Electricity, Heat, and Gas Load Forecasting Based on Deep Multitask Learning in Industrial-Park Integrated Energy System
Different energy systems are closely connected with each other in industrial-park integrated energy system (IES). The energy demand forecasting has important impact on IES dispatching and planning. This paper proposes an approach of short-term energy forecasting for electricity, heat, and gas by emp...
Saved in:
Published in | Entropy (Basel, Switzerland) Vol. 22; no. 12; p. 1355 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
30.11.2020
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Different energy systems are closely connected with each other in industrial-park integrated energy system (IES). The energy demand forecasting has important impact on IES dispatching and planning. This paper proposes an approach of short-term energy forecasting for electricity, heat, and gas by employing deep multitask learning whose structure is constructed by deep belief network (DBN) and multitask regression layer. The DBN can extract abstract and effective characteristics in an unsupervised fashion, and the multitask regression layer above the DBN is used for supervised prediction. Then, subject to condition of practical demand and model integrity, the whole energy forecasting model is introduced, including preprocessing, normalization, input properties, training stage, and evaluating indicator. Finally, the validity of the algorithm and the accuracy of the energy forecasts for an industrial-park IES system are verified through the simulations using actual operating data from load system. The positive results turn out that the deep multitask learning has great prospects for load forecast. |
---|---|
AbstractList | Different energy systems are closely connected with each other in industrial-park integrated energy system (IES). The energy demand forecasting has important impact on IES dispatching and planning. This paper proposes an approach of short-term energy forecasting for electricity, heat, and gas by employing deep multitask learning whose structure is constructed by deep belief network (DBN) and multitask regression layer. The DBN can extract abstract and effective characteristics in an unsupervised fashion, and the multitask regression layer above the DBN is used for supervised prediction. Then, subject to condition of practical demand and model integrity, the whole energy forecasting model is introduced, including preprocessing, normalization, input properties, training stage, and evaluating indicator. Finally, the validity of the algorithm and the accuracy of the energy forecasts for an industrial-park IES system are verified through the simulations using actual operating data from load system. The positive results turn out that the deep multitask learning has great prospects for load forecast. Different energy systems are closely connected with each other in industrial-park integrated energy system (IES). The energy demand forecasting has important impact on IES dispatching and planning. This paper proposes an approach of short-term energy forecasting for electricity, heat, and gas by employing deep multitask learning whose structure is constructed by deep belief network (DBN) and multitask regression layer. The DBN can extract abstract and effective characteristics in an unsupervised fashion, and the multitask regression layer above the DBN is used for supervised prediction. Then, subject to condition of practical demand and model integrity, the whole energy forecasting model is introduced, including preprocessing, normalization, input properties, training stage, and evaluating indicator. Finally, the validity of the algorithm and the accuracy of the energy forecasts for an industrial-park IES system are verified through the simulations using actual operating data from load system. The positive results turn out that the deep multitask learning has great prospects for load forecast.Different energy systems are closely connected with each other in industrial-park integrated energy system (IES). The energy demand forecasting has important impact on IES dispatching and planning. This paper proposes an approach of short-term energy forecasting for electricity, heat, and gas by employing deep multitask learning whose structure is constructed by deep belief network (DBN) and multitask regression layer. The DBN can extract abstract and effective characteristics in an unsupervised fashion, and the multitask regression layer above the DBN is used for supervised prediction. Then, subject to condition of practical demand and model integrity, the whole energy forecasting model is introduced, including preprocessing, normalization, input properties, training stage, and evaluating indicator. Finally, the validity of the algorithm and the accuracy of the energy forecasts for an industrial-park IES system are verified through the simulations using actual operating data from load system. The positive results turn out that the deep multitask learning has great prospects for load forecast. |
Author | Xu, Changqing Zhang, Linjuan Wang, Lili Shi, Jiaqi |
AuthorAffiliation | 1 State Grid Henan Economic Research Institute, Zhengzhou 450052, China; zlinj@163.com (L.Z.); wanglili11@ha.sgcc.com.cn (L.W.); xuchangqing@ha.sgcc.com.cn (C.X.) 2 School of Electrical and Electronic Engineering, North China Electric Power University, Changping District, Beijing 102206, China |
AuthorAffiliation_xml | – name: 2 School of Electrical and Electronic Engineering, North China Electric Power University, Changping District, Beijing 102206, China – name: 1 State Grid Henan Economic Research Institute, Zhengzhou 450052, China; zlinj@163.com (L.Z.); wanglili11@ha.sgcc.com.cn (L.W.); xuchangqing@ha.sgcc.com.cn (C.X.) |
Author_xml | – sequence: 1 givenname: Linjuan surname: Zhang fullname: Zhang, Linjuan – sequence: 2 givenname: Jiaqi surname: Shi fullname: Shi, Jiaqi – sequence: 3 givenname: Lili surname: Wang fullname: Wang, Lili – sequence: 4 givenname: Changqing surname: Xu fullname: Xu, Changqing |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33266198$$D View this record in MEDLINE/PubMed |
BookMark | eNptkstuEzEUhkeoiF5gwQsgS2yo1FBfZsYzm0pQ0jZSEEjA2jpjnwSnEzvYnoq8PR5SorZCXvj2_b_O7bg4cN5hUbxm9L0QLT1HzhlnoqqeFUeMtu2kFJQePDgfFscxrijlgrP6RXEoBK9r1jZHxe9pjzoFq23anpEbhHRGwBlyDZHMPRhy5QNqiMm6JfkIEQ3xjnxC3JDPQ59sgnhL5gjBjYB1ZObMELMh9JOvEG7zPeEyQMrCqcOw3JJv25hw_bJ4voA-4qv7_aT4cTX9fnkzmX-5nl1-mE90WbdpwlteoSwNEw3tmootoOx02VWiYgJox_LqgEu-aFhnwJRsUTa60UzWHS1zmuKkmO18jYeV2gS7hrBVHqz6--DDUkFIVveomtYI1LyRXdYa0C2tsrE2ZSUoq6TIXhc7r83QrdFodClA_8j08Y-zP9XS3ykpa8qbMZh39wbB_xowJrW2UWPfg0M_RMXLupZ1K-WIvn2CrvwQXC7VSMnc1FySTL15GNE-lH8NzsDpDtDBxxhwsUcYVePwqP3wZPb8CZunApL1YzK2_4_iD0_gxF4 |
CitedBy_id | crossref_primary_10_3390_en14237859 crossref_primary_10_1016_j_enbuild_2021_111614 crossref_primary_10_1016_j_enbuild_2022_112666 crossref_primary_10_1049_gtd2_12362 crossref_primary_10_1109_TII_2024_3392278 crossref_primary_10_1016_j_apenergy_2024_124166 crossref_primary_10_1016_j_apenergy_2023_121177 crossref_primary_10_1007_s10489_022_04054_6 crossref_primary_10_1109_TSG_2022_3166600 crossref_primary_10_1016_j_asej_2024_102724 crossref_primary_10_1016_j_apenergy_2022_119269 crossref_primary_10_3390_electronics11213481 crossref_primary_10_1016_j_egyai_2024_100344 crossref_primary_10_1016_j_energy_2022_124967 crossref_primary_10_1016_j_nlp_2024_100076 crossref_primary_10_1109_TIM_2024_3522628 crossref_primary_10_1049_gtd2_13083 crossref_primary_10_3390_e26040331 crossref_primary_10_1093_ijlct_ctae143 crossref_primary_10_1016_j_enbuild_2024_113964 crossref_primary_10_3390_electronics10020135 crossref_primary_10_3389_fenrg_2023_1296800 crossref_primary_10_1134_S1054661824700391 crossref_primary_10_1016_j_ijhydene_2023_01_371 crossref_primary_10_3390_en16093697 crossref_primary_10_1016_j_apenergy_2023_122159 crossref_primary_10_3389_fenrg_2022_1008216 crossref_primary_10_1016_j_apenergy_2021_118362 crossref_primary_10_3390_math12203295 crossref_primary_10_3390_e25091343 |
Cites_doi | 10.3390/en10010003 10.3390/en11040712 10.1049/iet-rpg.2014.0419 10.1016/j.ijforecast.2015.11.011 10.1023/A:1007379606734 10.1145/1519138.1519141 10.1109/TIE.2019.2928275 10.1162/neco.2006.18.7.1527 10.1016/j.apenergy.2016.08.108 10.1109/PESGM.2015.7286138 10.1561/9781601982957 10.3390/en12010164 10.1109/TSTE.2015.2434387 10.1038/nature16961 10.1109/TASL.2006.889790 10.1109/TSG.2018.2890809 |
ContentType | Journal Article |
Copyright | 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2020 by the authors. 2020 |
Copyright_xml | – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2020 by the authors. 2020 |
DBID | AAYXX CITATION NPM 7TB 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO FR3 HCIFZ KR7 L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 5PM DOA |
DOI | 10.3390/e22121355 |
DatabaseName | CrossRef PubMed Mechanical & Transportation Engineering Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central Technology Collection ProQuest One ProQuest Central Korea Engineering Research Database SciTech Collection (ProQuest) Civil Engineering Abstracts ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic CrossRef PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 1099-4300 |
ExternalDocumentID | oai_doaj_org_article_89d3ec287bb04dac90572fcd45301573 PMC7760282 33266198 10_3390_e22121355 |
Genre | Journal Article |
GrantInformation_xml | – fundername: State Grid Henan Electric Power Company grantid: 5217L0190006 |
GroupedDBID | 29G 2WC 5GY 5VS 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ACIWK ACUHS ADBBV AEGXH AENEX AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR BGLVJ CCPQU CITATION CS3 DU5 E3Z ESX F5P GROUPED_DOAJ GX1 HCIFZ HH5 IAO J9A KQ8 L6V M7S MODMG M~E OK1 OVT PGMZT PHGZM PHGZT PIMPY PROAC PTHSS RNS RPM TR2 TUS XSB ~8M NPM 7TB 8FD ABUWG AZQEC DWQXO FR3 KR7 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c469t-2925e74d1380b851fa4bc4b53513a0b1b1bba272f81bdad41f48c8c176b043323 |
IEDL.DBID | DOA |
ISSN | 1099-4300 |
IngestDate | Wed Aug 27 01:31:17 EDT 2025 Thu Aug 21 13:50:30 EDT 2025 Fri Jul 11 11:29:30 EDT 2025 Fri Jul 25 12:08:31 EDT 2025 Thu Jan 02 22:57:59 EST 2025 Thu Apr 24 22:59:40 EDT 2025 Tue Jul 01 01:57:58 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | deep learning multitask heat and gas energy forecasting for electricity integrated energy system industrial-park |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c469t-2925e74d1380b851fa4bc4b53513a0b1b1bba272f81bdad41f48c8c176b043323 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://doaj.org/article/89d3ec287bb04dac90572fcd45301573 |
PMID | 33266198 |
PQID | 2467300138 |
PQPubID | 2032401 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_89d3ec287bb04dac90572fcd45301573 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7760282 proquest_miscellaneous_2466769772 proquest_journals_2467300138 pubmed_primary_33266198 crossref_primary_10_3390_e22121355 crossref_citationtrail_10_3390_e22121355 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20201130 |
PublicationDateYYYYMMDD | 2020-11-30 |
PublicationDate_xml | – month: 11 year: 2020 text: 20201130 day: 30 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Entropy (Basel, Switzerland) |
PublicationTitleAlternate | Entropy (Basel) |
PublicationYear | 2020 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Erhan (ref_18) 2010; 11 Fooladi (ref_24) 2016; 10 Silver (ref_14) 2016; 529 Hong (ref_5) 2016; 32 ref_13 ref_11 ref_22 ref_10 ref_21 Caruana (ref_23) 1997; 28 Cui (ref_7) 2019; 10 ref_1 ref_19 ref_17 Gilanifar (ref_8) 2019; 67 Qiuye (ref_3) 2015; 35 Wang (ref_15) 2016; 182 Shiming (ref_2) 2015; 35 ref_9 Zhang (ref_16) 2015; 6 ref_4 Hinton (ref_20) 1960; 18 ref_6 Hori (ref_12) 2007; Volume 15 |
References_xml | – volume: 35 start-page: 3482 year: 2015 ident: ref_2 article-title: Technical Forms and Key Technologies on Integrated energy system publication-title: Proc. CSEE – ident: ref_17 doi: 10.3390/en10010003 – ident: ref_4 – ident: ref_6 doi: 10.3390/en11040712 – volume: 10 start-page: 250 year: 2016 ident: ref_24 article-title: Recognition and assessment of different factors which affect flicker in wind turbines publication-title: Renew. Power Gener. IET doi: 10.1049/iet-rpg.2014.0419 – volume: 32 start-page: 914 year: 2016 ident: ref_5 article-title: Probabilistic electric load forecasting: A tutorial review publication-title: Int. J. Forecast. doi: 10.1016/j.ijforecast.2015.11.011 – volume: 28 start-page: 41 year: 1997 ident: ref_23 article-title: Multitask Learning publication-title: Mach. Learn. doi: 10.1023/A:1007379606734 – ident: ref_11 – ident: ref_13 doi: 10.1145/1519138.1519141 – volume: 67 start-page: 5132 year: 2019 ident: ref_8 article-title: Multi-task Bayesian spatiotemporal Gaussian processes for short-term load forecasting publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2019.2928275 – volume: 18 start-page: 1527 year: 1960 ident: ref_20 article-title: A fast learning algorithm for deep belief nets publication-title: Neural Comput. doi: 10.1162/neco.2006.18.7.1527 – volume: 182 start-page: 80 year: 2016 ident: ref_15 article-title: Deep belief network based deterministic and probabilistic wind speed forecasting approach publication-title: Appl. Energy doi: 10.1016/j.apenergy.2016.08.108 – ident: ref_10 doi: 10.1109/PESGM.2015.7286138 – ident: ref_22 doi: 10.1561/9781601982957 – ident: ref_9 doi: 10.3390/en12010164 – volume: 6 start-page: 1416 year: 2015 ident: ref_16 article-title: Predictive Deep Boltzmann Machine for Multiperiod Wind Speed Forecasting publication-title: IEEE Trans. Sustain. Energy doi: 10.1109/TSTE.2015.2434387 – volume: 529 start-page: 484 year: 2016 ident: ref_14 article-title: Mastering the game of Go with deep neural networks and tree search publication-title: Nature doi: 10.1038/nature16961 – ident: ref_1 – ident: ref_19 – volume: Volume 15 start-page: 1352 year: 2007 ident: ref_12 article-title: Efficient WFST-Based One-Pass Decoding With On-The-Fly Hypothesis Rescoring in Extremely Large Vocabulary Continuous Speech Recognition publication-title: IEEE Transactions on Audio Speech & Language Processing doi: 10.1109/TASL.2006.889790 – volume: 11 start-page: 625 year: 2010 ident: ref_18 article-title: Why Does Unsupervised Pre-training Help Deep Learning? publication-title: J. Mach. Learn. Res. – ident: ref_21 – volume: 35 start-page: 4571 year: 2015 ident: ref_3 article-title: The Optimization Control and Implementation for the Special Integrated energy system publication-title: Proc. CSEE – volume: 10 start-page: 5724 year: 2019 ident: ref_7 article-title: Machine Learning-Based Anomaly Detection for Load Forecasting under Cyberattacks publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2018.2890809 |
SSID | ssj0023216 |
Score | 2.4052215 |
Snippet | Different energy systems are closely connected with each other in industrial-park integrated energy system (IES). The energy demand forecasting has important... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1355 |
SubjectTerms | Algorithms Alternative energy sources Artificial intelligence Belief networks Consumption Deep learning Economic forecasting Electrical loads Electricity Electricity consumption Electricity distribution energy forecasting for electricity Forecasting heat and gas industrial-park integrated energy system Integrated energy systems Learning Machine learning Mathematical models multitask Natural gas Neural networks Voice recognition |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagvXBBrXgFCnIRBw6NunbsJD6hLmxZEFQIUam3aPxqV6Bk22wlfj5jx5t2qwrllHgiWR7PeD57_A0h70pg3klvc1cxBCjGuxyUCq8KhGFe1bEO2feTcn4qvp7Js7Th1qe0yrVPjI7adibskR9ytOginqt9WF7moWpUOF1NJTQekm10wTWCr-3p7OTHzxFyFZyVA59QgeD-0HEeKMzCvb5bq1Ak678vwrybKHlr5TneIY9TyEiPBh3vkgeufUL-zmL9moXBKPqAztGjHlBoLf0MPf3WgaWh5qaBPmQ10ykuVZZ2Lf3k3JIOd26h_00Tueo5XbT0poZHHm5C0y9rHglLZ_F-IB3IzZ-S0-PZr4_zPFVRyA1C31XOFZeuEhZHbqIxvvIgtBFaFpIVMNEMHw284h4DWAtWMC9qUxtWlTqSmxXPyFbbte4FoVJPJAdudA1MAMjaeQW61IBOygkFGXm_HtXGJIrxUOniT4NQIyigGRWQkbej6HLg1bhPaBpUMwoEKuz4obs6b5JlNbWyhTOofI39tWAURqDcGysk-i5ZFRnZWyu2SfbZNzezKSP7YzNaVjgugdZ111Em5P8i_MjI82EejD3BccHARuHf1cYM2ejqZku7uIjs3VVVBpz78v_dekUe8YDsI8nkHtlaXV271xj-rPSbNMf_ASnyB3Q priority: 102 providerName: ProQuest |
Title | Electricity, Heat, and Gas Load Forecasting Based on Deep Multitask Learning in Industrial-Park Integrated Energy System |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33266198 https://www.proquest.com/docview/2467300138 https://www.proquest.com/docview/2466769772 https://pubmed.ncbi.nlm.nih.gov/PMC7760282 https://doaj.org/article/89d3ec287bb04dac90572fcd45301573 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVKe-GCimghUFZDxYFDo64dO4mPLOxHK6gqRKW9ReOPwAqUrbpbiZ_P2MmGXVSJC4oUKbEjOfbY8548fsPY2xx57VXtUl9wIii29ilqHR41SstrXcY8ZJ-v8tmNvJyr-VaqrxAT1soDtx13XmqXeUu43pihdGg1AQxRWycVmaYqos4n-bwNmeqoViZ43uoIZUTqz70QQbosnOfb8j5RpP8hZPl3gOSWx5kcsicdVIT3bROfsj3fPGO_xjFvzcISej6DGa2kZ4CNgymu4NMSHYRcmxZXIZoZRuSiHCwb-Oj9LbRnbXH1AzpR1W-waOBP7o40nICGi41-hINxPBcIraj5EbuZjL9-mKVd9oTUEuVdp0IL5QvpeFYODeGqGqWx0qhM8QyHhtNlUFBfEnB16CSvZWlLy4vcRFGz7JjtN8vGv2CgzFAJFNaUyCWiKn2t0eQGaXHyUmPC3m16tbKdtHjIcPGzIooRBqDqByBhp33V21ZP46FKozA0fYUggR1fkGFUnWFU_zKMhJ1sBrbq5uWqEuQXsrg7m7A3fTHNqLBNgo1f3sc6Ie6XaEfCnrd20LeE-oUAjaavix0L2Wnqbkmz-B5Vu4siD_z25f_4t1fssQi8P0pQnrD99d29f03gaG0G7FE5mQ7YwWh8df1lEGcF3adz_ht_RRHG |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELYoPbSXiqqvFNq6VSv1QMTGsZP4gKpSdtktCyeQuKXjR2DVKlnIIto_1d_I2HnAVqg3tJds7ESW5-GZ2PN9hHxMICqsKExo0wgTFF3YEKR0fyVwHRUy8zxkB4fJ-Jh_PxEnK-RvVwvjjlV2PtE7alNp9418i6FFx35f7cv8PHSsUW53taPQaNRi3_65wpSt3p7sonw_MTYaHn0bhy2rQKgxFVyETDJhU27wTQOF8UYBXGmuRCyiGAYqwp8ClrICAzoDhkcFz3SmozRRHuwrxvc-IA_xUjqLykZ7fYIXsyhp0IuwcbBlGXOAaa6K8Naa56kB7opn_z2WeWudG62RJ22ASr82GvWUrNjyGfk99Gw5M40x-yYdo__epFAaugc1nVZgqGP41FC7M9R0BxdGQ6uS7lo7p02FL9Q_aQvlekpnJb1hDAld3TWddKgVhg59NSJtoNSfk-N7md0XZLWsSvuKUKEGggHTKoOIA4jMFhJUogBdouUSAvK5m9Vct4DmjlfjV46JjRNA3gsgIB_6rvMGxeOuTjtONH0HB7ztb1QXp3lrx3kmTWw1ppkKx2tAS4x3WaENF-gpRRoHZKMTbN56gzq_0d2AvO-b0Y7d5gyUtrr0fdxpY0x2AvKy0YN-JDgvGEZJfDpd0pCloS63lLMzjxWeponLql__f1jvyKPx0cE0n04O99fJY-a-KXh4yw2yuri4tG8w8Fqot17bKflx3-Z1DVFJQhQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VVEJcEIiXocCCQOJQK_b6uQeECElIaIkqRKXezOyrRK3sUKcC_hq_jtn1ow2quFU-xd5Yq53Hzued-YaQVymERidG-ToLEaBIo33g3P7kEMvQ8Nz1Ifu8SGeH8aej5GiL_OlqYWxaZecTnaNWlbTfyIcMLTpy52pD06ZFHIyn71Y_fNtByp60du00GhXZ079_Inyr387HKOvXjE0nXz_M_LbDgC8RFq59xlmis1jhWwOBsYeBWMhYJFESRhCIEC8BLGMGgzsFKg5NnMtchlkqHPFXhO-9QbYzREXBgGyPJouDLz3ci1iYNlxGUcSDoWbM0qfZmsJLO6BrFHBVdPtvkualXW96h9xuw1X6vtGvu2RLl_fIr4nrnbOUGMHv0hl6810KpaIfoab7FShq-31KqG1GNR3hNqloVdKx1iva1PtCfUJbYtdjuizpRf8Q31Zh03nHYaHoxNUm0oZY_T45vJb1fUAGZVXqR4QmIkgYMClyCGOAJNeGg0gFoIPUMQePvOlWtZAtvbntsnFaIMyxAih6AXjkZT901XB6XDVoZEXTD7A03O5GdXZctFZd5FxFWiLoFDhfBZJj9MuMVHGCfjPJIo_sdIItWt9QFxea7JEX_WO0antUA6Wuzt0Ym3uM0McjDxs96GeC64JBFcd_ZxsasjHVzSfl8rtjDs-y1GLsx_-f1nNyE02r2J8v9p6QW8x-YHBclztksD47108xCluLZ626U_Ltui3sL5A1R6Y |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electricity%2C+Heat%2C+and+Gas+Load+Forecasting+Based+on+Deep+Multitask+Learning+in+Industrial-Park+Integrated+Energy+System&rft.jtitle=Entropy+%28Basel%2C+Switzerland%29&rft.au=Zhang%2C+Linjuan&rft.au=Shi%2C+Jiaqi&rft.au=Wang%2C+Lili&rft.au=Xu%2C+Changqing&rft.date=2020-11-30&rft.pub=MDPI&rft.eissn=1099-4300&rft.volume=22&rft.issue=12&rft_id=info:doi/10.3390%2Fe22121355&rft_id=info%3Apmid%2F33266198&rft.externalDocID=PMC7760282 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1099-4300&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1099-4300&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1099-4300&client=summon |