Review of Photodetectors for Space Lidars
Photodetectors play a critical role in space lidars designed for scientific investigations from orbit around planetary bodies. The detectors must be highly sensitive due to the long range of measurements and tight constraints on the size, weight, and power of the instrument. The detectors must also...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 24; no. 20; p. 6620 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
14.10.2024
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Photodetectors play a critical role in space lidars designed for scientific investigations from orbit around planetary bodies. The detectors must be highly sensitive due to the long range of measurements and tight constraints on the size, weight, and power of the instrument. The detectors must also be space radiation tolerant over multi-year mission lifetimes with no significant performance degradation. Early space lidars used diode-pumped Nd:YAG lasers with a single beam for range and atmospheric backscattering measurements at 1064 nm or its frequency harmonics. The photodetectors used were single-element photomultiplier tubes and infrared performance-enhanced silicon avalanche photodiodes. Space lidars have advanced to multiple beams for surface topographic mapping and active infrared spectroscopic measurements of atmospheric species and surface composition, which demand increased performance and new capabilities for lidar detectors. Higher sensitivity detectors are required so that multi-beam and multi-wavelength measurements can be performed without increasing the laser and instrument power. Pixelated photodetectors are needed so that a single detector assembly can be used for simultaneous multi-channel measurements. Photon-counting photodetectors are needed for active spectroscopy measurements from short-wave infrared to mid-wave infrared. HgCdTe avalanche photodiode arrays have emerged recently as a promising technology to fill these needs. This paper gives a review of the photodetectors used in past and present lidars and the development and outlook of HgCdTe APD arrays for future space lidars. |
---|---|
AbstractList | Photodetectors play a critical role in space lidars designed for scientific investigations from orbit around planetary bodies. The detectors must be highly sensitive due to the long range of measurements and tight constraints on the size, weight, and power of the instrument. The detectors must also be space radiation tolerant over multi-year mission lifetimes with no significant performance degradation. Early space lidars used diode-pumped Nd:YAG lasers with a single beam for range and atmospheric backscattering measurements at 1064 nm or its frequency harmonics. The photodetectors used were single-element photomultiplier tubes and infrared performance-enhanced silicon avalanche photodiodes. Space lidars have advanced to multiple beams for surface topographic mapping and active infrared spectroscopic measurements of atmospheric species and surface composition, which demand increased performance and new capabilities for lidar detectors. Higher sensitivity detectors are required so that multi-beam and multi-wavelength measurements can be performed without increasing the laser and instrument power. Pixelated photodetectors are needed so that a single detector assembly can be used for simultaneous multi-channel measurements. Photon-counting photodetectors are needed for active spectroscopy measurements from short-wave infrared to mid-wave infrared. HgCdTe avalanche photodiode arrays have emerged recently as a promising technology to fill these needs. This paper gives a review of the photodetectors used in past and present lidars and the development and outlook of HgCdTe APD arrays for future space lidars. Photodetectors play a critical role in space lidars designed for scientific investigations from orbit around planetary bodies. The detectors must be highly sensitive due to the long range of measurements and tight constraints on the size, weight, and power of the instrument. The detectors must also be space radiation tolerant over multi-year mission lifetimes with no significant performance degradation. Early space lidars used diode-pumped Nd:YAG lasers with a single beam for range and atmospheric backscattering measurements at 1064 nm or its frequency harmonics. The photodetectors used were single-element photomultiplier tubes and infrared performance-enhanced silicon avalanche photodiodes. Space lidars have advanced to multiple beams for surface topographic mapping and active infrared spectroscopic measurements of atmospheric species and surface composition, which demand increased performance and new capabilities for lidar detectors. Higher sensitivity detectors are required so that multi-beam and multi-wavelength measurements can be performed without increasing the laser and instrument power. Pixelated photodetectors are needed so that a single detector assembly can be used for simultaneous multi-channel measurements. Photon-counting photodetectors are needed for active spectroscopy measurements from short-wave infrared to mid-wave infrared. HgCdTe avalanche photodiode arrays have emerged recently as a promising technology to fill these needs. This paper gives a review of the photodetectors used in past and present lidars and the development and outlook of HgCdTe APD arrays for future space lidars.Photodetectors play a critical role in space lidars designed for scientific investigations from orbit around planetary bodies. The detectors must be highly sensitive due to the long range of measurements and tight constraints on the size, weight, and power of the instrument. The detectors must also be space radiation tolerant over multi-year mission lifetimes with no significant performance degradation. Early space lidars used diode-pumped Nd:YAG lasers with a single beam for range and atmospheric backscattering measurements at 1064 nm or its frequency harmonics. The photodetectors used were single-element photomultiplier tubes and infrared performance-enhanced silicon avalanche photodiodes. Space lidars have advanced to multiple beams for surface topographic mapping and active infrared spectroscopic measurements of atmospheric species and surface composition, which demand increased performance and new capabilities for lidar detectors. Higher sensitivity detectors are required so that multi-beam and multi-wavelength measurements can be performed without increasing the laser and instrument power. Pixelated photodetectors are needed so that a single detector assembly can be used for simultaneous multi-channel measurements. Photon-counting photodetectors are needed for active spectroscopy measurements from short-wave infrared to mid-wave infrared. HgCdTe avalanche photodiode arrays have emerged recently as a promising technology to fill these needs. This paper gives a review of the photodetectors used in past and present lidars and the development and outlook of HgCdTe APD arrays for future space lidars. |
Audience | Academic |
Author | Sun, Xiaoli |
AuthorAffiliation | Planetary Geology, Geophysics and Geochemistry Laboratory, Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA; xiaoli.sun-1@nasa.gov |
AuthorAffiliation_xml | – name: Planetary Geology, Geophysics and Geochemistry Laboratory, Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA; xiaoli.sun-1@nasa.gov |
Author_xml | – sequence: 1 givenname: Xiaoli orcidid: 0000-0001-6172-9995 surname: Sun fullname: Sun, Xiaoli |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39460100$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkktvEzEQgC1URNvAgT-AVuJCDynjZ-wTqioelSKBeJwtrz1OHW3Wwd4U8e9xSIla5IOt8advPDM-JydjHpGQlxQuOTfwtjLBQCkGT8gZFUzMNWNw8uB8Ss5rXQMwzrl-Rk65EQoowBm5-Ip3CX91OXZfbvOUA07op1xqF3Ppvm2dx26Zgiv1OXka3VDxxf0-Iz8-vP9-_Wm-_Pzx5vpqOfdCmWlOo1F9AGl6EL2BaAxVvVYyRuYXVPZMOOkYRWVMkMi458ACi8H0LhhJI5-Rm4M3ZLe225I2rvy22SX7N5DLyroyJT-g1RFdjA7RIRfY8klpQq8cj9HrRfDN9e7g2u76DQaP41Tc8Ej6-GZMt3aV7yylksKCy2Z4c28o-ecO62Q3qXocBjdi3lXLKaOghJa6oa__Q9d5V8bWqz0FCyVNa_-MXB6olWsVpDHmlti3FXCTfJtrTC1-pakQVIPaa189rOH4-H8zbMDFAfAl11owHhEKdv8_7PF_8D_LkaqR |
Cites_doi | 10.1007/s11214-015-0231-2 10.1007/s11664-022-09873-4 10.1364/AO.56.007577 10.3390/s150818178 10.1016/j.cryogenics.2010.02.009 10.1109/JSTQE.2014.2350836 10.1117/1.OE.53.8.081905 10.1109/55.748909 10.1109/TNS.2020.3040741 10.1007/s12567-020-00301-z 10.1175/2009JTECHA1223.1 10.1364/OPN.19.6.000022 10.1117/3.1002766 10.1002/9780470669464 10.1007/s11664-006-0237-3 10.1029/96JE02940 10.1007/4243_2014_63 10.1080/09500340408235273 10.1364/OE.25.016589 10.3847/1538-3881/aabdeb 10.1364/AO.33.003460 10.1029/92JE00341 10.1016/j.icarus.2024.116013 10.1080/09500340408235272 10.1117/1.JRS.11.034001 10.1080/09500340408235276 10.1109/TNS.2004.839165 10.1364/AO.32.003894 10.1002/2016GL068006 10.1364/AO.52.002874 10.1016/j.rse.2019.111325 10.1007/s11214-021-00794-y 10.3390/rs9101052 10.1364/AO.10.000776 10.1016/j.infrared.2006.08.001 10.1023/A:1005056828065 10.5194/amt-11-2001-2018 10.3390/rs11040440 10.1007/0-387-25101-4_13 10.1109/16.644630 10.1016/j.asr.2021.11.036 10.1364/CLEO_AT.2011.ATuA2 10.1007/s11664-011-1679-9 10.1109/JSTARS.2013.2259578 10.3389/frsen.2022.1042460 10.1175/BAMS-D-12-00164.1 10.1109/TNS.1973.4326895 10.1038/lsa.2015.59 10.1117/1.OE.58.6.067103 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 MDPI AG 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2024 by the author. 2024 |
Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2024 by the author. 2024 |
DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/s24206620 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic Publicly Available Content Database PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_8feaffaeeae34e04b559db6a3ffc87dc PMC11510735 A814418068 39460100 10_3390_s24206620 |
Genre | Journal Article Review |
GeographicLocations | United Kingdom |
GeographicLocations_xml | – name: United Kingdom |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M NPM PMFND 3V. 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c469t-1f96bd059b04b90f9916b865ff2c715b24a5a21e699d5e23c302d2fd9bad951f3 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:15:23 EDT 2025 Thu Aug 21 18:43:44 EDT 2025 Fri Jul 11 08:53:38 EDT 2025 Sat Jul 26 00:43:38 EDT 2025 Tue Jun 10 21:04:45 EDT 2025 Thu Apr 03 07:07:01 EDT 2025 Tue Jul 01 03:51:16 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 20 |
Keywords | photodetectors remote sensing avalanche photodiode lidar space |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c469t-1f96bd059b04b90f9916b865ff2c715b24a5a21e699d5e23c302d2fd9bad951f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0001-6172-9995 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s24206620 |
PMID | 39460100 |
PQID | 3120765933 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_8feaffaeeae34e04b559db6a3ffc87dc pubmedcentral_primary_oai_pubmedcentral_nih_gov_11510735 proquest_miscellaneous_3121064858 proquest_journals_3120765933 gale_infotracacademiconefile_A814418068 pubmed_primary_39460100 crossref_primary_10_3390_s24206620 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20241014 |
PublicationDateYYYYMMDD | 2024-10-14 |
PublicationDate_xml | – month: 10 year: 2024 text: 20241014 day: 14 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2024 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Laforce (ref_15) 2009; 7212 Rothman (ref_58) 2019; 11180 Martino (ref_8) 2019; 111151 Robben (ref_12) 1971; 10 Laforce (ref_16) 2009; 7330 Rothman (ref_57) 2011; 40 Baker (ref_53) 2019; 10980 Dautet (ref_25) 1992; 32 Yorks (ref_29) 2016; 43 Cole (ref_18) 1997; 82 Sun (ref_2) 2013; 6 Sun (ref_24) 2022; 12110 Zhang (ref_41) 2015; 4 Sprafke (ref_42) 2008; 19 Sun (ref_34) 1997; 44 Rawlings (ref_49) 2014; 9070 Neumann (ref_7) 2019; 233 Cremons (ref_68) 2020; 12 Prochazka (ref_30) 2011; 8194 Michalek (ref_31) 2015; 15 Atkinson (ref_54) 2018; 155 Kleipool (ref_39) 2007; 50 ref_67 Rauscher (ref_47) 2014; 126 Cohen (ref_37) 2024; 413 Gulinatti (ref_32) 2013; 8727 Smith (ref_17) 1997; 102 Hunt (ref_5) 2009; 26 Jack (ref_60) 2011; 8033 Sun (ref_62) 2021; 68 Dobler (ref_64) 2013; 52 Sun (ref_28) 2004; 51 Abshire (ref_65) 2018; 11 Riris (ref_66) 2017; 11 Baker (ref_6) 2014; 95 ref_36 ref_35 Southwell (ref_52) 1994; 33 Baker (ref_55) 2023; 12687 Sun (ref_63) 2022; 12107 Thomas (ref_20) 2021; 217 Sun (ref_51) 2019; 58 Beck (ref_3) 2006; 35 Sun (ref_45) 2017; 25 Becker (ref_40) 2004; 51 ref_38 Kapusta (ref_9) 2014; Volume 15 Sun (ref_69) 2024; 13049 Anderson (ref_46) 2022; 51 Enya (ref_23) 2022; 69 Cova (ref_26) 2004; 51 Beck (ref_50) 2014; 53 ref_44 ref_43 WeitKamp (ref_4) 2005; 102 Yang (ref_11) 2019; 10978 Raab (ref_48) 2010; 50 ref_1 Johnson (ref_13) 1973; NS-20 Zuber (ref_19) 1992; 97 Mizuno (ref_22) 2017; 208 Thorne (ref_56) 2024; 13046 Jack (ref_61) 2012; 8353 Davis (ref_10) 1999; 20 Lehmann (ref_14) 2018; 13 Donati (ref_33) 2014; 20 Sun (ref_21) 2020; 11287 Dumas (ref_59) 2017; 56 Prochazka (ref_27) 2004; 51 |
References_xml | – volume: 208 start-page: 33 year: 2017 ident: ref_22 article-title: Development of the laser altimeter (LIDAR) for Hayabusa2 publication-title: Space Sci. Rev. doi: 10.1007/s11214-015-0231-2 – volume: 51 start-page: 6803 year: 2022 ident: ref_46 article-title: Recent advancements in HgCdTe APDs for space applications publication-title: J. Electron. Mater. doi: 10.1007/s11664-022-09873-4 – volume: 56 start-page: 7577 year: 2017 ident: ref_59 article-title: Evaluation of a HgCdTe e-APD based detector for 2 μm CO2 DIAL application publication-title: Appl. Opt. doi: 10.1364/AO.56.007577 – volume: 15 start-page: 18178 year: 2015 ident: ref_31 article-title: Twenty years of rad-hard K14 SPAD in space projects publication-title: Sensors doi: 10.3390/s150818178 – volume: 50 start-page: 572 year: 2010 ident: ref_48 article-title: Northrop Grumman Aerospace Systems cryocooler overview publication-title: Cryogenics doi: 10.1016/j.cryogenics.2010.02.009 – volume: 20 start-page: 3805008 year: 2014 ident: ref_33 article-title: Single-photon detectors: From traditional PMT to solid-state SPAD-based technology publication-title: IEEE J. Sel. Topics Quantum Electron. doi: 10.1109/JSTQE.2014.2350836 – volume: 53 start-page: 081905 year: 2014 ident: ref_50 article-title: Linear mode photon counting with the noiseless gain HgCdTe e-avalanche photodiode publication-title: Opt. Eng. doi: 10.1117/1.OE.53.8.081905 – volume: 20 start-page: 126 year: 1999 ident: ref_10 article-title: Photon counting 1060-nm hybrid photomultiplier with high quantum efficiency publication-title: IEEE Electron. Device Lett. doi: 10.1109/55.748909 – volume: 68 start-page: 27 year: 2021 ident: ref_62 article-title: Proton radiation effects on HgCdTe avalanche photodiode detectors publication-title: IEEE Trans. Nucl. Sci. doi: 10.1109/TNS.2020.3040741 – volume: 12 start-page: 149 year: 2020 ident: ref_68 article-title: Design of a direct-detection wind and aerosol lidar for Mars orbit publication-title: CAE Space J. doi: 10.1007/s12567-020-00301-z – volume: 13049 start-page: 1304905 year: 2024 ident: ref_69 article-title: A Small All-range Lidar for topographic mapping from orbit and guidance during descent and touchdown publication-title: SPIE – volume: 9070 start-page: 90702R year: 2014 ident: ref_49 article-title: A linear drive cryocooler for ultra-small infrared sensor systems publication-title: SPIE – volume: 8033 start-page: 80330M year: 2011 ident: ref_60 article-title: HgCdTe APD-based linear-mode photon counting components and LADAR receivers publication-title: SPIE – volume: 26 start-page: 1214 year: 2009 ident: ref_5 article-title: CALIPSO lidar description and performance assessment publication-title: J. Atmos. Ocean Technol. (JTECH) doi: 10.1175/2009JTECHA1223.1 – volume: 19 start-page: 22 year: 2008 ident: ref_42 article-title: High performance infrared focal plane arrays for space applications publication-title: Opt. Photonics News doi: 10.1364/OPN.19.6.000022 – ident: ref_44 doi: 10.1117/3.1002766 – ident: ref_43 doi: 10.1002/9780470669464 – volume: 8194 start-page: 819403 year: 2011 ident: ref_30 article-title: and Kodet, J. Solid state photon counters and their applications in space related projects publication-title: SPIE – volume: 35 start-page: 1166 year: 2006 ident: ref_3 article-title: The HgCdTe electron avalanche photodiode publication-title: J. Electron. Mater. doi: 10.1007/s11664-006-0237-3 – volume: 102 start-page: 1591 year: 1997 ident: ref_17 article-title: Topography of the Moon from the Clementine lidar publication-title: J. Geophys. Res. Planets doi: 10.1029/96JE02940 – volume: Volume 15 start-page: 23 year: 2014 ident: ref_9 article-title: 2015: Single-photon counting detectors for the visible range between 300 and 1000 nm publication-title: Advanced Photon Counting Applications, Methods, Instrumentation doi: 10.1007/4243_2014_63 – volume: 51 start-page: 1289 year: 2004 ident: ref_27 article-title: Recent achievements in single photon detectors and their applications publication-title: J. Mod. Opt. doi: 10.1080/09500340408235273 – volume: 25 start-page: 16589 year: 2017 ident: ref_45 article-title: HgCdTe avalanche photodiode detectors for airborne and space borne lidar at infrared wavelength publication-title: Opt. Express doi: 10.1364/OE.25.016589 – volume: 155 start-page: 220 year: 2018 ident: ref_54 article-title: Photon-counting properties of SAPHIRA APD arrays publication-title: Astron. J. doi: 10.3847/1538-3881/aabdeb – volume: 13 start-page: C0201 year: 2018 ident: ref_14 article-title: Lifetime of MCP-PMTs and other performance features publication-title: J. Instrum. (JINST) – volume: 33 start-page: 3460 year: 1994 ident: ref_52 article-title: Focal-plane pixel-energy redistribution and concentration by use of microlens arrays publication-title: Appl. Opt. doi: 10.1364/AO.33.003460 – volume: 97 start-page: 7781 year: 1992 ident: ref_19 article-title: The Mars Observer Laser Altimeter investigation publication-title: J. Geophys. Res. Planets doi: 10.1029/92JE00341 – volume: 413 start-page: 116013 year: 2024 ident: ref_37 article-title: Lunar Flashlight science ground and flight measurements and operations using a multi-bank laser reflectometer publication-title: Icarus doi: 10.1016/j.icarus.2024.116013 – volume: 7212 start-page: 721210 year: 2009 ident: ref_15 article-title: Low noise optical receiver using Si APD publication-title: SPIE – volume: 51 start-page: 1267 year: 2004 ident: ref_26 article-title: Evolution and prospects for single-photon avalanche diodes and quenching circuits publication-title: J. Mod. Opt. doi: 10.1080/09500340408235272 – volume: 11 start-page: 034001 year: 2017 ident: ref_66 article-title: Methane optical density measurements with an integrated path differential absorption lidar from an airborne platform publication-title: J. Appl. Rem. Sens. doi: 10.1117/1.JRS.11.034001 – volume: 111151 start-page: 111510C year: 2019 ident: ref_8 article-title: ICESat-2 mission overview and early performance publication-title: SPIE – volume: 7330 start-page: 73300R year: 2009 ident: ref_16 article-title: Optical receiver using silicon APD for space applications publication-title: SPIE – volume: 13046 start-page: 11304608 year: 2024 ident: ref_56 article-title: Progress at Leonardo UK in APD array technology development for high-speed 2D linear mode photon-counting applications publication-title: SPIE – volume: 51 start-page: 1333 year: 2004 ident: ref_28 article-title: Space-qualified silicon avalanche-photodiode single-photon-counting modules publication-title: J. Mod. Opt. doi: 10.1080/09500340408235276 – volume: 51 start-page: 3572 year: 2004 ident: ref_40 article-title: Dark current degradation of near infrared avalanche photodiodes from proton irradiation publication-title: IEEE Trans. Nucl. Sci. doi: 10.1109/TNS.2004.839165 – volume: 32 start-page: 3894 year: 1992 ident: ref_25 article-title: Photon counting techniques with silicon avalanche photodiodes publication-title: Appl. Opt. doi: 10.1364/AO.32.003894 – volume: 43 start-page: 4632 year: 2016 ident: ref_29 article-title: An overview of the CATS level 1 processing algorithms and data products publication-title: Geo. Res. Lett. doi: 10.1002/2016GL068006 – volume: 12687 start-page: 1268702 year: 2023 ident: ref_55 article-title: Leonardo UK high performance shortwave APDs for astronomy publication-title: SPIE – volume: 52 start-page: 2874 year: 2013 ident: ref_64 article-title: Atmospheric CO2 column measurements with an airborne intensity-modulated continuous wave 1.57 μm fiber laser lidar publication-title: App. Opt. doi: 10.1364/AO.52.002874 – volume: 8727 start-page: 87270M year: 2013 ident: ref_32 article-title: New silicon technologies enable high performance arrays of single photon avalanche diodes publication-title: SPIE – volume: 10980 start-page: 109800K year: 2019 ident: ref_53 article-title: Linear-mode avalanche photodiode arrays in HgCdTe at Leonardo U.K.: The current status publication-title: SPIE – volume: 8353 start-page: 83532F year: 2012 ident: ref_61 article-title: Advances in LADAR components and subsystem at Raytheon publication-title: SPIE – volume: 233 start-page: 111325 year: 2019 ident: ref_7 article-title: The Ice, Cloud, and Land Elevation Satellite-2 mission: A global geolocated photon product derived from the Advanced Topographic Laser Altimeter System publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.111325 – volume: 217 start-page: 25 year: 2021 ident: ref_20 article-title: The BepoColombo Laser Altimeter publication-title: Space Sci. Rev. doi: 10.1007/s11214-021-00794-y – ident: ref_36 doi: 10.3390/rs9101052 – volume: 11180 start-page: 111083S year: 2019 ident: ref_58 article-title: HgCdTe APDs detector developments at CEA/Leti for atmospheric lidar and free space optical communications publication-title: SPIE – volume: 10 start-page: 776 year: 1971 ident: ref_12 article-title: Noise in the measurement of light with photomultipliers publication-title: Appl. Opt. doi: 10.1364/AO.10.000776 – ident: ref_67 – volume: 50 start-page: 30 year: 2007 ident: ref_39 article-title: In-flight proton-induced radiation damage to SCIAMACHY’s extended-wavelength InGaAs near-infrared detectors publication-title: Infrared Phys. Technol. doi: 10.1016/j.infrared.2006.08.001 – volume: 12107 start-page: 121070D year: 2022 ident: ref_63 article-title: Effects of proton irradiation on a SAPHIRA HgCdTe avalanche photodiode array publication-title: SPIE – volume: 10978 start-page: 109780B year: 2019 ident: ref_11 article-title: ICESat 2 ATLAS photon-counting receiver–initial on-orbit performance publication-title: SPIE – volume: 82 start-page: 217 year: 1997 ident: ref_18 article-title: The Near-Earth Asteroid Rendezvous laser altimeter publication-title: Space Sci. Rev. doi: 10.1023/A:1005056828065 – volume: 11 start-page: 2001 year: 2018 ident: ref_65 article-title: Airborne measurement of CO2 column concentrations made with a pulsed IPDA lidar using a multiple-wavelength-locked laser and HgCdTe APD detector publication-title: Atmos. Meas. Tech. doi: 10.5194/amt-11-2001-2018 – ident: ref_38 doi: 10.3390/rs11040440 – volume: 126 start-page: 739 year: 2014 ident: ref_47 article-title: New and better detectors for the JWST near-infrared spectrograph publication-title: Publ. Astron. Soc. Pac. – volume: 102 start-page: 355 year: 2005 ident: ref_4 article-title: Airborne and space borne lidar publication-title: Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere doi: 10.1007/0-387-25101-4_13 – volume: 44 start-page: 2160 year: 1997 ident: ref_34 article-title: Measurement of proton radiation damage of Si avalanche photodiodes publication-title: IEEE Trans. Electron. Devices doi: 10.1109/16.644630 – volume: 69 start-page: 2283 year: 2022 ident: ref_23 article-title: The Ganymede Laser Altimeter (GALA) for the Jupiter Icy Moons Explorer (JUICE): Mission, science, and instrumentation of its receiver modules publication-title: Adv. Space Res. doi: 10.1016/j.asr.2021.11.036 – ident: ref_35 doi: 10.1364/CLEO_AT.2011.ATuA2 – volume: 40 start-page: 1757 year: 2011 ident: ref_57 article-title: History-dependent impact ionization theory applied to HgCdTe e-APDs publication-title: J. Electron. Mater. doi: 10.1007/s11664-011-1679-9 – volume: 6 start-page: 1660 year: 2013 ident: ref_2 article-title: Space lidar developed at NASA Goddard Space Flight Center—The first 20 years publication-title: IEEE J. Sel. Top. Appl. Earth. Obs. Remote Sens. doi: 10.1109/JSTARS.2013.2259578 – ident: ref_1 doi: 10.3389/frsen.2022.1042460 – volume: 95 start-page: 543 year: 2014 ident: ref_6 article-title: Lidar-measured wind profiles: The missing link in the global observing system publication-title: Bull. Am. Meteorol. Soc. (BAMS) doi: 10.1175/BAMS-D-12-00164.1 – volume: 12110 start-page: 1211006 year: 2022 ident: ref_24 article-title: Radiation damage of silicon avalanche photodiodes in analog mode used in space lidars publication-title: SPIE – volume: 11287 start-page: 1128713 year: 2020 ident: ref_21 article-title: Advanced silicon avalanche photodiodes on NASA’s Global Ecosystem Dynamics Investigation (GEDI) mission publication-title: SPIE – volume: NS-20 start-page: 113 year: 1973 ident: ref_13 article-title: Radiation effects on multiplier phototubes publication-title: IEEE Trans. Nucl. Sci. doi: 10.1109/TNS.1973.4326895 – volume: 4 start-page: e286 year: 2015 ident: ref_41 article-title: Advances in InGaAs/InP single-photon detector systems for quantum communication publication-title: Light Sci. Appl. doi: 10.1038/lsa.2015.59 – volume: 58 start-page: 067103 year: 2019 ident: ref_51 article-title: HgCdTe avalanche photodiode array detectors with single photon sensitivity and integrated detector cooler assemblies for space applications publication-title: Opt. Eng. doi: 10.1117/1.OE.58.6.067103 |
SSID | ssj0023338 |
Score | 2.441755 |
SecondaryResourceType | review_article |
Snippet | Photodetectors play a critical role in space lidars designed for scientific investigations from orbit around planetary bodies. The detectors must be highly... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 6620 |
SubjectTerms | Aerosols Arrays avalanche photodiode Detectors Efficiency Lasers lidar Optical radar photodetectors Radiation Random variables Remote sensing Review Sensors Silicon space Topography |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEBUlp_YQ0q9k27S4JVByMLEl2ZaOaWlYSlsCyUJuQl9DcrFD1_n_fbK9y5occsnVksXojaSZJ8tPjJ3YMihvvcwRvX0uNeiOogjWGkLTkLWChj3dP3_r5Ur-uqludq76SmfCRnngEbgzvGmJbIw2ChkL6ZACB1ejEfKqCT6tvoh5GzI1US0B5jXqCAmQ-rM1AlGSOi9m0WcQ6X-8FO_Eovk5yZ3Ac3HA9qeMMTsfLX3NXsT2DXu1oyP4lp2OO_xZR9nlbdd3IfbDZvw6Q0qaXYEWx-z3XQCHfcdWFz-vfyzz6Q6E3IO49nlJunYBOZBD13VBKZ1zqq6IuG_KynFpK8vLWGsdqsiFFwUPnIJ2NgB-Eu_ZXtu18YhlJAsZnC8cKZCO4EDUgvbEZbQ1odEF-7rBxtyPUhcGFCEBaLYALtj3hNq2QlKnHh7AZ2bymXnKZwv2LWFu0hwCsBgr468AsDOpUZlzlWieKmrYdLxxi5km19qIkhdNXWkhFuzLthjTIn3rsG3sHoY6ILtSVWjicPTi1mahZaKh6Iua-XfWqXlJe3c7SG8jfwZfFtWH54DhI3vJkSKlSFjKY7bX_3uIn5Di9O7zMJr_A1XB_gI priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfZ3LT9wwEIctCpf2gIC-lkeVVpWqHiIS28k6JwRVtwi1VaUWiZvl1wCXhLLh_-fnJBs2qtRrHFmTGdsz39gZM_bR5F4542QK7-1SWQF3FAVQq_fzORkjqMvp_vhZnl_Ki6viaki4LYdjlas1sVuofeNijvxY5BzIXYC_T-7-pvHWqLi7Olyh8Yxt5fA08UiXWnwbgUuAv_pqQgJof7yEO4oFz7OJD-pK9f-7IK95pOlpyTX3s9hh20PcmJz2ht5lG6HeYy_Wqgm-ZJ_7PH_SUPLrpmkbH9ouJb9MEJgmvwHHIfl-60Gyr9jl4uufL-fpcBNC6oCvbZpTVVqPSMhm0lYZxaDOqrIg4m6eF5ZLUxieh7KqfBG4cCLjnpOvrPEwAonXbLNu6vCWJSQz6a3LLCmgh7fANV854jKYktDpjH1Y6Ubf9QUvNEAhKlCPCpyxs6i18YVYo7p70Nxf62HIa9jcEJkQTBAyQHDAi7clzE9Ozb2bsU9R5zrOJCgWI6b_IQByxppU-lRF2FNZCZkOV2bRwxRb6qcBMWPvx2ZMjrjjYerQPHTvAHmlKtDFm96Ko8yikhFG8S1qYt_JR01b6tubrgA3omhQsyj2_y_XAXvOEQJFT5fLQ7bZ3j-EI4QwrX3XjdNHeZvyUg priority: 102 providerName: ProQuest |
Title | Review of Photodetectors for Space Lidars |
URI | https://www.ncbi.nlm.nih.gov/pubmed/39460100 https://www.proquest.com/docview/3120765933 https://www.proquest.com/docview/3121064858 https://pubmed.ncbi.nlm.nih.gov/PMC11510735 https://doaj.org/article/8feaffaeeae34e04b559db6a3ffc87dc |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKe4FDxbsLZRUQEuIQSGwnsQ8ItahLhWhVASvtzfKTVkJJ2U0l-Pd8TnajjeDAJYfYccYz48x843iGkJc6d8Jqy1NYb5tyCbgjggdqda6qgtYsdDHds_PydM4_LYrFDtnU2FwzcPVPaBfrSc2XP978-vn7PRb8u4g4AdnfrmBmYiJzIPc9GKQqFjI448NmAmWsK2gdz3SlsIdZn2Bo_OjILHXZ-__-Rm8ZqfEPlFsWaXaX7K9dyeSol_09suPr--TOVoLBB-R1H_pPmpBcXDZt43zbRelXCXzV5Cvwsk8-Xzlw4CGZz06-fThN18URUgtE26Z5kKVxcI5Mxo3MQvTzjCiLEKit8sJQrgtNc19K6QpPmWUZdTQ4abSDXAJ7RHbrpvYHJAk8487YzAQBNOIMEJyTNlDudRkw6IS82PBGXfc5MBSwQ2SgGhg4IceRa0OHmLa6u9Esv6v1KlBQAx2C9l57xj0IB55xpoRGBCsqZyfkVeS5iuIGY6FE_RkB0BnTVKkjEfGfyErQdLgRi9oojWI5zaqykIxNyPOhGeslboLo2jc3XR-gYC4KDPG4l-JAM5M84lPMRYzkO5rUuKW-uuxycsOxBpBmxZP_ePFTcpvCNYoWMOeHZLdd3vhncG1aMyW3qkWFq5h9nJK945Pziy_TLkww7VT6D6fX-_E |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ1Lb9QwEMdHpRygB8SbhQIBgRCHqIntZJMDQuWxbOm2QqKVenP9bHtJSjcV4kvxGfk72Q0bIXHrNY6s8XgmM7_YHhO9UqktjDIiRvQ2sSiBO4V3oFZrx2OvFPftP929_Xx6KL4eZUdr9Ht5FiZsq1x-E9sPta1N-Ee-xVMG5M7A3-_Pf8Th1qiwurq8QqMzi1336yeQbf5u5xPm9zVjk88HH6fx4laB2AAFmzj1Za4tsgqdCF0mPiRIusgz75kZp5lmQmWKpS4vS5s5xg1PmGXellpZDMhz9HuNrguOSB5Opk--9IDHwXtd9SI0JltzhL9QYD0ZxLz2aoB_A8BKBBzuzlwJd5PbdGuRp0bbnWHdoTVX3aWNleqF9-htt64Q1T76dlo3tXVNuwQwj5AIR98B4y6anVmQ8306vBIdPaD1qq7cI4q8SITVJtG-AOpYDTy0pfFMOJV7dDqil0vdyPOuwIYEmAQFyl6BI_oQtNa_EGpitw_qixO5cDEJG1PeK-eU48JBcMCS1TnMzZtibM2I3gSdy-C5UCwstDuAADlDDSy5XQS4LJIcMm0up0UuXHou_xrgiF70zXDGsMKiKldftu8AsUWRoYuH3Sz2MvNSBPjFWIrB_A4GNWypzk7bgt_I2kHpPHv8f7me043pwd5Mznb2d5_QTYb0K0TZVGzSenNx6Z4ifWr0s9ZmIzq-aif5A2mDLyk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ1Lb9QwEIBHZSshOCDeLBQICIQ4RJvYTmIfEGppVy0tqxVQqTfjJ-0lKd1UiL_Gr2OcFxshces1jqzxeCYzn-2MAV6p1HKjDIsxepuYCcQd7h1Sq7VF4ZWivlnT_bTI94_Zx5PsZAN-9__ChGOV_Tex-VDbyoQ18hlNCSJ3hvw9892xiOXu_P35jzjcIBV2WvvrNFoTOXS_fiK-rd4d7OJcvyZkvvf1w37c3TAQG8TCOk69yLXFDEMnTIvEh2RJ8zzznpgizTRhKlMkdbkQNnOEGpoQS7wVWlkcnKfY7zXYLAIVTWBzZ2-x_DzgHkX6a2sZUSqS2QqDYSi3nowiYHNRwL_hYC0ejs9qrgW_-W241WWt0XZrZndgw5V34eZaLcN78LbdZYgqHy1Pq7qyrm42BFYRpsXRF0RzFx2dWeTo-3B8JVp6AJOyKt0jiDxLmNUm0Z4j-FiNsGiF8YQ5lXvsdAove93I87bchkRMCQqUgwKnsBO0NrwQKmQ3D6qL77JzOIkWp7xXzilHmUPBEZ2sztH4vOGFNVN4E3Qugx-jYtFe298RUM5QEUtu84CaPMlRpq1-WmTn4Cv51xyn8GJoRtcM-y2qdNVl8w4CN-MZdvGwncVBZipYQGEcCx_N72hQ45by7LQp_405PDI7zR7_X67ncB0dRB4dLA6fwA2CuVgIuSnbgkl9cemeYi5V62ed0Ubw7ar95A9jDzS7 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Review+of+Photodetectors+for+Space+Lidars&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Sun%2C+Xiaoli&rft.date=2024-10-14&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=24&rft.issue=20&rft_id=info:doi/10.3390%2Fs24206620&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |