delivery methods are still being established, future applications may include non-invasive human brain mapping experiments, and nonsurgical treatments for functional neurological disorders.CONCLUSIONSThough optimal sonication paradigms and transcranial delivery methods are still being established, future applications may include non-invasive human brain mapping experiments, and nonsurgical treatments for functional neurological disorders. There is an emerging need for noninvasive neuromodulation techniques to improve patient outcomes while minimizing adverse events and morbidity. Low-intensity focused ultrasound (LIFUS) is gaining traction as a non-surgical experimental approach of modulating brain activity. Several LIFUS sonication parameters have been found to potentiate neural firing, suppress cortical and epileptic discharges, and alter behavior when delivered to cortical and subcortical mammalian brain regions. This review introduces the elements of an effective sonication protocol and summarizes key preclinical studies on LIFUS as a neuromodulation modality. The state of the art in human ultrasound neuromodulation is then comprehensively summarized, and current hypotheses regarding the underlying mechanism of action on neural activity are presented. Peer-reviewed literature on human ultrasound neuromodulation was obtained by searching several electronic databases. The abstracts of all reports were read and publications which examined low-intensity transcranial ultrasound applied to human subjects were selected for review. LIFUS can noninvasively influence human brain activity by suppressing cortical evoked potentials, influencing cortical oscillatory dynamics, and altering outcomes of sensory/motor tasks compared to sham sonication. Proposed mechanisms include cavitation, direct effects on neural ion channels, and plasma membrane deformation. Though optimal sonication paradigms and transcranial delivery methods are still being established, future applications may include non-invasive human brain mapping experiments, and nonsurgical treatments for functional neurological disorders. •Low-intensity ultrasound can noninvasively modulate mammalian brain activity.•Pulsing parameters and intensity determine excitatory or inhibitory neural effects.•Human US neuromodulation has been achieved in cortical and deep structures.•Ultrasound holds promise as a precise, nonsurgical and safe brain stimulation tool. |
Author | Kalia, Suneil K. Fomenko, Anton Neudorfer, Clemens Dallapiazza, Robert F. Lozano, Andres M. |
Author_xml | – sequence: 1 givenname: Anton orcidid: 0000-0003-4131-6784 surname: Fomenko fullname: Fomenko, Anton email: Anton.fomenko@uhnresearch.ca organization: Toronto Western Research Institute, Krembil Discovery Tower, University Health Network, 60 Leonard Avenue, Toronto, ON, M5T OS8, Canada – sequence: 2 givenname: Clemens surname: Neudorfer fullname: Neudorfer, Clemens organization: Toronto Western Research Institute, Krembil Discovery Tower, University Health Network, 60 Leonard Avenue, Toronto, ON, M5T OS8, Canada – sequence: 3 givenname: Robert F. surname: Dallapiazza fullname: Dallapiazza, Robert F. organization: Toronto Western Research Institute, Krembil Discovery Tower, University Health Network, 60 Leonard Avenue, Toronto, ON, M5T OS8, Canada – sequence: 4 givenname: Suneil K. surname: Kalia fullname: Kalia, Suneil K. organization: Toronto Western Research Institute, Krembil Discovery Tower, University Health Network, 60 Leonard Avenue, Toronto, ON, M5T OS8, Canada – sequence: 5 givenname: Andres M. surname: Lozano fullname: Lozano, Andres M. organization: Toronto Western Research Institute, Krembil Discovery Tower, University Health Network, 60 Leonard Avenue, Toronto, ON, M5T OS8, Canada |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30166265$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkE1PHSEUQEmjqV_9AW4alt3ME4YZBtqVMfUjeYkbTdwRBu4orwy8wozm_fuiz7pwoclNuItzSO45QDshBkDomJIFJZSfrBZ9youaULEgZSj7gvap6HjVdG2zU3bJ2kpwereHDnJeEdJKKbqvaI8Vm9e83UdmGZ8qFyYI2U0bPPsp6RznYHGAOcUx2tnrycXwE58GHB8hPTp4wnHAI5gHHVweM9YFhxHSvQv3-GEedcB6vfbOvJj5CO0O2mf49voeotvz3zdnl9Xy-uLq7HRZmYbLqarN0NacaAFcgmk6SQSx2hIrQDBuNDW95ExbrpkcZF8zIwlYZqhu6EBszw7Rj-2_6xT_zpAnNbpswHsdIM5Z1aRcz1suZEG_v6JzP4JV6-RGnTbqf5gC0C1gUsw5wfCGUKKe46uVKvHVc3xFylBWnO6dY9z0kqBEdf5D89fWhJKnBE4qGwfBgHUJzKRsdB_a8p1tvAulvv8Dm0_cfw9UtFY |
CitedBy_id | crossref_primary_10_1109_TBME_2021_3073951 crossref_primary_10_1007_s12239_021_0001_y crossref_primary_10_3389_fnins_2021_620863 crossref_primary_10_4103_NRR_NRR_D_24_00539 crossref_primary_10_1186_s41983_024_00824_w crossref_primary_10_3390_brainsci12020208 crossref_primary_10_1016_j_brs_2020_02_017 crossref_primary_10_1016_j_neuroimage_2021_118557 crossref_primary_10_1109_MSSC_2020_2987506 crossref_primary_10_1002_ana_26294 crossref_primary_10_3389_fneur_2023_1279875 crossref_primary_10_1016_j_neuroimage_2023_120227 crossref_primary_10_1109_TUFFC_2022_3160880 crossref_primary_10_1016_j_measurement_2024_115700 crossref_primary_10_1093_cercor_bhad398 crossref_primary_10_2139_ssrn_3345552 crossref_primary_10_1016_j_brs_2022_05_002 crossref_primary_10_1038_s41378_022_00396_w crossref_primary_10_3389_fnins_2021_727715 crossref_primary_10_7554_eLife_54497 crossref_primary_10_1016_j_ultrasmedbio_2020_01_007 crossref_primary_10_3389_fnins_2020_00445 crossref_primary_10_1016_j_intimp_2024_113680 crossref_primary_10_1016_j_ultras_2020_106218 crossref_primary_10_1080_14737175_2020_1779590 crossref_primary_10_3389_fneur_2018_01007 crossref_primary_10_7554_eLife_40541 crossref_primary_10_3389_fpubh_2021_788613 crossref_primary_10_1016_j_clinph_2021_12_010 crossref_primary_10_3389_fncel_2022_839023 crossref_primary_10_1016_j_ultras_2019_105970 crossref_primary_10_1186_s12974_023_02773_2 crossref_primary_10_1016_j_mtbio_2023_100556 crossref_primary_10_1016_j_drugalcdep_2023_109919 crossref_primary_10_1016_j_neuroimage_2021_118093 crossref_primary_10_1016_j_brs_2019_09_011 crossref_primary_10_1016_j_celrep_2022_111197 crossref_primary_10_1088_1741_2552_ac409f crossref_primary_10_3389_fpsyt_2022_825802 crossref_primary_10_1080_07388551_2021_1993126 crossref_primary_10_1016_j_neures_2020_01_002 crossref_primary_10_1073_pnas_2404877121 crossref_primary_10_1126_sciadv_adn0260 crossref_primary_10_1038_s41928_024_01240_x crossref_primary_10_1152_jn_00701_2020 crossref_primary_10_1111_cns_14303 crossref_primary_10_1073_pnas_2300291120 crossref_primary_10_1016_j_ultras_2021_106591 crossref_primary_10_1088_1361_6560_ada19d crossref_primary_10_1016_j_brs_2022_10_001 crossref_primary_10_1126_sciadv_abf6312 crossref_primary_10_1097_j_pain_0000000000003556 crossref_primary_10_1126_sciadv_adj8608 crossref_primary_10_1016_j_neubiorev_2022_104867 crossref_primary_10_1016_j_brs_2023_07_056 crossref_primary_10_1093_cercor_bhae413 crossref_primary_10_1088_1741_2552_ac7893 crossref_primary_10_1093_cercor_bhad330 crossref_primary_10_3390_electronics13061154 crossref_primary_10_1016_j_brs_2020_08_014 crossref_primary_10_1016_j_neuroscience_2023_07_019 crossref_primary_10_1016_j_isci_2024_110269 crossref_primary_10_1038_s41598_020_78553_2 crossref_primary_10_1109_OJEMB_2023_3263690 crossref_primary_10_1109_TUFFC_2021_3057873 crossref_primary_10_1007_s11517_025_03290_5 crossref_primary_10_2139_ssrn_4131980 crossref_primary_10_1109_TBME_2021_3085170 crossref_primary_10_3389_fneur_2023_1117188 crossref_primary_10_3389_fnins_2022_994570 crossref_primary_10_1016_j_brs_2023_04_021 crossref_primary_10_3390_jcm10122698 crossref_primary_10_23736_S0390_5616_24_06306_9 crossref_primary_10_1109_TUFFC_2021_3131752 crossref_primary_10_3389_fnins_2022_886584 crossref_primary_10_1109_TBME_2023_3313987 crossref_primary_10_1109_JMEMS_2021_3125377 crossref_primary_10_1109_TNSRE_2022_3188516 crossref_primary_10_1109_TUFFC_2023_3280455 crossref_primary_10_1016_j_brs_2019_07_024 crossref_primary_10_3390_brainsci12101277 crossref_primary_10_1016_j_neuroimage_2022_119682 crossref_primary_10_1109_OJEMB_2019_2963474 crossref_primary_10_1016_j_bbi_2025_03_027 crossref_primary_10_1016_j_clinph_2024_05_007 crossref_primary_10_2174_1570159X18666200720175253 crossref_primary_10_3340_jkns_2018_0180 crossref_primary_10_1177_15357597221086111 crossref_primary_10_1007_s12311_021_01300_4 crossref_primary_10_1016_j_cmpb_2022_106777 crossref_primary_10_1126_sciadv_aaz4193 crossref_primary_10_1016_j_jocn_2021_05_062 crossref_primary_10_52662_nf_2023_00094 crossref_primary_10_1002_bem_70004 crossref_primary_10_1016_j_medj_2021_05_002 crossref_primary_10_1016_j_ultrasmedbio_2021_02_028 crossref_primary_10_1039_D2BM02059A crossref_primary_10_1093_cercor_bhac413 crossref_primary_10_1016_j_neuroimage_2023_120423 crossref_primary_10_1002_ird3_70003 crossref_primary_10_1176_appi_focus_20210028 crossref_primary_10_1055_s_0042_1755562 crossref_primary_10_1002_uog_20269 crossref_primary_10_1109_TBCAS_2023_3288891 crossref_primary_10_1186_s13063_024_08092_y crossref_primary_10_15212_bioi_2020_0026 crossref_primary_10_1016_j_brs_2021_01_006 crossref_primary_10_1109_TBME_2022_3231343 crossref_primary_10_1007_s40519_019_00746_0 crossref_primary_10_1109_TNSRE_2022_3199813 crossref_primary_10_1109_TUFFC_2020_3014183 crossref_primary_10_1016_j_ultsonch_2019_104745 crossref_primary_10_1155_2021_8855055 crossref_primary_10_1016_j_neuroimage_2023_119979 crossref_primary_10_1002_advs_202205634 crossref_primary_10_1007_s10439_019_02431_w crossref_primary_10_3389_fncel_2022_971148 crossref_primary_10_1016_j_brs_2024_12_002 crossref_primary_10_3389_fneur_2019_00549 crossref_primary_10_3390_ijms25115687 crossref_primary_10_4103_ATN_ATN_D_24_00003 crossref_primary_10_33069_cim_2019_0009 crossref_primary_10_1167_tvst_11_1_18 crossref_primary_10_1176_appi_ajp_2021_21101034 crossref_primary_10_1016_j_clinph_2025_01_004 crossref_primary_10_1016_j_ultrasmedbio_2021_05_007 crossref_primary_10_1007_s12264_024_01186_2 crossref_primary_10_1016_j_ultras_2023_107172 crossref_primary_10_1016_j_ultrasmedbio_2024_09_008 crossref_primary_10_34133_research_0200 crossref_primary_10_1016_j_jneumeth_2022_109536 crossref_primary_10_3389_fncel_2024_1360870 crossref_primary_10_1016_j_neubiorev_2023_105501 crossref_primary_10_1088_1741_2552_acb50d crossref_primary_10_1088_1741_2552_acd7a4 crossref_primary_10_1161_STROKEAHA_124_046679 crossref_primary_10_3389_fnins_2022_854992 crossref_primary_10_14801_jkiit_2024_22_7_153 crossref_primary_10_1016_j_brs_2023_03_002 crossref_primary_10_3389_fnhum_2024_1385427 crossref_primary_10_1109_TUFFC_2022_3144335 crossref_primary_10_1039_D4LC00826J crossref_primary_10_3390_diagnostics10080566 crossref_primary_10_1021_acsami_1c15611 crossref_primary_10_1016_j_brs_2022_12_003 crossref_primary_10_1016_j_brs_2021_12_005 crossref_primary_10_1039_D3TB01354E crossref_primary_10_1016_j_bbrc_2022_04_123 crossref_primary_10_1016_j_ultrasmedbio_2023_02_003 crossref_primary_10_1186_s12967_022_03824_7 crossref_primary_10_1016_j_mattod_2022_12_004 crossref_primary_10_1016_j_metrad_2024_100065 crossref_primary_10_1002_advs_202302404 crossref_primary_10_1109_TUFFC_2020_3005670 crossref_primary_10_34133_2022_9829316 crossref_primary_10_1002_mp_16090 crossref_primary_10_1016_j_neuron_2019_01_019 crossref_primary_10_1152_ajprenal_00145_2020 crossref_primary_10_1093_cercor_bhac037 crossref_primary_10_3390_brainsci13030451 crossref_primary_10_1039_D2NR05256C crossref_primary_10_1016_j_isci_2019_10_037 crossref_primary_10_1016_j_ultrasmedbio_2022_01_022 crossref_primary_10_1085_jgp_202012672 crossref_primary_10_1109_TBME_2022_3233345 crossref_primary_10_1002_brb3_70318 crossref_primary_10_1016_j_brs_2022_01_002 crossref_primary_10_1016_j_brs_2023_01_1674 crossref_primary_10_1109_TUFFC_2022_3140889 crossref_primary_10_1007_s00415_023_12114_1 crossref_primary_10_1016_j_heliyon_2023_e22522 crossref_primary_10_1109_TUFFC_2020_2968479 crossref_primary_10_1162_jocn_a_01591 crossref_primary_10_1007_s10143_024_03078_5 crossref_primary_10_1002_adma_202303180 crossref_primary_10_1016_j_actbio_2022_07_034 crossref_primary_10_3389_fnins_2022_964060 crossref_primary_10_1016_j_brainres_2024_149405 crossref_primary_10_1109_TIM_2024_3366278 crossref_primary_10_4103_1673_5374_255961 crossref_primary_10_1007_s12239_020_0001_3 crossref_primary_10_1109_TUFFC_2021_3108448 crossref_primary_10_1117_1_JBO_29_S1_S11520 crossref_primary_10_1016_j_neurom_2021_12_012 crossref_primary_10_1002_adma_202307664 crossref_primary_10_1007_s12239_020_0081_0 |
Cites_doi | 10.1016/j.conb.2018.04.011 10.1016/j.celrep.2016.10.033 10.1016/j.brs.2014.06.011 10.1016/S0301-5629(98)00111-2 10.7863/jum.2009.28.2.139 10.1021/nn101985a 10.1146/annurev.bioeng.6.040803.140126 10.1002/adhm.201600245 10.1002/mrm.20043 10.1016/j.neuroimage.2011.02.058 10.1088/1741-2560/13/5/056002 10.1109/TUFFC.2017.2651648 10.1121/1.424383 10.1109/TBME.2009.2028653 10.1021/acsnano.5b03162 10.1016/j.cub.2013.10.029 10.1016/j.brs.2012.05.002 10.1016/j.yebeh.2015.04.008 10.1038/srep08743 10.1016/j.ultrasmedbio.2012.09.009 10.1523/JNEUROSCI.1458-17.2018 10.1186/2050-5736-3-S1-O23 10.1073/pnas.1320768111 10.7863/jum.1993.12.12.747 10.1186/2050-5736-3-S1-O27 10.1016/j.ultrasmedbio.2006.07.018 10.1109/TNSRE.2017.2765001 10.3389/fnins.2017.00607 10.1016/j.ultras.2004.12.003 10.3389/fnins.2016.00348 10.1002/ana.24933 10.1038/nn.3620 10.1038/srep24170 10.1038/srep34026 10.1016/j.nurt.2007.05.012 10.1016/0014-4886(64)90005-6 10.1002/ima.20284 10.1038/nprot.2011.371 10.1007/s001620050068 10.1016/j.neuron.2010.05.008 10.1136/jnnp-2014-307642 10.1016/j.neuron.2018.07.049 10.1002/mrm.20118 10.1118/1.4812423 10.1016/j.ultrasmedbio.2014.01.020 10.1088/0031-9155/47/8/301 10.1038/s41598-018-28320-1 10.1002/cne.901030304 10.1016/j.brs.2017.07.007 10.1186/s12868-016-0303-6 10.1152/ajplegacy.1929.91.1.284 10.1097/WNR.0b013e32834b2957 10.1016/j.neuron.2018.05.009 10.1126/science.127.3289.83 10.1523/ENEURO.0136-15.2016 10.1016/j.ultrasmedbio.2015.10.001 10.1016/j.brs.2014.08.008 10.1088/0031-9155/34/11/003 10.1121/1.4976339 10.1088/1741-2552/aa843e 10.1128/AEM.02230-09 10.1371/journal.pone.0003511 10.1056/NEJMoa1300962 10.1001/archneur.1962.00450230036005 10.1016/S0165-0270(97)02242-5 10.1177/1073858409348066 10.1073/pnas.1015771108 10.3389/fnins.2016.00105 10.1088/1741-2560/13/3/031003 10.1186/1471-2202-12-23 10.1038/nrn3383 10.1121/1.1912808 10.1016/j.brs.2016.07.008 10.1038/ncomms9264 10.1098/rstb.2002.1100 10.1016/j.pbiomolbio.2006.07.008 10.1097/WNR.0000000000000330 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Inc. Copyright © 2018 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2018 Elsevier Inc. – notice: Copyright © 2018 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.brs.2018.08.013 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1876-4754 |
EndPage | 1217 |
ExternalDocumentID | 30166265 10_1016_j_brs_2018_08_013 S1935861X18302961 |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 1B1 1P~ 1~. 1~5 23N 4.4 457 4G. 4H- 53G 5GY 5VS 7-5 71M 8P~ AAEDT AAEDW AAFWJ AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABIVO ABJNI ABMAC ABMZM ABTEW ABWVN ABXDB ACDAQ ACGFS ACIEU ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADVLN AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPKN AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGUBO AGWIK AGYEJ AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP AXJTR BKOJK BLXMC BNPGV CS3 EBS EFJIC EFKBS EJD EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN GBLVA GROUPED_DOAJ HVGLF HZ~ IHE J1W KOM M41 MO0 MOBAO N9A O-L O9- OAUVE OK1 OP~ OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SEL SES SSH SSN SSZ T5K Z5R ~G- AACTN AADPK AAIAV ABLVK ABYKQ AFCTW AFKWA AJBFU AJOXV AMFUW EFLBG LCYCR NCXOZ RIG AAYXX AGRNS CITATION CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c469t-2cf5260a8e69ec479080dad0d8e836ca1cb963ad6a39f9b23c90ed3c1a41f0db3 |
IEDL.DBID | .~1 |
ISSN | 1935-861X 1876-4754 |
IngestDate | Fri Jul 11 07:05:55 EDT 2025 Thu Apr 03 06:58:51 EDT 2025 Thu Apr 24 23:12:10 EDT 2025 Tue Jul 01 01:50:28 EDT 2025 Fri Feb 23 02:27:48 EST 2024 Tue Aug 26 16:35:45 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Transcranial ultrasound Focused ultrasound Brain stimulation Neuromodulation |
Language | English |
License | Copyright © 2018 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c469t-2cf5260a8e69ec479080dad0d8e836ca1cb963ad6a39f9b23c90ed3c1a41f0db3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-4131-6784 |
PMID | 30166265 |
PQID | 2098765689 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2098765689 pubmed_primary_30166265 crossref_primary_10_1016_j_brs_2018_08_013 crossref_citationtrail_10_1016_j_brs_2018_08_013 elsevier_sciencedirect_doi_10_1016_j_brs_2018_08_013 elsevier_clinicalkey_doi_10_1016_j_brs_2018_08_013 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November-December 2018 2018-11-00 2018 Nov - Dec 20181101 |
PublicationDateYYYYMMDD | 2018-11-01 |
PublicationDate_xml | – month: 11 year: 2018 text: November-December 2018 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Brain stimulation |
PublicationTitleAlternate | Brain Stimul |
PublicationYear | 2018 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Clement, Hynynen (bib14) 2002; 47 Duck (bib29) 2007; 93 Krasovitski, Frenkel, Shoham, Kimmel (bib75) 2011; 108 Tyler, Tufail, Finsterwald, Tauchmann, Olson, Majestic (bib10) 2008; 3 United States Food and Drug Administration (bib28) 2017 Lee, Lee, Park, Foley, Purcell-Estabrook, Kim (bib48) 2016 Lee, Chung, Jung, Song, Yoo (bib55) 2016; 17 Tyler (bib82) 2011; 17 Mueller, Legon, Opitz, Sato, Tyler (bib53) 2014; 7 Tsui, Wang, Huang (bib20) 2005; 43 Younan, Deffieux, Larrat, Fink, Tanter, Aubry (bib13) 2013 Wagner T, Fregni F. Non-invasive Neurostimulation in Parkinson’s Disease. Clin ID NCT01615718 n.d. Fry, Ades, Fry (bib3) 1958; 127 Mueller, Ai, Bansal, Legon (bib17) 2017 Sanguinetti, Smith, Allen, Hameroff (bib59) 2014 Constans, Deffieux, Pouget, Tanter, Aubry (bib62) 2017; 64 Li, Su, Jiang, Cai, Yan, Gu (bib86) 2017 Kim, Chiu, Lee, Fischer, Yoo (bib21) 2014; 7 Min, Bystritsky, Jung, Fischer, Zhang, Maeng (bib39) 2011; 12 (accessed February 10, 2018). Mueller, Ai, Bansal, Legon (bib27) 2016 Hakimova, Kim, Chu, Lee, Jeong, Jeon (bib38) 2015; 49 Elias, Huss, Voss, Loomba, Khaled, Zadicario (bib63) 2013; 369 Chang, Jung, Zadicario, Rachmilevitch, Tlusty, Vitek (bib16) 2015; 124 Rothwell (bib67) 1997; 74 Coakley, Dunn (bib71) 1971; 50 Nelson, Fowlkes, Abramowicz, Church (bib77) 2009; 28 Yoo, Jung, Zhang, Mcdannold, Bystritsky, Jolesz (bib44) 2010; 97 Tang, Clement (bib46) 2010; 57 Lee, Kim, Lee, Park, Yoo (bib47) 2015; 3 Wattiez, Constans, Deffieux, Daye, Tanter, Aubry (bib36) 2017; 10 Kim, Park, Lee, Lee, Chiu, Yoo (bib43) 2015; 26 Meng, Volpini, Black, Lozano, Hynynen, Lipsman (bib93) 2017; 81 Sun, Hynynen (bib15) 1998; 104 Tufail, Yoshihiro, Pati, Li, Tyler (bib34) 2011; 6 Monti, Schnakers, Korb, Bystritsky, Vespa (bib57) 2016; 9 Robertson, Cox, Jaros, Treeby (bib65) 2017 Tsivgoulis, Alexandrov (bib95) 2007; 4 King, Brown, Pauly (bib33) 2014; 40 Dallapiazza, Timbie, Holmberg, Gatesman, Lopes, Price (bib32) 2017 Fry (bib2) 1954; 100 Johns (bib84) 2002; 37 Romo, Hernandez, Zainos, Brody, Salinas (bib60) 2002; 357 Horder, Barnett, Vella, Edwards, Wood (bib25) 1998; 24 Deffieux, Younan, Wattiez, Tanter, Pouget, Aubry (bib37) 2013; 23 Ai, Mueller, Grant, Eryaman, Legon (bib18) 2016 Kubanek, Shukla, Das, Baccus, Goodman (bib68) 2018; 38 Yang, Phipps, Newton, Chaplin, Gore, Caskey (bib50) 2018 Ciofani, Danti, D’Alessandro, Ricotti, Moscato, Bertoni (bib90) 2010; 4 Ishibashi, Shimada, Kawato, Kaji, Maeno, Sato (bib72) 2010; 76 Genchi, Ceseracciu, Marino, Labardi, Marras, Pignatelli (bib91) 2016; 5 Plaksin, Kimmel, Shoham (bib26) 2016; 3 Shealy, Henneman (bib73) 1962; 6 Yoo, Kim, Min, Franck, Park (bib40) 2011; 22 Colombo, Feyen, Antognazza, Lanzani, Benfenati (bib89) 2016; 10 Chang, Jung, Kweon, Zadicario, Rachmilevitch, Chang (bib64) 2015; 86 Kubanek, Shi, Marsh, Chen, Deng, Cui (bib80) 2016; 6 Legon, Bansal, Tyshynsky, Ai, Mueller (bib58) 2018; 8 Magee, Davies (bib74) 1993; 12 Sato, Shapiro, Tsao (bib42) 2018 Plaksin, Shoham, Kimmel (bib76) 2014; 4 Qiu, Zhou, Chen, Su, Li, Zhao (bib5) 2017 Sassaroli, Vykhodtseva (bib78) 2016; 4 Tyler (bib83) 2012; 13 Guo, Hamilton, Offutt, Gloeckner, Li, Kim (bib41) 2018 Manlapaz, Åström, Ballantine, Lele (bib51) 1964; 10 Yuan, Yan, Ma, Li (bib30) 2016; 10 Li, Qiu, Zhang, Jiang, Su, Cai (bib4) 2018 Tufail, Matyushov, Baldwin, Tauchmann, Georges, Yoshihiro (bib24) 2010; 66 Naor, Krupa, Shoham (bib9) 2016; 13 Dallapiazza, Timbie, Elias (bib8) 2017 Lee, Kim, Jung, Song, Chung, Yoo (bib54) 2015; 5 Harvey (bib1) 1929; 91 McDannold, King, Hynynen (bib61) 2004; 51 Lee, Kim, Jung, Chung, Song, Lee (bib56) 2016; 6 Stern J. Low-intensity Focused Ultrasound Pulsation (LIFUP) for Treatment of Temporal Lobe Epilepsy. Clin ID NCT02151175 n.d. Howard (bib11) 2005; 21 King, Brown, Newsome, Pauly (bib12) 2013; 39 Legon, Ai, Bansal, Mueller (bib19) 2018 Barnard, Fry, Fry, Krumins (bib22) 1955; 103 Hynynen, Clement, McDannold, Vykhodtseva, King, White (bib6) 2004; 52 Downs, Teichert, Buch, Karakatsani, Sierra, Chen (bib31) 2017; 11 Ibsen, Tong, Schutt, Esener, Chalasani (bib87) 2015; 6 Syeda, Florendo, Cox, Kefauver, Santos, Martinac (bib81) 2016; 17 Riley (bib85) 1998; 10 Bystritsky, Korb, Stern, Cohen (bib66) 2015; 3 Hameroff, Trakas, Duffield, Annabi, Gerace, Boyle (bib23) 2013; 6 Brohawn, Su, MacKinnon (bib79) 2014; 111 Marino, Arai, Hou, Sinibaldi, Pellegrino, Chang (bib88) 2015; 9 Tyler, Lani, Hwang (bib7) 2018; 50 Dinno, Dyson, Young, Mortimer, Hart, Crum (bib69) 1989; 34 Choi, Pernot, Small, Konofagou (bib49) 2007; 33 Dalecki (bib70) 2004; 6 Yoo, Bystritsky, Lee, Zhang, Fischer, Min (bib35) 2011; 56 Min, Yang, Bohlke, Park, Vago, Maher (bib45) 2011 Legon, Sato, Opitz, Mueller, Barbour, Williams (bib52) 2014; 17 Tang (10.1016/j.brs.2018.08.013_bib46) 2010; 57 Nelson (10.1016/j.brs.2018.08.013_bib77) 2009; 28 Barnard (10.1016/j.brs.2018.08.013_bib22) 1955; 103 Ai (10.1016/j.brs.2018.08.013_bib18) 2016 Shealy (10.1016/j.brs.2018.08.013_bib73) 1962; 6 Kim (10.1016/j.brs.2018.08.013_bib43) 2015; 26 Meng (10.1016/j.brs.2018.08.013_bib93) 2017; 81 Tyler (10.1016/j.brs.2018.08.013_bib7) 2018; 50 Marino (10.1016/j.brs.2018.08.013_bib88) 2015; 9 Tsui (10.1016/j.brs.2018.08.013_bib20) 2005; 43 Hameroff (10.1016/j.brs.2018.08.013_bib23) 2013; 6 Wattiez (10.1016/j.brs.2018.08.013_bib36) 2017; 10 Sassaroli (10.1016/j.brs.2018.08.013_bib78) 2016; 4 Genchi (10.1016/j.brs.2018.08.013_bib91) 2016; 5 Hakimova (10.1016/j.brs.2018.08.013_bib38) 2015; 49 Yuan (10.1016/j.brs.2018.08.013_bib30) 2016; 10 Sato (10.1016/j.brs.2018.08.013_bib42) 2018 Johns (10.1016/j.brs.2018.08.013_bib84) 2002; 37 Sanguinetti (10.1016/j.brs.2018.08.013_bib59) 2014 Tyler (10.1016/j.brs.2018.08.013_bib10) 2008; 3 McDannold (10.1016/j.brs.2018.08.013_bib61) 2004; 51 Harvey (10.1016/j.brs.2018.08.013_bib1) 1929; 91 Tyler (10.1016/j.brs.2018.08.013_bib82) 2011; 17 Yoo (10.1016/j.brs.2018.08.013_bib35) 2011; 56 10.1016/j.brs.2018.08.013_bib94 Hynynen (10.1016/j.brs.2018.08.013_bib6) 2004; 52 King (10.1016/j.brs.2018.08.013_bib12) 2013; 39 Howard (10.1016/j.brs.2018.08.013_bib11) 2005; 21 Tufail (10.1016/j.brs.2018.08.013_bib34) 2011; 6 Rothwell (10.1016/j.brs.2018.08.013_bib67) 1997; 74 Ibsen (10.1016/j.brs.2018.08.013_bib87) 2015; 6 Kubanek (10.1016/j.brs.2018.08.013_bib68) 2018; 38 Dallapiazza (10.1016/j.brs.2018.08.013_bib8) 2017 Colombo (10.1016/j.brs.2018.08.013_bib89) 2016; 10 Plaksin (10.1016/j.brs.2018.08.013_bib76) 2014; 4 Li (10.1016/j.brs.2018.08.013_bib86) 2017 Downs (10.1016/j.brs.2018.08.013_bib31) 2017; 11 Legon (10.1016/j.brs.2018.08.013_bib58) 2018; 8 Elias (10.1016/j.brs.2018.08.013_bib63) 2013; 369 Bystritsky (10.1016/j.brs.2018.08.013_bib66) 2015; 3 Fry (10.1016/j.brs.2018.08.013_bib3) 1958; 127 Romo (10.1016/j.brs.2018.08.013_bib60) 2002; 357 Guo (10.1016/j.brs.2018.08.013_bib41) 2018 Yoo (10.1016/j.brs.2018.08.013_bib44) 2010; 97 Qiu (10.1016/j.brs.2018.08.013_bib5) 2017 Horder (10.1016/j.brs.2018.08.013_bib25) 1998; 24 Dallapiazza (10.1016/j.brs.2018.08.013_bib32) 2017 Legon (10.1016/j.brs.2018.08.013_bib52) 2014; 17 Lee (10.1016/j.brs.2018.08.013_bib55) 2016; 17 Plaksin (10.1016/j.brs.2018.08.013_bib26) 2016; 3 Sun (10.1016/j.brs.2018.08.013_bib15) 1998; 104 Coakley (10.1016/j.brs.2018.08.013_bib71) 1971; 50 Brohawn (10.1016/j.brs.2018.08.013_bib79) 2014; 111 Min (10.1016/j.brs.2018.08.013_bib39) 2011; 12 Mueller (10.1016/j.brs.2018.08.013_bib53) 2014; 7 Duck (10.1016/j.brs.2018.08.013_bib29) 2007; 93 Min (10.1016/j.brs.2018.08.013_bib45) 2011 Tyler (10.1016/j.brs.2018.08.013_bib83) 2012; 13 Lee (10.1016/j.brs.2018.08.013_bib56) 2016; 6 Mueller (10.1016/j.brs.2018.08.013_bib27) 2016 Choi (10.1016/j.brs.2018.08.013_bib49) 2007; 33 United States Food and Drug Administration (10.1016/j.brs.2018.08.013_bib28) 2017 Fry (10.1016/j.brs.2018.08.013_bib2) 1954; 100 Robertson (10.1016/j.brs.2018.08.013_bib65) 2017 King (10.1016/j.brs.2018.08.013_bib33) 2014; 40 Lee (10.1016/j.brs.2018.08.013_bib48) 2016 Syeda (10.1016/j.brs.2018.08.013_bib81) 2016; 17 Deffieux (10.1016/j.brs.2018.08.013_bib37) 2013; 23 10.1016/j.brs.2018.08.013_bib92 Tufail (10.1016/j.brs.2018.08.013_bib24) 2010; 66 Yoo (10.1016/j.brs.2018.08.013_bib40) 2011; 22 Lee (10.1016/j.brs.2018.08.013_bib54) 2015; 5 Kubanek (10.1016/j.brs.2018.08.013_bib80) 2016; 6 Li (10.1016/j.brs.2018.08.013_bib4) 2018 Dinno (10.1016/j.brs.2018.08.013_bib69) 1989; 34 Chang (10.1016/j.brs.2018.08.013_bib16) 2015; 124 Naor (10.1016/j.brs.2018.08.013_bib9) 2016; 13 Mueller (10.1016/j.brs.2018.08.013_bib17) 2017 Constans (10.1016/j.brs.2018.08.013_bib62) 2017; 64 Tsivgoulis (10.1016/j.brs.2018.08.013_bib95) 2007; 4 Chang (10.1016/j.brs.2018.08.013_bib64) 2015; 86 Younan (10.1016/j.brs.2018.08.013_bib13) 2013 Dalecki (10.1016/j.brs.2018.08.013_bib70) 2004; 6 Ciofani (10.1016/j.brs.2018.08.013_bib90) 2010; 4 Ishibashi (10.1016/j.brs.2018.08.013_bib72) 2010; 76 Krasovitski (10.1016/j.brs.2018.08.013_bib75) 2011; 108 Clement (10.1016/j.brs.2018.08.013_bib14) 2002; 47 Monti (10.1016/j.brs.2018.08.013_bib57) 2016; 9 Legon (10.1016/j.brs.2018.08.013_bib19) 2018 Kim (10.1016/j.brs.2018.08.013_bib21) 2014; 7 Manlapaz (10.1016/j.brs.2018.08.013_bib51) 1964; 10 Riley (10.1016/j.brs.2018.08.013_bib85) 1998; 10 Lee (10.1016/j.brs.2018.08.013_bib47) 2015; 3 Magee (10.1016/j.brs.2018.08.013_bib74) 1993; 12 Yang (10.1016/j.brs.2018.08.013_bib50) 2018 |
References_xml | – volume: 7 start-page: 900 year: 2014 end-page: 908 ident: bib53 article-title: Transcranial focused ultrasound modulates intrinsic and evoked EEG dynamics publication-title: Brain Stimul – start-page: 1 year: 2018 end-page: 12 ident: bib19 article-title: Neuromodulation with single-element transcranial focused ultrasound in human thalamus publication-title: Hum Brain Mapp – year: 2018 ident: bib4 article-title: Noninvasive ultrasonic neuromodulation in freely moving mice publication-title: IEEE Trans Biomed Eng – volume: 6 start-page: 409 year: 2013 end-page: 415 ident: bib23 article-title: Transcranial ultrasound (TUS) effects on mental states: a pilot study publication-title: Brain Stimul – volume: 17 start-page: 25 year: 2011 end-page: 36 ident: bib82 article-title: Noninvasive neuromodulation with ultrasound? A continuum mechanics hypothesis publication-title: Neuroscience – volume: 57 start-page: 203 year: 2010 end-page: 205 ident: bib46 article-title: Standing-wave suppression for transcranial ultrasound by random modulation publication-title: IEEE Trans Biomed Eng – volume: 111 start-page: 3614 year: 2014 end-page: 3619 ident: bib79 article-title: Mechanosensitivity is mediated directly by the lipid membrane in TRAAK and TREK1 K publication-title: Proc Natl Acad Sci Unit States Am – volume: 81 start-page: 611 year: 2017 end-page: 617 ident: bib93 article-title: Focused ultrasound as a novel strategy for Alzheimer disease therapeutics publication-title: Ann Neurol – volume: 91 start-page: 284 year: 1929 end-page: 290 ident: bib1 article-title: The effect of high frequency sound waces on heart muscle and other irritable tissues publication-title: Am J Physiol Leg Content – volume: 6 start-page: 34026 year: 2016 ident: bib56 article-title: Transcranial focused ultrasound stimulation of human primary visual cortex publication-title: Sci Rep – volume: 10 year: 2016 ident: bib89 article-title: Nanoparticles: a challenging vehicle for neural stimulation publication-title: Front Neurosci – start-page: 1 year: 2017 end-page: 4 ident: bib86 article-title: Local field potentials responses of ultrasonic neuromodulation in freely moving mouse publication-title: IEEE Int – volume: 10 start-page: 349 year: 1998 end-page: 356 ident: bib85 article-title: Acoustic streaming publication-title: Theor Comput Fluid Dynam – volume: 127 start-page: 83 year: 1958 end-page: 84 ident: bib3 article-title: Production of reversible changes in the central nervous system by ultrasound publication-title: Science (80- ) – volume: 33 start-page: 95 year: 2007 end-page: 104 ident: bib49 article-title: Noninvasive, transcranial and localized opening of the blood-brain barrier using focused ultrasound in mice publication-title: Ultrasound Med Biol – volume: 104 start-page: 1705 year: 1998 ident: bib15 article-title: Focusing of therapeutic ultrasound through a human skull: a numerical study publication-title: J Acoust Soc Am – volume: 10 start-page: 1024 year: 2017 end-page: 1031 ident: bib36 article-title: Transcranial ultrasonic stimulation modulates single-neuron discharge in macaques performing an antisaccade task publication-title: Brain Stimul – year: 2017 ident: bib5 article-title: A portable ultrasound system for non-invasive ultrasonic neuro-stimulation publication-title: IEEE Trans Neural Syst Rehabil Eng – volume: 124 start-page: 1 year: 2015 end-page: 6 ident: bib16 article-title: Factors associated with successful magnetic resonance–guided focused ultrasound treatment: efficiency of acoustic energy delivery through the skull publication-title: J Neurosurg – volume: 12 start-page: 747 year: 1993 end-page: 750 ident: bib74 article-title: Auditory phenomena during transcranial Doppler insonation of the basilar artery publication-title: J Ultrasound Med – volume: 40 start-page: 1512 year: 2014 end-page: 1522 ident: bib33 article-title: Localization of ultrasound-induced in vivo neurostimulation in the mouse model publication-title: Ultrasound Med Biol – volume: 17 start-page: 68 year: 2016 ident: bib55 article-title: Simultaneous acoustic stimulation of human primary and secondary somatosensory cortices using transcranial focused ultrasound publication-title: BMC Neurosci – volume: 13 start-page: 867 year: 2012 end-page: 878 ident: bib83 article-title: The mechanobiology of brain function publication-title: Nat Rev Neurosci – volume: 6 year: 2016 ident: bib80 article-title: Ultrasound modulates ion channel currents publication-title: Sci Rep – volume: 103 start-page: 459 year: 1955 end-page: 484 ident: bib22 article-title: Effects of high intensity ultrasound on the central nervous system of the cat publication-title: J Comp Neurol – volume: 93 start-page: 176 year: 2007 end-page: 191 ident: bib29 article-title: Medical and non-medical protection standards for ultrasound and infrasound publication-title: Prog Biophys Mol Biol – volume: 76 start-page: 751 year: 2010 end-page: 756 ident: bib72 article-title: Inhibitory effects of low-energy pulsed ultrasonic stimulation on cell surface protein antigen C through heat shock proteins GroEL and DnaK in streptococcus mutans publication-title: Appl Environ Microbiol – volume: 13 year: 2016 ident: bib9 article-title: Ultrasonic neuromodulation publication-title: J Neural Eng – volume: 7 start-page: 748 year: 2014 end-page: 756 ident: bib21 article-title: Focused ultrasound-mediated non-invasive brain stimulation: examination of sonication parameters publication-title: Brain Stimul – volume: 26 start-page: 211 year: 2015 end-page: 215 ident: bib43 article-title: Suppression of EEG visual-evoked potentials in rats through neuromodulatory focused ultrasound publication-title: Neuroreport – year: 2018 ident: bib42 article-title: Ultrasonic neuromodulation causes widespread cortical activation via an indirect auditory mechanism publication-title: Neuron – volume: 5 start-page: 8743 year: 2015 ident: bib54 article-title: Image-guided transcranial focused ultrasound stimulates human primary somatosensory cortex publication-title: Sci Rep – volume: 50 start-page: 1539 year: 1971 end-page: 1545 ident: bib71 article-title: Degradation of DNA in high-intensity focused ultrasonic fields at 1 MHz publication-title: J Acoust Soc Am – reference: (accessed February 10, 2018). – volume: 86 start-page: 257 year: 2015 end-page: 264 ident: bib64 article-title: Unilateral magnetic resonance guided focused ultrasound thalamotomy for essential tremor: practices and clinicoradiological outcomes publication-title: J Neurol Neurosurg Psychiatry – volume: 50 start-page: 222 year: 2018 end-page: 231 ident: bib7 article-title: Ultrasonic modulation of neural circuit activity publication-title: Curr Opin Neurobiol – volume: 369 start-page: 640 year: 2013 end-page: 648 ident: bib63 article-title: A pilot study of focused ultrasound thalamotomy for essential tremor publication-title: N Engl J Med – volume: 38 start-page: 3081 year: 2018 end-page: 3091 ident: bib68 article-title: Ultrasound elicits behavioral responses through mechanical effects on neurons and ion channels in a simple nervous system publication-title: J Neurosci – volume: 51 start-page: 1061 year: 2004 end-page: 1065 ident: bib61 article-title: MRI monitoring of heating produced by ultrasound absorption in the skull: in vivo study in pigs publication-title: Magn Reson Med – volume: 97 start-page: 1797 year: 2010 ident: bib44 article-title: Non-invasive suppression of animal-model chronic epilepsy using image-guided focused ultrasound publication-title: Proc Int Soc Mag Reson Med – volume: 3 start-page: O23 year: 2015 ident: bib47 article-title: FUS-mediated functional neuromodulation for neurophysiologic assessment in a large animal model publication-title: J Ther Ultrasound – volume: 64 start-page: 717 year: 2017 end-page: 724 ident: bib62 article-title: A 200-1380-kHz quadrifrequency focused ultrasound transducer for neurostimulation in rodents and primates: transcranial in vitro calibration and numerical study of the influence of skull cavity publication-title: IEEE Trans Ultrason Ferroelectrics Freq Contr – volume: 108 start-page: 3258 year: 2011 end-page: 3263 ident: bib75 article-title: Intramembrane cavitation as a unifying mechanism for ultrasound-induced bioeffects publication-title: Proc Natl Acad Sci Unit States Am – start-page: 1 year: 2017 end-page: 10 ident: bib32 article-title: Noninvasive neuromodulation and thalamic mapping with low-intensity focused ultrasound publication-title: J Neurosurg – year: 2017 ident: bib17 article-title: Numerical evaluation of the skull for human neuromodulation with transcranial focused ultrasound publication-title: J Neural Eng – year: 2017 ident: bib28 article-title: Marketing clearance of diagnostic ultrasound systems and transducers. Draft guidance for industry and food and drug administration staff – volume: 22 start-page: 783 year: 2011 end-page: 787 ident: bib40 article-title: Transcranial focused ultrasound to the thalamus alters anesthesia time in rats publication-title: Neuroreport – volume: 100 start-page: 85 year: 1954 end-page: 96 ident: bib2 article-title: Intense ultrasound--a new tool for neurological research publication-title: Br J Psychiatry – volume: 4 year: 2014 ident: bib76 article-title: Intramembrane cavitation as a predictive bio-piezoelectric mechanism for ultrasonic brain stimulation publication-title: Phys Rev X – year: 2011 ident: bib45 article-title: Focused ultrasound modulates the level of cortical neurotransmitters: potential as a new functional brain mapping technique publication-title: Int J Imag Syst Technol – volume: 3 year: 2008 ident: bib10 article-title: Remote excitation of neuronal circuits using low-intensity, low-frequency ultrasound publication-title: PLoS One – reference: Wagner T, Fregni F. Non-invasive Neurostimulation in Parkinson’s Disease. Clin ID NCT01615718 n.d. – volume: 11 year: 2017 ident: bib31 article-title: Toward a cognitive neural prosthesis using focused ultrasound publication-title: Front Neurosci – volume: 6 start-page: 1453 year: 2011 end-page: 1470 ident: bib34 article-title: Ultrasonic neuromodulation by brain stimulation with transcranial ultrasound publication-title: Nat Protoc – year: 2017 ident: bib65 article-title: Accurate simulation of transcranial ultrasound propagation for ultrasonic neuromodulation and stimulation publication-title: J Acoust Soc Am – volume: 17 start-page: 1739 year: 2016 end-page: 1746 ident: bib81 article-title: Piezo 1 channels are inherently mechanosensitive publication-title: Cell Rep – volume: 28 start-page: 139 year: 2009 end-page: 150 ident: bib77 article-title: Ultrasound biosafety considerations for the practicing sonographer and sonologist publication-title: J Ultrasound Med – volume: 52 start-page: 100 year: 2004 end-page: 107 ident: bib6 article-title: 500-Element ultrasound phased array system for noninvasive focal surgery of the brain: a preliminary rabbit study with ex vivo human skulls publication-title: Magn Reson Med – volume: 4 year: 2016 ident: bib78 article-title: Acoustic neuromodulation from a basic science prospective publication-title: J Ther Ultrasound – volume: 5 start-page: 1808 year: 2016 end-page: 1820 ident: bib91 article-title: P(VDF-TrFE)/BaTiO3Nanoparticle composite films mediate piezoelectric stimulation and promote differentiation of SH-SY5Y neuroblastoma cells publication-title: Adv Health Care Mater – volume: 357 start-page: 1039 year: 2002 end-page: 1051 ident: bib60 article-title: Exploring the cortical evidence of a sensory-discrimination process publication-title: Philos Trans R Soc B Biol Sci – volume: 56 start-page: 1267 year: 2011 end-page: 1275 ident: bib35 article-title: Focused ultrasound modulates region-specific brain activity publication-title: Neuroimage – year: 2018 ident: bib41 article-title: Ultrasound produces extensive brain activation via a cochlear pathway publication-title: Neuron – volume: 6 start-page: 229 year: 2004 end-page: 248 ident: bib70 article-title: Mechanical bioeffects of ultrasound publication-title: Annu Rev Biomed Eng – volume: 9 start-page: 7678 year: 2015 end-page: 7689 ident: bib88 article-title: Piezoelectric nanoparticle-assisted wireless neuronal stimulation publication-title: ACS Nano – volume: 74 start-page: 113 year: 1997 end-page: 122 ident: bib67 article-title: Techniques and mechanisms of action of transcranial stimulation of the human motor cortex publication-title: J Neurosci Meth – start-page: 355 year: 2014 end-page: 363 ident: bib59 article-title: Human brain stimulation with transcranial ultrasound publication-title: Bioelectromagnetics Subtle Energy Med – volume: 39 start-page: 312 year: 2013 end-page: 331 ident: bib12 article-title: Effective parameters for ultrasound-induced in vivo neurostimulation publication-title: Ultrasound Med Biol – year: 2016 ident: bib18 article-title: Transcranial focused ultrasound for BOLD fMRI signal modulation in humans publication-title: Proc Annu Conf Int IEEE Eng Med Biol Soc – volume: 12 year: 2011 ident: bib39 article-title: Focused ultrasound-mediated suppression of chemically-induced acute epileptic EEG activity publication-title: BMC Neurosci – year: 2018 ident: bib50 article-title: Neuromodulation of sensory networks in monkey brain by focused ultrasound with MRI guidance and detection publication-title: Sci Rep – volume: 3 start-page: O27 year: 2015 ident: bib66 article-title: Safety and feasibility of focused ultrasound neurmodulation in temporal lobe epilepsy publication-title: J Ther Ultrasound – volume: 6 start-page: 374 year: 1962 end-page: 386 ident: bib73 article-title: Reversible effects of ultrasound on spinal reflexes publication-title: Arch Neurol – volume: 47 start-page: 1219 year: 2002 end-page: 1236 ident: bib14 article-title: A non-invasive method for focusing ultrasound through the human skull publication-title: Phys Med Biol – volume: 9 start-page: 940 year: 2016 end-page: 941 ident: bib57 article-title: Non-invasive ultrasonic thalamic stimulation in disorders of consciousness after severe brain injury: a first-in-man report publication-title: Brain Stimul – start-page: 101 year: 2017 end-page: 110 ident: bib8 article-title: Ultrasound neuromodulation publication-title: Innov. Neuromodulation – volume: 6 year: 2015 ident: bib87 article-title: Sonogenetics is a non-invasive approach to activating neurons in Caenorhabditis elegans publication-title: Nat Commun – volume: 66 start-page: 681 year: 2010 end-page: 694 ident: bib24 article-title: Transcranial pulsed ultrasound stimulates intact brain circuits publication-title: Neuron – volume: 34 start-page: 1543 year: 1989 end-page: 1552 ident: bib69 article-title: The significance of membrane changes in the safe and effective use of therapeutic and diagnostic ultrasound publication-title: Phys Med Biol – volume: 3 year: 2016 ident: bib26 article-title: Cell-type-selective effects of intramembrane cavitation as a unifying theoretical framework for ultrasonic neuromodulation publication-title: ENeuro – volume: 4 start-page: 6267 year: 2010 end-page: 6277 ident: bib90 article-title: Enhancement of neurite outgrowth in neuronal-like cells following boron nitride nanotube-mediated stimulation publication-title: ACS Nano – year: 2013 ident: bib13 article-title: Influence of the pressure field distribution in transcranial ultrasonic neurostimulation publication-title: Med Phys – year: 2016 ident: bib27 article-title: Computational exploration of wave propagation and heating from transcranial focused ultrasound for neuromodulation publication-title: J Neural Eng – volume: 10 year: 2016 ident: bib30 article-title: Noninvasive focused ultrasound stimulation can modulate phase-amplitude coupling between neuronal oscillations in the rat hippocampus publication-title: Front Neurosci – volume: 17 start-page: 322 year: 2014 end-page: 329 ident: bib52 article-title: Transcranial focused ultrasound modulates the activity of primary somatosensory cortex in humans publication-title: Nat Neurosci – volume: 21 start-page: 253 year: 2005 end-page: 257 ident: bib11 article-title: A review of current ultrasound exposure limits publication-title: J Occup Health Saf Aust N Z – volume: 24 start-page: 1467 year: 1998 end-page: 1474 ident: bib25 article-title: In vivo heating of the Guinea-pig fetal brain by pulsed ultrasound and estimates of thermal index publication-title: Ultrasound Med Biol – volume: 10 start-page: 345 year: 1964 end-page: 356 ident: bib51 article-title: Effects of ultrasonic radiation in experimental focal epilepsy in the cat publication-title: Exp Neurol – reference: Stern J. Low-intensity Focused Ultrasound Pulsation (LIFUP) for Treatment of Temporal Lobe Epilepsy. Clin ID NCT02151175 n.d. – volume: 43 start-page: 560 year: 2005 end-page: 565 ident: bib20 article-title: In vitro effects of ultrasound with different energies on the conduction properties of neural tissue publication-title: Ultrasonics – volume: 37 start-page: 293 year: 2002 end-page: 299 ident: bib84 article-title: Nonthermal effects of therapeutic ultrasound: the frequency resonance hypothesis publication-title: J Athl Train – volume: 49 start-page: 26 year: 2015 end-page: 32 ident: bib38 article-title: Ultrasound stimulation inhibits recurrent seizures and improves behavioral outcome in an experimental model of mesial temporal lobe epilepsy publication-title: Epilepsy Behav – year: 2016 ident: bib48 article-title: Image-guided focused ultrasound-mediated regional brain stimulation in sheep publication-title: Ultrasound Med Biol – volume: 23 start-page: 2430 year: 2013 end-page: 2433 ident: bib37 article-title: Low-intensity focused ultrasound modulates monkey visuomotor behavior publication-title: Curr Biol – volume: 8 start-page: 10007 year: 2018 ident: bib58 article-title: Transcranial focused ultrasound neuromodulation of the human primary motor cortex publication-title: Sci Rep – volume: 4 start-page: 420 year: 2007 end-page: 427 ident: bib95 article-title: Ultrasound-enhanced thrombolysis in acute ischemic stroke: potential, failures, and safety publication-title: Neurother – volume: 50 start-page: 222 year: 2018 ident: 10.1016/j.brs.2018.08.013_bib7 article-title: Ultrasonic modulation of neural circuit activity publication-title: Curr Opin Neurobiol doi: 10.1016/j.conb.2018.04.011 – volume: 17 start-page: 1739 year: 2016 ident: 10.1016/j.brs.2018.08.013_bib81 article-title: Piezo 1 channels are inherently mechanosensitive publication-title: Cell Rep doi: 10.1016/j.celrep.2016.10.033 – volume: 7 start-page: 748 year: 2014 ident: 10.1016/j.brs.2018.08.013_bib21 article-title: Focused ultrasound-mediated non-invasive brain stimulation: examination of sonication parameters publication-title: Brain Stimul doi: 10.1016/j.brs.2014.06.011 – volume: 24 start-page: 1467 year: 1998 ident: 10.1016/j.brs.2018.08.013_bib25 article-title: In vivo heating of the Guinea-pig fetal brain by pulsed ultrasound and estimates of thermal index publication-title: Ultrasound Med Biol doi: 10.1016/S0301-5629(98)00111-2 – volume: 28 start-page: 139 year: 2009 ident: 10.1016/j.brs.2018.08.013_bib77 article-title: Ultrasound biosafety considerations for the practicing sonographer and sonologist publication-title: J Ultrasound Med doi: 10.7863/jum.2009.28.2.139 – volume: 4 start-page: 6267 year: 2010 ident: 10.1016/j.brs.2018.08.013_bib90 article-title: Enhancement of neurite outgrowth in neuronal-like cells following boron nitride nanotube-mediated stimulation publication-title: ACS Nano doi: 10.1021/nn101985a – volume: 6 start-page: 229 year: 2004 ident: 10.1016/j.brs.2018.08.013_bib70 article-title: Mechanical bioeffects of ultrasound publication-title: Annu Rev Biomed Eng doi: 10.1146/annurev.bioeng.6.040803.140126 – year: 2018 ident: 10.1016/j.brs.2018.08.013_bib4 article-title: Noninvasive ultrasonic neuromodulation in freely moving mice publication-title: IEEE Trans Biomed Eng – start-page: 1 year: 2017 ident: 10.1016/j.brs.2018.08.013_bib32 article-title: Noninvasive neuromodulation and thalamic mapping with low-intensity focused ultrasound publication-title: J Neurosurg – volume: 5 start-page: 1808 year: 2016 ident: 10.1016/j.brs.2018.08.013_bib91 article-title: P(VDF-TrFE)/BaTiO3Nanoparticle composite films mediate piezoelectric stimulation and promote differentiation of SH-SY5Y neuroblastoma cells publication-title: Adv Health Care Mater doi: 10.1002/adhm.201600245 – volume: 4 year: 2016 ident: 10.1016/j.brs.2018.08.013_bib78 article-title: Acoustic neuromodulation from a basic science prospective publication-title: J Ther Ultrasound – volume: 51 start-page: 1061 year: 2004 ident: 10.1016/j.brs.2018.08.013_bib61 article-title: MRI monitoring of heating produced by ultrasound absorption in the skull: in vivo study in pigs publication-title: Magn Reson Med doi: 10.1002/mrm.20043 – volume: 4 year: 2014 ident: 10.1016/j.brs.2018.08.013_bib76 article-title: Intramembrane cavitation as a predictive bio-piezoelectric mechanism for ultrasonic brain stimulation publication-title: Phys Rev X – volume: 56 start-page: 1267 year: 2011 ident: 10.1016/j.brs.2018.08.013_bib35 article-title: Focused ultrasound modulates region-specific brain activity publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.02.058 – year: 2016 ident: 10.1016/j.brs.2018.08.013_bib27 article-title: Computational exploration of wave propagation and heating from transcranial focused ultrasound for neuromodulation publication-title: J Neural Eng doi: 10.1088/1741-2560/13/5/056002 – start-page: 1 year: 2017 ident: 10.1016/j.brs.2018.08.013_bib86 article-title: Local field potentials responses of ultrasonic neuromodulation in freely moving mouse publication-title: IEEE Int – volume: 64 start-page: 717 year: 2017 ident: 10.1016/j.brs.2018.08.013_bib62 article-title: A 200-1380-kHz quadrifrequency focused ultrasound transducer for neurostimulation in rodents and primates: transcranial in vitro calibration and numerical study of the influence of skull cavity publication-title: IEEE Trans Ultrason Ferroelectrics Freq Contr doi: 10.1109/TUFFC.2017.2651648 – start-page: 101 year: 2017 ident: 10.1016/j.brs.2018.08.013_bib8 article-title: Ultrasound neuromodulation – volume: 104 start-page: 1705 year: 1998 ident: 10.1016/j.brs.2018.08.013_bib15 article-title: Focusing of therapeutic ultrasound through a human skull: a numerical study publication-title: J Acoust Soc Am doi: 10.1121/1.424383 – volume: 57 start-page: 203 year: 2010 ident: 10.1016/j.brs.2018.08.013_bib46 article-title: Standing-wave suppression for transcranial ultrasound by random modulation publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2009.2028653 – start-page: 355 year: 2014 ident: 10.1016/j.brs.2018.08.013_bib59 article-title: Human brain stimulation with transcranial ultrasound publication-title: Bioelectromagnetics Subtle Energy Med – volume: 9 start-page: 7678 year: 2015 ident: 10.1016/j.brs.2018.08.013_bib88 article-title: Piezoelectric nanoparticle-assisted wireless neuronal stimulation publication-title: ACS Nano doi: 10.1021/acsnano.5b03162 – volume: 23 start-page: 2430 year: 2013 ident: 10.1016/j.brs.2018.08.013_bib37 article-title: Low-intensity focused ultrasound modulates monkey visuomotor behavior publication-title: Curr Biol doi: 10.1016/j.cub.2013.10.029 – volume: 6 start-page: 409 year: 2013 ident: 10.1016/j.brs.2018.08.013_bib23 article-title: Transcranial ultrasound (TUS) effects on mental states: a pilot study publication-title: Brain Stimul doi: 10.1016/j.brs.2012.05.002 – volume: 49 start-page: 26 year: 2015 ident: 10.1016/j.brs.2018.08.013_bib38 article-title: Ultrasound stimulation inhibits recurrent seizures and improves behavioral outcome in an experimental model of mesial temporal lobe epilepsy publication-title: Epilepsy Behav doi: 10.1016/j.yebeh.2015.04.008 – volume: 5 start-page: 8743 year: 2015 ident: 10.1016/j.brs.2018.08.013_bib54 article-title: Image-guided transcranial focused ultrasound stimulates human primary somatosensory cortex publication-title: Sci Rep doi: 10.1038/srep08743 – volume: 39 start-page: 312 year: 2013 ident: 10.1016/j.brs.2018.08.013_bib12 article-title: Effective parameters for ultrasound-induced in vivo neurostimulation publication-title: Ultrasound Med Biol doi: 10.1016/j.ultrasmedbio.2012.09.009 – volume: 38 start-page: 3081 year: 2018 ident: 10.1016/j.brs.2018.08.013_bib68 article-title: Ultrasound elicits behavioral responses through mechanical effects on neurons and ion channels in a simple nervous system publication-title: J Neurosci doi: 10.1523/JNEUROSCI.1458-17.2018 – volume: 3 start-page: O23 year: 2015 ident: 10.1016/j.brs.2018.08.013_bib47 article-title: FUS-mediated functional neuromodulation for neurophysiologic assessment in a large animal model publication-title: J Ther Ultrasound doi: 10.1186/2050-5736-3-S1-O23 – volume: 111 start-page: 3614 year: 2014 ident: 10.1016/j.brs.2018.08.013_bib79 article-title: Mechanosensitivity is mediated directly by the lipid membrane in TRAAK and TREK1 K + channels publication-title: Proc Natl Acad Sci Unit States Am doi: 10.1073/pnas.1320768111 – volume: 12 start-page: 747 year: 1993 ident: 10.1016/j.brs.2018.08.013_bib74 article-title: Auditory phenomena during transcranial Doppler insonation of the basilar artery publication-title: J Ultrasound Med doi: 10.7863/jum.1993.12.12.747 – volume: 37 start-page: 293 year: 2002 ident: 10.1016/j.brs.2018.08.013_bib84 article-title: Nonthermal effects of therapeutic ultrasound: the frequency resonance hypothesis publication-title: J Athl Train – volume: 3 start-page: O27 year: 2015 ident: 10.1016/j.brs.2018.08.013_bib66 article-title: Safety and feasibility of focused ultrasound neurmodulation in temporal lobe epilepsy publication-title: J Ther Ultrasound doi: 10.1186/2050-5736-3-S1-O27 – volume: 33 start-page: 95 year: 2007 ident: 10.1016/j.brs.2018.08.013_bib49 article-title: Noninvasive, transcranial and localized opening of the blood-brain barrier using focused ultrasound in mice publication-title: Ultrasound Med Biol doi: 10.1016/j.ultrasmedbio.2006.07.018 – year: 2017 ident: 10.1016/j.brs.2018.08.013_bib5 article-title: A portable ultrasound system for non-invasive ultrasonic neuro-stimulation publication-title: IEEE Trans Neural Syst Rehabil Eng doi: 10.1109/TNSRE.2017.2765001 – volume: 100 start-page: 85 year: 1954 ident: 10.1016/j.brs.2018.08.013_bib2 article-title: Intense ultrasound--a new tool for neurological research publication-title: Br J Psychiatry – volume: 11 year: 2017 ident: 10.1016/j.brs.2018.08.013_bib31 article-title: Toward a cognitive neural prosthesis using focused ultrasound publication-title: Front Neurosci doi: 10.3389/fnins.2017.00607 – volume: 43 start-page: 560 year: 2005 ident: 10.1016/j.brs.2018.08.013_bib20 article-title: In vitro effects of ultrasound with different energies on the conduction properties of neural tissue publication-title: Ultrasonics doi: 10.1016/j.ultras.2004.12.003 – year: 2018 ident: 10.1016/j.brs.2018.08.013_bib50 article-title: Neuromodulation of sensory networks in monkey brain by focused ultrasound with MRI guidance and detection publication-title: Sci Rep – volume: 10 year: 2016 ident: 10.1016/j.brs.2018.08.013_bib30 article-title: Noninvasive focused ultrasound stimulation can modulate phase-amplitude coupling between neuronal oscillations in the rat hippocampus publication-title: Front Neurosci doi: 10.3389/fnins.2016.00348 – volume: 81 start-page: 611 year: 2017 ident: 10.1016/j.brs.2018.08.013_bib93 article-title: Focused ultrasound as a novel strategy for Alzheimer disease therapeutics publication-title: Ann Neurol doi: 10.1002/ana.24933 – volume: 17 start-page: 322 year: 2014 ident: 10.1016/j.brs.2018.08.013_bib52 article-title: Transcranial focused ultrasound modulates the activity of primary somatosensory cortex in humans publication-title: Nat Neurosci doi: 10.1038/nn.3620 – volume: 6 year: 2016 ident: 10.1016/j.brs.2018.08.013_bib80 article-title: Ultrasound modulates ion channel currents publication-title: Sci Rep doi: 10.1038/srep24170 – volume: 6 start-page: 34026 year: 2016 ident: 10.1016/j.brs.2018.08.013_bib56 article-title: Transcranial focused ultrasound stimulation of human primary visual cortex publication-title: Sci Rep doi: 10.1038/srep34026 – ident: 10.1016/j.brs.2018.08.013_bib92 – volume: 4 start-page: 420 year: 2007 ident: 10.1016/j.brs.2018.08.013_bib95 article-title: Ultrasound-enhanced thrombolysis in acute ischemic stroke: potential, failures, and safety publication-title: Neurother doi: 10.1016/j.nurt.2007.05.012 – volume: 10 start-page: 345 year: 1964 ident: 10.1016/j.brs.2018.08.013_bib51 article-title: Effects of ultrasonic radiation in experimental focal epilepsy in the cat publication-title: Exp Neurol doi: 10.1016/0014-4886(64)90005-6 – year: 2011 ident: 10.1016/j.brs.2018.08.013_bib45 article-title: Focused ultrasound modulates the level of cortical neurotransmitters: potential as a new functional brain mapping technique publication-title: Int J Imag Syst Technol doi: 10.1002/ima.20284 – volume: 6 start-page: 1453 year: 2011 ident: 10.1016/j.brs.2018.08.013_bib34 article-title: Ultrasonic neuromodulation by brain stimulation with transcranial ultrasound publication-title: Nat Protoc doi: 10.1038/nprot.2011.371 – volume: 10 start-page: 349 year: 1998 ident: 10.1016/j.brs.2018.08.013_bib85 article-title: Acoustic streaming publication-title: Theor Comput Fluid Dynam doi: 10.1007/s001620050068 – volume: 124 start-page: 1 year: 2015 ident: 10.1016/j.brs.2018.08.013_bib16 article-title: Factors associated with successful magnetic resonance–guided focused ultrasound treatment: efficiency of acoustic energy delivery through the skull publication-title: J Neurosurg – volume: 66 start-page: 681 year: 2010 ident: 10.1016/j.brs.2018.08.013_bib24 article-title: Transcranial pulsed ultrasound stimulates intact brain circuits publication-title: Neuron doi: 10.1016/j.neuron.2010.05.008 – volume: 86 start-page: 257 year: 2015 ident: 10.1016/j.brs.2018.08.013_bib64 article-title: Unilateral magnetic resonance guided focused ultrasound thalamotomy for essential tremor: practices and clinicoradiological outcomes publication-title: J Neurol Neurosurg Psychiatry doi: 10.1136/jnnp-2014-307642 – year: 2018 ident: 10.1016/j.brs.2018.08.013_bib41 article-title: Ultrasound produces extensive brain activation via a cochlear pathway publication-title: Neuron doi: 10.1016/j.neuron.2018.07.049 – volume: 52 start-page: 100 year: 2004 ident: 10.1016/j.brs.2018.08.013_bib6 article-title: 500-Element ultrasound phased array system for noninvasive focal surgery of the brain: a preliminary rabbit study with ex vivo human skulls publication-title: Magn Reson Med doi: 10.1002/mrm.20118 – year: 2013 ident: 10.1016/j.brs.2018.08.013_bib13 article-title: Influence of the pressure field distribution in transcranial ultrasonic neurostimulation publication-title: Med Phys doi: 10.1118/1.4812423 – year: 2016 ident: 10.1016/j.brs.2018.08.013_bib18 article-title: Transcranial focused ultrasound for BOLD fMRI signal modulation in humans publication-title: Proc Annu Conf Int IEEE Eng Med Biol Soc – volume: 40 start-page: 1512 year: 2014 ident: 10.1016/j.brs.2018.08.013_bib33 article-title: Localization of ultrasound-induced in vivo neurostimulation in the mouse model publication-title: Ultrasound Med Biol doi: 10.1016/j.ultrasmedbio.2014.01.020 – volume: 47 start-page: 1219 year: 2002 ident: 10.1016/j.brs.2018.08.013_bib14 article-title: A non-invasive method for focusing ultrasound through the human skull publication-title: Phys Med Biol doi: 10.1088/0031-9155/47/8/301 – volume: 8 start-page: 10007 year: 2018 ident: 10.1016/j.brs.2018.08.013_bib58 article-title: Transcranial focused ultrasound neuromodulation of the human primary motor cortex publication-title: Sci Rep doi: 10.1038/s41598-018-28320-1 – volume: 103 start-page: 459 year: 1955 ident: 10.1016/j.brs.2018.08.013_bib22 article-title: Effects of high intensity ultrasound on the central nervous system of the cat publication-title: J Comp Neurol doi: 10.1002/cne.901030304 – volume: 10 start-page: 1024 year: 2017 ident: 10.1016/j.brs.2018.08.013_bib36 article-title: Transcranial ultrasonic stimulation modulates single-neuron discharge in macaques performing an antisaccade task publication-title: Brain Stimul doi: 10.1016/j.brs.2017.07.007 – volume: 17 start-page: 68 year: 2016 ident: 10.1016/j.brs.2018.08.013_bib55 article-title: Simultaneous acoustic stimulation of human primary and secondary somatosensory cortices using transcranial focused ultrasound publication-title: BMC Neurosci doi: 10.1186/s12868-016-0303-6 – volume: 91 start-page: 284 year: 1929 ident: 10.1016/j.brs.2018.08.013_bib1 article-title: The effect of high frequency sound waces on heart muscle and other irritable tissues publication-title: Am J Physiol Leg Content doi: 10.1152/ajplegacy.1929.91.1.284 – volume: 22 start-page: 783 year: 2011 ident: 10.1016/j.brs.2018.08.013_bib40 article-title: Transcranial focused ultrasound to the thalamus alters anesthesia time in rats publication-title: Neuroreport doi: 10.1097/WNR.0b013e32834b2957 – volume: 97 start-page: 1797 year: 2010 ident: 10.1016/j.brs.2018.08.013_bib44 article-title: Non-invasive suppression of animal-model chronic epilepsy using image-guided focused ultrasound publication-title: Proc Int Soc Mag Reson Med – start-page: 1 year: 2018 ident: 10.1016/j.brs.2018.08.013_bib19 article-title: Neuromodulation with single-element transcranial focused ultrasound in human thalamus publication-title: Hum Brain Mapp – year: 2018 ident: 10.1016/j.brs.2018.08.013_bib42 article-title: Ultrasonic neuromodulation causes widespread cortical activation via an indirect auditory mechanism publication-title: Neuron doi: 10.1016/j.neuron.2018.05.009 – volume: 127 start-page: 83 year: 1958 ident: 10.1016/j.brs.2018.08.013_bib3 article-title: Production of reversible changes in the central nervous system by ultrasound publication-title: Science (80- ) doi: 10.1126/science.127.3289.83 – volume: 3 year: 2016 ident: 10.1016/j.brs.2018.08.013_bib26 article-title: Cell-type-selective effects of intramembrane cavitation as a unifying theoretical framework for ultrasonic neuromodulation publication-title: ENeuro doi: 10.1523/ENEURO.0136-15.2016 – year: 2016 ident: 10.1016/j.brs.2018.08.013_bib48 article-title: Image-guided focused ultrasound-mediated regional brain stimulation in sheep publication-title: Ultrasound Med Biol doi: 10.1016/j.ultrasmedbio.2015.10.001 – volume: 7 start-page: 900 year: 2014 ident: 10.1016/j.brs.2018.08.013_bib53 article-title: Transcranial focused ultrasound modulates intrinsic and evoked EEG dynamics publication-title: Brain Stimul doi: 10.1016/j.brs.2014.08.008 – volume: 34 start-page: 1543 year: 1989 ident: 10.1016/j.brs.2018.08.013_bib69 article-title: The significance of membrane changes in the safe and effective use of therapeutic and diagnostic ultrasound publication-title: Phys Med Biol doi: 10.1088/0031-9155/34/11/003 – year: 2017 ident: 10.1016/j.brs.2018.08.013_bib65 article-title: Accurate simulation of transcranial ultrasound propagation for ultrasonic neuromodulation and stimulation publication-title: J Acoust Soc Am doi: 10.1121/1.4976339 – year: 2017 ident: 10.1016/j.brs.2018.08.013_bib17 article-title: Numerical evaluation of the skull for human neuromodulation with transcranial focused ultrasound publication-title: J Neural Eng doi: 10.1088/1741-2552/aa843e – volume: 76 start-page: 751 year: 2010 ident: 10.1016/j.brs.2018.08.013_bib72 article-title: Inhibitory effects of low-energy pulsed ultrasonic stimulation on cell surface protein antigen C through heat shock proteins GroEL and DnaK in streptococcus mutans publication-title: Appl Environ Microbiol doi: 10.1128/AEM.02230-09 – volume: 3 year: 2008 ident: 10.1016/j.brs.2018.08.013_bib10 article-title: Remote excitation of neuronal circuits using low-intensity, low-frequency ultrasound publication-title: PLoS One doi: 10.1371/journal.pone.0003511 – volume: 369 start-page: 640 year: 2013 ident: 10.1016/j.brs.2018.08.013_bib63 article-title: A pilot study of focused ultrasound thalamotomy for essential tremor publication-title: N Engl J Med doi: 10.1056/NEJMoa1300962 – year: 2017 ident: 10.1016/j.brs.2018.08.013_bib28 – volume: 6 start-page: 374 year: 1962 ident: 10.1016/j.brs.2018.08.013_bib73 article-title: Reversible effects of ultrasound on spinal reflexes publication-title: Arch Neurol doi: 10.1001/archneur.1962.00450230036005 – volume: 74 start-page: 113 year: 1997 ident: 10.1016/j.brs.2018.08.013_bib67 article-title: Techniques and mechanisms of action of transcranial stimulation of the human motor cortex publication-title: J Neurosci Meth doi: 10.1016/S0165-0270(97)02242-5 – volume: 17 start-page: 25 year: 2011 ident: 10.1016/j.brs.2018.08.013_bib82 article-title: Noninvasive neuromodulation with ultrasound? A continuum mechanics hypothesis publication-title: Neuroscience doi: 10.1177/1073858409348066 – volume: 21 start-page: 253 year: 2005 ident: 10.1016/j.brs.2018.08.013_bib11 article-title: A review of current ultrasound exposure limits publication-title: J Occup Health Saf Aust N Z – volume: 108 start-page: 3258 year: 2011 ident: 10.1016/j.brs.2018.08.013_bib75 article-title: Intramembrane cavitation as a unifying mechanism for ultrasound-induced bioeffects publication-title: Proc Natl Acad Sci Unit States Am doi: 10.1073/pnas.1015771108 – volume: 10 year: 2016 ident: 10.1016/j.brs.2018.08.013_bib89 article-title: Nanoparticles: a challenging vehicle for neural stimulation publication-title: Front Neurosci doi: 10.3389/fnins.2016.00105 – volume: 13 year: 2016 ident: 10.1016/j.brs.2018.08.013_bib9 article-title: Ultrasonic neuromodulation publication-title: J Neural Eng doi: 10.1088/1741-2560/13/3/031003 – volume: 12 year: 2011 ident: 10.1016/j.brs.2018.08.013_bib39 article-title: Focused ultrasound-mediated suppression of chemically-induced acute epileptic EEG activity publication-title: BMC Neurosci doi: 10.1186/1471-2202-12-23 – volume: 13 start-page: 867 year: 2012 ident: 10.1016/j.brs.2018.08.013_bib83 article-title: The mechanobiology of brain function publication-title: Nat Rev Neurosci doi: 10.1038/nrn3383 – volume: 50 start-page: 1539 year: 1971 ident: 10.1016/j.brs.2018.08.013_bib71 article-title: Degradation of DNA in high-intensity focused ultrasonic fields at 1 MHz publication-title: J Acoust Soc Am doi: 10.1121/1.1912808 – volume: 9 start-page: 940 year: 2016 ident: 10.1016/j.brs.2018.08.013_bib57 article-title: Non-invasive ultrasonic thalamic stimulation in disorders of consciousness after severe brain injury: a first-in-man report publication-title: Brain Stimul doi: 10.1016/j.brs.2016.07.008 – volume: 6 year: 2015 ident: 10.1016/j.brs.2018.08.013_bib87 article-title: Sonogenetics is a non-invasive approach to activating neurons in Caenorhabditis elegans publication-title: Nat Commun doi: 10.1038/ncomms9264 – volume: 357 start-page: 1039 year: 2002 ident: 10.1016/j.brs.2018.08.013_bib60 article-title: Exploring the cortical evidence of a sensory-discrimination process publication-title: Philos Trans R Soc B Biol Sci doi: 10.1098/rstb.2002.1100 – volume: 93 start-page: 176 year: 2007 ident: 10.1016/j.brs.2018.08.013_bib29 article-title: Medical and non-medical protection standards for ultrasound and infrasound publication-title: Prog Biophys Mol Biol doi: 10.1016/j.pbiomolbio.2006.07.008 – volume: 26 start-page: 211 year: 2015 ident: 10.1016/j.brs.2018.08.013_bib43 article-title: Suppression of EEG visual-evoked potentials in rats through neuromodulatory focused ultrasound publication-title: Neuroreport doi: 10.1097/WNR.0000000000000330 – ident: 10.1016/j.brs.2018.08.013_bib94 |
SSID | ssj0059987 |
Score | 2.5755415 |
SecondaryResourceType | review_article |
Snippet | There is an emerging need for noninvasive neuromodulation techniques to improve patient outcomes while minimizing adverse events and morbidity. Low-intensity... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1209 |
SubjectTerms | Animals Brain - physiology Brain Mapping - methods Brain Mapping - trends Brain stimulation Evoked Potentials - physiology Focused ultrasound Humans Neuromodulation Sonication - methods Transcranial ultrasound Ultrasonic Therapy - methods Ultrasonic Therapy - trends |
Title | Low-intensity ultrasound neuromodulation: An overview of mechanisms and emerging human applications |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1935861X18302961 https://dx.doi.org/10.1016/j.brs.2018.08.013 https://www.ncbi.nlm.nih.gov/pubmed/30166265 https://www.proquest.com/docview/2098765689 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8RADB5EL17Et-uLEcSDULfTTqett0WU9XlRYW9lXoWV3VZ2u4gXf7vJtF30oILHlqQd0jSTTJIvhByLmJkoZ8bTUimPSxF5iTHMs0qlXPo2DiweDdw_iP4zvxlEgwVy0fbCYFllY_trm-6sdXOn20iz-zocdh8ZpvAEGzCEsEpdCMR5jFp-9jEv84ggnIjrzDKsAqjbzKar8VITROxmiUPxZOFPe9NPvqfbg65WyUrjPNJevb41smCLdbLRKyBwHr_TE-rKOd05-QbRd-WbN6wL1Kt3OhtVEznFGUrUQViOS9MM7jqnvYJiIScmCWiZ07HFbuDhdDylEsixgxgnGVE3zo9-zXhvkuery6eLvtdMVPA0hMGVF-g8ggBGJlakVvM4BX_RSOObxCah0JJpBT-kNEKGaZ6qINSpb02omeQs940Kt8hiURZ2h1Ah4Yki4gYRvRBjJvZjGficac0TJm2H-K0sM93AjePUi1HW1pW9ZCD-DMWf4SRMFnbI6Zzltcba-I04aD9Q1jaRgtnLYCf4jYnPmb5p2V9sR60GZPD3YUpFFracIRGoF7jESdoh27VqzJcOplNAuBjt_u-le2QZr-q-x32yWE1m9gAcoEodOg0_JEu969v-wyd8cwZs |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9tADLdQeWAvExtjK2PbIU17QIqaSy6XZG8VGipQ-jKQ-na6r0hFNEFtqon_HjsfFXuASXtNzsnJ5_PZZ_tngO8y5S4puAusNiYQWiZB5hwPvDG50KFPI09XA9czObkVl_NkvgNnfS0MpVV2ur_V6Y227p6MOm6OHhaL0W9OITzJ55wgrHJygXYJnSoZwO744moy6xVygh5F2gaXcSJI0Ac3mzQvsyLQbp41QJ48ful4esn8bI6h831429mPbNxO8R3s-PI9HIxL9J2Xj-wHazI6m6vyA7DT6k-waHPU60e2ua9Xek1tlFiDYrmsXNe76ycbl4xyOSlOwKqCLT0VBC_WyzXTOJyKiKmZEWs6-rHnQe8PcHv-6-ZsEnRNFQKLnnAdRLZI0IfRmZe5tyLN0WR02oUu81ksrebW4J7UTuo4L3ITxTYPvYst14IXoTPxIQzKqvSfgEmNX5SJcATqRTAzaZjqKBTcWpFx7YcQ9rxUtkMcp8YX96pPLbtTyH5F7FfUDJPHQzjdkjy0cBuvDY76BVJ9HSlqPoWHwWtEYkv0l6D9i-yklwCFG5CiKrr01YYGoXihVZzlQ_jYisZ26qg9JXqMydH__fQb7E1urqdqejG7-gxv6E1bBnkMg3q18V_QHqrN107enwBx2gkd |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low-intensity+ultrasound+neuromodulation%3A+An+overview+of+mechanisms+and+emerging+human+applications&rft.jtitle=Brain+stimulation&rft.au=Fomenko%2C+Anton&rft.au=Neudorfer%2C+Clemens&rft.au=Dallapiazza%2C+Robert+F.&rft.au=Kalia%2C+Suneil+K.&rft.date=2018-11-01&rft.pub=Elsevier+Inc&rft.issn=1935-861X&rft.eissn=1876-4754&rft.volume=11&rft.issue=6&rft.spage=1209&rft.epage=1217&rft_id=info:doi/10.1016%2Fj.brs.2018.08.013&rft.externalDocID=S1935861X18302961 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1935-861X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1935-861X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1935-861X&client=summon |