Review of Photodetectors for Space Lidars

Photodetectors play a critical role in space lidars designed for scientific investigations from orbit around planetary bodies. The detectors must be highly sensitive due to the long range of measurements and tight constraints on the size, weight, and power of the instrument. The detectors must also...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 24; no. 20; p. 6620
Main Author Sun, Xiaoli
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 14.10.2024
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Photodetectors play a critical role in space lidars designed for scientific investigations from orbit around planetary bodies. The detectors must be highly sensitive due to the long range of measurements and tight constraints on the size, weight, and power of the instrument. The detectors must also be space radiation tolerant over multi-year mission lifetimes with no significant performance degradation. Early space lidars used diode-pumped Nd:YAG lasers with a single beam for range and atmospheric backscattering measurements at 1064 nm or its frequency harmonics. The photodetectors used were single-element photomultiplier tubes and infrared performance-enhanced silicon avalanche photodiodes. Space lidars have advanced to multiple beams for surface topographic mapping and active infrared spectroscopic measurements of atmospheric species and surface composition, which demand increased performance and new capabilities for lidar detectors. Higher sensitivity detectors are required so that multi-beam and multi-wavelength measurements can be performed without increasing the laser and instrument power. Pixelated photodetectors are needed so that a single detector assembly can be used for simultaneous multi-channel measurements. Photon-counting photodetectors are needed for active spectroscopy measurements from short-wave infrared to mid-wave infrared. HgCdTe avalanche photodiode arrays have emerged recently as a promising technology to fill these needs. This paper gives a review of the photodetectors used in past and present lidars and the development and outlook of HgCdTe APD arrays for future space lidars.
AbstractList Photodetectors play a critical role in space lidars designed for scientific investigations from orbit around planetary bodies. The detectors must be highly sensitive due to the long range of measurements and tight constraints on the size, weight, and power of the instrument. The detectors must also be space radiation tolerant over multi-year mission lifetimes with no significant performance degradation. Early space lidars used diode-pumped Nd:YAG lasers with a single beam for range and atmospheric backscattering measurements at 1064 nm or its frequency harmonics. The photodetectors used were single-element photomultiplier tubes and infrared performance-enhanced silicon avalanche photodiodes. Space lidars have advanced to multiple beams for surface topographic mapping and active infrared spectroscopic measurements of atmospheric species and surface composition, which demand increased performance and new capabilities for lidar detectors. Higher sensitivity detectors are required so that multi-beam and multi-wavelength measurements can be performed without increasing the laser and instrument power. Pixelated photodetectors are needed so that a single detector assembly can be used for simultaneous multi-channel measurements. Photon-counting photodetectors are needed for active spectroscopy measurements from short-wave infrared to mid-wave infrared. HgCdTe avalanche photodiode arrays have emerged recently as a promising technology to fill these needs. This paper gives a review of the photodetectors used in past and present lidars and the development and outlook of HgCdTe APD arrays for future space lidars.
Photodetectors play a critical role in space lidars designed for scientific investigations from orbit around planetary bodies. The detectors must be highly sensitive due to the long range of measurements and tight constraints on the size, weight, and power of the instrument. The detectors must also be space radiation tolerant over multi-year mission lifetimes with no significant performance degradation. Early space lidars used diode-pumped Nd:YAG lasers with a single beam for range and atmospheric backscattering measurements at 1064 nm or its frequency harmonics. The photodetectors used were single-element photomultiplier tubes and infrared performance-enhanced silicon avalanche photodiodes. Space lidars have advanced to multiple beams for surface topographic mapping and active infrared spectroscopic measurements of atmospheric species and surface composition, which demand increased performance and new capabilities for lidar detectors. Higher sensitivity detectors are required so that multi-beam and multi-wavelength measurements can be performed without increasing the laser and instrument power. Pixelated photodetectors are needed so that a single detector assembly can be used for simultaneous multi-channel measurements. Photon-counting photodetectors are needed for active spectroscopy measurements from short-wave infrared to mid-wave infrared. HgCdTe avalanche photodiode arrays have emerged recently as a promising technology to fill these needs. This paper gives a review of the photodetectors used in past and present lidars and the development and outlook of HgCdTe APD arrays for future space lidars.Photodetectors play a critical role in space lidars designed for scientific investigations from orbit around planetary bodies. The detectors must be highly sensitive due to the long range of measurements and tight constraints on the size, weight, and power of the instrument. The detectors must also be space radiation tolerant over multi-year mission lifetimes with no significant performance degradation. Early space lidars used diode-pumped Nd:YAG lasers with a single beam for range and atmospheric backscattering measurements at 1064 nm or its frequency harmonics. The photodetectors used were single-element photomultiplier tubes and infrared performance-enhanced silicon avalanche photodiodes. Space lidars have advanced to multiple beams for surface topographic mapping and active infrared spectroscopic measurements of atmospheric species and surface composition, which demand increased performance and new capabilities for lidar detectors. Higher sensitivity detectors are required so that multi-beam and multi-wavelength measurements can be performed without increasing the laser and instrument power. Pixelated photodetectors are needed so that a single detector assembly can be used for simultaneous multi-channel measurements. Photon-counting photodetectors are needed for active spectroscopy measurements from short-wave infrared to mid-wave infrared. HgCdTe avalanche photodiode arrays have emerged recently as a promising technology to fill these needs. This paper gives a review of the photodetectors used in past and present lidars and the development and outlook of HgCdTe APD arrays for future space lidars.
Audience Academic
Author Sun, Xiaoli
AuthorAffiliation Planetary Geology, Geophysics and Geochemistry Laboratory, Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA; xiaoli.sun-1@nasa.gov
AuthorAffiliation_xml – name: Planetary Geology, Geophysics and Geochemistry Laboratory, Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA; xiaoli.sun-1@nasa.gov
Author_xml – sequence: 1
  givenname: Xiaoli
  orcidid: 0000-0001-6172-9995
  surname: Sun
  fullname: Sun, Xiaoli
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39460100$$D View this record in MEDLINE/PubMed
BookMark eNpdkktvEzEQgC1URNvAgT-AVuJCDynjZ-wTqioelSKBeJwtrz1OHW3Wwd4U8e9xSIla5IOt8advPDM-JydjHpGQlxQuOTfwtjLBQCkGT8gZFUzMNWNw8uB8Ss5rXQMwzrl-Rk65EQoowBm5-Ip3CX91OXZfbvOUA07op1xqF3Ppvm2dx26Zgiv1OXka3VDxxf0-Iz8-vP9-_Wm-_Pzx5vpqOfdCmWlOo1F9AGl6EL2BaAxVvVYyRuYXVPZMOOkYRWVMkMi458ACi8H0LhhJI5-Rm4M3ZLe225I2rvy22SX7N5DLyroyJT-g1RFdjA7RIRfY8klpQq8cj9HrRfDN9e7g2u76DQaP41Tc8Ej6-GZMt3aV7yylksKCy2Z4c28o-ecO62Q3qXocBjdi3lXLKaOghJa6oa__Q9d5V8bWqz0FCyVNa_-MXB6olWsVpDHmlti3FXCTfJtrTC1-pakQVIPaa189rOH4-H8zbMDFAfAl11owHhEKdv8_7PF_8D_LkaqR
Cites_doi 10.1007/s11214-015-0231-2
10.1007/s11664-022-09873-4
10.1364/AO.56.007577
10.3390/s150818178
10.1016/j.cryogenics.2010.02.009
10.1109/JSTQE.2014.2350836
10.1117/1.OE.53.8.081905
10.1109/55.748909
10.1109/TNS.2020.3040741
10.1007/s12567-020-00301-z
10.1175/2009JTECHA1223.1
10.1364/OPN.19.6.000022
10.1117/3.1002766
10.1002/9780470669464
10.1007/s11664-006-0237-3
10.1029/96JE02940
10.1007/4243_2014_63
10.1080/09500340408235273
10.1364/OE.25.016589
10.3847/1538-3881/aabdeb
10.1364/AO.33.003460
10.1029/92JE00341
10.1016/j.icarus.2024.116013
10.1080/09500340408235272
10.1117/1.JRS.11.034001
10.1080/09500340408235276
10.1109/TNS.2004.839165
10.1364/AO.32.003894
10.1002/2016GL068006
10.1364/AO.52.002874
10.1016/j.rse.2019.111325
10.1007/s11214-021-00794-y
10.3390/rs9101052
10.1364/AO.10.000776
10.1016/j.infrared.2006.08.001
10.1023/A:1005056828065
10.5194/amt-11-2001-2018
10.3390/rs11040440
10.1007/0-387-25101-4_13
10.1109/16.644630
10.1016/j.asr.2021.11.036
10.1364/CLEO_AT.2011.ATuA2
10.1007/s11664-011-1679-9
10.1109/JSTARS.2013.2259578
10.3389/frsen.2022.1042460
10.1175/BAMS-D-12-00164.1
10.1109/TNS.1973.4326895
10.1038/lsa.2015.59
10.1117/1.OE.58.6.067103
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2024 by the author. 2024
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2024 by the author. 2024
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s24206620
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
CrossRef
MEDLINE - Academic
Publicly Available Content Database
PubMed


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_8feaffaeeae34e04b559db6a3ffc87dc
PMC11510735
A814418068
39460100
10_3390_s24206620
Genre Journal Article
Review
GeographicLocations United Kingdom
GeographicLocations_xml – name: United Kingdom
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
NPM
PMFND
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c469t-1f96bd059b04b90f9916b865ff2c715b24a5a21e699d5e23c302d2fd9bad951f3
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:15:23 EDT 2025
Thu Aug 21 18:43:44 EDT 2025
Fri Jul 11 08:53:38 EDT 2025
Sat Jul 26 00:43:38 EDT 2025
Tue Jun 10 21:04:45 EDT 2025
Thu Apr 03 07:07:01 EDT 2025
Tue Jul 01 03:51:16 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 20
Keywords photodetectors
remote sensing
avalanche photodiode
lidar
space
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c469t-1f96bd059b04b90f9916b865ff2c715b24a5a21e699d5e23c302d2fd9bad951f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0001-6172-9995
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s24206620
PMID 39460100
PQID 3120765933
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_8feaffaeeae34e04b559db6a3ffc87dc
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11510735
proquest_miscellaneous_3121064858
proquest_journals_3120765933
gale_infotracacademiconefile_A814418068
pubmed_primary_39460100
crossref_primary_10_3390_s24206620
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20241014
PublicationDateYYYYMMDD 2024-10-14
PublicationDate_xml – month: 10
  year: 2024
  text: 20241014
  day: 14
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2024
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Laforce (ref_15) 2009; 7212
Rothman (ref_58) 2019; 11180
Martino (ref_8) 2019; 111151
Robben (ref_12) 1971; 10
Laforce (ref_16) 2009; 7330
Rothman (ref_57) 2011; 40
Baker (ref_53) 2019; 10980
Dautet (ref_25) 1992; 32
Yorks (ref_29) 2016; 43
Cole (ref_18) 1997; 82
Sun (ref_2) 2013; 6
Sun (ref_24) 2022; 12110
Zhang (ref_41) 2015; 4
Sprafke (ref_42) 2008; 19
Sun (ref_34) 1997; 44
Rawlings (ref_49) 2014; 9070
Neumann (ref_7) 2019; 233
Cremons (ref_68) 2020; 12
Prochazka (ref_30) 2011; 8194
Michalek (ref_31) 2015; 15
Atkinson (ref_54) 2018; 155
Kleipool (ref_39) 2007; 50
ref_67
Rauscher (ref_47) 2014; 126
Cohen (ref_37) 2024; 413
Gulinatti (ref_32) 2013; 8727
Smith (ref_17) 1997; 102
Hunt (ref_5) 2009; 26
Jack (ref_60) 2011; 8033
Sun (ref_62) 2021; 68
Dobler (ref_64) 2013; 52
Sun (ref_28) 2004; 51
Abshire (ref_65) 2018; 11
Riris (ref_66) 2017; 11
Baker (ref_6) 2014; 95
ref_36
ref_35
Southwell (ref_52) 1994; 33
Baker (ref_55) 2023; 12687
Sun (ref_63) 2022; 12107
Thomas (ref_20) 2021; 217
Sun (ref_51) 2019; 58
Beck (ref_3) 2006; 35
Sun (ref_45) 2017; 25
Becker (ref_40) 2004; 51
ref_38
Kapusta (ref_9) 2014; Volume 15
Sun (ref_69) 2024; 13049
Anderson (ref_46) 2022; 51
Enya (ref_23) 2022; 69
Cova (ref_26) 2004; 51
Beck (ref_50) 2014; 53
ref_44
ref_43
WeitKamp (ref_4) 2005; 102
Yang (ref_11) 2019; 10978
Raab (ref_48) 2010; 50
ref_1
Johnson (ref_13) 1973; NS-20
Zuber (ref_19) 1992; 97
Mizuno (ref_22) 2017; 208
Thorne (ref_56) 2024; 13046
Jack (ref_61) 2012; 8353
Davis (ref_10) 1999; 20
Lehmann (ref_14) 2018; 13
Donati (ref_33) 2014; 20
Sun (ref_21) 2020; 11287
Dumas (ref_59) 2017; 56
Prochazka (ref_27) 2004; 51
References_xml – volume: 208
  start-page: 33
  year: 2017
  ident: ref_22
  article-title: Development of the laser altimeter (LIDAR) for Hayabusa2
  publication-title: Space Sci. Rev.
  doi: 10.1007/s11214-015-0231-2
– volume: 51
  start-page: 6803
  year: 2022
  ident: ref_46
  article-title: Recent advancements in HgCdTe APDs for space applications
  publication-title: J. Electron. Mater.
  doi: 10.1007/s11664-022-09873-4
– volume: 56
  start-page: 7577
  year: 2017
  ident: ref_59
  article-title: Evaluation of a HgCdTe e-APD based detector for 2 μm CO2 DIAL application
  publication-title: Appl. Opt.
  doi: 10.1364/AO.56.007577
– volume: 15
  start-page: 18178
  year: 2015
  ident: ref_31
  article-title: Twenty years of rad-hard K14 SPAD in space projects
  publication-title: Sensors
  doi: 10.3390/s150818178
– volume: 50
  start-page: 572
  year: 2010
  ident: ref_48
  article-title: Northrop Grumman Aerospace Systems cryocooler overview
  publication-title: Cryogenics
  doi: 10.1016/j.cryogenics.2010.02.009
– volume: 20
  start-page: 3805008
  year: 2014
  ident: ref_33
  article-title: Single-photon detectors: From traditional PMT to solid-state SPAD-based technology
  publication-title: IEEE J. Sel. Topics Quantum Electron.
  doi: 10.1109/JSTQE.2014.2350836
– volume: 53
  start-page: 081905
  year: 2014
  ident: ref_50
  article-title: Linear mode photon counting with the noiseless gain HgCdTe e-avalanche photodiode
  publication-title: Opt. Eng.
  doi: 10.1117/1.OE.53.8.081905
– volume: 20
  start-page: 126
  year: 1999
  ident: ref_10
  article-title: Photon counting 1060-nm hybrid photomultiplier with high quantum efficiency
  publication-title: IEEE Electron. Device Lett.
  doi: 10.1109/55.748909
– volume: 68
  start-page: 27
  year: 2021
  ident: ref_62
  article-title: Proton radiation effects on HgCdTe avalanche photodiode detectors
  publication-title: IEEE Trans. Nucl. Sci.
  doi: 10.1109/TNS.2020.3040741
– volume: 12
  start-page: 149
  year: 2020
  ident: ref_68
  article-title: Design of a direct-detection wind and aerosol lidar for Mars orbit
  publication-title: CAE Space J.
  doi: 10.1007/s12567-020-00301-z
– volume: 13049
  start-page: 1304905
  year: 2024
  ident: ref_69
  article-title: A Small All-range Lidar for topographic mapping from orbit and guidance during descent and touchdown
  publication-title: SPIE
– volume: 9070
  start-page: 90702R
  year: 2014
  ident: ref_49
  article-title: A linear drive cryocooler for ultra-small infrared sensor systems
  publication-title: SPIE
– volume: 8033
  start-page: 80330M
  year: 2011
  ident: ref_60
  article-title: HgCdTe APD-based linear-mode photon counting components and LADAR receivers
  publication-title: SPIE
– volume: 26
  start-page: 1214
  year: 2009
  ident: ref_5
  article-title: CALIPSO lidar description and performance assessment
  publication-title: J. Atmos. Ocean Technol. (JTECH)
  doi: 10.1175/2009JTECHA1223.1
– volume: 19
  start-page: 22
  year: 2008
  ident: ref_42
  article-title: High performance infrared focal plane arrays for space applications
  publication-title: Opt. Photonics News
  doi: 10.1364/OPN.19.6.000022
– ident: ref_44
  doi: 10.1117/3.1002766
– ident: ref_43
  doi: 10.1002/9780470669464
– volume: 8194
  start-page: 819403
  year: 2011
  ident: ref_30
  article-title: and Kodet, J. Solid state photon counters and their applications in space related projects
  publication-title: SPIE
– volume: 35
  start-page: 1166
  year: 2006
  ident: ref_3
  article-title: The HgCdTe electron avalanche photodiode
  publication-title: J. Electron. Mater.
  doi: 10.1007/s11664-006-0237-3
– volume: 102
  start-page: 1591
  year: 1997
  ident: ref_17
  article-title: Topography of the Moon from the Clementine lidar
  publication-title: J. Geophys. Res. Planets
  doi: 10.1029/96JE02940
– volume: Volume 15
  start-page: 23
  year: 2014
  ident: ref_9
  article-title: 2015: Single-photon counting detectors for the visible range between 300 and 1000 nm
  publication-title: Advanced Photon Counting Applications, Methods, Instrumentation
  doi: 10.1007/4243_2014_63
– volume: 51
  start-page: 1289
  year: 2004
  ident: ref_27
  article-title: Recent achievements in single photon detectors and their applications
  publication-title: J. Mod. Opt.
  doi: 10.1080/09500340408235273
– volume: 25
  start-page: 16589
  year: 2017
  ident: ref_45
  article-title: HgCdTe avalanche photodiode detectors for airborne and space borne lidar at infrared wavelength
  publication-title: Opt. Express
  doi: 10.1364/OE.25.016589
– volume: 155
  start-page: 220
  year: 2018
  ident: ref_54
  article-title: Photon-counting properties of SAPHIRA APD arrays
  publication-title: Astron. J.
  doi: 10.3847/1538-3881/aabdeb
– volume: 13
  start-page: C0201
  year: 2018
  ident: ref_14
  article-title: Lifetime of MCP-PMTs and other performance features
  publication-title: J. Instrum. (JINST)
– volume: 33
  start-page: 3460
  year: 1994
  ident: ref_52
  article-title: Focal-plane pixel-energy redistribution and concentration by use of microlens arrays
  publication-title: Appl. Opt.
  doi: 10.1364/AO.33.003460
– volume: 97
  start-page: 7781
  year: 1992
  ident: ref_19
  article-title: The Mars Observer Laser Altimeter investigation
  publication-title: J. Geophys. Res. Planets
  doi: 10.1029/92JE00341
– volume: 413
  start-page: 116013
  year: 2024
  ident: ref_37
  article-title: Lunar Flashlight science ground and flight measurements and operations using a multi-bank laser reflectometer
  publication-title: Icarus
  doi: 10.1016/j.icarus.2024.116013
– volume: 7212
  start-page: 721210
  year: 2009
  ident: ref_15
  article-title: Low noise optical receiver using Si APD
  publication-title: SPIE
– volume: 51
  start-page: 1267
  year: 2004
  ident: ref_26
  article-title: Evolution and prospects for single-photon avalanche diodes and quenching circuits
  publication-title: J. Mod. Opt.
  doi: 10.1080/09500340408235272
– volume: 11
  start-page: 034001
  year: 2017
  ident: ref_66
  article-title: Methane optical density measurements with an integrated path differential absorption lidar from an airborne platform
  publication-title: J. Appl. Rem. Sens.
  doi: 10.1117/1.JRS.11.034001
– volume: 111151
  start-page: 111510C
  year: 2019
  ident: ref_8
  article-title: ICESat-2 mission overview and early performance
  publication-title: SPIE
– volume: 7330
  start-page: 73300R
  year: 2009
  ident: ref_16
  article-title: Optical receiver using silicon APD for space applications
  publication-title: SPIE
– volume: 13046
  start-page: 11304608
  year: 2024
  ident: ref_56
  article-title: Progress at Leonardo UK in APD array technology development for high-speed 2D linear mode photon-counting applications
  publication-title: SPIE
– volume: 51
  start-page: 1333
  year: 2004
  ident: ref_28
  article-title: Space-qualified silicon avalanche-photodiode single-photon-counting modules
  publication-title: J. Mod. Opt.
  doi: 10.1080/09500340408235276
– volume: 51
  start-page: 3572
  year: 2004
  ident: ref_40
  article-title: Dark current degradation of near infrared avalanche photodiodes from proton irradiation
  publication-title: IEEE Trans. Nucl. Sci.
  doi: 10.1109/TNS.2004.839165
– volume: 32
  start-page: 3894
  year: 1992
  ident: ref_25
  article-title: Photon counting techniques with silicon avalanche photodiodes
  publication-title: Appl. Opt.
  doi: 10.1364/AO.32.003894
– volume: 43
  start-page: 4632
  year: 2016
  ident: ref_29
  article-title: An overview of the CATS level 1 processing algorithms and data products
  publication-title: Geo. Res. Lett.
  doi: 10.1002/2016GL068006
– volume: 12687
  start-page: 1268702
  year: 2023
  ident: ref_55
  article-title: Leonardo UK high performance shortwave APDs for astronomy
  publication-title: SPIE
– volume: 52
  start-page: 2874
  year: 2013
  ident: ref_64
  article-title: Atmospheric CO2 column measurements with an airborne intensity-modulated continuous wave 1.57 μm fiber laser lidar
  publication-title: App. Opt.
  doi: 10.1364/AO.52.002874
– volume: 8727
  start-page: 87270M
  year: 2013
  ident: ref_32
  article-title: New silicon technologies enable high performance arrays of single photon avalanche diodes
  publication-title: SPIE
– volume: 10980
  start-page: 109800K
  year: 2019
  ident: ref_53
  article-title: Linear-mode avalanche photodiode arrays in HgCdTe at Leonardo U.K.: The current status
  publication-title: SPIE
– volume: 8353
  start-page: 83532F
  year: 2012
  ident: ref_61
  article-title: Advances in LADAR components and subsystem at Raytheon
  publication-title: SPIE
– volume: 233
  start-page: 111325
  year: 2019
  ident: ref_7
  article-title: The Ice, Cloud, and Land Elevation Satellite-2 mission: A global geolocated photon product derived from the Advanced Topographic Laser Altimeter System
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.111325
– volume: 217
  start-page: 25
  year: 2021
  ident: ref_20
  article-title: The BepoColombo Laser Altimeter
  publication-title: Space Sci. Rev.
  doi: 10.1007/s11214-021-00794-y
– ident: ref_36
  doi: 10.3390/rs9101052
– volume: 11180
  start-page: 111083S
  year: 2019
  ident: ref_58
  article-title: HgCdTe APDs detector developments at CEA/Leti for atmospheric lidar and free space optical communications
  publication-title: SPIE
– volume: 10
  start-page: 776
  year: 1971
  ident: ref_12
  article-title: Noise in the measurement of light with photomultipliers
  publication-title: Appl. Opt.
  doi: 10.1364/AO.10.000776
– ident: ref_67
– volume: 50
  start-page: 30
  year: 2007
  ident: ref_39
  article-title: In-flight proton-induced radiation damage to SCIAMACHY’s extended-wavelength InGaAs near-infrared detectors
  publication-title: Infrared Phys. Technol.
  doi: 10.1016/j.infrared.2006.08.001
– volume: 12107
  start-page: 121070D
  year: 2022
  ident: ref_63
  article-title: Effects of proton irradiation on a SAPHIRA HgCdTe avalanche photodiode array
  publication-title: SPIE
– volume: 10978
  start-page: 109780B
  year: 2019
  ident: ref_11
  article-title: ICESat 2 ATLAS photon-counting receiver–initial on-orbit performance
  publication-title: SPIE
– volume: 82
  start-page: 217
  year: 1997
  ident: ref_18
  article-title: The Near-Earth Asteroid Rendezvous laser altimeter
  publication-title: Space Sci. Rev.
  doi: 10.1023/A:1005056828065
– volume: 11
  start-page: 2001
  year: 2018
  ident: ref_65
  article-title: Airborne measurement of CO2 column concentrations made with a pulsed IPDA lidar using a multiple-wavelength-locked laser and HgCdTe APD detector
  publication-title: Atmos. Meas. Tech.
  doi: 10.5194/amt-11-2001-2018
– ident: ref_38
  doi: 10.3390/rs11040440
– volume: 126
  start-page: 739
  year: 2014
  ident: ref_47
  article-title: New and better detectors for the JWST near-infrared spectrograph
  publication-title: Publ. Astron. Soc. Pac.
– volume: 102
  start-page: 355
  year: 2005
  ident: ref_4
  article-title: Airborne and space borne lidar
  publication-title: Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere
  doi: 10.1007/0-387-25101-4_13
– volume: 44
  start-page: 2160
  year: 1997
  ident: ref_34
  article-title: Measurement of proton radiation damage of Si avalanche photodiodes
  publication-title: IEEE Trans. Electron. Devices
  doi: 10.1109/16.644630
– volume: 69
  start-page: 2283
  year: 2022
  ident: ref_23
  article-title: The Ganymede Laser Altimeter (GALA) for the Jupiter Icy Moons Explorer (JUICE): Mission, science, and instrumentation of its receiver modules
  publication-title: Adv. Space Res.
  doi: 10.1016/j.asr.2021.11.036
– ident: ref_35
  doi: 10.1364/CLEO_AT.2011.ATuA2
– volume: 40
  start-page: 1757
  year: 2011
  ident: ref_57
  article-title: History-dependent impact ionization theory applied to HgCdTe e-APDs
  publication-title: J. Electron. Mater.
  doi: 10.1007/s11664-011-1679-9
– volume: 6
  start-page: 1660
  year: 2013
  ident: ref_2
  article-title: Space lidar developed at NASA Goddard Space Flight Center—The first 20 years
  publication-title: IEEE J. Sel. Top. Appl. Earth. Obs. Remote Sens.
  doi: 10.1109/JSTARS.2013.2259578
– ident: ref_1
  doi: 10.3389/frsen.2022.1042460
– volume: 95
  start-page: 543
  year: 2014
  ident: ref_6
  article-title: Lidar-measured wind profiles: The missing link in the global observing system
  publication-title: Bull. Am. Meteorol. Soc. (BAMS)
  doi: 10.1175/BAMS-D-12-00164.1
– volume: 12110
  start-page: 1211006
  year: 2022
  ident: ref_24
  article-title: Radiation damage of silicon avalanche photodiodes in analog mode used in space lidars
  publication-title: SPIE
– volume: 11287
  start-page: 1128713
  year: 2020
  ident: ref_21
  article-title: Advanced silicon avalanche photodiodes on NASA’s Global Ecosystem Dynamics Investigation (GEDI) mission
  publication-title: SPIE
– volume: NS-20
  start-page: 113
  year: 1973
  ident: ref_13
  article-title: Radiation effects on multiplier phototubes
  publication-title: IEEE Trans. Nucl. Sci.
  doi: 10.1109/TNS.1973.4326895
– volume: 4
  start-page: e286
  year: 2015
  ident: ref_41
  article-title: Advances in InGaAs/InP single-photon detector systems for quantum communication
  publication-title: Light Sci. Appl.
  doi: 10.1038/lsa.2015.59
– volume: 58
  start-page: 067103
  year: 2019
  ident: ref_51
  article-title: HgCdTe avalanche photodiode array detectors with single photon sensitivity and integrated detector cooler assemblies for space applications
  publication-title: Opt. Eng.
  doi: 10.1117/1.OE.58.6.067103
SSID ssj0023338
Score 2.441755
SecondaryResourceType review_article
Snippet Photodetectors play a critical role in space lidars designed for scientific investigations from orbit around planetary bodies. The detectors must be highly...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 6620
SubjectTerms Aerosols
Arrays
avalanche photodiode
Detectors
Efficiency
Lasers
lidar
Optical radar
photodetectors
Radiation
Random variables
Remote sensing
Review
Sensors
Silicon
space
Topography
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEBUlp_YQ0q9k27S4JVByMLEl2ZaOaWlYSlsCyUJuQl9DcrFD1_n_fbK9y5occsnVksXojaSZJ8tPjJ3YMihvvcwRvX0uNeiOogjWGkLTkLWChj3dP3_r5Ur-uqludq76SmfCRnngEbgzvGmJbIw2ChkL6ZACB1ejEfKqCT6tvoh5GzI1US0B5jXqCAmQ-rM1AlGSOi9m0WcQ6X-8FO_Eovk5yZ3Ac3HA9qeMMTsfLX3NXsT2DXu1oyP4lp2OO_xZR9nlbdd3IfbDZvw6Q0qaXYEWx-z3XQCHfcdWFz-vfyzz6Q6E3IO49nlJunYBOZBD13VBKZ1zqq6IuG_KynFpK8vLWGsdqsiFFwUPnIJ2NgB-Eu_ZXtu18YhlJAsZnC8cKZCO4EDUgvbEZbQ1odEF-7rBxtyPUhcGFCEBaLYALtj3hNq2QlKnHh7AZ2bymXnKZwv2LWFu0hwCsBgr468AsDOpUZlzlWieKmrYdLxxi5km19qIkhdNXWkhFuzLthjTIn3rsG3sHoY6ILtSVWjicPTi1mahZaKh6Iua-XfWqXlJe3c7SG8jfwZfFtWH54DhI3vJkSKlSFjKY7bX_3uIn5Di9O7zMJr_A1XB_gI
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfZ3LT9wwEIctCpf2gIC-lkeVVpWqHiIS28k6JwRVtwi1VaUWiZvl1wCXhLLh_-fnJBs2qtRrHFmTGdsz39gZM_bR5F4542QK7-1SWQF3FAVQq_fzORkjqMvp_vhZnl_Ki6viaki4LYdjlas1sVuofeNijvxY5BzIXYC_T-7-pvHWqLi7Olyh8Yxt5fA08UiXWnwbgUuAv_pqQgJof7yEO4oFz7OJD-pK9f-7IK95pOlpyTX3s9hh20PcmJz2ht5lG6HeYy_Wqgm-ZJ_7PH_SUPLrpmkbH9ouJb9MEJgmvwHHIfl-60Gyr9jl4uufL-fpcBNC6oCvbZpTVVqPSMhm0lYZxaDOqrIg4m6eF5ZLUxieh7KqfBG4cCLjnpOvrPEwAonXbLNu6vCWJSQz6a3LLCmgh7fANV854jKYktDpjH1Y6Ubf9QUvNEAhKlCPCpyxs6i18YVYo7p70Nxf62HIa9jcEJkQTBAyQHDAi7clzE9Ozb2bsU9R5zrOJCgWI6b_IQByxppU-lRF2FNZCZkOV2bRwxRb6qcBMWPvx2ZMjrjjYerQPHTvAHmlKtDFm96Ko8yikhFG8S1qYt_JR01b6tubrgA3omhQsyj2_y_XAXvOEQJFT5fLQ7bZ3j-EI4QwrX3XjdNHeZvyUg
  priority: 102
  providerName: ProQuest
Title Review of Photodetectors for Space Lidars
URI https://www.ncbi.nlm.nih.gov/pubmed/39460100
https://www.proquest.com/docview/3120765933
https://www.proquest.com/docview/3121064858
https://pubmed.ncbi.nlm.nih.gov/PMC11510735
https://doaj.org/article/8feaffaeeae34e04b559db6a3ffc87dc
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKe4FDxbsLZRUQEuIQSGwnsQ8ItahLhWhVASvtzfKTVkJJ2U0l-Pd8TnajjeDAJYfYccYz48x843iGkJc6d8Jqy1NYb5tyCbgjggdqda6qgtYsdDHds_PydM4_LYrFDtnU2FwzcPVPaBfrSc2XP978-vn7PRb8u4g4AdnfrmBmYiJzIPc9GKQqFjI448NmAmWsK2gdz3SlsIdZn2Bo_OjILHXZ-__-Rm8ZqfEPlFsWaXaX7K9dyeSol_09suPr--TOVoLBB-R1H_pPmpBcXDZt43zbRelXCXzV5Cvwsk8-Xzlw4CGZz06-fThN18URUgtE26Z5kKVxcI5Mxo3MQvTzjCiLEKit8sJQrgtNc19K6QpPmWUZdTQ4abSDXAJ7RHbrpvYHJAk8487YzAQBNOIMEJyTNlDudRkw6IS82PBGXfc5MBSwQ2SgGhg4IceRa0OHmLa6u9Esv6v1KlBQAx2C9l57xj0IB55xpoRGBCsqZyfkVeS5iuIGY6FE_RkB0BnTVKkjEfGfyErQdLgRi9oojWI5zaqykIxNyPOhGeslboLo2jc3XR-gYC4KDPG4l-JAM5M84lPMRYzkO5rUuKW-uuxycsOxBpBmxZP_ePFTcpvCNYoWMOeHZLdd3vhncG1aMyW3qkWFq5h9nJK945Pziy_TLkww7VT6D6fX-_E
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ1Lb9QwEMdHpRygB8SbhQIBgRCHqIntZJMDQuWxbOm2QqKVenP9bHtJSjcV4kvxGfk72Q0bIXHrNY6s8XgmM7_YHhO9UqktjDIiRvQ2sSiBO4V3oFZrx2OvFPftP929_Xx6KL4eZUdr9Ht5FiZsq1x-E9sPta1N-Ee-xVMG5M7A3-_Pf8Th1qiwurq8QqMzi1336yeQbf5u5xPm9zVjk88HH6fx4laB2AAFmzj1Za4tsgqdCF0mPiRIusgz75kZp5lmQmWKpS4vS5s5xg1PmGXellpZDMhz9HuNrguOSB5Opk--9IDHwXtd9SI0JltzhL9QYD0ZxLz2aoB_A8BKBBzuzlwJd5PbdGuRp0bbnWHdoTVX3aWNleqF9-htt64Q1T76dlo3tXVNuwQwj5AIR98B4y6anVmQ8306vBIdPaD1qq7cI4q8SITVJtG-AOpYDTy0pfFMOJV7dDqil0vdyPOuwIYEmAQFyl6BI_oQtNa_EGpitw_qixO5cDEJG1PeK-eU48JBcMCS1TnMzZtibM2I3gSdy-C5UCwstDuAADlDDSy5XQS4LJIcMm0up0UuXHou_xrgiF70zXDGsMKiKldftu8AsUWRoYuH3Sz2MvNSBPjFWIrB_A4GNWypzk7bgt_I2kHpPHv8f7me043pwd5Mznb2d5_QTYb0K0TZVGzSenNx6Z4ifWr0s9ZmIzq-aif5A2mDLyk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ1Lb9QwEIBHZSshOCDeLBQICIQ4RJvYTmIfEGppVy0tqxVQqTfjJ-0lKd1UiL_Gr2OcFxshces1jqzxeCYzn-2MAV6p1HKjDIsxepuYCcQd7h1Sq7VF4ZWivlnT_bTI94_Zx5PsZAN-9__ChGOV_Tex-VDbyoQ18hlNCSJ3hvw9892xiOXu_P35jzjcIBV2WvvrNFoTOXS_fiK-rd4d7OJcvyZkvvf1w37c3TAQG8TCOk69yLXFDEMnTIvEh2RJ8zzznpgizTRhKlMkdbkQNnOEGpoQS7wVWlkcnKfY7zXYLAIVTWBzZ2-x_DzgHkX6a2sZUSqS2QqDYSi3nowiYHNRwL_hYC0ejs9qrgW_-W241WWt0XZrZndgw5V34eZaLcN78LbdZYgqHy1Pq7qyrm42BFYRpsXRF0RzFx2dWeTo-3B8JVp6AJOyKt0jiDxLmNUm0Z4j-FiNsGiF8YQ5lXvsdAove93I87bchkRMCQqUgwKnsBO0NrwQKmQ3D6qL77JzOIkWp7xXzilHmUPBEZ2sztH4vOGFNVN4E3Qugx-jYtFe298RUM5QEUtu84CaPMlRpq1-WmTn4Cv51xyn8GJoRtcM-y2qdNVl8w4CN-MZdvGwncVBZipYQGEcCx_N72hQ45by7LQp_405PDI7zR7_X67ncB0dRB4dLA6fwA2CuVgIuSnbgkl9cemeYi5V62ed0Ubw7ar95A9jDzS7
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Review+of+Photodetectors+for+Space+Lidars&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Sun%2C+Xiaoli&rft.date=2024-10-14&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=24&rft.issue=20&rft_id=info:doi/10.3390%2Fs24206620&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon