Electricity, Heat, and Gas Load Forecasting Based on Deep Multitask Learning in Industrial-Park Integrated Energy System

Different energy systems are closely connected with each other in industrial-park integrated energy system (IES). The energy demand forecasting has important impact on IES dispatching and planning. This paper proposes an approach of short-term energy forecasting for electricity, heat, and gas by emp...

Full description

Saved in:
Bibliographic Details
Published inEntropy (Basel, Switzerland) Vol. 22; no. 12; p. 1355
Main Authors Zhang, Linjuan, Shi, Jiaqi, Wang, Lili, Xu, Changqing
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 30.11.2020
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Different energy systems are closely connected with each other in industrial-park integrated energy system (IES). The energy demand forecasting has important impact on IES dispatching and planning. This paper proposes an approach of short-term energy forecasting for electricity, heat, and gas by employing deep multitask learning whose structure is constructed by deep belief network (DBN) and multitask regression layer. The DBN can extract abstract and effective characteristics in an unsupervised fashion, and the multitask regression layer above the DBN is used for supervised prediction. Then, subject to condition of practical demand and model integrity, the whole energy forecasting model is introduced, including preprocessing, normalization, input properties, training stage, and evaluating indicator. Finally, the validity of the algorithm and the accuracy of the energy forecasts for an industrial-park IES system are verified through the simulations using actual operating data from load system. The positive results turn out that the deep multitask learning has great prospects for load forecast.
AbstractList Different energy systems are closely connected with each other in industrial-park integrated energy system (IES). The energy demand forecasting has important impact on IES dispatching and planning. This paper proposes an approach of short-term energy forecasting for electricity, heat, and gas by employing deep multitask learning whose structure is constructed by deep belief network (DBN) and multitask regression layer. The DBN can extract abstract and effective characteristics in an unsupervised fashion, and the multitask regression layer above the DBN is used for supervised prediction. Then, subject to condition of practical demand and model integrity, the whole energy forecasting model is introduced, including preprocessing, normalization, input properties, training stage, and evaluating indicator. Finally, the validity of the algorithm and the accuracy of the energy forecasts for an industrial-park IES system are verified through the simulations using actual operating data from load system. The positive results turn out that the deep multitask learning has great prospects for load forecast.
Different energy systems are closely connected with each other in industrial-park integrated energy system (IES). The energy demand forecasting has important impact on IES dispatching and planning. This paper proposes an approach of short-term energy forecasting for electricity, heat, and gas by employing deep multitask learning whose structure is constructed by deep belief network (DBN) and multitask regression layer. The DBN can extract abstract and effective characteristics in an unsupervised fashion, and the multitask regression layer above the DBN is used for supervised prediction. Then, subject to condition of practical demand and model integrity, the whole energy forecasting model is introduced, including preprocessing, normalization, input properties, training stage, and evaluating indicator. Finally, the validity of the algorithm and the accuracy of the energy forecasts for an industrial-park IES system are verified through the simulations using actual operating data from load system. The positive results turn out that the deep multitask learning has great prospects for load forecast.Different energy systems are closely connected with each other in industrial-park integrated energy system (IES). The energy demand forecasting has important impact on IES dispatching and planning. This paper proposes an approach of short-term energy forecasting for electricity, heat, and gas by employing deep multitask learning whose structure is constructed by deep belief network (DBN) and multitask regression layer. The DBN can extract abstract and effective characteristics in an unsupervised fashion, and the multitask regression layer above the DBN is used for supervised prediction. Then, subject to condition of practical demand and model integrity, the whole energy forecasting model is introduced, including preprocessing, normalization, input properties, training stage, and evaluating indicator. Finally, the validity of the algorithm and the accuracy of the energy forecasts for an industrial-park IES system are verified through the simulations using actual operating data from load system. The positive results turn out that the deep multitask learning has great prospects for load forecast.
Author Xu, Changqing
Zhang, Linjuan
Wang, Lili
Shi, Jiaqi
AuthorAffiliation 1 State Grid Henan Economic Research Institute, Zhengzhou 450052, China; zlinj@163.com (L.Z.); wanglili11@ha.sgcc.com.cn (L.W.); xuchangqing@ha.sgcc.com.cn (C.X.)
2 School of Electrical and Electronic Engineering, North China Electric Power University, Changping District, Beijing 102206, China
AuthorAffiliation_xml – name: 2 School of Electrical and Electronic Engineering, North China Electric Power University, Changping District, Beijing 102206, China
– name: 1 State Grid Henan Economic Research Institute, Zhengzhou 450052, China; zlinj@163.com (L.Z.); wanglili11@ha.sgcc.com.cn (L.W.); xuchangqing@ha.sgcc.com.cn (C.X.)
Author_xml – sequence: 1
  givenname: Linjuan
  surname: Zhang
  fullname: Zhang, Linjuan
– sequence: 2
  givenname: Jiaqi
  surname: Shi
  fullname: Shi, Jiaqi
– sequence: 3
  givenname: Lili
  surname: Wang
  fullname: Wang, Lili
– sequence: 4
  givenname: Changqing
  surname: Xu
  fullname: Xu, Changqing
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33266198$$D View this record in MEDLINE/PubMed
BookMark eNptkstuEzEUhkeoiF5gwQsgS2yo1FBfZsYzm0pQ0jZSEEjA2jpjnwSnEzvYnoq8PR5SorZCXvj2_b_O7bg4cN5hUbxm9L0QLT1HzhlnoqqeFUeMtu2kFJQePDgfFscxrijlgrP6RXEoBK9r1jZHxe9pjzoFq23anpEbhHRGwBlyDZHMPRhy5QNqiMm6JfkIEQ3xjnxC3JDPQ59sgnhL5gjBjYB1ZObMELMh9JOvEG7zPeEyQMrCqcOw3JJv25hw_bJ4voA-4qv7_aT4cTX9fnkzmX-5nl1-mE90WbdpwlteoSwNEw3tmootoOx02VWiYgJox_LqgEu-aFhnwJRsUTa60UzWHS1zmuKkmO18jYeV2gS7hrBVHqz6--DDUkFIVveomtYI1LyRXdYa0C2tsrE2ZSUoq6TIXhc7r83QrdFodClA_8j08Y-zP9XS3ykpa8qbMZh39wbB_xowJrW2UWPfg0M_RMXLupZ1K-WIvn2CrvwQXC7VSMnc1FySTL15GNE-lH8NzsDpDtDBxxhwsUcYVePwqP3wZPb8CZunApL1YzK2_4_iD0_gxF4
CitedBy_id crossref_primary_10_3390_en14237859
crossref_primary_10_1016_j_enbuild_2021_111614
crossref_primary_10_1016_j_enbuild_2022_112666
crossref_primary_10_1049_gtd2_12362
crossref_primary_10_1109_TII_2024_3392278
crossref_primary_10_1016_j_apenergy_2024_124166
crossref_primary_10_1016_j_apenergy_2023_121177
crossref_primary_10_1007_s10489_022_04054_6
crossref_primary_10_1109_TSG_2022_3166600
crossref_primary_10_1016_j_asej_2024_102724
crossref_primary_10_1016_j_apenergy_2022_119269
crossref_primary_10_3390_electronics11213481
crossref_primary_10_1016_j_egyai_2024_100344
crossref_primary_10_1016_j_energy_2022_124967
crossref_primary_10_1016_j_nlp_2024_100076
crossref_primary_10_1109_TIM_2024_3522628
crossref_primary_10_1049_gtd2_13083
crossref_primary_10_3390_e26040331
crossref_primary_10_1093_ijlct_ctae143
crossref_primary_10_1016_j_enbuild_2024_113964
crossref_primary_10_3390_electronics10020135
crossref_primary_10_3389_fenrg_2023_1296800
crossref_primary_10_1134_S1054661824700391
crossref_primary_10_1016_j_ijhydene_2023_01_371
crossref_primary_10_3390_en16093697
crossref_primary_10_1016_j_apenergy_2023_122159
crossref_primary_10_3389_fenrg_2022_1008216
crossref_primary_10_1016_j_apenergy_2021_118362
crossref_primary_10_3390_math12203295
crossref_primary_10_3390_e25091343
Cites_doi 10.3390/en10010003
10.3390/en11040712
10.1049/iet-rpg.2014.0419
10.1016/j.ijforecast.2015.11.011
10.1023/A:1007379606734
10.1145/1519138.1519141
10.1109/TIE.2019.2928275
10.1162/neco.2006.18.7.1527
10.1016/j.apenergy.2016.08.108
10.1109/PESGM.2015.7286138
10.1561/9781601982957
10.3390/en12010164
10.1109/TSTE.2015.2434387
10.1038/nature16961
10.1109/TASL.2006.889790
10.1109/TSG.2018.2890809
ContentType Journal Article
Copyright 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2020 by the authors. 2020
Copyright_xml – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2020 by the authors. 2020
DBID AAYXX
CITATION
NPM
7TB
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
HCIFZ
KR7
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
DOA
DOI 10.3390/e22121355
DatabaseName CrossRef
PubMed
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
SciTech Collection (ProQuest)
Civil Engineering Abstracts
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
MEDLINE - Academic
CrossRef

PubMed

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 1099-4300
ExternalDocumentID oai_doaj_org_article_89d3ec287bb04dac90572fcd45301573
PMC7760282
33266198
10_3390_e22121355
Genre Journal Article
GrantInformation_xml – fundername: State Grid Henan Electric Power Company
  grantid: 5217L0190006
GroupedDBID 29G
2WC
5GY
5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ACIWK
ACUHS
ADBBV
AEGXH
AENEX
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
CS3
DU5
E3Z
ESX
F5P
GROUPED_DOAJ
GX1
HCIFZ
HH5
IAO
J9A
KQ8
L6V
M7S
MODMG
M~E
OK1
OVT
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
RNS
RPM
TR2
TUS
XSB
~8M
NPM
7TB
8FD
ABUWG
AZQEC
DWQXO
FR3
KR7
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c469t-2925e74d1380b851fa4bc4b53513a0b1b1bba272f81bdad41f48c8c176b043323
IEDL.DBID DOA
ISSN 1099-4300
IngestDate Wed Aug 27 01:31:17 EDT 2025
Thu Aug 21 13:50:30 EDT 2025
Fri Jul 11 11:29:30 EDT 2025
Fri Jul 25 12:08:31 EDT 2025
Thu Jan 02 22:57:59 EST 2025
Thu Apr 24 22:59:40 EDT 2025
Tue Jul 01 01:57:58 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords deep learning
multitask
heat and gas
energy forecasting for electricity
integrated energy system
industrial-park
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c469t-2925e74d1380b851fa4bc4b53513a0b1b1bba272f81bdad41f48c8c176b043323
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/89d3ec287bb04dac90572fcd45301573
PMID 33266198
PQID 2467300138
PQPubID 2032401
ParticipantIDs doaj_primary_oai_doaj_org_article_89d3ec287bb04dac90572fcd45301573
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7760282
proquest_miscellaneous_2466769772
proquest_journals_2467300138
pubmed_primary_33266198
crossref_primary_10_3390_e22121355
crossref_citationtrail_10_3390_e22121355
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20201130
PublicationDateYYYYMMDD 2020-11-30
PublicationDate_xml – month: 11
  year: 2020
  text: 20201130
  day: 30
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Entropy (Basel, Switzerland)
PublicationTitleAlternate Entropy (Basel)
PublicationYear 2020
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Erhan (ref_18) 2010; 11
Fooladi (ref_24) 2016; 10
Silver (ref_14) 2016; 529
Hong (ref_5) 2016; 32
ref_13
ref_11
ref_22
ref_10
ref_21
Caruana (ref_23) 1997; 28
Cui (ref_7) 2019; 10
ref_1
ref_19
ref_17
Gilanifar (ref_8) 2019; 67
Qiuye (ref_3) 2015; 35
Wang (ref_15) 2016; 182
Shiming (ref_2) 2015; 35
ref_9
Zhang (ref_16) 2015; 6
ref_4
Hinton (ref_20) 1960; 18
ref_6
Hori (ref_12) 2007; Volume 15
References_xml – volume: 35
  start-page: 3482
  year: 2015
  ident: ref_2
  article-title: Technical Forms and Key Technologies on Integrated energy system
  publication-title: Proc. CSEE
– ident: ref_17
  doi: 10.3390/en10010003
– ident: ref_4
– ident: ref_6
  doi: 10.3390/en11040712
– volume: 10
  start-page: 250
  year: 2016
  ident: ref_24
  article-title: Recognition and assessment of different factors which affect flicker in wind turbines
  publication-title: Renew. Power Gener. IET
  doi: 10.1049/iet-rpg.2014.0419
– volume: 32
  start-page: 914
  year: 2016
  ident: ref_5
  article-title: Probabilistic electric load forecasting: A tutorial review
  publication-title: Int. J. Forecast.
  doi: 10.1016/j.ijforecast.2015.11.011
– volume: 28
  start-page: 41
  year: 1997
  ident: ref_23
  article-title: Multitask Learning
  publication-title: Mach. Learn.
  doi: 10.1023/A:1007379606734
– ident: ref_11
– ident: ref_13
  doi: 10.1145/1519138.1519141
– volume: 67
  start-page: 5132
  year: 2019
  ident: ref_8
  article-title: Multi-task Bayesian spatiotemporal Gaussian processes for short-term load forecasting
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2019.2928275
– volume: 18
  start-page: 1527
  year: 1960
  ident: ref_20
  article-title: A fast learning algorithm for deep belief nets
  publication-title: Neural Comput.
  doi: 10.1162/neco.2006.18.7.1527
– volume: 182
  start-page: 80
  year: 2016
  ident: ref_15
  article-title: Deep belief network based deterministic and probabilistic wind speed forecasting approach
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2016.08.108
– ident: ref_10
  doi: 10.1109/PESGM.2015.7286138
– ident: ref_22
  doi: 10.1561/9781601982957
– ident: ref_9
  doi: 10.3390/en12010164
– volume: 6
  start-page: 1416
  year: 2015
  ident: ref_16
  article-title: Predictive Deep Boltzmann Machine for Multiperiod Wind Speed Forecasting
  publication-title: IEEE Trans. Sustain. Energy
  doi: 10.1109/TSTE.2015.2434387
– volume: 529
  start-page: 484
  year: 2016
  ident: ref_14
  article-title: Mastering the game of Go with deep neural networks and tree search
  publication-title: Nature
  doi: 10.1038/nature16961
– ident: ref_1
– ident: ref_19
– volume: Volume 15
  start-page: 1352
  year: 2007
  ident: ref_12
  article-title: Efficient WFST-Based One-Pass Decoding With On-The-Fly Hypothesis Rescoring in Extremely Large Vocabulary Continuous Speech Recognition
  publication-title: IEEE Transactions on Audio Speech & Language Processing
  doi: 10.1109/TASL.2006.889790
– volume: 11
  start-page: 625
  year: 2010
  ident: ref_18
  article-title: Why Does Unsupervised Pre-training Help Deep Learning?
  publication-title: J. Mach. Learn. Res.
– ident: ref_21
– volume: 35
  start-page: 4571
  year: 2015
  ident: ref_3
  article-title: The Optimization Control and Implementation for the Special Integrated energy system
  publication-title: Proc. CSEE
– volume: 10
  start-page: 5724
  year: 2019
  ident: ref_7
  article-title: Machine Learning-Based Anomaly Detection for Load Forecasting under Cyberattacks
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2018.2890809
SSID ssj0023216
Score 2.4052215
Snippet Different energy systems are closely connected with each other in industrial-park integrated energy system (IES). The energy demand forecasting has important...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1355
SubjectTerms Algorithms
Alternative energy sources
Artificial intelligence
Belief networks
Consumption
Deep learning
Economic forecasting
Electrical loads
Electricity
Electricity consumption
Electricity distribution
energy forecasting for electricity
Forecasting
heat and gas
industrial-park
integrated energy system
Integrated energy systems
Learning
Machine learning
Mathematical models
multitask
Natural gas
Neural networks
Voice recognition
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagvXBBrXgFCnIRBw6NunbsJD6hLmxZEFQIUam3aPxqV6Bk22wlfj5jx5t2qwrllHgiWR7PeD57_A0h70pg3klvc1cxBCjGuxyUCq8KhGFe1bEO2feTcn4qvp7Js7Th1qe0yrVPjI7adibskR9ytOginqt9WF7moWpUOF1NJTQekm10wTWCr-3p7OTHzxFyFZyVA59QgeD-0HEeKMzCvb5bq1Ak678vwrybKHlr5TneIY9TyEiPBh3vkgeufUL-zmL9moXBKPqAztGjHlBoLf0MPf3WgaWh5qaBPmQ10ykuVZZ2Lf3k3JIOd26h_00Tueo5XbT0poZHHm5C0y9rHglLZ_F-IB3IzZ-S0-PZr4_zPFVRyA1C31XOFZeuEhZHbqIxvvIgtBFaFpIVMNEMHw284h4DWAtWMC9qUxtWlTqSmxXPyFbbte4FoVJPJAdudA1MAMjaeQW61IBOygkFGXm_HtXGJIrxUOniT4NQIyigGRWQkbej6HLg1bhPaBpUMwoEKuz4obs6b5JlNbWyhTOofI39tWAURqDcGysk-i5ZFRnZWyu2SfbZNzezKSP7YzNaVjgugdZ111Em5P8i_MjI82EejD3BccHARuHf1cYM2ejqZku7uIjs3VVVBpz78v_dekUe8YDsI8nkHtlaXV271xj-rPSbNMf_ASnyB3Q
  priority: 102
  providerName: ProQuest
Title Electricity, Heat, and Gas Load Forecasting Based on Deep Multitask Learning in Industrial-Park Integrated Energy System
URI https://www.ncbi.nlm.nih.gov/pubmed/33266198
https://www.proquest.com/docview/2467300138
https://www.proquest.com/docview/2466769772
https://pubmed.ncbi.nlm.nih.gov/PMC7760282
https://doaj.org/article/89d3ec287bb04dac90572fcd45301573
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVKe-GCimghUFZDxYFDo64dO4mPLOxHK6gqRKW9ReOPwAqUrbpbiZ_P2MmGXVSJC4oUKbEjOfbY8548fsPY2xx57VXtUl9wIii29ilqHR41SstrXcY8ZJ-v8tmNvJyr-VaqrxAT1soDtx13XmqXeUu43pihdGg1AQxRWycVmaYqos4n-bwNmeqoViZ43uoIZUTqz70QQbosnOfb8j5RpP8hZPl3gOSWx5kcsicdVIT3bROfsj3fPGO_xjFvzcISej6DGa2kZ4CNgymu4NMSHYRcmxZXIZoZRuSiHCwb-Oj9LbRnbXH1AzpR1W-waOBP7o40nICGi41-hINxPBcIraj5EbuZjL9-mKVd9oTUEuVdp0IL5QvpeFYODeGqGqWx0qhM8QyHhtNlUFBfEnB16CSvZWlLy4vcRFGz7JjtN8vGv2CgzFAJFNaUyCWiKn2t0eQGaXHyUmPC3m16tbKdtHjIcPGzIooRBqDqByBhp33V21ZP46FKozA0fYUggR1fkGFUnWFU_zKMhJ1sBrbq5uWqEuQXsrg7m7A3fTHNqLBNgo1f3sc6Ie6XaEfCnrd20LeE-oUAjaavix0L2Wnqbkmz-B5Vu4siD_z25f_4t1fssQi8P0pQnrD99d29f03gaG0G7FE5mQ7YwWh8df1lEGcF3adz_ht_RRHG
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELYoPbSXiqqvFNq6VSv1QMTGsZP4gKpSdtktCyeQuKXjR2DVKlnIIto_1d_I2HnAVqg3tJds7ESW5-GZ2PN9hHxMICqsKExo0wgTFF3YEKR0fyVwHRUy8zxkB4fJ-Jh_PxEnK-RvVwvjjlV2PtE7alNp9418i6FFx35f7cv8PHSsUW53taPQaNRi3_65wpSt3p7sonw_MTYaHn0bhy2rQKgxFVyETDJhU27wTQOF8UYBXGmuRCyiGAYqwp8ClrICAzoDhkcFz3SmozRRHuwrxvc-IA_xUjqLykZ7fYIXsyhp0IuwcbBlGXOAaa6K8Naa56kB7opn_z2WeWudG62RJ22ASr82GvWUrNjyGfk99Gw5M40x-yYdo__epFAaugc1nVZgqGP41FC7M9R0BxdGQ6uS7lo7p02FL9Q_aQvlekpnJb1hDAld3TWddKgVhg59NSJtoNSfk-N7md0XZLWsSvuKUKEGggHTKoOIA4jMFhJUogBdouUSAvK5m9Vct4DmjlfjV46JjRNA3gsgIB_6rvMGxeOuTjtONH0HB7ztb1QXp3lrx3kmTWw1ppkKx2tAS4x3WaENF-gpRRoHZKMTbN56gzq_0d2AvO-b0Y7d5gyUtrr0fdxpY0x2AvKy0YN-JDgvGEZJfDpd0pCloS63lLMzjxWeponLql__f1jvyKPx0cE0n04O99fJY-a-KXh4yw2yuri4tG8w8Fqot17bKflx3-Z1DVFJQhQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VVEJcEIiXocCCQOJQK_b6uQeECElIaIkqRKXezOyrRK3sUKcC_hq_jtn1ow2quFU-xd5Yq53Hzued-YaQVymERidG-ToLEaBIo33g3P7kEMvQ8Nz1Ifu8SGeH8aej5GiL_OlqYWxaZecTnaNWlbTfyIcMLTpy52pD06ZFHIyn71Y_fNtByp60du00GhXZ079_Inyr387HKOvXjE0nXz_M_LbDgC8RFq59xlmis1jhWwOBsYeBWMhYJFESRhCIEC8BLGMGgzsFKg5NnMtchlkqHPFXhO-9QbYzREXBgGyPJouDLz3ci1iYNlxGUcSDoWbM0qfZmsJLO6BrFHBVdPtvkualXW96h9xuw1X6vtGvu2RLl_fIr4nrnbOUGMHv0hl6810KpaIfoab7FShq-31KqG1GNR3hNqloVdKx1iva1PtCfUJbYtdjuizpRf8Q31Zh03nHYaHoxNUm0oZY_T45vJb1fUAGZVXqR4QmIkgYMClyCGOAJNeGg0gFoIPUMQePvOlWtZAtvbntsnFaIMyxAih6AXjkZT901XB6XDVoZEXTD7A03O5GdXZctFZd5FxFWiLoFDhfBZJj9MuMVHGCfjPJIo_sdIItWt9QFxea7JEX_WO0antUA6Wuzt0Ym3uM0McjDxs96GeC64JBFcd_ZxsasjHVzSfl8rtjDs-y1GLsx_-f1nNyE02r2J8v9p6QW8x-YHBclztksD47108xCluLZ626U_Ltui3sL5A1R6Y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electricity%2C+Heat%2C+and+Gas+Load+Forecasting+Based+on+Deep+Multitask+Learning+in+Industrial-Park+Integrated+Energy+System&rft.jtitle=Entropy+%28Basel%2C+Switzerland%29&rft.au=Zhang%2C+Linjuan&rft.au=Shi%2C+Jiaqi&rft.au=Wang%2C+Lili&rft.au=Xu%2C+Changqing&rft.date=2020-11-30&rft.pub=MDPI&rft.eissn=1099-4300&rft.volume=22&rft.issue=12&rft_id=info:doi/10.3390%2Fe22121355&rft_id=info%3Apmid%2F33266198&rft.externalDocID=PMC7760282
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1099-4300&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1099-4300&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1099-4300&client=summon