Native Wolbachia infection and larval competition stress shape fitness and West Nile virus infection in Culex quinquefasciatus mosquitoes

transinfections established in key mosquito vectors, including are typically associated with pathogen blocking-reduced susceptibility to infection with key pathogens and reduced likelihood those pathogens are transmitted to new hosts. Host-symbiont-virus interactions are less well understood in mosq...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in microbiology Vol. 14; p. 1138476
Main Authors Alomar, Abdullah A., Pérez-Ramos, Daniel W., Kim, Dongmin, Kendziorski, Natalie L., Eastmond, Bradley H., Alto, Barry W., Caragata, Eric P.
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 15.03.2023
Subjects
Online AccessGet full text
ISSN1664-302X
1664-302X
DOI10.3389/fmicb.2023.1138476

Cover

Abstract transinfections established in key mosquito vectors, including are typically associated with pathogen blocking-reduced susceptibility to infection with key pathogens and reduced likelihood those pathogens are transmitted to new hosts. Host-symbiont-virus interactions are less well understood in mosquitoes like , which naturally harbor , with pathogen blocking observed in some populations but not others, potentially due to innate differences in their load. In nature, mosquito larvae are often subject to developmental stresses associated with larval competition, which can lead to reduced body size and differential susceptibility to arbovirus infection. In this study, we sought to understand whether competition stress and infection in combine to impact host fitness and susceptibility to infection with West Nile virus. We reared -infected and uninfected larvae under three competition stress levels, increasing larval density without increasing the amount of food supplied. We then monitored larval development and survival, measured wing length and quantified density in adults, and then challenged mosquitoes from each treatment group orally with West Nile virus. We observed that high competition stress extended development time, decreased the likelihood of eclosion, decreased body size, and increased susceptibility to West Nile virus (WNV) infection. We also observed that infection reduced WNV load under low competition stress, and significantly improved the rate of survival for larval reared under higher competition stress. Consequently, our data suggest that native infection in has differential consequences for host fitness and susceptibility to WNV infection depending on competition stress.
AbstractList IntroductionWolbachia transinfections established in key mosquito vectors, including Aedes aegypti are typically associated with pathogen blocking—reduced susceptibility to infection with key pathogens and reduced likelihood those pathogens are transmitted to new hosts. Host-symbiont-virus interactions are less well understood in mosquitoes like Culex quinquefasciatus, which naturally harbor Wolbachia, with pathogen blocking observed in some populations but not others, potentially due to innate differences in their Wolbachia load. In nature, mosquito larvae are often subject to developmental stresses associated with larval competition, which can lead to reduced body size and differential susceptibility to arbovirus infection.MethodsIn this study, we sought to understand whether competition stress and Wolbachia infection in Cx. quinquefasciatus combine to impact host fitness and susceptibility to infection with West Nile virus. We reared Wolbachia-infected and uninfected Cx. quinquefasciatus larvae under three competition stress levels, increasing larval density without increasing the amount of food supplied. We then monitored larval development and survival, measured wing length and quantified Wolbachia density in adults, and then challenged mosquitoes from each treatment group orally with West Nile virus.Results and DiscussionWe observed that high competition stress extended development time, decreased the likelihood of eclosion, decreased body size, and increased susceptibility to West Nile virus (WNV) infection. We also observed that Wolbachia infection reduced WNV load under low competition stress, and significantly improved the rate of survival for larval reared under higher competition stress. Consequently, our data suggest that native Wolbachia infection in Cx. quinquefasciatus has differential consequences for host fitness and susceptibility to WNV infection depending on competition stress.
transinfections established in key mosquito vectors, including are typically associated with pathogen blocking-reduced susceptibility to infection with key pathogens and reduced likelihood those pathogens are transmitted to new hosts. Host-symbiont-virus interactions are less well understood in mosquitoes like , which naturally harbor , with pathogen blocking observed in some populations but not others, potentially due to innate differences in their load. In nature, mosquito larvae are often subject to developmental stresses associated with larval competition, which can lead to reduced body size and differential susceptibility to arbovirus infection. In this study, we sought to understand whether competition stress and infection in combine to impact host fitness and susceptibility to infection with West Nile virus. We reared -infected and uninfected larvae under three competition stress levels, increasing larval density without increasing the amount of food supplied. We then monitored larval development and survival, measured wing length and quantified density in adults, and then challenged mosquitoes from each treatment group orally with West Nile virus. We observed that high competition stress extended development time, decreased the likelihood of eclosion, decreased body size, and increased susceptibility to West Nile virus (WNV) infection. We also observed that infection reduced WNV load under low competition stress, and significantly improved the rate of survival for larval reared under higher competition stress. Consequently, our data suggest that native infection in has differential consequences for host fitness and susceptibility to WNV infection depending on competition stress.
Wolbachia transinfections established in key mosquito vectors, including Aedes aegypti are typically associated with pathogen blocking-reduced susceptibility to infection with key pathogens and reduced likelihood those pathogens are transmitted to new hosts. Host-symbiont-virus interactions are less well understood in mosquitoes like Culex quinquefasciatus, which naturally harbor Wolbachia, with pathogen blocking observed in some populations but not others, potentially due to innate differences in their Wolbachia load. In nature, mosquito larvae are often subject to developmental stresses associated with larval competition, which can lead to reduced body size and differential susceptibility to arbovirus infection.IntroductionWolbachia transinfections established in key mosquito vectors, including Aedes aegypti are typically associated with pathogen blocking-reduced susceptibility to infection with key pathogens and reduced likelihood those pathogens are transmitted to new hosts. Host-symbiont-virus interactions are less well understood in mosquitoes like Culex quinquefasciatus, which naturally harbor Wolbachia, with pathogen blocking observed in some populations but not others, potentially due to innate differences in their Wolbachia load. In nature, mosquito larvae are often subject to developmental stresses associated with larval competition, which can lead to reduced body size and differential susceptibility to arbovirus infection.In this study, we sought to understand whether competition stress and Wolbachia infection in Cx. quinquefasciatus combine to impact host fitness and susceptibility to infection with West Nile virus. We reared Wolbachia-infected and uninfected Cx. quinquefasciatus larvae under three competition stress levels, increasing larval density without increasing the amount of food supplied. We then monitored larval development and survival, measured wing length and quantified Wolbachia density in adults, and then challenged mosquitoes from each treatment group orally with West Nile virus.MethodsIn this study, we sought to understand whether competition stress and Wolbachia infection in Cx. quinquefasciatus combine to impact host fitness and susceptibility to infection with West Nile virus. We reared Wolbachia-infected and uninfected Cx. quinquefasciatus larvae under three competition stress levels, increasing larval density without increasing the amount of food supplied. We then monitored larval development and survival, measured wing length and quantified Wolbachia density in adults, and then challenged mosquitoes from each treatment group orally with West Nile virus.We observed that high competition stress extended development time, decreased the likelihood of eclosion, decreased body size, and increased susceptibility to West Nile virus (WNV) infection. We also observed that Wolbachia infection reduced WNV load under low competition stress, and significantly improved the rate of survival for larval reared under higher competition stress. Consequently, our data suggest that native Wolbachia infection in Cx. quinquefasciatus has differential consequences for host fitness and susceptibility to WNV infection depending on competition stress.Results and DiscussionWe observed that high competition stress extended development time, decreased the likelihood of eclosion, decreased body size, and increased susceptibility to West Nile virus (WNV) infection. We also observed that Wolbachia infection reduced WNV load under low competition stress, and significantly improved the rate of survival for larval reared under higher competition stress. Consequently, our data suggest that native Wolbachia infection in Cx. quinquefasciatus has differential consequences for host fitness and susceptibility to WNV infection depending on competition stress.
Author Eastmond, Bradley H.
Caragata, Eric P.
Kendziorski, Natalie L.
Alto, Barry W.
Pérez-Ramos, Daniel W.
Kim, Dongmin
Alomar, Abdullah A.
AuthorAffiliation Florida Medical Entomology Laboratory, Department of Entomology and Nematology, Institute of Food and Agricultural Sciences, University of Florida , Vero Beach, FL , United States
AuthorAffiliation_xml – name: Florida Medical Entomology Laboratory, Department of Entomology and Nematology, Institute of Food and Agricultural Sciences, University of Florida , Vero Beach, FL , United States
Author_xml – sequence: 1
  givenname: Abdullah A.
  surname: Alomar
  fullname: Alomar, Abdullah A.
– sequence: 2
  givenname: Daniel W.
  surname: Pérez-Ramos
  fullname: Pérez-Ramos, Daniel W.
– sequence: 3
  givenname: Dongmin
  surname: Kim
  fullname: Kim, Dongmin
– sequence: 4
  givenname: Natalie L.
  surname: Kendziorski
  fullname: Kendziorski, Natalie L.
– sequence: 5
  givenname: Bradley H.
  surname: Eastmond
  fullname: Eastmond, Bradley H.
– sequence: 6
  givenname: Barry W.
  surname: Alto
  fullname: Alto, Barry W.
– sequence: 7
  givenname: Eric P.
  surname: Caragata
  fullname: Caragata, Eric P.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37007535$$D View this record in MEDLINE/PubMed
BookMark eNp9ksluFDEQhlsoiISQF-CAfOQyg5d22z4hFLFEisIFFG5Wtbs646i7PbHdI3gE3hrPEjThgA9eyn99Jbv-l9XJFCasqteMLoXQ5l0_etcuOeViyZjQtWqeVWesaeqFoPzHydH-tLpI6Z6WUVNe5hfVqVCUKinkWfX7BrLfILkNQwtu5YH4qUeXfZgITB0ZIG5gIC6Ma8x-F045YkokrWCNpPd52p622ltMmdz4AcnGxzkdkfxELucBf5KH2U8PM_aQnIdcNGNIJZYDplfV8x6GhBeH9bz6_unjt8svi-uvn68uP1wvXN2YvOBKaqqxqWlLoTW6V3WHyskaBW0RuGBGK8OUY5pTkG3vTA9oGtG1HZfQiPPqas_tAtzbdfQjxF82gLe7QIh3FmL2bkDbCNVr2imN0tSa0ZZpKrtWOl6DNAIL6_2etZ7bETuHU44wPIE-vZn8yt6FjWWUSioEK4S3B0IM5WNStqNPDocBJgxzslyZ8uxGcVOkb46L_a3y2Mwi0HuBiyGliL11PsO2AaW2H0pRu7WO3VnHbq1jD9Ypqfyf1Ef6f5L-AOK-y14
CitedBy_id crossref_primary_10_3390_pathogens13080691
crossref_primary_10_3390_v16071134
crossref_primary_10_1038_s41598_023_46067_2
crossref_primary_10_1186_s13071_024_06609_7
crossref_primary_10_1371_journal_pntd_0011649
crossref_primary_10_3390_insects16010034
crossref_primary_10_3390_pathogens12111287
crossref_primary_10_1371_journal_pone_0314001
crossref_primary_10_3389_fmicb_2024_1332970
Cites_doi 10.4269/ajtmh.12-0719
10.1007/s10530-007-9188-8
10.12688/gatesopenres.13061.1
10.1007/s00248-013-0339-4
10.1371/journal.pntd.0001892
10.1038/s41586-019-1407-9
10.1089/vbz.2013.1501
10.1371/journal.ppat.1005434
10.3389/fmicb.2015.01201
10.1603/0022-2585-37.5.732
10.1603/033.046.0306
10.4269/ajtmh.13-0576
10.1111/imb.12604
10.1098/rstb.2019.0809
10.1016/j.jip.2010.08.005
10.2987/8756-971X(2007)23[265:PD]2.0.CO;2
10.1017/S0007485300000390
10.1056/NEJMoa2030243
10.4269/ajtmh.16-0516
10.1371/journal.pntd.0004320
10.1073/pnas.1116932108
10.1093/bioinformatics/btg157
10.1111/j.0962-1075.2004.00490.x
10.1111/j.1461-0248.2005.00755.x
10.3920/978-90-8686-744-8_4
10.1603/ME13152
10.1089/vbz.2011.0662
10.1016/j.cell.2009.11.042
10.1098/rspb.2014.2029
10.1098/rspb.2007.1497
10.1038/nature10355
10.1371/journal.pntd.0008846
10.1371/journal.ppat.1000833
10.1371/journal.pntd.0001989
10.1603/0022-2585(2005)042[0559:ACAPOA]2.0.CO;2
10.1111/j.1365-294X.2010.04606.x
10.4269/ajtmh.2002.66.108
10.1038/s41467-017-02749-w
10.1186/s13071-016-1559-5
10.1093/genetics/156.2.699
10.1186/s13071-018-2777-9
10.1038/s41598-020-80034-5
10.1016/j.cois.2019.02.005
10.1111/j.1948-7134.2011.00170.x
10.1186/s13071-021-04937-6
10.1002/ps.5643
10.1371/journal.pone.0126703
10.1073/pnas.2106828118
10.1371/journal.pntd.0009190
10.1371/journal.ppat.1008410
10.1016/j.actatropica.2017.05.015
10.1016/j.pt.2015.10.011
10.1371/journal.ppat.1002548
10.1093/jme/tjaa074
10.1534/genetics.110.122390
10.1186/s12864-016-3441-4
10.1017/S0031182000022666
10.1186/s13071-020-3936-3
10.1016/j.jinsphys.2013.03.010
10.1111/een.12290
10.1016/j.jip.2009.08.009
10.3389/fmicb.2021.711107
10.1016/j.ibmb.2022.103776
10.1371/journal.pbio.1000002
10.1111/j.0014-3820.2004.tb01594.x
10.1126/science.1165326
10.1093/aesa/62.6.1325
10.3389/fmicb.2022.933482
10.1093/jmedent/43.4.689
10.1128/mBio.01768-20
10.1016/j.pt.2021.06.007
10.1371/journal.pntd.0010003
10.1093/jme/tjz051
10.1186/1756-3305-6-305
10.1126/science.1162418
10.1111/brv.12098
10.1371/journal.pone.0011977
10.1073/pnas.1112021108
10.1371/journal.pntd.0002152
10.1093/genetics/165.4.2029
10.1111/j.1570-7458.2010.00993.x
10.1111/j.1365-2915.2008.00782.x
10.1186/1471-2148-13-181
10.1016/j.cub.2019.11.007
10.1371/journal.pntd.0009556
10.1093/jme/tju062
10.4269/ajtmh.15-0801
10.12688/gatesopenres.13122.1
10.3389/fmicb.2017.00526
10.1016/j.meegid.2011.08.022
10.1890/05-0209
10.1603/ME09209
ContentType Journal Article
Copyright Copyright © 2023 Alomar, Pérez-Ramos, Kim, Kendziorski, Eastmond, Alto and Caragata.
Copyright © 2023 Alomar, Pérez-Ramos, Kim, Kendziorski, Eastmond, Alto and Caragata. 2023 Alomar, Pérez-Ramos, Kim, Kendziorski, Eastmond, Alto and Caragata
Copyright_xml – notice: Copyright © 2023 Alomar, Pérez-Ramos, Kim, Kendziorski, Eastmond, Alto and Caragata.
– notice: Copyright © 2023 Alomar, Pérez-Ramos, Kim, Kendziorski, Eastmond, Alto and Caragata. 2023 Alomar, Pérez-Ramos, Kim, Kendziorski, Eastmond, Alto and Caragata
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3389/fmicb.2023.1138476
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1664-302X
ExternalDocumentID oai_doaj_org_article_637f80d78e594810b1805db5c24a593e
PMC10050331
37007535
10_3389_fmicb_2023_1138476
Genre Journal Article
GrantInformation_xml – fundername: ;
– fundername: ;
  grantid: 1026692
GroupedDBID 53G
5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CITATION
DIK
ECGQY
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
O5R
O5S
OK1
PGMZT
RNS
RPM
IAO
IEA
IHR
IPNFZ
NPM
RIG
7X8
5PM
ID FETCH-LOGICAL-c469t-275808e640b0ab98f74de7c54e30bea231987917c1820a5bfc9fae963dbd25a63
IEDL.DBID M48
ISSN 1664-302X
IngestDate Wed Aug 27 01:00:31 EDT 2025
Thu Aug 21 18:37:54 EDT 2025
Fri Sep 05 06:57:52 EDT 2025
Thu Jan 02 22:52:21 EST 2025
Tue Jul 01 00:58:07 EDT 2025
Thu Apr 24 23:04:56 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords larval competition
Wolbachia
West Nile virus
fitness
Culex quinquefasciatus
mosquito
Language English
License Copyright © 2023 Alomar, Pérez-Ramos, Kim, Kendziorski, Eastmond, Alto and Caragata.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c469t-275808e640b0ab98f74de7c54e30bea231987917c1820a5bfc9fae963dbd25a63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Edited by: Guillaume Minard, Université Claude Bernard Lyon 1, France
Reviewed by: Alireza Chavshin, Urmia University of Medical Sciences, Iran; Maria Onyango, Texas Tech University, United States
This article was submitted to Microbial Symbioses, a section of the journal Frontiers in Microbiology
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fmicb.2023.1138476
PMID 37007535
PQID 2794696729
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_637f80d78e594810b1805db5c24a593e
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10050331
proquest_miscellaneous_2794696729
pubmed_primary_37007535
crossref_citationtrail_10_3389_fmicb_2023_1138476
crossref_primary_10_3389_fmicb_2023_1138476
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-03-15
PublicationDateYYYYMMDD 2023-03-15
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-15
  day: 15
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in microbiology
PublicationTitleAlternate Front Microbiol
PublicationYear 2023
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Alomar (ref4) 2020; 14
Dutton (ref34) 2004; 13
Ahmad (ref3) 2017; 96
Caragata (ref25) 2014; 67
Wada (ref85) 1965; 1
Juliano (ref51) 2005; 8
Agnew (ref1) 2000; 37
Caragata (ref23) 2021; 37
Glaser (ref41) 2010; 5
Hurst (ref46) 2000; 156
Ciota (ref26) 2013; 6
Fraser (ref36) 2020; 16
Dumas (ref32) 2013; 13
Reiskind (ref73) 2009; 23
Mpho (ref62) 2000; 90
Yeap (ref90) 2011; 187
Joubert (ref49) 2016; 12
Suh (ref81) 2017; 172
Alto (ref7) 2015; 52
Sicard (ref79) 2019; 34
Wiwatanaratanabutr (ref88) 2009; 102
Ahmad (ref2) 2021; 376
Gilles (ref40) 2011; 48
Caragata (ref24) 2017; 18
Juliano (ref50) 2007; 23
Ross (ref77) 2014; 91
Moore (ref58) 1969; 62
de Almeida (ref28) 2011; 11
Nascimento da Silva (ref64) 2022; 146
Gavotte (ref38) 2014; 46
Gavotte (ref37) 2010; 105
Bergman (ref15) 2021; 14
Altinli (ref6) 2018; 11
Hertig (ref45) 1936; 28
Van den Hurk (ref84) 2012; 6
Dutra (ref33) 2016; 9
Noden (ref66) 2016; 41
Rasgon (ref72) 2003; 165
Zheng (ref92) 2019; 572
Micieli (ref57) 2014; 51
Walsh (ref87) 2011; 36
Bara (ref13) 2015; 10
Blagrove (ref19) 2012; 109
Indriani (ref47) 2020; 4
Nasci (ref63) 1986; 2
Mousson (ref60) 2010; 19
Novakova (ref67) 2017; 8
Teixeira (ref82) 2008; 6
Alto (ref10) 2005; 86
Zug (ref93); 90
Alto (ref9) 2013
Hedges (ref43) 2008; 322
Kittayapong (ref53) 2002; 66
Walker (ref86) 2011; 476
Bian (ref17) 2010; 6
Rancès (ref71) 2012; 8
Gesto (ref39) 2021; 12
Herd (ref44) 2021; 15
Ross (ref76) 2016; 10
Hague (ref42) 2020; 11
Roberts (ref74) 2010; 135
Ekwudu (ref35) 2020; 13
Blagrove (ref18) 2013; 7
Lau (ref54) 2020; 57
Mousson (ref61) 2012; 6
Bevins (ref16) 2008; 10
McMeniman (ref56) 2009; 323
Bonneau (ref20) 2018; 9
Ronca (ref75) 2021; 15
Dodson (ref31) 2011; 11
Nazni (ref65) 2019; 29
Utarini (ref83) 2021; 384
Mains (ref55) 2019; 56
Zug (ref94); 6
Pinto (ref69) 2021; 15
Ant (ref12) 2020; 29
Dobson (ref30) 2004; 58
Islam (ref48) 2006; 43
Moreira (ref59) 2009; 139
Yeap (ref89) 2013; 89
Costanzo (ref27) 2005; 42
Yi (ref91) 2016; 94
Caputo (ref21) 2020; 76
Kim (ref52) 2013; 59
Ponton (ref70) 2015; 282
Alto (ref11) 2008; 275
Beebe (ref14) 2021; 118
Pan (ref68) 2012; 109
Ryan (ref78) 2019; 3
Simon (ref80) 2003; 19
Alto (ref8) 2014; 14
Alomar (ref5) 2022; 13
Caragata (ref22) 2016; 32
Díaz-Nieto (ref29) 2021; 11
References_xml – volume: 89
  start-page: 78
  year: 2013
  ident: ref89
  article-title: Body size and wing shape measurements as quality indicators of Aedes aegypti mosquitoes destined for field release
  publication-title: Am. J. Trop. Med. Hyg.
  doi: 10.4269/ajtmh.12-0719
– volume: 10
  start-page: 1109
  year: 2008
  ident: ref16
  article-title: Invasive mosquitoes, larval competition, and indirect effects on the vector competence of native mosquito species (Diptera: Culicidae)
  publication-title: Biol. Invasions
  doi: 10.1007/s10530-007-9188-8
– volume: 3
  start-page: 3
  year: 2019
  ident: ref78
  article-title: Establishment of wMel Wolbachia in Aedes aegypti mosquitoes and reduction of local dengue transmission in Cairns and surrounding locations in northern Queensland, Australia
  publication-title: Gates Open. Res.
  doi: 10.12688/gatesopenres.13061.1
– volume: 67
  start-page: 205
  year: 2014
  ident: ref25
  article-title: Competition for amino acids between Wolbachia and the mosquito host, Aedes aegypti
  publication-title: Microb. Ecol.
  doi: 10.1007/s00248-013-0339-4
– volume: 6
  start-page: e1892
  year: 2012
  ident: ref84
  article-title: Impact of Wolbachia on infection with chikungunya and yellow fever viruses in the mosquito vector Aedes aegypti
  publication-title: PLoS Negl. Trop. Dis.
  doi: 10.1371/journal.pntd.0001892
– volume: 572
  start-page: 56
  year: 2019
  ident: ref92
  article-title: Incompatible and sterile insect techniques combined eliminate mosquitoes
  publication-title: Nature
  doi: 10.1038/s41586-019-1407-9
– volume: 14
  start-page: 606
  year: 2014
  ident: ref8
  article-title: Reproductive biology and susceptibility of Florida Culex coronator to infection with West Nile virus
  publication-title: Vector Borne Zoo. Dis.
  doi: 10.1089/vbz.2013.1501
– volume: 12
  start-page: e1005434
  year: 2016
  ident: ref49
  article-title: Establishment of a Wolbachia superinfection in Aedes aegypti mosquitoes as a potential approach for future resistance management
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1005434
– volume: 6
  start-page: 1201
  ident: ref94
  article-title: Wolbachia and the insect immune system: what reactive oxygen species can tell us about the mechanisms of Wolbachia–host interactions
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2015.01201
– volume: 37
  start-page: 732
  year: 2000
  ident: ref1
  article-title: Effects of density and larval competition on selected life history traits of Culex pipiens quinquefasciatus (Diptera: Culicidae)
  publication-title: J. Med. Entomol.
  doi: 10.1603/0022-2585-37.5.732
– volume: 46
  start-page: 451
  year: 2014
  ident: ref38
  article-title: Wolbachia Infection and resource competition effects on Immature Aedes albopictus (Diptera: Culicidae)
  publication-title: J. Med. Entomol.
  doi: 10.1603/033.046.0306
– volume: 2
  start-page: 61
  year: 1986
  ident: ref63
  article-title: The size of emerging and host-seeking Aedes aegypti and the relation of size to blood-feeding success in the field
  publication-title: J. Am. Mosq. Control Assoc.
– volume: 91
  start-page: 198
  year: 2014
  ident: ref77
  article-title: Larval competition extends developmental time and decreases adult size of wMelPop Wolbachia-infected Aedes aegypti
  publication-title: Am. J. Trop. Med. Hyg.
  doi: 10.4269/ajtmh.13-0576
– volume: 29
  start-page: 1
  year: 2020
  ident: ref12
  article-title: Wolbachia transinfections in Culex quinquefasciatus generate cytoplasmic incompatibility
  publication-title: Insect Mol. Biol.
  doi: 10.1111/imb.12604
– volume: 376
  start-page: 20190809
  year: 2021
  ident: ref2
  article-title: Wolbachia strain wAlbB maintains high density and dengue inhibition following introduction into a field population of Aedes aegypti
  publication-title: Philos. Trans. R. Soc. B
  doi: 10.1098/rstb.2019.0809
– volume: 105
  start-page: 341
  year: 2010
  ident: ref37
  article-title: Costs and benefits of Wolbachia infection in immature Aedes albopictus depend upon sex and competition level
  publication-title: J. Invertebr. Pathol.
  doi: 10.1016/j.jip.2010.08.005
– volume: 23
  start-page: 265
  year: 2007
  ident: ref50
  article-title: Population dynamics
  publication-title: J. Am. Mosq. Control Assoc.
  doi: 10.2987/8756-971X(2007)23[265:PD]2.0.CO;2
– volume: 90
  start-page: 279
  year: 2000
  ident: ref62
  article-title: Fluctuating wing asymmetry and larval density stress in Culex quinquefasciatus (Diptera: Culicidae)
  publication-title: Bull. Entomol. Res.
  doi: 10.1017/S0007485300000390
– volume: 384
  start-page: 2177
  year: 2021
  ident: ref83
  article-title: Efficacy of Wolbachia-infected mosquito deployments for the control of dengue
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2030243
– volume: 96
  start-page: 148
  year: 2017
  ident: ref3
  article-title: Detection of Wolbachia in Aedes albopictus and their effects on chikungunya virus
  publication-title: Am. J. Trop. Med. Hyg.
  doi: 10.4269/ajtmh.16-0516
– volume: 10
  start-page: e0004320
  year: 2016
  ident: ref76
  article-title: Costs of three Wolbachia infections on the survival of Aedes aegypti larvae under starvation conditions
  publication-title: PLoS Negl. Trop. Dis.
  doi: 10.1371/journal.pntd.0004320
– volume: 109
  start-page: E23
  year: 2012
  ident: ref68
  article-title: Wolbachia induces reactive oxygen species (ROS)-dependent activation of the toll pathway to control dengue virus in the mosquito Aedes aegypti
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1116932108
– volume: 19
  start-page: 1439
  year: 2003
  ident: ref80
  article-title: Q-Gene: processing quantitative real-time RT–PCR data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btg157
– volume: 13
  start-page: 317
  year: 2004
  ident: ref34
  article-title: Strain-specific quantification of Wolbachia density in Aedes albopictus and effects of larval rearing conditions
  publication-title: Insect Mol. Biol.
  doi: 10.1111/j.0962-1075.2004.00490.x
– volume: 8
  start-page: 558
  year: 2005
  ident: ref51
  article-title: Ecology of invasive mosquitoes: effects on resident species and on human health
  publication-title: Ecol. Lett.
  doi: 10.1111/j.1461-0248.2005.00755.x
– start-page: 81
  volume-title: Ecology of Parasite-Vector Interactions
  year: 2013
  ident: ref9
  article-title: Vector competence for arboviruses in relation to the larval environment of mosquitoes
  doi: 10.3920/978-90-8686-744-8_4
– volume: 51
  start-page: 189
  year: 2014
  ident: ref57
  article-title: Somatic Wolbachia (Rickettsiales: Rickettsiaceae) levels in Culex quinquefasciatus and Culex pipiens (Diptera: Culicidae) and resistance to West Nile virus infection
  publication-title: J. Med. Entomol.
  doi: 10.1603/ME13152
– volume: 11
  start-page: 1493
  year: 2011
  ident: ref31
  article-title: Larval nutritional stress does not affect vector competence for West Nile virus (WNV) in Culex tarsalis
  publication-title: Vector Borne Zoo. Dis.
  doi: 10.1089/vbz.2011.0662
– volume: 139
  start-page: 1268
  year: 2009
  ident: ref59
  article-title: A Wolbachia symbiont in Aedes aegypti limits infection with dengue, chikungunya, and plasmodium
  publication-title: Cells
  doi: 10.1016/j.cell.2009.11.042
– volume: 282
  start-page: 20142029
  year: 2015
  ident: ref70
  article-title: Macronutrients mediate the functional relationship between Drosophila and Wolbachia
  publication-title: Proc. R. Soc. B Biol. Sci.
  doi: 10.1098/rspb.2014.2029
– volume: 275
  start-page: 463
  year: 2008
  ident: ref11
  article-title: Larval competition alters susceptibility of adult Aedes mosquitoes to dengue infection
  publication-title: Proc. R. Soc. B Biol. Sci.
  doi: 10.1098/rspb.2007.1497
– volume: 476
  start-page: 450
  year: 2011
  ident: ref86
  article-title: The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations
  publication-title: Nature
  doi: 10.1038/nature10355
– volume: 14
  start-page: e0008846
  year: 2020
  ident: ref4
  article-title: The effects of exposure to pyriproxyfen and predation on Zika virus infection and transmission in Aedes aegypti
  publication-title: PLoS Negl. Trop. Dis.
  doi: 10.1371/journal.pntd.0008846
– volume: 6
  start-page: e1000833
  year: 2010
  ident: ref17
  article-title: The endosymbiotic bacterium Wolbachia induces resistance to dengue virus in Aedes aegypti
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1000833
– volume: 6
  start-page: e1989
  year: 2012
  ident: ref61
  article-title: The native Wolbachia symbionts limit transmission of dengue virus in Aedes albopictus
  publication-title: PLoS Negl. Trop. Dis.
  doi: 10.1371/journal.pntd.0001989
– volume: 42
  start-page: 559
  year: 2005
  ident: ref27
  article-title: Asymmetrical competition and patterns of abundance of Aedes albopictus and Culex pipiens (Diptera: Culicidae)
  publication-title: J. Med. Entomol.
  doi: 10.1603/0022-2585(2005)042[0559:ACAPOA]2.0.CO;2
– volume: 19
  start-page: 1953
  year: 2010
  ident: ref60
  article-title: Wolbachia modulates chikungunya replication in Aedes albopictus
  publication-title: Mol. Ecol.
  doi: 10.1111/j.1365-294X.2010.04606.x
– volume: 66
  start-page: 108
  year: 2002
  ident: ref53
  article-title: Field prevalence of Wolbachia in the mosquito vector Aedes albopictus
  publication-title: Am. J. Trop. Med. Hyg.
  doi: 10.4269/ajtmh.2002.66.108
– volume: 9
  start-page: 319
  year: 2018
  ident: ref20
  article-title: Culex pipiens crossing type diversity is governed by an amplified and polymorphic operon of Wolbachia
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-02749-w
– volume: 9
  start-page: 1
  year: 2016
  ident: ref33
  article-title: The influence of larval competition on Brazilian Wolbachia-infected Aedes aegypti mosquitoes
  publication-title: Parasit. Vectors
  doi: 10.1186/s13071-016-1559-5
– volume: 156
  start-page: 699
  year: 2000
  ident: ref46
  article-title: Male-killing Wolbachia in drosophila: a temperature-sensitive trait with a threshold bacterial density
  publication-title: Genetics
  doi: 10.1093/genetics/156.2.699
– volume: 11
  start-page: 1
  year: 2018
  ident: ref6
  article-title: Wolbachia diversity and cytoplasmic incompatibility patterns in Culex pipiens populations in Turkey
  publication-title: Parasit. Vectors
  doi: 10.1186/s13071-018-2777-9
– volume: 11
  start-page: 1
  year: 2021
  ident: ref29
  article-title: Culex quinquefasciatus carrying Wolbachia is less susceptible to entomopathogenic bacteria
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-80034-5
– volume: 34
  start-page: 12
  year: 2019
  ident: ref79
  article-title: Wolbachia prevalence, diversity, and ability to induce cytoplasmic incompatibility in mosquitoes
  publication-title: Curr. Opin. Insect Sci.
  doi: 10.1016/j.cois.2019.02.005
– volume: 36
  start-page: 300
  year: 2011
  ident: ref87
  article-title: Assessing the impact of density dependence in field populations of Aedes aegypti
  publication-title: J. Vector Ecol.
  doi: 10.1111/j.1948-7134.2011.00170.x
– volume: 14
  start-page: 428
  year: 2021
  ident: ref15
  article-title: Wolbachia prevalence in the vector species Culex pipiens and Culex torrentium in a Sindbis virus-endemic region of Sweden
  publication-title: Parasit. Vectors
  doi: 10.1186/s13071-021-04937-6
– volume: 76
  start-page: 1324
  year: 2020
  ident: ref21
  article-title: A bacterium against the tiger: preliminary evidence of fertility reduction after release of Aedes albopictus males with manipulated Wolbachia infection in an Italian urban area
  publication-title: Pest Manag. Sci.
  doi: 10.1002/ps.5643
– volume: 10
  start-page: e0126703
  year: 2015
  ident: ref13
  article-title: Effect of larval competition on extrinsic incubation period and vectorial capacity of Aedes albopictus for dengue virus
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0126703
– volume: 1
  start-page: 223
  year: 1965
  ident: ref85
  article-title: Effect of larval density on the development of Aedes aegypti (L.) and the size of adults
  publication-title: Quaest. Entomol.
– volume: 118
  start-page: e2106828118
  year: 2021
  ident: ref14
  article-title: Releasing incompatible males drives strong suppression across populations of wild and Wolbachia-carrying Aedes aegypti in Australia
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.2106828118
– volume: 15
  start-page: e0009190
  year: 2021
  ident: ref75
  article-title: A 20-year historical review of West Nile virus since its initial emergence in North America: has West Nile virus become a neglected tropical disease?
  publication-title: PLoS Negl. Trop. Dis.
  doi: 10.1371/journal.pntd.0009190
– volume: 16
  start-page: e1008410
  year: 2020
  ident: ref36
  article-title: Novel phenotype of Wolbachia strain wPip in Aedes aegypti challenges assumptions on mechanisms of Wolbachia-mediated dengue virus inhibition
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1008410
– volume: 172
  start-page: 232
  year: 2017
  ident: ref81
  article-title: Life-shortening Wolbachia infection reduces population growth of Aedes aegypti
  publication-title: Acta Trop.
  doi: 10.1016/j.actatropica.2017.05.015
– volume: 32
  start-page: 207
  year: 2016
  ident: ref22
  article-title: Exploiting intimate relationships: controlling mosquito-transmitted disease with Wolbachia
  publication-title: Trends Parasitol.
  doi: 10.1016/j.pt.2015.10.011
– volume: 8
  start-page: e1002548
  year: 2012
  ident: ref71
  article-title: The relative importance of innate immune priming in Wolbachia-mediated dengue interference
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1002548
– volume: 57
  start-page: 1567
  year: 2020
  ident: ref54
  article-title: Impacts of low temperatures on Wolbachia (Rickettsiales: Rickettsiaceae)-infected Aedes aegypti (Diptera: Culicidae)
  publication-title: J. Med. Entomol.
  doi: 10.1093/jme/tjaa074
– volume: 187
  start-page: 583
  year: 2011
  ident: ref90
  article-title: Dynamics of the “popcorn” Wolbachia infection in outbred Aedes aegypti informs prospects for mosquito vector control
  publication-title: Genetics
  doi: 10.1534/genetics.110.122390
– volume: 18
  start-page: 1
  year: 2017
  ident: ref24
  article-title: The transcriptome of the mosquito Aedes fluviatilis (Diptera: Culicidae), and transcriptional changes associated with its native Wolbachia infection
  publication-title: BMC Genomics
  doi: 10.1186/s12864-016-3441-4
– volume: 28
  start-page: 453
  year: 1936
  ident: ref45
  article-title: The rickettsia, Wolbachia pipientis (gen. Et sp. n.) and associated inclusions of the mosquito, Culex pipiens
  publication-title: Parasitology
  doi: 10.1017/S0031182000022666
– volume: 13
  start-page: 54
  year: 2020
  ident: ref35
  article-title: Wolbachia strain wAlbB blocks replication of flaviviruses and alphavisures in mosquito cell culture
  publication-title: Parasit. Vectors
  doi: 10.1186/s13071-020-3936-3
– volume: 59
  start-page: 604
  year: 2013
  ident: ref52
  article-title: Effect of larval density and Sindbis virus infection on immune responses in Aedes aegypti
  publication-title: J. Insect Physiol.
  doi: 10.1016/j.jinsphys.2013.03.010
– volume: 41
  start-page: 192
  year: 2016
  ident: ref66
  article-title: Impact of inter-and intra-specific competition among larvae on larval, adult, and life-table traits of Aedes aegypti and Aedes albopictus females
  publication-title: Ecol. Entomol.
  doi: 10.1111/een.12290
– volume: 102
  start-page: 220
  year: 2009
  ident: ref88
  article-title: Effects of crowding and temperature on Wolbachia infection density among life cycle stages of Aedes albopictus
  publication-title: J. Invertebr. Pathol.
  doi: 10.1016/j.jip.2009.08.009
– volume: 12
  start-page: 2113
  year: 2021
  ident: ref39
  article-title: Large-scale deployment and establishment of Wolbachia into the Aedes aegypti population in Rio de Janeiro, Brazil
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2021.711107
– volume: 146
  start-page: 103776
  year: 2022
  ident: ref64
  article-title: Wolbachia pipientis modulates metabolism and immunity during Aedes fluviatilis oogenesis
  publication-title: Insect Biochem. Mol. Biol.
  doi: 10.1016/j.ibmb.2022.103776
– volume: 6
  start-page: e1000002
  year: 2008
  ident: ref82
  article-title: The bacterial symbiont Wolbachia induces resistance to RNA viral infections in Drosophila melanogaster
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.1000002
– volume: 58
  start-page: 2156
  year: 2004
  ident: ref30
  article-title: Evolution of Wolbachia cytoplasmic incompatibility types
  publication-title: Evolution
  doi: 10.1111/j.0014-3820.2004.tb01594.x
– volume: 323
  start-page: 141
  year: 2009
  ident: ref56
  article-title: Stable introduction of a life-shortening Wolbachia infection into the mosquito Aedes aegypti
  publication-title: Science
  doi: 10.1126/science.1165326
– volume: 62
  start-page: 1325
  year: 1969
  ident: ref58
  article-title: Competition in mosquitoes. Density and species ratio effects on growth, mortality, fecundity, and production of growth retardant
  publication-title: Ann. Entomol. Soc. Am.
  doi: 10.1093/aesa/62.6.1325
– volume: 13
  start-page: 933482
  year: 2022
  ident: ref5
  article-title: Ingestion of spinosad-containing toxic sugar bait alters Aedes albopictus vector competence and vectorial capacity for dengue virus
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2022.933482
– volume: 43
  start-page: 689
  year: 2006
  ident: ref48
  article-title: Wolbachia effects on Aedes albopictus (Diptera: Culicidae) immature survivorship and development
  publication-title: J. Med. Entomol.
  doi: 10.1093/jmedent/43.4.689
– volume: 11
  start-page: e01768
  year: 2020
  ident: ref42
  article-title: Pervasive effects of Wolbachia on host temperature preference
  publication-title: MBio
  doi: 10.1128/mBio.01768-20
– volume: 37
  start-page: 1050
  year: 2021
  ident: ref23
  article-title: Wolbachia as translational science: controlling mosquito-borne pathogens
  publication-title: Trends Parasitol.
  doi: 10.1016/j.pt.2021.06.007
– volume: 15
  start-page: e0010003
  year: 2021
  ident: ref44
  article-title: Starvation at the larval stage increases the vector competence of Aedes aegypti females for Zika virus
  publication-title: PLoS Negl. Trop. Dis.
  doi: 10.1371/journal.pntd.0010003
– volume: 56
  start-page: 1296
  year: 2019
  ident: ref55
  article-title: Localized control of Aedes aegypti (Diptera: Culicidae) in Miami, FL, via Inundative releases of Wolbachia-infected male mosquitoes
  publication-title: J. Med. Entomol.
  doi: 10.1093/jme/tjz051
– volume: 6
  start-page: 1
  year: 2013
  ident: ref26
  article-title: The effect of hybridization of Culex pipiens complex mosquitoes on transmission of West Nile virus
  publication-title: Parasit. Vectors
  doi: 10.1186/1756-3305-6-305
– volume: 322
  start-page: 702
  year: 2008
  ident: ref43
  article-title: Wolbachia and virus protection in insects
  publication-title: Science
  doi: 10.1126/science.1162418
– volume: 90
  start-page: 89
  ident: ref93
  article-title: Bad guys turned nice? A critical assessment of Wolbachia mutualisms in arthropod hosts
  publication-title: Biol. Rev.
  doi: 10.1111/brv.12098
– volume: 5
  start-page: e11977
  year: 2010
  ident: ref41
  article-title: The native Wolbachia endosymbionts of Drosophila melanogaster and Culex quinquefasciatus increase host resistance to West Nile virus infection
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0011977
– volume: 109
  start-page: 255
  year: 2012
  ident: ref19
  article-title: Wolbachia strain wMel induces cytoplasmic incompatibility and blocks dengue transmission in Aedes albopictus
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1112021108
– volume: 7
  start-page: e2152
  year: 2013
  ident: ref18
  article-title: A Wolbachia wMel transinfection in Aedes albopictus is not detrimental to host fitness and inhibits chikungunya virus
  publication-title: PLoS Negl. Trop. Dis.
  doi: 10.1371/journal.pntd.0002152
– volume: 165
  start-page: 2029
  year: 2003
  ident: ref72
  article-title: Wolbachia and cytoplasmic incompatibility in the California Culex pipiens mosquito species complex: parameter estimates and infection dynamics in natural populations
  publication-title: Genetics
  doi: 10.1093/genetics/165.4.2029
– volume: 135
  start-page: 271
  year: 2010
  ident: ref74
  article-title: Larval crowding effects on the mosquito Culex quinquefasciatus: physical or chemical?
  publication-title: Entomol. Exp. Appl.
  doi: 10.1111/j.1570-7458.2010.00993.x
– volume: 23
  start-page: 62
  year: 2009
  ident: ref73
  article-title: Effects of intraspecific larval competition on adult longevity in the mosquitoes Aedes aegypti and Aedes albopictus
  publication-title: Med. Vet. Entomol.
  doi: 10.1111/j.1365-2915.2008.00782.x
– volume: 13
  start-page: 1
  year: 2013
  ident: ref32
  article-title: Population structure of Wolbachia and cytoplasmic introgression in a complex of mosquito species
  publication-title: BMC Evol. Biol.
  doi: 10.1186/1471-2148-13-181
– volume: 29
  start-page: 4241
  year: 2019
  ident: ref65
  article-title: Establishment of Wolbachia strain wAlbB in Malaysian populations of Aedes aegypti for dengue control
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2019.11.007
– volume: 15
  start-page: e0009556
  year: 2021
  ident: ref69
  article-title: Effectiveness of Wolbachia-infected mosquito deployments in reducing the incidence of dengue and other Aedes-borne diseases in Niterói, Brazil: a quasi-experimental study
  publication-title: PLoS Negl. Trop. Dis.
  doi: 10.1371/journal.pntd.0009556
– volume: 52
  start-page: 163
  year: 2015
  ident: ref7
  article-title: Interspecific larval competition differentially impacts adult survival in dengue vectors
  publication-title: J. Med. Entomol.
  doi: 10.1093/jme/tju062
– volume: 94
  start-page: 812
  year: 2016
  ident: ref91
  article-title: The effect of temperature on Wolbachia-mediated dengue virus blocking in Aedes aegypti
  publication-title: Am. J. Trop. Med. Hyg.
  doi: 10.4269/ajtmh.15-0801
– volume: 4
  start-page: 50
  year: 2020
  ident: ref47
  article-title: Reduced dengue incidence following deployments of Wolbachia-infected Aedes aegypti in Yogyakarta, Indonesia: a quasi-experimental trial using controlled interrupted time series analysis
  publication-title: Gates Open Res.
  doi: 10.12688/gatesopenres.13122.1
– volume: 8
  start-page: 526
  year: 2017
  ident: ref67
  article-title: Mosquito microbiome dynamics, a background for prevalence and seasonality of West Nile virus
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2017.00526
– volume: 11
  start-page: 2138
  year: 2011
  ident: ref28
  article-title: Effects of Wolbachia on fitness of Culex quinquefasciatus (Diptera; Culicidae)
  publication-title: Infect. Genet. Evol.
  doi: 10.1016/j.meegid.2011.08.022
– volume: 86
  start-page: 3279
  year: 2005
  ident: ref10
  article-title: Larval competition differentially affects arbovirus infection in Aedes mosquitoes
  publication-title: Ecology
  doi: 10.1890/05-0209
– volume: 48
  start-page: 296
  year: 2011
  ident: ref40
  article-title: Density-dependent effects in experimental larval populations of Anopheles arabiensis (Diptera: Culicidae) can be negative, neutral, or overcompensatory depending on density and diet levels
  publication-title: J. Med. Entomol.
  doi: 10.1603/ME09209
SSID ssj0000402000
Score 2.3975704
Snippet transinfections established in key mosquito vectors, including are typically associated with pathogen blocking-reduced susceptibility to infection with key...
Wolbachia transinfections established in key mosquito vectors, including Aedes aegypti are typically associated with pathogen blocking-reduced susceptibility...
IntroductionWolbachia transinfections established in key mosquito vectors, including Aedes aegypti are typically associated with pathogen blocking—reduced...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1138476
SubjectTerms Culex quinquefasciatus
fitness
larval competition
Microbiology
mosquito
West Nile virus
Wolbachia
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Ji9VAEG5kQPAi7saNFrxJtLP0kqMODoPgOzk4t9BLhQnEZGaSiP4E_7VVnbzHeyJ68ZpUkqKrurqKVH0fY69oLs95laeQ5T4tQ2kwDoJPA6gmyxSm-I7mnT9t1OlZ-fFcnu9RfVFP2AIPvCzcW1XoxoigDURgEeEyI2Rw0uellVUBFH1FJfaKqRiDqSwSYpmSwSqsQjO13r0hsnCiMcGYrA5OogjY_6cs8_dmyb3T5-QOu72mjfzdou5ddgP6e-zmQiT54z77uYn43fzL0DnqjrR822TVc9sH3hEDUMd9TJJjkxZfhkT4eGEvgTftRCEvyhLXDN9gsODf2ut53HtT2_PjuYPv_Gpue9S_sSNZFmW-DiNemwYYH7Czkw-fj0_TlWQh9VgZT2mOBYMwoErhhHWVaXQZQHtZQiEcWEz_KqOxpvOE9G6la3zVWMBtG1zIpVXFQ3bUDz08Zlyoxha5ButCVfoiGG2UMVVwoHVQ0iYs2y547VcEciLC6GqsRMhIdTRSTUaqVyMl7PXumcsFf-Ov0u_JjjtJws6OF9Cj6tWj6n95VMJebr2gxr1GP1BsD8M81jmh8VcK65GEPVq8YvepQlP2VciEmQN_OdDl8E7fXkQ87yyC8hTZk_-h_VN2i1aE2uQy-YwdTdczPMe8aXIv4hb5BR7iGDo
  priority: 102
  providerName: Directory of Open Access Journals
Title Native Wolbachia infection and larval competition stress shape fitness and West Nile virus infection in Culex quinquefasciatus mosquitoes
URI https://www.ncbi.nlm.nih.gov/pubmed/37007535
https://www.proquest.com/docview/2794696729
https://pubmed.ncbi.nlm.nih.gov/PMC10050331
https://doaj.org/article/637f80d78e594810b1805db5c24a593e
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ba9RAFB5qRfBFvBsvZQTfJCWTZC55ENFiLUL3ycV9C3OLDcSk3STS_gT_tedMsktXquDLQrKzuZ05Z863Oef7CHmDfXnGijT2LLVx7nIFcdDb2HlRMSYgxTfY73y6ECfL_MuKr_bIRu5ofoD9jdAO9aSW6-bw8uLqPTj8O0ScsN6CBWprDlEHHBVKINyKW-Q2rEwCwdjpnO6HyIxgKXSlMCHwhUC6mvpo_nKYnbUqUPrflIf-WU55bX06vk_uzYkl_TDNhAdkz7cPyZ1JavLqEfm1CAzf9FvXGKyf1HRThtVS3TraoEZQQ21Io0MZF53aSGh_ps89reoBg2IYi2o0dAHhhP6s12N_7Uh1S4_Gxl_Si7Fu4for3aPtYcyProd9Q-f7x2R5_Onr0Uk8yzDEFrDzEKcAKRLlRZ6YRJtCVTJ3Xlqe-ywxXkOCWCgJqM8iF7zmprJFpT04tjMu5VpkT8h-27X-GaGJqHSWSq-NK3KbOSWVUKpwxkvpBNcRYZsHXtqZoxylMpoSsAoaqQxGKtFI5WykiLzd_uZ8Yuj45-iPaMftSGTXDju69fdydtZSZLJSiZPKBzKbxDCVcGe4TXPNi8xH5PVmFpTgjfiKRbe-G_syRb7-QgBiicjTaVZsT5VJzM8yHhG1M192rmX3m7Y-C4zfLND2ZOz5f93rC3IXN7FijvGXZH9Yj_4VpFCDOQh_PcDn5xU7CD7yG67IHPk
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Native+Wolbachia+infection+and+larval+competition+stress+shape+fitness+and+West+Nile+virus+infection+in+Culex+quinquefasciatus+mosquitoes&rft.jtitle=Frontiers+in+microbiology&rft.au=Alomar%2C+Abdullah+A.&rft.au=P%C3%A9rez-Ramos%2C+Daniel+W.&rft.au=Kim%2C+Dongmin&rft.au=Kendziorski%2C+Natalie+L.&rft.date=2023-03-15&rft.issn=1664-302X&rft.eissn=1664-302X&rft.volume=14&rft_id=info:doi/10.3389%2Ffmicb.2023.1138476&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fmicb_2023_1138476
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-302X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-302X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-302X&client=summon