Native Wolbachia infection and larval competition stress shape fitness and West Nile virus infection in Culex quinquefasciatus mosquitoes
transinfections established in key mosquito vectors, including are typically associated with pathogen blocking-reduced susceptibility to infection with key pathogens and reduced likelihood those pathogens are transmitted to new hosts. Host-symbiont-virus interactions are less well understood in mosq...
Saved in:
Published in | Frontiers in microbiology Vol. 14; p. 1138476 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Media S.A
15.03.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 1664-302X 1664-302X |
DOI | 10.3389/fmicb.2023.1138476 |
Cover
Abstract | transinfections established in key mosquito vectors, including
are typically associated with pathogen blocking-reduced susceptibility to infection with key pathogens and reduced likelihood those pathogens are transmitted to new hosts. Host-symbiont-virus interactions are less well understood in mosquitoes like
, which naturally harbor
, with pathogen blocking observed in some populations but not others, potentially due to innate differences in their
load. In nature, mosquito larvae are often subject to developmental stresses associated with larval competition, which can lead to reduced body size and differential susceptibility to arbovirus infection.
In this study, we sought to understand whether competition stress and
infection in
combine to impact host fitness and susceptibility to infection with West Nile virus. We reared
-infected and uninfected
larvae under three competition stress levels, increasing larval density without increasing the amount of food supplied. We then monitored larval development and survival, measured wing length and quantified
density in adults, and then challenged mosquitoes from each treatment group orally with West Nile virus.
We observed that high competition stress extended development time, decreased the likelihood of eclosion, decreased body size, and increased susceptibility to West Nile virus (WNV) infection. We also observed that
infection reduced WNV load under low competition stress, and significantly improved the rate of survival for larval reared under higher competition stress. Consequently, our data suggest that native
infection in
has differential consequences for host fitness and susceptibility to WNV infection depending on competition stress. |
---|---|
AbstractList | IntroductionWolbachia transinfections established in key mosquito vectors, including Aedes aegypti are typically associated with pathogen blocking—reduced susceptibility to infection with key pathogens and reduced likelihood those pathogens are transmitted to new hosts. Host-symbiont-virus interactions are less well understood in mosquitoes like Culex quinquefasciatus, which naturally harbor Wolbachia, with pathogen blocking observed in some populations but not others, potentially due to innate differences in their Wolbachia load. In nature, mosquito larvae are often subject to developmental stresses associated with larval competition, which can lead to reduced body size and differential susceptibility to arbovirus infection.MethodsIn this study, we sought to understand whether competition stress and Wolbachia infection in Cx. quinquefasciatus combine to impact host fitness and susceptibility to infection with West Nile virus. We reared Wolbachia-infected and uninfected Cx. quinquefasciatus larvae under three competition stress levels, increasing larval density without increasing the amount of food supplied. We then monitored larval development and survival, measured wing length and quantified Wolbachia density in adults, and then challenged mosquitoes from each treatment group orally with West Nile virus.Results and DiscussionWe observed that high competition stress extended development time, decreased the likelihood of eclosion, decreased body size, and increased susceptibility to West Nile virus (WNV) infection. We also observed that Wolbachia infection reduced WNV load under low competition stress, and significantly improved the rate of survival for larval reared under higher competition stress. Consequently, our data suggest that native Wolbachia infection in Cx. quinquefasciatus has differential consequences for host fitness and susceptibility to WNV infection depending on competition stress. transinfections established in key mosquito vectors, including are typically associated with pathogen blocking-reduced susceptibility to infection with key pathogens and reduced likelihood those pathogens are transmitted to new hosts. Host-symbiont-virus interactions are less well understood in mosquitoes like , which naturally harbor , with pathogen blocking observed in some populations but not others, potentially due to innate differences in their load. In nature, mosquito larvae are often subject to developmental stresses associated with larval competition, which can lead to reduced body size and differential susceptibility to arbovirus infection. In this study, we sought to understand whether competition stress and infection in combine to impact host fitness and susceptibility to infection with West Nile virus. We reared -infected and uninfected larvae under three competition stress levels, increasing larval density without increasing the amount of food supplied. We then monitored larval development and survival, measured wing length and quantified density in adults, and then challenged mosquitoes from each treatment group orally with West Nile virus. We observed that high competition stress extended development time, decreased the likelihood of eclosion, decreased body size, and increased susceptibility to West Nile virus (WNV) infection. We also observed that infection reduced WNV load under low competition stress, and significantly improved the rate of survival for larval reared under higher competition stress. Consequently, our data suggest that native infection in has differential consequences for host fitness and susceptibility to WNV infection depending on competition stress. Wolbachia transinfections established in key mosquito vectors, including Aedes aegypti are typically associated with pathogen blocking-reduced susceptibility to infection with key pathogens and reduced likelihood those pathogens are transmitted to new hosts. Host-symbiont-virus interactions are less well understood in mosquitoes like Culex quinquefasciatus, which naturally harbor Wolbachia, with pathogen blocking observed in some populations but not others, potentially due to innate differences in their Wolbachia load. In nature, mosquito larvae are often subject to developmental stresses associated with larval competition, which can lead to reduced body size and differential susceptibility to arbovirus infection.IntroductionWolbachia transinfections established in key mosquito vectors, including Aedes aegypti are typically associated with pathogen blocking-reduced susceptibility to infection with key pathogens and reduced likelihood those pathogens are transmitted to new hosts. Host-symbiont-virus interactions are less well understood in mosquitoes like Culex quinquefasciatus, which naturally harbor Wolbachia, with pathogen blocking observed in some populations but not others, potentially due to innate differences in their Wolbachia load. In nature, mosquito larvae are often subject to developmental stresses associated with larval competition, which can lead to reduced body size and differential susceptibility to arbovirus infection.In this study, we sought to understand whether competition stress and Wolbachia infection in Cx. quinquefasciatus combine to impact host fitness and susceptibility to infection with West Nile virus. We reared Wolbachia-infected and uninfected Cx. quinquefasciatus larvae under three competition stress levels, increasing larval density without increasing the amount of food supplied. We then monitored larval development and survival, measured wing length and quantified Wolbachia density in adults, and then challenged mosquitoes from each treatment group orally with West Nile virus.MethodsIn this study, we sought to understand whether competition stress and Wolbachia infection in Cx. quinquefasciatus combine to impact host fitness and susceptibility to infection with West Nile virus. We reared Wolbachia-infected and uninfected Cx. quinquefasciatus larvae under three competition stress levels, increasing larval density without increasing the amount of food supplied. We then monitored larval development and survival, measured wing length and quantified Wolbachia density in adults, and then challenged mosquitoes from each treatment group orally with West Nile virus.We observed that high competition stress extended development time, decreased the likelihood of eclosion, decreased body size, and increased susceptibility to West Nile virus (WNV) infection. We also observed that Wolbachia infection reduced WNV load under low competition stress, and significantly improved the rate of survival for larval reared under higher competition stress. Consequently, our data suggest that native Wolbachia infection in Cx. quinquefasciatus has differential consequences for host fitness and susceptibility to WNV infection depending on competition stress.Results and DiscussionWe observed that high competition stress extended development time, decreased the likelihood of eclosion, decreased body size, and increased susceptibility to West Nile virus (WNV) infection. We also observed that Wolbachia infection reduced WNV load under low competition stress, and significantly improved the rate of survival for larval reared under higher competition stress. Consequently, our data suggest that native Wolbachia infection in Cx. quinquefasciatus has differential consequences for host fitness and susceptibility to WNV infection depending on competition stress. |
Author | Eastmond, Bradley H. Caragata, Eric P. Kendziorski, Natalie L. Alto, Barry W. Pérez-Ramos, Daniel W. Kim, Dongmin Alomar, Abdullah A. |
AuthorAffiliation | Florida Medical Entomology Laboratory, Department of Entomology and Nematology, Institute of Food and Agricultural Sciences, University of Florida , Vero Beach, FL , United States |
AuthorAffiliation_xml | – name: Florida Medical Entomology Laboratory, Department of Entomology and Nematology, Institute of Food and Agricultural Sciences, University of Florida , Vero Beach, FL , United States |
Author_xml | – sequence: 1 givenname: Abdullah A. surname: Alomar fullname: Alomar, Abdullah A. – sequence: 2 givenname: Daniel W. surname: Pérez-Ramos fullname: Pérez-Ramos, Daniel W. – sequence: 3 givenname: Dongmin surname: Kim fullname: Kim, Dongmin – sequence: 4 givenname: Natalie L. surname: Kendziorski fullname: Kendziorski, Natalie L. – sequence: 5 givenname: Bradley H. surname: Eastmond fullname: Eastmond, Bradley H. – sequence: 6 givenname: Barry W. surname: Alto fullname: Alto, Barry W. – sequence: 7 givenname: Eric P. surname: Caragata fullname: Caragata, Eric P. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37007535$$D View this record in MEDLINE/PubMed |
BookMark | eNp9ksluFDEQhlsoiISQF-CAfOQyg5d22z4hFLFEisIFFG5Wtbs646i7PbHdI3gE3hrPEjThgA9eyn99Jbv-l9XJFCasqteMLoXQ5l0_etcuOeViyZjQtWqeVWesaeqFoPzHydH-tLpI6Z6WUVNe5hfVqVCUKinkWfX7BrLfILkNQwtu5YH4qUeXfZgITB0ZIG5gIC6Ma8x-F045YkokrWCNpPd52p622ltMmdz4AcnGxzkdkfxELucBf5KH2U8PM_aQnIdcNGNIJZYDplfV8x6GhBeH9bz6_unjt8svi-uvn68uP1wvXN2YvOBKaqqxqWlLoTW6V3WHyskaBW0RuGBGK8OUY5pTkG3vTA9oGtG1HZfQiPPqas_tAtzbdfQjxF82gLe7QIh3FmL2bkDbCNVr2imN0tSa0ZZpKrtWOl6DNAIL6_2etZ7bETuHU44wPIE-vZn8yt6FjWWUSioEK4S3B0IM5WNStqNPDocBJgxzslyZ8uxGcVOkb46L_a3y2Mwi0HuBiyGliL11PsO2AaW2H0pRu7WO3VnHbq1jD9Ypqfyf1Ef6f5L-AOK-y14 |
CitedBy_id | crossref_primary_10_3390_pathogens13080691 crossref_primary_10_3390_v16071134 crossref_primary_10_1038_s41598_023_46067_2 crossref_primary_10_1186_s13071_024_06609_7 crossref_primary_10_1371_journal_pntd_0011649 crossref_primary_10_3390_insects16010034 crossref_primary_10_3390_pathogens12111287 crossref_primary_10_1371_journal_pone_0314001 crossref_primary_10_3389_fmicb_2024_1332970 |
Cites_doi | 10.4269/ajtmh.12-0719 10.1007/s10530-007-9188-8 10.12688/gatesopenres.13061.1 10.1007/s00248-013-0339-4 10.1371/journal.pntd.0001892 10.1038/s41586-019-1407-9 10.1089/vbz.2013.1501 10.1371/journal.ppat.1005434 10.3389/fmicb.2015.01201 10.1603/0022-2585-37.5.732 10.1603/033.046.0306 10.4269/ajtmh.13-0576 10.1111/imb.12604 10.1098/rstb.2019.0809 10.1016/j.jip.2010.08.005 10.2987/8756-971X(2007)23[265:PD]2.0.CO;2 10.1017/S0007485300000390 10.1056/NEJMoa2030243 10.4269/ajtmh.16-0516 10.1371/journal.pntd.0004320 10.1073/pnas.1116932108 10.1093/bioinformatics/btg157 10.1111/j.0962-1075.2004.00490.x 10.1111/j.1461-0248.2005.00755.x 10.3920/978-90-8686-744-8_4 10.1603/ME13152 10.1089/vbz.2011.0662 10.1016/j.cell.2009.11.042 10.1098/rspb.2014.2029 10.1098/rspb.2007.1497 10.1038/nature10355 10.1371/journal.pntd.0008846 10.1371/journal.ppat.1000833 10.1371/journal.pntd.0001989 10.1603/0022-2585(2005)042[0559:ACAPOA]2.0.CO;2 10.1111/j.1365-294X.2010.04606.x 10.4269/ajtmh.2002.66.108 10.1038/s41467-017-02749-w 10.1186/s13071-016-1559-5 10.1093/genetics/156.2.699 10.1186/s13071-018-2777-9 10.1038/s41598-020-80034-5 10.1016/j.cois.2019.02.005 10.1111/j.1948-7134.2011.00170.x 10.1186/s13071-021-04937-6 10.1002/ps.5643 10.1371/journal.pone.0126703 10.1073/pnas.2106828118 10.1371/journal.pntd.0009190 10.1371/journal.ppat.1008410 10.1016/j.actatropica.2017.05.015 10.1016/j.pt.2015.10.011 10.1371/journal.ppat.1002548 10.1093/jme/tjaa074 10.1534/genetics.110.122390 10.1186/s12864-016-3441-4 10.1017/S0031182000022666 10.1186/s13071-020-3936-3 10.1016/j.jinsphys.2013.03.010 10.1111/een.12290 10.1016/j.jip.2009.08.009 10.3389/fmicb.2021.711107 10.1016/j.ibmb.2022.103776 10.1371/journal.pbio.1000002 10.1111/j.0014-3820.2004.tb01594.x 10.1126/science.1165326 10.1093/aesa/62.6.1325 10.3389/fmicb.2022.933482 10.1093/jmedent/43.4.689 10.1128/mBio.01768-20 10.1016/j.pt.2021.06.007 10.1371/journal.pntd.0010003 10.1093/jme/tjz051 10.1186/1756-3305-6-305 10.1126/science.1162418 10.1111/brv.12098 10.1371/journal.pone.0011977 10.1073/pnas.1112021108 10.1371/journal.pntd.0002152 10.1093/genetics/165.4.2029 10.1111/j.1570-7458.2010.00993.x 10.1111/j.1365-2915.2008.00782.x 10.1186/1471-2148-13-181 10.1016/j.cub.2019.11.007 10.1371/journal.pntd.0009556 10.1093/jme/tju062 10.4269/ajtmh.15-0801 10.12688/gatesopenres.13122.1 10.3389/fmicb.2017.00526 10.1016/j.meegid.2011.08.022 10.1890/05-0209 10.1603/ME09209 |
ContentType | Journal Article |
Copyright | Copyright © 2023 Alomar, Pérez-Ramos, Kim, Kendziorski, Eastmond, Alto and Caragata. Copyright © 2023 Alomar, Pérez-Ramos, Kim, Kendziorski, Eastmond, Alto and Caragata. 2023 Alomar, Pérez-Ramos, Kim, Kendziorski, Eastmond, Alto and Caragata |
Copyright_xml | – notice: Copyright © 2023 Alomar, Pérez-Ramos, Kim, Kendziorski, Eastmond, Alto and Caragata. – notice: Copyright © 2023 Alomar, Pérez-Ramos, Kim, Kendziorski, Eastmond, Alto and Caragata. 2023 Alomar, Pérez-Ramos, Kim, Kendziorski, Eastmond, Alto and Caragata |
DBID | AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.3389/fmicb.2023.1138476 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1664-302X |
ExternalDocumentID | oai_doaj_org_article_637f80d78e594810b1805db5c24a593e PMC10050331 37007535 10_3389_fmicb_2023_1138476 |
Genre | Journal Article |
GrantInformation_xml | – fundername: ; – fundername: ; grantid: 1026692 |
GroupedDBID | 53G 5VS 9T4 AAFWJ AAKDD AAYXX ACGFO ACGFS ACXDI ADBBV ADRAZ AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV CITATION DIK ECGQY GROUPED_DOAJ GX1 HYE KQ8 M48 M~E O5R O5S OK1 PGMZT RNS RPM IAO IEA IHR IPNFZ NPM RIG 7X8 5PM |
ID | FETCH-LOGICAL-c469t-275808e640b0ab98f74de7c54e30bea231987917c1820a5bfc9fae963dbd25a63 |
IEDL.DBID | M48 |
ISSN | 1664-302X |
IngestDate | Wed Aug 27 01:00:31 EDT 2025 Thu Aug 21 18:37:54 EDT 2025 Fri Sep 05 06:57:52 EDT 2025 Thu Jan 02 22:52:21 EST 2025 Tue Jul 01 00:58:07 EDT 2025 Thu Apr 24 23:04:56 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | larval competition Wolbachia West Nile virus fitness Culex quinquefasciatus mosquito |
Language | English |
License | Copyright © 2023 Alomar, Pérez-Ramos, Kim, Kendziorski, Eastmond, Alto and Caragata. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c469t-275808e640b0ab98f74de7c54e30bea231987917c1820a5bfc9fae963dbd25a63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Edited by: Guillaume Minard, Université Claude Bernard Lyon 1, France Reviewed by: Alireza Chavshin, Urmia University of Medical Sciences, Iran; Maria Onyango, Texas Tech University, United States This article was submitted to Microbial Symbioses, a section of the journal Frontiers in Microbiology |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fmicb.2023.1138476 |
PMID | 37007535 |
PQID | 2794696729 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_637f80d78e594810b1805db5c24a593e pubmedcentral_primary_oai_pubmedcentral_nih_gov_10050331 proquest_miscellaneous_2794696729 pubmed_primary_37007535 crossref_citationtrail_10_3389_fmicb_2023_1138476 crossref_primary_10_3389_fmicb_2023_1138476 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-03-15 |
PublicationDateYYYYMMDD | 2023-03-15 |
PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Frontiers in microbiology |
PublicationTitleAlternate | Front Microbiol |
PublicationYear | 2023 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Alomar (ref4) 2020; 14 Dutton (ref34) 2004; 13 Ahmad (ref3) 2017; 96 Caragata (ref25) 2014; 67 Wada (ref85) 1965; 1 Juliano (ref51) 2005; 8 Agnew (ref1) 2000; 37 Caragata (ref23) 2021; 37 Glaser (ref41) 2010; 5 Hurst (ref46) 2000; 156 Ciota (ref26) 2013; 6 Fraser (ref36) 2020; 16 Dumas (ref32) 2013; 13 Reiskind (ref73) 2009; 23 Mpho (ref62) 2000; 90 Yeap (ref90) 2011; 187 Joubert (ref49) 2016; 12 Suh (ref81) 2017; 172 Alto (ref7) 2015; 52 Sicard (ref79) 2019; 34 Wiwatanaratanabutr (ref88) 2009; 102 Ahmad (ref2) 2021; 376 Gilles (ref40) 2011; 48 Caragata (ref24) 2017; 18 Juliano (ref50) 2007; 23 Ross (ref77) 2014; 91 Moore (ref58) 1969; 62 de Almeida (ref28) 2011; 11 Nascimento da Silva (ref64) 2022; 146 Gavotte (ref38) 2014; 46 Gavotte (ref37) 2010; 105 Bergman (ref15) 2021; 14 Altinli (ref6) 2018; 11 Hertig (ref45) 1936; 28 Van den Hurk (ref84) 2012; 6 Dutra (ref33) 2016; 9 Noden (ref66) 2016; 41 Rasgon (ref72) 2003; 165 Zheng (ref92) 2019; 572 Micieli (ref57) 2014; 51 Walsh (ref87) 2011; 36 Bara (ref13) 2015; 10 Blagrove (ref19) 2012; 109 Indriani (ref47) 2020; 4 Nasci (ref63) 1986; 2 Mousson (ref60) 2010; 19 Novakova (ref67) 2017; 8 Teixeira (ref82) 2008; 6 Alto (ref10) 2005; 86 Zug (ref93); 90 Alto (ref9) 2013 Hedges (ref43) 2008; 322 Kittayapong (ref53) 2002; 66 Walker (ref86) 2011; 476 Bian (ref17) 2010; 6 Rancès (ref71) 2012; 8 Gesto (ref39) 2021; 12 Herd (ref44) 2021; 15 Ross (ref76) 2016; 10 Hague (ref42) 2020; 11 Roberts (ref74) 2010; 135 Ekwudu (ref35) 2020; 13 Blagrove (ref18) 2013; 7 Lau (ref54) 2020; 57 Mousson (ref61) 2012; 6 Bevins (ref16) 2008; 10 McMeniman (ref56) 2009; 323 Bonneau (ref20) 2018; 9 Ronca (ref75) 2021; 15 Dodson (ref31) 2011; 11 Nazni (ref65) 2019; 29 Utarini (ref83) 2021; 384 Mains (ref55) 2019; 56 Zug (ref94); 6 Pinto (ref69) 2021; 15 Ant (ref12) 2020; 29 Dobson (ref30) 2004; 58 Islam (ref48) 2006; 43 Moreira (ref59) 2009; 139 Yeap (ref89) 2013; 89 Costanzo (ref27) 2005; 42 Yi (ref91) 2016; 94 Caputo (ref21) 2020; 76 Kim (ref52) 2013; 59 Ponton (ref70) 2015; 282 Alto (ref11) 2008; 275 Beebe (ref14) 2021; 118 Pan (ref68) 2012; 109 Ryan (ref78) 2019; 3 Simon (ref80) 2003; 19 Alto (ref8) 2014; 14 Alomar (ref5) 2022; 13 Caragata (ref22) 2016; 32 Díaz-Nieto (ref29) 2021; 11 |
References_xml | – volume: 89 start-page: 78 year: 2013 ident: ref89 article-title: Body size and wing shape measurements as quality indicators of Aedes aegypti mosquitoes destined for field release publication-title: Am. J. Trop. Med. Hyg. doi: 10.4269/ajtmh.12-0719 – volume: 10 start-page: 1109 year: 2008 ident: ref16 article-title: Invasive mosquitoes, larval competition, and indirect effects on the vector competence of native mosquito species (Diptera: Culicidae) publication-title: Biol. Invasions doi: 10.1007/s10530-007-9188-8 – volume: 3 start-page: 3 year: 2019 ident: ref78 article-title: Establishment of wMel Wolbachia in Aedes aegypti mosquitoes and reduction of local dengue transmission in Cairns and surrounding locations in northern Queensland, Australia publication-title: Gates Open. Res. doi: 10.12688/gatesopenres.13061.1 – volume: 67 start-page: 205 year: 2014 ident: ref25 article-title: Competition for amino acids between Wolbachia and the mosquito host, Aedes aegypti publication-title: Microb. Ecol. doi: 10.1007/s00248-013-0339-4 – volume: 6 start-page: e1892 year: 2012 ident: ref84 article-title: Impact of Wolbachia on infection with chikungunya and yellow fever viruses in the mosquito vector Aedes aegypti publication-title: PLoS Negl. Trop. Dis. doi: 10.1371/journal.pntd.0001892 – volume: 572 start-page: 56 year: 2019 ident: ref92 article-title: Incompatible and sterile insect techniques combined eliminate mosquitoes publication-title: Nature doi: 10.1038/s41586-019-1407-9 – volume: 14 start-page: 606 year: 2014 ident: ref8 article-title: Reproductive biology and susceptibility of Florida Culex coronator to infection with West Nile virus publication-title: Vector Borne Zoo. Dis. doi: 10.1089/vbz.2013.1501 – volume: 12 start-page: e1005434 year: 2016 ident: ref49 article-title: Establishment of a Wolbachia superinfection in Aedes aegypti mosquitoes as a potential approach for future resistance management publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1005434 – volume: 6 start-page: 1201 ident: ref94 article-title: Wolbachia and the insect immune system: what reactive oxygen species can tell us about the mechanisms of Wolbachia–host interactions publication-title: Front. Microbiol. doi: 10.3389/fmicb.2015.01201 – volume: 37 start-page: 732 year: 2000 ident: ref1 article-title: Effects of density and larval competition on selected life history traits of Culex pipiens quinquefasciatus (Diptera: Culicidae) publication-title: J. Med. Entomol. doi: 10.1603/0022-2585-37.5.732 – volume: 46 start-page: 451 year: 2014 ident: ref38 article-title: Wolbachia Infection and resource competition effects on Immature Aedes albopictus (Diptera: Culicidae) publication-title: J. Med. Entomol. doi: 10.1603/033.046.0306 – volume: 2 start-page: 61 year: 1986 ident: ref63 article-title: The size of emerging and host-seeking Aedes aegypti and the relation of size to blood-feeding success in the field publication-title: J. Am. Mosq. Control Assoc. – volume: 91 start-page: 198 year: 2014 ident: ref77 article-title: Larval competition extends developmental time and decreases adult size of wMelPop Wolbachia-infected Aedes aegypti publication-title: Am. J. Trop. Med. Hyg. doi: 10.4269/ajtmh.13-0576 – volume: 29 start-page: 1 year: 2020 ident: ref12 article-title: Wolbachia transinfections in Culex quinquefasciatus generate cytoplasmic incompatibility publication-title: Insect Mol. Biol. doi: 10.1111/imb.12604 – volume: 376 start-page: 20190809 year: 2021 ident: ref2 article-title: Wolbachia strain wAlbB maintains high density and dengue inhibition following introduction into a field population of Aedes aegypti publication-title: Philos. Trans. R. Soc. B doi: 10.1098/rstb.2019.0809 – volume: 105 start-page: 341 year: 2010 ident: ref37 article-title: Costs and benefits of Wolbachia infection in immature Aedes albopictus depend upon sex and competition level publication-title: J. Invertebr. Pathol. doi: 10.1016/j.jip.2010.08.005 – volume: 23 start-page: 265 year: 2007 ident: ref50 article-title: Population dynamics publication-title: J. Am. Mosq. Control Assoc. doi: 10.2987/8756-971X(2007)23[265:PD]2.0.CO;2 – volume: 90 start-page: 279 year: 2000 ident: ref62 article-title: Fluctuating wing asymmetry and larval density stress in Culex quinquefasciatus (Diptera: Culicidae) publication-title: Bull. Entomol. Res. doi: 10.1017/S0007485300000390 – volume: 384 start-page: 2177 year: 2021 ident: ref83 article-title: Efficacy of Wolbachia-infected mosquito deployments for the control of dengue publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2030243 – volume: 96 start-page: 148 year: 2017 ident: ref3 article-title: Detection of Wolbachia in Aedes albopictus and their effects on chikungunya virus publication-title: Am. J. Trop. Med. Hyg. doi: 10.4269/ajtmh.16-0516 – volume: 10 start-page: e0004320 year: 2016 ident: ref76 article-title: Costs of three Wolbachia infections on the survival of Aedes aegypti larvae under starvation conditions publication-title: PLoS Negl. Trop. Dis. doi: 10.1371/journal.pntd.0004320 – volume: 109 start-page: E23 year: 2012 ident: ref68 article-title: Wolbachia induces reactive oxygen species (ROS)-dependent activation of the toll pathway to control dengue virus in the mosquito Aedes aegypti publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1116932108 – volume: 19 start-page: 1439 year: 2003 ident: ref80 article-title: Q-Gene: processing quantitative real-time RT–PCR data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btg157 – volume: 13 start-page: 317 year: 2004 ident: ref34 article-title: Strain-specific quantification of Wolbachia density in Aedes albopictus and effects of larval rearing conditions publication-title: Insect Mol. Biol. doi: 10.1111/j.0962-1075.2004.00490.x – volume: 8 start-page: 558 year: 2005 ident: ref51 article-title: Ecology of invasive mosquitoes: effects on resident species and on human health publication-title: Ecol. Lett. doi: 10.1111/j.1461-0248.2005.00755.x – start-page: 81 volume-title: Ecology of Parasite-Vector Interactions year: 2013 ident: ref9 article-title: Vector competence for arboviruses in relation to the larval environment of mosquitoes doi: 10.3920/978-90-8686-744-8_4 – volume: 51 start-page: 189 year: 2014 ident: ref57 article-title: Somatic Wolbachia (Rickettsiales: Rickettsiaceae) levels in Culex quinquefasciatus and Culex pipiens (Diptera: Culicidae) and resistance to West Nile virus infection publication-title: J. Med. Entomol. doi: 10.1603/ME13152 – volume: 11 start-page: 1493 year: 2011 ident: ref31 article-title: Larval nutritional stress does not affect vector competence for West Nile virus (WNV) in Culex tarsalis publication-title: Vector Borne Zoo. Dis. doi: 10.1089/vbz.2011.0662 – volume: 139 start-page: 1268 year: 2009 ident: ref59 article-title: A Wolbachia symbiont in Aedes aegypti limits infection with dengue, chikungunya, and plasmodium publication-title: Cells doi: 10.1016/j.cell.2009.11.042 – volume: 282 start-page: 20142029 year: 2015 ident: ref70 article-title: Macronutrients mediate the functional relationship between Drosophila and Wolbachia publication-title: Proc. R. Soc. B Biol. Sci. doi: 10.1098/rspb.2014.2029 – volume: 275 start-page: 463 year: 2008 ident: ref11 article-title: Larval competition alters susceptibility of adult Aedes mosquitoes to dengue infection publication-title: Proc. R. Soc. B Biol. Sci. doi: 10.1098/rspb.2007.1497 – volume: 476 start-page: 450 year: 2011 ident: ref86 article-title: The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations publication-title: Nature doi: 10.1038/nature10355 – volume: 14 start-page: e0008846 year: 2020 ident: ref4 article-title: The effects of exposure to pyriproxyfen and predation on Zika virus infection and transmission in Aedes aegypti publication-title: PLoS Negl. Trop. Dis. doi: 10.1371/journal.pntd.0008846 – volume: 6 start-page: e1000833 year: 2010 ident: ref17 article-title: The endosymbiotic bacterium Wolbachia induces resistance to dengue virus in Aedes aegypti publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1000833 – volume: 6 start-page: e1989 year: 2012 ident: ref61 article-title: The native Wolbachia symbionts limit transmission of dengue virus in Aedes albopictus publication-title: PLoS Negl. Trop. Dis. doi: 10.1371/journal.pntd.0001989 – volume: 42 start-page: 559 year: 2005 ident: ref27 article-title: Asymmetrical competition and patterns of abundance of Aedes albopictus and Culex pipiens (Diptera: Culicidae) publication-title: J. Med. Entomol. doi: 10.1603/0022-2585(2005)042[0559:ACAPOA]2.0.CO;2 – volume: 19 start-page: 1953 year: 2010 ident: ref60 article-title: Wolbachia modulates chikungunya replication in Aedes albopictus publication-title: Mol. Ecol. doi: 10.1111/j.1365-294X.2010.04606.x – volume: 66 start-page: 108 year: 2002 ident: ref53 article-title: Field prevalence of Wolbachia in the mosquito vector Aedes albopictus publication-title: Am. J. Trop. Med. Hyg. doi: 10.4269/ajtmh.2002.66.108 – volume: 9 start-page: 319 year: 2018 ident: ref20 article-title: Culex pipiens crossing type diversity is governed by an amplified and polymorphic operon of Wolbachia publication-title: Nat. Commun. doi: 10.1038/s41467-017-02749-w – volume: 9 start-page: 1 year: 2016 ident: ref33 article-title: The influence of larval competition on Brazilian Wolbachia-infected Aedes aegypti mosquitoes publication-title: Parasit. Vectors doi: 10.1186/s13071-016-1559-5 – volume: 156 start-page: 699 year: 2000 ident: ref46 article-title: Male-killing Wolbachia in drosophila: a temperature-sensitive trait with a threshold bacterial density publication-title: Genetics doi: 10.1093/genetics/156.2.699 – volume: 11 start-page: 1 year: 2018 ident: ref6 article-title: Wolbachia diversity and cytoplasmic incompatibility patterns in Culex pipiens populations in Turkey publication-title: Parasit. Vectors doi: 10.1186/s13071-018-2777-9 – volume: 11 start-page: 1 year: 2021 ident: ref29 article-title: Culex quinquefasciatus carrying Wolbachia is less susceptible to entomopathogenic bacteria publication-title: Sci. Rep. doi: 10.1038/s41598-020-80034-5 – volume: 34 start-page: 12 year: 2019 ident: ref79 article-title: Wolbachia prevalence, diversity, and ability to induce cytoplasmic incompatibility in mosquitoes publication-title: Curr. Opin. Insect Sci. doi: 10.1016/j.cois.2019.02.005 – volume: 36 start-page: 300 year: 2011 ident: ref87 article-title: Assessing the impact of density dependence in field populations of Aedes aegypti publication-title: J. Vector Ecol. doi: 10.1111/j.1948-7134.2011.00170.x – volume: 14 start-page: 428 year: 2021 ident: ref15 article-title: Wolbachia prevalence in the vector species Culex pipiens and Culex torrentium in a Sindbis virus-endemic region of Sweden publication-title: Parasit. Vectors doi: 10.1186/s13071-021-04937-6 – volume: 76 start-page: 1324 year: 2020 ident: ref21 article-title: A bacterium against the tiger: preliminary evidence of fertility reduction after release of Aedes albopictus males with manipulated Wolbachia infection in an Italian urban area publication-title: Pest Manag. Sci. doi: 10.1002/ps.5643 – volume: 10 start-page: e0126703 year: 2015 ident: ref13 article-title: Effect of larval competition on extrinsic incubation period and vectorial capacity of Aedes albopictus for dengue virus publication-title: PLoS One doi: 10.1371/journal.pone.0126703 – volume: 1 start-page: 223 year: 1965 ident: ref85 article-title: Effect of larval density on the development of Aedes aegypti (L.) and the size of adults publication-title: Quaest. Entomol. – volume: 118 start-page: e2106828118 year: 2021 ident: ref14 article-title: Releasing incompatible males drives strong suppression across populations of wild and Wolbachia-carrying Aedes aegypti in Australia publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.2106828118 – volume: 15 start-page: e0009190 year: 2021 ident: ref75 article-title: A 20-year historical review of West Nile virus since its initial emergence in North America: has West Nile virus become a neglected tropical disease? publication-title: PLoS Negl. Trop. Dis. doi: 10.1371/journal.pntd.0009190 – volume: 16 start-page: e1008410 year: 2020 ident: ref36 article-title: Novel phenotype of Wolbachia strain wPip in Aedes aegypti challenges assumptions on mechanisms of Wolbachia-mediated dengue virus inhibition publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1008410 – volume: 172 start-page: 232 year: 2017 ident: ref81 article-title: Life-shortening Wolbachia infection reduces population growth of Aedes aegypti publication-title: Acta Trop. doi: 10.1016/j.actatropica.2017.05.015 – volume: 32 start-page: 207 year: 2016 ident: ref22 article-title: Exploiting intimate relationships: controlling mosquito-transmitted disease with Wolbachia publication-title: Trends Parasitol. doi: 10.1016/j.pt.2015.10.011 – volume: 8 start-page: e1002548 year: 2012 ident: ref71 article-title: The relative importance of innate immune priming in Wolbachia-mediated dengue interference publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1002548 – volume: 57 start-page: 1567 year: 2020 ident: ref54 article-title: Impacts of low temperatures on Wolbachia (Rickettsiales: Rickettsiaceae)-infected Aedes aegypti (Diptera: Culicidae) publication-title: J. Med. Entomol. doi: 10.1093/jme/tjaa074 – volume: 187 start-page: 583 year: 2011 ident: ref90 article-title: Dynamics of the “popcorn” Wolbachia infection in outbred Aedes aegypti informs prospects for mosquito vector control publication-title: Genetics doi: 10.1534/genetics.110.122390 – volume: 18 start-page: 1 year: 2017 ident: ref24 article-title: The transcriptome of the mosquito Aedes fluviatilis (Diptera: Culicidae), and transcriptional changes associated with its native Wolbachia infection publication-title: BMC Genomics doi: 10.1186/s12864-016-3441-4 – volume: 28 start-page: 453 year: 1936 ident: ref45 article-title: The rickettsia, Wolbachia pipientis (gen. Et sp. n.) and associated inclusions of the mosquito, Culex pipiens publication-title: Parasitology doi: 10.1017/S0031182000022666 – volume: 13 start-page: 54 year: 2020 ident: ref35 article-title: Wolbachia strain wAlbB blocks replication of flaviviruses and alphavisures in mosquito cell culture publication-title: Parasit. Vectors doi: 10.1186/s13071-020-3936-3 – volume: 59 start-page: 604 year: 2013 ident: ref52 article-title: Effect of larval density and Sindbis virus infection on immune responses in Aedes aegypti publication-title: J. Insect Physiol. doi: 10.1016/j.jinsphys.2013.03.010 – volume: 41 start-page: 192 year: 2016 ident: ref66 article-title: Impact of inter-and intra-specific competition among larvae on larval, adult, and life-table traits of Aedes aegypti and Aedes albopictus females publication-title: Ecol. Entomol. doi: 10.1111/een.12290 – volume: 102 start-page: 220 year: 2009 ident: ref88 article-title: Effects of crowding and temperature on Wolbachia infection density among life cycle stages of Aedes albopictus publication-title: J. Invertebr. Pathol. doi: 10.1016/j.jip.2009.08.009 – volume: 12 start-page: 2113 year: 2021 ident: ref39 article-title: Large-scale deployment and establishment of Wolbachia into the Aedes aegypti population in Rio de Janeiro, Brazil publication-title: Front. Microbiol. doi: 10.3389/fmicb.2021.711107 – volume: 146 start-page: 103776 year: 2022 ident: ref64 article-title: Wolbachia pipientis modulates metabolism and immunity during Aedes fluviatilis oogenesis publication-title: Insect Biochem. Mol. Biol. doi: 10.1016/j.ibmb.2022.103776 – volume: 6 start-page: e1000002 year: 2008 ident: ref82 article-title: The bacterial symbiont Wolbachia induces resistance to RNA viral infections in Drosophila melanogaster publication-title: PLoS Biol. doi: 10.1371/journal.pbio.1000002 – volume: 58 start-page: 2156 year: 2004 ident: ref30 article-title: Evolution of Wolbachia cytoplasmic incompatibility types publication-title: Evolution doi: 10.1111/j.0014-3820.2004.tb01594.x – volume: 323 start-page: 141 year: 2009 ident: ref56 article-title: Stable introduction of a life-shortening Wolbachia infection into the mosquito Aedes aegypti publication-title: Science doi: 10.1126/science.1165326 – volume: 62 start-page: 1325 year: 1969 ident: ref58 article-title: Competition in mosquitoes. Density and species ratio effects on growth, mortality, fecundity, and production of growth retardant publication-title: Ann. Entomol. Soc. Am. doi: 10.1093/aesa/62.6.1325 – volume: 13 start-page: 933482 year: 2022 ident: ref5 article-title: Ingestion of spinosad-containing toxic sugar bait alters Aedes albopictus vector competence and vectorial capacity for dengue virus publication-title: Front. Microbiol. doi: 10.3389/fmicb.2022.933482 – volume: 43 start-page: 689 year: 2006 ident: ref48 article-title: Wolbachia effects on Aedes albopictus (Diptera: Culicidae) immature survivorship and development publication-title: J. Med. Entomol. doi: 10.1093/jmedent/43.4.689 – volume: 11 start-page: e01768 year: 2020 ident: ref42 article-title: Pervasive effects of Wolbachia on host temperature preference publication-title: MBio doi: 10.1128/mBio.01768-20 – volume: 37 start-page: 1050 year: 2021 ident: ref23 article-title: Wolbachia as translational science: controlling mosquito-borne pathogens publication-title: Trends Parasitol. doi: 10.1016/j.pt.2021.06.007 – volume: 15 start-page: e0010003 year: 2021 ident: ref44 article-title: Starvation at the larval stage increases the vector competence of Aedes aegypti females for Zika virus publication-title: PLoS Negl. Trop. Dis. doi: 10.1371/journal.pntd.0010003 – volume: 56 start-page: 1296 year: 2019 ident: ref55 article-title: Localized control of Aedes aegypti (Diptera: Culicidae) in Miami, FL, via Inundative releases of Wolbachia-infected male mosquitoes publication-title: J. Med. Entomol. doi: 10.1093/jme/tjz051 – volume: 6 start-page: 1 year: 2013 ident: ref26 article-title: The effect of hybridization of Culex pipiens complex mosquitoes on transmission of West Nile virus publication-title: Parasit. Vectors doi: 10.1186/1756-3305-6-305 – volume: 322 start-page: 702 year: 2008 ident: ref43 article-title: Wolbachia and virus protection in insects publication-title: Science doi: 10.1126/science.1162418 – volume: 90 start-page: 89 ident: ref93 article-title: Bad guys turned nice? A critical assessment of Wolbachia mutualisms in arthropod hosts publication-title: Biol. Rev. doi: 10.1111/brv.12098 – volume: 5 start-page: e11977 year: 2010 ident: ref41 article-title: The native Wolbachia endosymbionts of Drosophila melanogaster and Culex quinquefasciatus increase host resistance to West Nile virus infection publication-title: PLoS One doi: 10.1371/journal.pone.0011977 – volume: 109 start-page: 255 year: 2012 ident: ref19 article-title: Wolbachia strain wMel induces cytoplasmic incompatibility and blocks dengue transmission in Aedes albopictus publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1112021108 – volume: 7 start-page: e2152 year: 2013 ident: ref18 article-title: A Wolbachia wMel transinfection in Aedes albopictus is not detrimental to host fitness and inhibits chikungunya virus publication-title: PLoS Negl. Trop. Dis. doi: 10.1371/journal.pntd.0002152 – volume: 165 start-page: 2029 year: 2003 ident: ref72 article-title: Wolbachia and cytoplasmic incompatibility in the California Culex pipiens mosquito species complex: parameter estimates and infection dynamics in natural populations publication-title: Genetics doi: 10.1093/genetics/165.4.2029 – volume: 135 start-page: 271 year: 2010 ident: ref74 article-title: Larval crowding effects on the mosquito Culex quinquefasciatus: physical or chemical? publication-title: Entomol. Exp. Appl. doi: 10.1111/j.1570-7458.2010.00993.x – volume: 23 start-page: 62 year: 2009 ident: ref73 article-title: Effects of intraspecific larval competition on adult longevity in the mosquitoes Aedes aegypti and Aedes albopictus publication-title: Med. Vet. Entomol. doi: 10.1111/j.1365-2915.2008.00782.x – volume: 13 start-page: 1 year: 2013 ident: ref32 article-title: Population structure of Wolbachia and cytoplasmic introgression in a complex of mosquito species publication-title: BMC Evol. Biol. doi: 10.1186/1471-2148-13-181 – volume: 29 start-page: 4241 year: 2019 ident: ref65 article-title: Establishment of Wolbachia strain wAlbB in Malaysian populations of Aedes aegypti for dengue control publication-title: Curr. Biol. doi: 10.1016/j.cub.2019.11.007 – volume: 15 start-page: e0009556 year: 2021 ident: ref69 article-title: Effectiveness of Wolbachia-infected mosquito deployments in reducing the incidence of dengue and other Aedes-borne diseases in Niterói, Brazil: a quasi-experimental study publication-title: PLoS Negl. Trop. Dis. doi: 10.1371/journal.pntd.0009556 – volume: 52 start-page: 163 year: 2015 ident: ref7 article-title: Interspecific larval competition differentially impacts adult survival in dengue vectors publication-title: J. Med. Entomol. doi: 10.1093/jme/tju062 – volume: 94 start-page: 812 year: 2016 ident: ref91 article-title: The effect of temperature on Wolbachia-mediated dengue virus blocking in Aedes aegypti publication-title: Am. J. Trop. Med. Hyg. doi: 10.4269/ajtmh.15-0801 – volume: 4 start-page: 50 year: 2020 ident: ref47 article-title: Reduced dengue incidence following deployments of Wolbachia-infected Aedes aegypti in Yogyakarta, Indonesia: a quasi-experimental trial using controlled interrupted time series analysis publication-title: Gates Open Res. doi: 10.12688/gatesopenres.13122.1 – volume: 8 start-page: 526 year: 2017 ident: ref67 article-title: Mosquito microbiome dynamics, a background for prevalence and seasonality of West Nile virus publication-title: Front. Microbiol. doi: 10.3389/fmicb.2017.00526 – volume: 11 start-page: 2138 year: 2011 ident: ref28 article-title: Effects of Wolbachia on fitness of Culex quinquefasciatus (Diptera; Culicidae) publication-title: Infect. Genet. Evol. doi: 10.1016/j.meegid.2011.08.022 – volume: 86 start-page: 3279 year: 2005 ident: ref10 article-title: Larval competition differentially affects arbovirus infection in Aedes mosquitoes publication-title: Ecology doi: 10.1890/05-0209 – volume: 48 start-page: 296 year: 2011 ident: ref40 article-title: Density-dependent effects in experimental larval populations of Anopheles arabiensis (Diptera: Culicidae) can be negative, neutral, or overcompensatory depending on density and diet levels publication-title: J. Med. Entomol. doi: 10.1603/ME09209 |
SSID | ssj0000402000 |
Score | 2.3975704 |
Snippet | transinfections established in key mosquito vectors, including
are typically associated with pathogen blocking-reduced susceptibility to infection with key... Wolbachia transinfections established in key mosquito vectors, including Aedes aegypti are typically associated with pathogen blocking-reduced susceptibility... IntroductionWolbachia transinfections established in key mosquito vectors, including Aedes aegypti are typically associated with pathogen blocking—reduced... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1138476 |
SubjectTerms | Culex quinquefasciatus fitness larval competition Microbiology mosquito West Nile virus Wolbachia |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Ji9VAEG5kQPAi7saNFrxJtLP0kqMODoPgOzk4t9BLhQnEZGaSiP4E_7VVnbzHeyJ68ZpUkqKrurqKVH0fY69oLs95laeQ5T4tQ2kwDoJPA6gmyxSm-I7mnT9t1OlZ-fFcnu9RfVFP2AIPvCzcW1XoxoigDURgEeEyI2Rw0uellVUBFH1FJfaKqRiDqSwSYpmSwSqsQjO13r0hsnCiMcGYrA5OogjY_6cs8_dmyb3T5-QOu72mjfzdou5ddgP6e-zmQiT54z77uYn43fzL0DnqjrR822TVc9sH3hEDUMd9TJJjkxZfhkT4eGEvgTftRCEvyhLXDN9gsODf2ut53HtT2_PjuYPv_Gpue9S_sSNZFmW-DiNemwYYH7Czkw-fj0_TlWQh9VgZT2mOBYMwoErhhHWVaXQZQHtZQiEcWEz_KqOxpvOE9G6la3zVWMBtG1zIpVXFQ3bUDz08Zlyoxha5ButCVfoiGG2UMVVwoHVQ0iYs2y547VcEciLC6GqsRMhIdTRSTUaqVyMl7PXumcsFf-Ov0u_JjjtJws6OF9Cj6tWj6n95VMJebr2gxr1GP1BsD8M81jmh8VcK65GEPVq8YvepQlP2VciEmQN_OdDl8E7fXkQ87yyC8hTZk_-h_VN2i1aE2uQy-YwdTdczPMe8aXIv4hb5BR7iGDo priority: 102 providerName: Directory of Open Access Journals |
Title | Native Wolbachia infection and larval competition stress shape fitness and West Nile virus infection in Culex quinquefasciatus mosquitoes |
URI | https://www.ncbi.nlm.nih.gov/pubmed/37007535 https://www.proquest.com/docview/2794696729 https://pubmed.ncbi.nlm.nih.gov/PMC10050331 https://doaj.org/article/637f80d78e594810b1805db5c24a593e |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ba9RAFB5qRfBFvBsvZQTfJCWTZC55ENFiLUL3ycV9C3OLDcSk3STS_gT_tedMsktXquDLQrKzuZ05Z863Oef7CHmDfXnGijT2LLVx7nIFcdDb2HlRMSYgxTfY73y6ECfL_MuKr_bIRu5ofoD9jdAO9aSW6-bw8uLqPTj8O0ScsN6CBWprDlEHHBVKINyKW-Q2rEwCwdjpnO6HyIxgKXSlMCHwhUC6mvpo_nKYnbUqUPrflIf-WU55bX06vk_uzYkl_TDNhAdkz7cPyZ1JavLqEfm1CAzf9FvXGKyf1HRThtVS3TraoEZQQ21Io0MZF53aSGh_ps89reoBg2IYi2o0dAHhhP6s12N_7Uh1S4_Gxl_Si7Fu4for3aPtYcyProd9Q-f7x2R5_Onr0Uk8yzDEFrDzEKcAKRLlRZ6YRJtCVTJ3Xlqe-ywxXkOCWCgJqM8iF7zmprJFpT04tjMu5VpkT8h-27X-GaGJqHSWSq-NK3KbOSWVUKpwxkvpBNcRYZsHXtqZoxylMpoSsAoaqQxGKtFI5WykiLzd_uZ8Yuj45-iPaMftSGTXDju69fdydtZSZLJSiZPKBzKbxDCVcGe4TXPNi8xH5PVmFpTgjfiKRbe-G_syRb7-QgBiicjTaVZsT5VJzM8yHhG1M192rmX3m7Y-C4zfLND2ZOz5f93rC3IXN7FijvGXZH9Yj_4VpFCDOQh_PcDn5xU7CD7yG67IHPk |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Native+Wolbachia+infection+and+larval+competition+stress+shape+fitness+and+West+Nile+virus+infection+in+Culex+quinquefasciatus+mosquitoes&rft.jtitle=Frontiers+in+microbiology&rft.au=Alomar%2C+Abdullah+A.&rft.au=P%C3%A9rez-Ramos%2C+Daniel+W.&rft.au=Kim%2C+Dongmin&rft.au=Kendziorski%2C+Natalie+L.&rft.date=2023-03-15&rft.issn=1664-302X&rft.eissn=1664-302X&rft.volume=14&rft_id=info:doi/10.3389%2Ffmicb.2023.1138476&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fmicb_2023_1138476 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-302X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-302X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-302X&client=summon |