Combining Inter-Subject Modeling with a Subject-Based Data Transformation to Improve Affect Recognition from EEG Signals

Existing correlations between features extracted from Electroencephalography (EEG) signals and emotional aspects have motivated the development of a diversity of EEG-based affect detection methods. Both intra-subject and inter-subject approaches have been used in this context. Intra-subject approach...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 19; no. 13; p. 2999
Main Authors Arevalillo-Herráez, Miguel, Cobos, Maximo, Roger, Sandra, García-Pineda, Miguel
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 08.07.2019
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Existing correlations between features extracted from Electroencephalography (EEG) signals and emotional aspects have motivated the development of a diversity of EEG-based affect detection methods. Both intra-subject and inter-subject approaches have been used in this context. Intra-subject approaches generally suffer from the small sample problem, and require the collection of exhaustive data for each new user before the detection system is usable. On the contrary, inter-subject models do not account for the personality and physiological influence of how the individual is feeling and expressing emotions. In this paper, we analyze both modeling approaches, using three public repositories. The results show that the subject’s influence on the EEG signals is substantially higher than that of the emotion and hence it is necessary to account for the subject’s influence on the EEG signals. To do this, we propose a data transformation that seamlessly integrates individual traits into an inter-subject approach, improving classification results.
AbstractList Existing correlations between features extracted from Electroencephalography (EEG) signals and emotional aspects have motivated the development of a diversity of EEG-based affect detection methods. Both intra-subject and inter-subject approaches have been used in this context. Intra-subject approaches generally suffer from the small sample problem, and require the collection of exhaustive data for each new user before the detection system is usable. On the contrary, inter-subject models do not account for the personality and physiological influence of how the individual is feeling and expressing emotions. In this paper, we analyze both modeling approaches, using three public repositories. The results show that the subject’s influence on the EEG signals is substantially higher than that of the emotion and hence it is necessary to account for the subject’s influence on the EEG signals. To do this, we propose a data transformation that seamlessly integrates individual traits into an inter-subject approach, improving classification results.
Existing correlations between features extracted from Electroencephalography (EEG) signals and emotional aspects have motivated the development of a diversity of EEG-based affect detection methods. Both intra-subject and inter-subject approaches have been used in this context. Intra-subject approaches generally suffer from the small sample problem, and require the collection of exhaustive data for each new user before the detection system is usable. On the contrary, inter-subject models do not account for the personality and physiological influence of how the individual is feeling and expressing emotions. In this paper, we analyze both modeling approaches, using three public repositories. The results show that the subject's influence on the EEG signals is substantially higher than that of the emotion and hence it is necessary to account for the subject's influence on the EEG signals. To do this, we propose a data transformation that seamlessly integrates individual traits into an inter-subject approach, improving classification results.Existing correlations between features extracted from Electroencephalography (EEG) signals and emotional aspects have motivated the development of a diversity of EEG-based affect detection methods. Both intra-subject and inter-subject approaches have been used in this context. Intra-subject approaches generally suffer from the small sample problem, and require the collection of exhaustive data for each new user before the detection system is usable. On the contrary, inter-subject models do not account for the personality and physiological influence of how the individual is feeling and expressing emotions. In this paper, we analyze both modeling approaches, using three public repositories. The results show that the subject's influence on the EEG signals is substantially higher than that of the emotion and hence it is necessary to account for the subject's influence on the EEG signals. To do this, we propose a data transformation that seamlessly integrates individual traits into an inter-subject approach, improving classification results.
Author Roger, Sandra
García-Pineda, Miguel
Arevalillo-Herráez, Miguel
Cobos, Maximo
AuthorAffiliation Departament d’Informàtica, Universitat de València, Avda. de la Universidad, s/n, 46100-Burjasot, Spain
AuthorAffiliation_xml – name: Departament d’Informàtica, Universitat de València, Avda. de la Universidad, s/n, 46100-Burjasot, Spain
Author_xml – sequence: 1
  givenname: Miguel
  orcidid: 0000-0002-0350-2079
  surname: Arevalillo-Herráez
  fullname: Arevalillo-Herráez, Miguel
– sequence: 2
  givenname: Maximo
  orcidid: 0000-0001-7318-3192
  surname: Cobos
  fullname: Cobos, Maximo
– sequence: 3
  givenname: Sandra
  orcidid: 0000-0003-4808-252X
  surname: Roger
  fullname: Roger, Sandra
– sequence: 4
  givenname: Miguel
  orcidid: 0000-0003-2590-6370
  surname: García-Pineda
  fullname: García-Pineda, Miguel
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31288378$$D View this record in MEDLINE/PubMed
BookMark eNplkk1v1DAQhi1URD_gwB9AlrjAITS248S-IJXtUlYqQqLlbE0cJ_UqsRfbKeXfk-xuq7acxpp555lXnjlGB847g9Bbkn9iTOankUjCqJTyBToiBS0yQWl-8Oh9iI5jXOc5ZYyJV-iQESoEq8QRulv4obbOug6vXDIhuxrrtdEJf_eN6ef0H5tuMOB9PvsC0TT4HBLg6wAutj4MkKx3OHm8GjbB3xp81rYz46fRvnN2W22DH_ByeYGvbOegj6_Ry3YK5s0-nqBfX5fXi2_Z5Y-L1eLsMtNFKVNGIYcGOGmEFFoDFLLOCzNZr5lklADjnLWmKkjFiahL1vKmEoJKXpVctLJhJ2i14zYe1moT7ADhr_Jg1TbhQ6cgJKt7o0QBhuuqkUXJCk3bumZAKlo202gqNZtYn3eszVgPptHGpQD9E-jTirM3qvO3qiw5IZxOgA97QPC_RxOTGmzUpu_BGT9GRSnnRUW5qCbp-2fStR_D_HOKspxUJSnJDHz32NGDlfsFT4LTnUAHH2MwrdI2bfc1GbS9IrmaT0g9nNDU8fFZxz30f-0_p0LFCw
CitedBy_id crossref_primary_10_3390_s21051777
crossref_primary_10_1016_j_engappai_2023_106205
crossref_primary_10_3390_s20216321
crossref_primary_10_1016_j_bspc_2022_104171
crossref_primary_10_3390_s20164551
crossref_primary_10_3390_s21093225
crossref_primary_10_1109_JIOT_2021_3061727
crossref_primary_10_1088_1741_2552_ace07d
crossref_primary_10_3390_s21072273
crossref_primary_10_1016_j_compbiomed_2021_105048
crossref_primary_10_1371_journal_pone_0251490
crossref_primary_10_1371_journal_pone_0253383
crossref_primary_10_3390_s21082790
crossref_primary_10_1007_s11517_022_02686_x
crossref_primary_10_3389_fnins_2021_626277
crossref_primary_10_1016_j_compbiomed_2022_106088
crossref_primary_10_1016_j_neucom_2024_128354
crossref_primary_10_1016_j_ifacol_2024_09_092
crossref_primary_10_1088_1741_2552_acb96e
crossref_primary_10_1109_ACCESS_2024_3479308
crossref_primary_10_3389_fpsyg_2023_1217178
Cites_doi 10.1016/j.eswa.2018.03.011
10.1109/ICASSP.2013.6637858
10.3390/s18113886
10.1109/PRNI.2014.6858538
10.3390/s19112499
10.1016/j.jneumeth.2017.05.004
10.1109/ICCSP.2015.7322687
10.1109/TPAMI.2008.52
10.1136/bjsports-2012-091877
10.3390/s19050987
10.1109/TSP.2012.2187647
10.1109/FG.2013.6553809
10.1007/BF02686918
10.1155/2013/573734
10.1016/j.procs.2015.07.314
10.1016/j.knosys.2016.04.026
10.3390/s19092212
10.1109/TAFFC.2014.2339834
10.1109/T-AFFC.2011.25
10.3390/s19102302
10.5405/jmbe.710
10.1109/TITB.2009.2034649
10.1016/j.neucom.2013.06.046
10.1109/ICCI-CC.2014.6921443
10.1109/T-AFFC.2010.1
10.1007/978-3-319-19773-9
10.3390/e21050479
10.1016/j.neucom.2017.03.027
10.1109/TITB.2011.2157933
10.3390/sym11010115
10.3390/s19010006
10.1016/j.asoc.2016.11.002
10.1186/s12911-017-0562-x
10.3390/s18051372
10.1109/CW.2010.37
10.1016/j.eswa.2015.10.049
10.3390/s18072074
10.1155/2014/627892
10.1109/BIBE.2017.00-74
10.1007/978-3-642-39454-6
10.1016/j.neucom.2015.04.025
10.1260/2047-4970.4.2.165
10.3390/s19071631
10.1109/JBHI.2017.2688239
10.1109/T-AFFC.2011.15
10.1109/TBME.2010.2048568
10.1155/2013/618649
10.1037/0022-3514.72.2.435
10.1007/978-3-642-10439-8_6
10.1109/TNSRE.2012.2236576
10.1109/SMC.2014.6974415
10.1016/j.imavis.2012.06.016
10.1037/0022-3514.37.3.345
10.1016/j.knosys.2017.10.032
10.1145/3058060.3058068
10.3390/s19020219
10.1016/j.knosys.2017.06.024
10.3390/s19081863
10.3389/fnins.2018.00162
10.1109/TIFS.2016.2543524
10.1037/0022-3514.48.4.813
10.4236/jbise.2010.34054
10.1109/THMS.2017.2682115
ContentType Journal Article
Copyright 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2019 by the authors. 2019
Copyright_xml – notice: 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2019 by the authors. 2019
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s19132999
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Open Access Full Text
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
CrossRef
MEDLINE - Academic
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_84ae5c7d94634c2fbb3a1726d98c29c3
PMC6651152
31288378
10_3390_s19132999
Genre Journal Article
GrantInformation_xml – fundername: Ministerio de Economía y Competitividad
  grantid: TIN2014-59641-C2-1-P
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ARAPS
CGR
CUY
CVF
ECM
EIF
HCIFZ
KB.
M7S
NPM
PDBOC
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c469t-2a0ada51d898ccaa49b04e378b39321a3553fe7417518b63f5d7882957658f9d3
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:25:34 EDT 2025
Thu Aug 21 14:30:43 EDT 2025
Fri Jul 11 01:02:46 EDT 2025
Sat Aug 23 12:45:52 EDT 2025
Wed Feb 19 02:31:53 EST 2025
Tue Jul 01 00:42:01 EDT 2025
Thu Apr 24 23:10:51 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Keywords arousal detection
valence detection
data transformation
normalization
EEG
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c469t-2a0ada51d898ccaa49b04e378b39321a3553fe7417518b63f5d7882957658f9d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0350-2079
0000-0001-7318-3192
0000-0003-2590-6370
0000-0003-4808-252X
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s19132999
PMID 31288378
PQID 2301761612
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_84ae5c7d94634c2fbb3a1726d98c29c3
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6651152
proquest_miscellaneous_2255472587
proquest_journals_2301761612
pubmed_primary_31288378
crossref_citationtrail_10_3390_s19132999
crossref_primary_10_3390_s19132999
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190708
PublicationDateYYYYMMDD 2019-07-08
PublicationDate_xml – month: 7
  year: 2019
  text: 20190708
  day: 8
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2019
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_50
Murugappan (ref_44) 2011; 31
ref_13
ref_57
ref_55
Schuller (ref_38) 2013; 31
Murugappan (ref_52) 2010; 3
Li (ref_30) 2018; 12
Petrantonakis (ref_48) 2011; 15
Jirayucharoensak (ref_56) 2014; 2014
ref_17
Ramzan (ref_18) 2017; 244
Lin (ref_47) 2010; 57
Mumtaz (ref_11) 2016; 105
ref_15
ref_59
Soleymani (ref_34) 2012; 3
Hu (ref_16) 2018; 140
Bozhkov (ref_64) 2015; 53
Patidar (ref_10) 2017; 50
ref_23
ref_22
ref_66
ref_21
ref_20
Smith (ref_39) 1985; 48
ref_63
Prasad (ref_12) 2018; 103
ref_27
Yang (ref_14) 2017; 47
Wang (ref_51) 2013; 21
Armstrong (ref_62) 2015; 166
Wang (ref_28) 2014; 129
ref_32
ref_31
Mehrabian (ref_54) 1996; 14
Jatupaiboon (ref_65) 2013; 2013
Kim (ref_19) 2013; 2013
Hadjidimitriou (ref_29) 2015; 4
Hinton (ref_60) 2008; 9
ref_45
Russell (ref_53) 1979; 37
ref_42
Calvo (ref_36) 2010; 1
ref_40
Petrantonakis (ref_46) 2010; 14
ref_1
ref_3
ref_2
Gross (ref_26) 1997; 72
Aspinall (ref_58) 2015; 49
Petrantonakis (ref_41) 2012; 60
ref_49
ref_9
ref_8
Kia (ref_43) 2017; 285
Garcia (ref_67) 2008; 9
ref_5
Jenke (ref_24) 2014; 5
Koelstra (ref_33) 2012; 3
Katsigiannis (ref_35) 2017; 22
ref_4
Arnau (ref_7) 2017; 132
Campos (ref_25) 2016; 47
Jin (ref_61) 2016; 11
ref_6
Zeng (ref_37) 2009; 31
References_xml – volume: 103
  start-page: 206
  year: 2018
  ident: ref_12
  article-title: Sentiment analysis using EEG activities for suicidology
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.03.011
– ident: ref_57
  doi: 10.1109/ICASSP.2013.6637858
– ident: ref_5
  doi: 10.3390/s18113886
– ident: ref_42
  doi: 10.1109/PRNI.2014.6858538
– ident: ref_13
  doi: 10.3390/s19112499
– volume: 9
  start-page: 2677
  year: 2008
  ident: ref_67
  article-title: An Extension on Statistical Comparisons of Classifiers over Multiple Data Sets for all Pairwise Comparisons
  publication-title: J. Mach. Learn. Res.
– volume: 285
  start-page: 97
  year: 2017
  ident: ref_43
  article-title: Group-level spatio-temporal pattern recovery in MEG decoding using multi-task joint feature learning
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2017.05.004
– ident: ref_49
  doi: 10.1109/ICCSP.2015.7322687
– volume: 9
  start-page: 2579
  year: 2008
  ident: ref_60
  article-title: Visualizing data using t-SNE
  publication-title: J. Mach. Learn. Res.
– volume: 31
  start-page: 39
  year: 2009
  ident: ref_37
  article-title: A survey of affect recognition methods: Audio, visual, and spontaneous expressions
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2008.52
– volume: 49
  start-page: 272
  year: 2015
  ident: ref_58
  article-title: The urban brain: Analysing outdoor physical activity with mobile EEG
  publication-title: Br. J. Sports Med.
  doi: 10.1136/bjsports-2012-091877
– ident: ref_21
  doi: 10.3390/s19050987
– volume: 60
  start-page: 2604
  year: 2012
  ident: ref_41
  article-title: Adaptive Emotional Information Retrieval From EEG Signals in the Time-Frequency Domain
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2012.2187647
– ident: ref_6
  doi: 10.1109/FG.2013.6553809
– volume: 14
  start-page: 261
  year: 1996
  ident: ref_54
  article-title: Pleasure-arousal-dominance: A general framework for describing and measuring individual differences in Temperament
  publication-title: Curr. Psychol.
  doi: 10.1007/BF02686918
– volume: 2013
  start-page: 573734
  year: 2013
  ident: ref_19
  article-title: A Review on the Computational Methods for Emotional State Estimation from the Human EEG
  publication-title: Comput. Math. Methods Med.
  doi: 10.1155/2013/573734
– volume: 53
  start-page: 375
  year: 2015
  ident: ref_64
  article-title: EEG-based subject independent affective computing models
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2015.07.314
– volume: 105
  start-page: 48
  year: 2016
  ident: ref_11
  article-title: Automatic diagnosis of alcohol use disorder using EEG features
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2016.04.026
– ident: ref_17
  doi: 10.3390/s19092212
– volume: 5
  start-page: 327
  year: 2014
  ident: ref_24
  article-title: Feature Extraction and Selection for Emotion Recognition from EEG
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/TAFFC.2014.2339834
– volume: 3
  start-page: 42
  year: 2012
  ident: ref_34
  article-title: A Multimodal Database for Affect Recognition and Implicit Tagging
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/T-AFFC.2011.25
– ident: ref_22
  doi: 10.3390/s19102302
– volume: 31
  start-page: 45
  year: 2011
  ident: ref_44
  article-title: Combining spatial filtering and wavelet transform for classifying human emotions using EEG Signals
  publication-title: J. Med. Biol. Eng.
  doi: 10.5405/jmbe.710
– volume: 14
  start-page: 186
  year: 2010
  ident: ref_46
  article-title: Emotion Recognition From EEG Using Higher Order Crossings
  publication-title: IEEE Trans. Inf. Technol. Biomed.
  doi: 10.1109/TITB.2009.2034649
– volume: 129
  start-page: 94
  year: 2014
  ident: ref_28
  article-title: Emotional state classification from EEG data using machine learning approach
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.06.046
– ident: ref_32
  doi: 10.1109/ICCI-CC.2014.6921443
– volume: 1
  start-page: 18
  year: 2010
  ident: ref_36
  article-title: Affect detection: An interdisciplinary review of models, methods, and their applications
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/T-AFFC.2010.1
– ident: ref_31
  doi: 10.1007/978-3-319-19773-9
– ident: ref_45
– ident: ref_3
  doi: 10.3390/e21050479
– volume: 244
  start-page: 81
  year: 2017
  ident: ref_18
  article-title: Fusing highly dimensional energy and connectivity features to identify affective states from EEG signals
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.03.027
– volume: 15
  start-page: 737
  year: 2011
  ident: ref_48
  article-title: A novel emotion elicitation index using frontal brain asymmetry for enhanced EEG-based emotion recognition
  publication-title: IEEE Trans. Inf. Technol. Biomed.
  doi: 10.1109/TITB.2011.2157933
– ident: ref_1
  doi: 10.3390/sym11010115
– ident: ref_15
  doi: 10.3390/s19010006
– volume: 50
  start-page: 71
  year: 2017
  ident: ref_10
  article-title: An integrated alcoholic index using tunable-Q wavelet transform based features extracted from EEG signals for diagnosis of alcoholism
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2016.11.002
– ident: ref_20
– ident: ref_27
  doi: 10.1186/s12911-017-0562-x
– ident: ref_9
  doi: 10.3390/s18051372
– ident: ref_59
  doi: 10.1109/CW.2010.37
– volume: 47
  start-page: 35
  year: 2016
  ident: ref_25
  article-title: Improving BCI-based emotion recognition by combining EEG feature selection and kernel classifiers
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2015.10.049
– ident: ref_4
  doi: 10.3390/s18072074
– volume: 2014
  start-page: 627892
  year: 2014
  ident: ref_56
  article-title: EEG-based emotion recognition using deep learning network with principal component based covariate shift adaptation
  publication-title: Sci. World J.
  doi: 10.1155/2014/627892
– ident: ref_66
  doi: 10.1109/BIBE.2017.00-74
– ident: ref_40
  doi: 10.1007/978-3-642-39454-6
– volume: 166
  start-page: 59
  year: 2015
  ident: ref_62
  article-title: Brainprint: Assessing the uniqueness, collectability, and permanence of a novel method for ERP biometrics
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.04.025
– volume: 4
  start-page: 165
  year: 2015
  ident: ref_29
  article-title: Towards a Practical Subject-Independent Affective State Recognition Based On Time-Domain EEG Feature Extraction
  publication-title: Int. J. Herit. Digit. Era
  doi: 10.1260/2047-4970.4.2.165
– ident: ref_23
  doi: 10.3390/s19071631
– volume: 22
  start-page: 98
  year: 2017
  ident: ref_35
  article-title: DREAMER: A Database for Emotion Recognition Through EEG and ECG Signals from Wireless Low-cost Off-the-Shelf Devices
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2017.2688239
– volume: 3
  start-page: 18
  year: 2012
  ident: ref_33
  article-title: DEAP: A Database for Emotion Analysis using Physiological Signals
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/T-AFFC.2011.15
– volume: 57
  start-page: 1798
  year: 2010
  ident: ref_47
  article-title: EEG-Based Emotion Recognition in Music Listening
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2010.2048568
– volume: 2013
  start-page: 618649
  year: 2013
  ident: ref_65
  article-title: Real-time EEG-based happiness detection system
  publication-title: Sci. World J.
  doi: 10.1155/2013/618649
– volume: 72
  start-page: 435
  year: 1997
  ident: ref_26
  article-title: Revealing Feelings: Facets of Emotional Expressivity in Self-Reports, Peer Ratings, and Behavior
  publication-title: J. Pers. Soc. Psychol.
  doi: 10.1037/0022-3514.72.2.435
– ident: ref_50
  doi: 10.1007/978-3-642-10439-8_6
– volume: 21
  start-page: 225
  year: 2013
  ident: ref_51
  article-title: Real-time mental arithmetic task recognition from EEG signals
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2012.2236576
– ident: ref_55
  doi: 10.1109/SMC.2014.6974415
– volume: 31
  start-page: 120
  year: 2013
  ident: ref_38
  article-title: Categorical and dimensional affect analysis in continuous input: Current trends and future directions
  publication-title: Image Vis. Comput.
  doi: 10.1016/j.imavis.2012.06.016
– volume: 37
  start-page: 345
  year: 1979
  ident: ref_53
  article-title: Affective Space is Bipolar
  publication-title: J. Personal. Soc. Psychol.
  doi: 10.1037/0022-3514.37.3.345
– volume: 140
  start-page: 134
  year: 2018
  ident: ref_16
  article-title: An approach to EEG-based gender recognition using entropy measurement methods
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2017.10.032
– ident: ref_63
  doi: 10.1145/3058060.3058068
– ident: ref_8
  doi: 10.3390/s19020219
– volume: 132
  start-page: 85
  year: 2017
  ident: ref_7
  article-title: Adding sensor-free intention-based affective support to an Intelligent Tutoring System
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2017.06.024
– ident: ref_2
  doi: 10.3390/s19081863
– volume: 12
  start-page: 162
  year: 2018
  ident: ref_30
  article-title: Exploring EEG Features in Cross-Subject Emotion Recognition
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2018.00162
– volume: 11
  start-page: 1618
  year: 2016
  ident: ref_61
  article-title: CEREBRE: A novel method for very high accuracy event-related potential biometric identification
  publication-title: IEEE Trans. Inf. Forensics Secur.
  doi: 10.1109/TIFS.2016.2543524
– volume: 48
  start-page: 813
  year: 1985
  ident: ref_39
  article-title: Patterns of cognitive appraisal in emotion
  publication-title: J. Pers. Soc. Psychol.
  doi: 10.1037/0022-3514.48.4.813
– volume: 3
  start-page: 390
  year: 2010
  ident: ref_52
  article-title: Classification of human emotion from EEG using discrete wavelet transform
  publication-title: J. Biomed. Sci. Eng.
  doi: 10.4236/jbise.2010.34054
– volume: 47
  start-page: 958
  year: 2017
  ident: ref_14
  article-title: On the Usability of Electroencephalographic Signals for Biometric Recognition: A Survey
  publication-title: IEEE Trans. Hum. Mach. Syst.
  doi: 10.1109/THMS.2017.2682115
SSID ssj0023338
Score 2.4520257
Snippet Existing correlations between features extracted from Electroencephalography (EEG) signals and emotional aspects have motivated the development of a diversity...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 2999
SubjectTerms Algorithms
Arousal - physiology
arousal detection
Artificial intelligence
Biometric identification
Biometrics
Data Analysis
data transformation
Databases, Factual
EEG
Electroencephalography
Electroencephalography - methods
Emotions
Emotions - physiology
Fourier transforms
Humans
Information sources
International conferences
Machine learning
Methods
Models, Biological
normalization
Physiology
Signal processing
Signal Processing, Computer-Assisted
Support Vector Machine
valence detection
Wavelet transforms
SummonAdditionalLinks – databaseName: DOAJ Open Access Full Text
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwEB0hTuVQtQXaUFq5qIdeLDaxHdtHaBdQJTi0IHGLxh9pkapsBUHi5zN2stEuQuql19iRHM848549fgPwudWIjpAED0p7Lss2cmel5bKaOWckvZZvuZ5f1GdX8vu1ul4p9ZVywgZ54GHiDo3EqLwOVtZC-qp1TiAF3TpY4yvrs84nxbwlmRqpliDmNegICSL1h3fESgT9eO1a9Mki_c8hy6cJkisR5-QVvByhIjsahvgaNmL3BrZWBAS34YGWs8slHlje2uP0H0gbKyyVOEsXzVnaZ2XIxuf8mIJWYN-wR3a5AlkXHesXbNhgiOwo53iwH8vcImpNt1DYfH7Kft78SorLO3B1Mr_8esbHWgrcEwHueYUzDKjKYGjePKK0biaj0MYJQnAlEuwQbSR4kY5hXC1aFYgcV5boiDKtDWIXNrtFF98B8yoVUSA7mBKlDBKla0Uq7hdcUAJjAV-Wc9z4UWg81bv40xDhSOZoJnMUcDB1_TuoazzX6TgZauqQBLHzA3KTZnST5l9uUsD-0szNuErvGqJfpa7JU6sCPk3NtL7SoQl2cXFPfYhzSV0powt4O3jFNBJRplrN2hSg1_xlbajrLd3N76zhXdeEdFW19z--7T28IBhncxKx2YfN_vY-fiCo1LuPeVU8Ag4OE1U
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwEB1BucABle_QggziwMXqJrYT-1S1sNsKCQ7QSr1FduyUSigp3VTqz--M4013UcU1diQnY3veG4_nAXxqK2sdIgnuVdVwmbeBOyMNl8XMOS3xtXjL9fuP8vhUfjtTZyngtkxplas9MW7Uvm8oRr6HUDlHyo0Oef_yLyfVKDpdTRIaD-FRjp6GUrr04mgiXAL511hNSCC131siNxG4_ZoNHxRL9d-HL_9Nk1zzO4tteJoAIzsYLfwMHoTuOTxZKyP4Am5wUbso9MBigI_jbkDhFUZCZ3TdnFG0lVmWnvNDdF2efbWDZSdrwLXv2NCzMcwQ2EHM9GA_VxlG2Ep3Udh8fsR-XZxT3eWXcLqYn3w55klRgTdIgwde2Jn1VuVeG42ms9K4mQyi0k4gjsstgg_RBgQZdBjjStEqjxS5MEhKlG6NF69gq-u78AZYo0hKwTn0-FZKL610rSCJP--8EjZk8Hn1j-smlRsn1Ys_NdIOMkc9mSODj1PXy7HGxn2dDslQUwcqix0f9FfndVpltZY2qKbyRpZCNkWLw7OI0EqPn1uYRmSwuzJzndbqsr6bWRl8mJpxldHRie1Cf419kHnJqlC6yuD1OCumkYicFJsrnUG1MV82hrrZ0l38jpW8yxLxrire_n9YO_AYYZqJScJ6F7aGq-vwDqHQ4N7H-X4LawAKkQ
  priority: 102
  providerName: ProQuest
Title Combining Inter-Subject Modeling with a Subject-Based Data Transformation to Improve Affect Recognition from EEG Signals
URI https://www.ncbi.nlm.nih.gov/pubmed/31288378
https://www.proquest.com/docview/2301761612
https://www.proquest.com/docview/2255472587
https://pubmed.ncbi.nlm.nih.gov/PMC6651152
https://doaj.org/article/84ae5c7d94634c2fbb3a1726d98c29c3
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB71cYED4k1KWRnEgUtgE9uxfUCoC7utkFqh0pX2FtmxUypVCd2mUvn3jJ2HNmjFZQ_xRPJ6ZjLzje35AN6XQmuDmURsuShilpQuNoqpmKVTYyTD18It19Oz7GTJvq_4agd6js1uAW-3QjvPJ7VcX3-8v_nzBR3-s0ecCNk_3SLmoPhZVbuwjwFJeCKDUzZsJqQUYVjbVGgsPgpFoWP_tjTz39OSG-Fn8RgedXkjOWoV_QR2XPUUHm50E3wG9-jbJvA9kFDni_Gj4KssxPOd-VvnxBddiSbd83iGEcySb7rR5GIjf60r0tSkrTY4chQOfJDz_qARjvorKWQ-PyY_ry79Mj6H5WJ-8fUk7ogV4gLRcBOneqqt5omVSqIGNVNmyhwV0lBM5xKNOQgtHeYafk_GZLTkFpFyqhCbcFkqS1_AXlVX7hWQgntGBWMw8GvGLNPMlNQz_VljOdUugg_9GudF13Xck19c54g-vDryQR0RvBtEf7etNrYJzbyiBgHfHTs8qNeXeedsuWTa8UJYxTLKirTE6Wk0i8zi301VQSM47NWc9xaXIxZLRIZmm0bwdhhGZ_M7KLpy9R3KIABjIuVSRPCytYphJjTxxM1CRiBG9jKa6nikuvoVGnpnGaa9PD34_7RewwPM1lQ4KywPYa9Z37k3mBE1ZgK7YiXwVy6OJ7A_m5_9OJ-E6sIkeMJfudgQcg
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiDeBAgaBxMXqJraT-IBQS3e7pY8DbKXegh07baUqKd1UwJ_iNzKTF7uo4tZr7KxmM-OZb8bzAHhbJMZYRBLcqSTnMiw8t1pqLqORtanE15oq1_2DeHooPx-poxX43dfCUFplrxMbRe2qnGLk6wiVQ3S50SB_PP_OaWoU3a72IzRasdj1v36gyzb_sLOF_H0XRZPx7NOUd1MFeI6uYM0jMzLOqNClOkXyjdR2JL1IUisQy4QGDbAoPBpaupCwsSiUQzcx0gjMVVpoJ_B3b8BNKdCSU2X6ZHtw8AT6e233Ilwcrc_RFxKo7vWSzWtGA1yFZ_9Ny1ywc5N7cLcDqGyjlaj7sOLLB3BnoW3hQ_iJSsQ2gyVYE1DkqH0onMNosBqVtzOK7jLDuud8E02lY1umNmy2AJSrktUVa8Manm00mSXsS5_RhKtU-8LG42329fSY-jw_gsNr-daPYbWsSv8UWK5odIO1iDCMlE4aaQtBIwWddUoYH8D7_htnedfenKZsnGXo5hA7soEdAbwZtp63PT2u2rRJjBo2UBvu5kF1cZx1pzpLpfEqT5yWsZB5VCB5BhFh7PDvRjoXAaz1bM463TDP_kpyAK-HZTzVdFVjSl9d4h709GQSqTQJ4EkrFQMlIqQJ0UkaQLIkL0ukLq-UpydN5_A4Rnytomf_J-sV3JrO9veyvZ2D3edwGyGibhKU0zVYrS8u_QuEYbV92cg-g2_Xfdj-AIK2Rfs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTkLwgPgmMMAgkHiJ2sR2Ej8gtNKWjUE1jU3aW2bHzpiEkrFmAv61_XW7yxctmnjba-xWTu589_udz3cAb_JYa4NIwrcyznwR5M43SihfhCNjEoE_q2-5fp1HWwfi86E8XIOL7i4MpVV2NrE21LbMKEY-RKgcIOVGhzzM27SI3cnsw-lPnzpI0Ulr106jUZEd9-cX0rfF--0JyvptGM6m-x-3_LbDgJ8hLaz8UI-01TKwiUrwVbRQZiQcjxPDEdcEGp0xzx06XTqcMBHPpUXKGCoE6TLJleX4vzdgPSZWNID18XS-u9fTPY7sr6llxLkaDRfIjDgaf7XiAetGAVeh23-TNJe83uwu3GnhKtts9OserLniPtxeKmL4AH6jSTF1mwlWhxd9tEUU3GHUZo0uuzOK9TLN2uf-GB2nZRNdaba_BJvLglUla4Icjm3WeSZsr8tvwlG6CcOm00_s28kxVX1-CAfX8rUfwaAoC_cEWCapkYMxiDe0EFZoYXJODQatsZJr58G77hunWVvsnHpu_EiR9JA40l4cHrzup542FT6umjQmQfUTqCh3_aA8O07bPZ4mQjuZxVaJiIsszHF5GvFhZPF1Q5VxDzY6MaetpVikf_Xag1f9MO5xOrjRhSvPcQ7yPhGHMok9eNxoRb8SHlC_6DjxIF7Rl5Wlro4UJ9_rOuJRhGhbhk__v6yXcBM3Wvple77zDG4hXlR1tnKyAYPq7Nw9R0xWmRet8jM4uu79dgkKRkuN
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combining+Inter-Subject+Modeling+with+a+Subject-Based+Data+Transformation+to+Improve+Affect+Recognition+from+EEG+Signals&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Arevalillo-Herr%C3%A1ez%2C+Miguel&rft.au=Cobos%2C+Maximo&rft.au=Roger%2C+Sandra&rft.au=Garc%C3%ADa-Pineda%2C+Miguel&rft.date=2019-07-08&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=19&rft.issue=13&rft_id=info:doi/10.3390%2Fs19132999&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon