Education, and the balance between dynamic and stationary functional connectivity jointly support executive functions in relapsing–remitting multiple sclerosis

Graphical network characteristics and nonstationary functional connectivity features, both derived from resting‐state functional magnetic resonance imaging (rsfMRI) data, have been associated with cognitive performance in healthy subjects. How these features jointly relate to cognition in diseased s...

Full description

Saved in:
Bibliographic Details
Published inHuman brain mapping Vol. 39; no. 12; pp. 5039 - 5049
Main Authors Lin, Sue‐Jin, Vavasour, Irene, Kosaka, Brenda, Li, David K. B., Traboulsee, Anthony, MacKay, Alex, McKeown, Martin J.
Format Journal Article
LanguageEnglish
Published United States John Wiley & Sons, Inc 01.12.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Graphical network characteristics and nonstationary functional connectivity features, both derived from resting‐state functional magnetic resonance imaging (rsfMRI) data, have been associated with cognitive performance in healthy subjects. How these features jointly relate to cognition in diseased states has not been investigated. In this study, 46 relapsing–remitting multiple sclerosis subjects underwent rsfMRI scans and a focused cognitive battery. With a sliding window approach, we examined six dynamic network features that indicated how connectivity changed over time as well as six measures derived from graph theory to reflect static network characteristics. Multiset canonical correlation analysis (MCCA) was then carried out to investigate the relations between dynamic network features, stationary network characteristics, cognitive testing, demographic, disease severity, and mood. Multiple sclerosis (MS) subjects demonstrated weaker connectivity strength, decreased network density, reduced global changes, but increased changes in interhemispheric connectivity compared to controls. The MCCA model determined that executive functions and processing speed ability measured by Wechsler Adult Intelligence Scale IV (WAIS‐IV) Working Memory Index, WAIS‐IV Processing Speed Index, and the Verbal Fluency Test were positively correlated with education, dynamic connectivity, and static connectivity strength; while poor task switching was correlated with disease severity, psychiatric comorbidities such as depression, anxiety, and fatigue, and static network density. Taken together, our results suggest that better executive functioning in MS requires maintenance of a continued coordination between stationary and dynamic functional connectivity as well as the support of education, and dynamic functional connectivity may provide an additional cognitive biomarker of disease severity in the MS population.
AbstractList Graphical network characteristics and nonstationary functional connectivity features, both derived from resting‐state functional magnetic resonance imaging (rsfMRI) data, have been associated with cognitive performance in healthy subjects. How these features jointly relate to cognition in diseased states has not been investigated. In this study, 46 relapsing–remitting multiple sclerosis subjects underwent rsfMRI scans and a focused cognitive battery. With a sliding window approach, we examined six dynamic network features that indicated how connectivity changed over time as well as six measures derived from graph theory to reflect static network characteristics. Multiset canonical correlation analysis (MCCA) was then carried out to investigate the relations between dynamic network features, stationary network characteristics, cognitive testing, demographic, disease severity, and mood. Multiple sclerosis (MS) subjects demonstrated weaker connectivity strength, decreased network density, reduced global changes, but increased changes in interhemispheric connectivity compared to controls. The MCCA model determined that executive functions and processing speed ability measured by Wechsler Adult Intelligence Scale IV (WAIS‐IV) Working Memory Index, WAIS‐IV Processing Speed Index, and the Verbal Fluency Test were positively correlated with education, dynamic connectivity, and static connectivity strength; while poor task switching was correlated with disease severity, psychiatric comorbidities such as depression, anxiety, and fatigue, and static network density. Taken together, our results suggest that better executive functioning in MS requires maintenance of a continued coordination between stationary and dynamic functional connectivity as well as the support of education, and dynamic functional connectivity may provide an additional cognitive biomarker of disease severity in the MS population.
Graphical network characteristics and nonstationary functional connectivity features, both derived from resting-state functional magnetic resonance imaging (rsfMRI) data, have been associated with cognitive performance in healthy subjects. How these features jointly relate to cognition in diseased states has not been investigated. In this study, 46 relapsing-remitting multiple sclerosis subjects underwent rsfMRI scans and a focused cognitive battery. With a sliding window approach, we examined six dynamic network features that indicated how connectivity changed over time as well as six measures derived from graph theory to reflect static network characteristics. Multiset canonical correlation analysis (MCCA) was then carried out to investigate the relations between dynamic network features, stationary network characteristics, cognitive testing, demographic, disease severity, and mood. Multiple sclerosis (MS) subjects demonstrated weaker connectivity strength, decreased network density, reduced global changes, but increased changes in interhemispheric connectivity compared to controls. The MCCA model determined that executive functions and processing speed ability measured by Wechsler Adult Intelligence Scale IV (WAIS-IV) Working Memory Index, WAIS-IV Processing Speed Index, and the Verbal Fluency Test were positively correlated with education, dynamic connectivity, and static connectivity strength; while poor task switching was correlated with disease severity, psychiatric comorbidities such as depression, anxiety, and fatigue, and static network density. Taken together, our results suggest that better executive functioning in MS requires maintenance of a continued coordination between stationary and dynamic functional connectivity as well as the support of education, and dynamic functional connectivity may provide an additional cognitive biomarker of disease severity in the MS population.Graphical network characteristics and nonstationary functional connectivity features, both derived from resting-state functional magnetic resonance imaging (rsfMRI) data, have been associated with cognitive performance in healthy subjects. How these features jointly relate to cognition in diseased states has not been investigated. In this study, 46 relapsing-remitting multiple sclerosis subjects underwent rsfMRI scans and a focused cognitive battery. With a sliding window approach, we examined six dynamic network features that indicated how connectivity changed over time as well as six measures derived from graph theory to reflect static network characteristics. Multiset canonical correlation analysis (MCCA) was then carried out to investigate the relations between dynamic network features, stationary network characteristics, cognitive testing, demographic, disease severity, and mood. Multiple sclerosis (MS) subjects demonstrated weaker connectivity strength, decreased network density, reduced global changes, but increased changes in interhemispheric connectivity compared to controls. The MCCA model determined that executive functions and processing speed ability measured by Wechsler Adult Intelligence Scale IV (WAIS-IV) Working Memory Index, WAIS-IV Processing Speed Index, and the Verbal Fluency Test were positively correlated with education, dynamic connectivity, and static connectivity strength; while poor task switching was correlated with disease severity, psychiatric comorbidities such as depression, anxiety, and fatigue, and static network density. Taken together, our results suggest that better executive functioning in MS requires maintenance of a continued coordination between stationary and dynamic functional connectivity as well as the support of education, and dynamic functional connectivity may provide an additional cognitive biomarker of disease severity in the MS population.
Author Kosaka, Brenda
McKeown, Martin J.
Li, David K. B.
MacKay, Alex
Traboulsee, Anthony
Lin, Sue‐Jin
Vavasour, Irene
AuthorAffiliation 3 Department of Radiology University of British Columbia Vancouver British Columbia Canada
1 Graduate Program in Neuroscience University of British Columbia Vancouver British Columbia Canada
4 Department of Psychiatry University of British Columbia Hospital Vancouver British Columbia Canada
5 Department of Physics and Astronomy University of British Columbia Vancouver British Columbia Canada
6 Faculty of Medicine, Neurology University of British Columbia Vancouver British Columbia Canada
2 Pacific Parkinson's Research Centre University of British Columbia Hospital Vancouver British Columbia Canada
AuthorAffiliation_xml – name: 2 Pacific Parkinson's Research Centre University of British Columbia Hospital Vancouver British Columbia Canada
– name: 4 Department of Psychiatry University of British Columbia Hospital Vancouver British Columbia Canada
– name: 5 Department of Physics and Astronomy University of British Columbia Vancouver British Columbia Canada
– name: 1 Graduate Program in Neuroscience University of British Columbia Vancouver British Columbia Canada
– name: 3 Department of Radiology University of British Columbia Vancouver British Columbia Canada
– name: 6 Faculty of Medicine, Neurology University of British Columbia Vancouver British Columbia Canada
Author_xml – sequence: 1
  givenname: Sue‐Jin
  orcidid: 0000-0003-0044-7446
  surname: Lin
  fullname: Lin, Sue‐Jin
  organization: Graduate Program in Neuroscience University of British Columbia Vancouver British Columbia Canada, Pacific Parkinson's Research Centre University of British Columbia Hospital Vancouver British Columbia Canada
– sequence: 2
  givenname: Irene
  surname: Vavasour
  fullname: Vavasour, Irene
  organization: Department of Radiology University of British Columbia Vancouver British Columbia Canada
– sequence: 3
  givenname: Brenda
  surname: Kosaka
  fullname: Kosaka, Brenda
  organization: Department of Psychiatry University of British Columbia Hospital Vancouver British Columbia Canada
– sequence: 4
  givenname: David K. B.
  surname: Li
  fullname: Li, David K. B.
  organization: Department of Radiology University of British Columbia Vancouver British Columbia Canada, Faculty of Medicine, Neurology University of British Columbia Vancouver British Columbia Canada
– sequence: 5
  givenname: Anthony
  surname: Traboulsee
  fullname: Traboulsee, Anthony
  organization: Faculty of Medicine, Neurology University of British Columbia Vancouver British Columbia Canada
– sequence: 6
  givenname: Alex
  surname: MacKay
  fullname: MacKay, Alex
  organization: Department of Radiology University of British Columbia Vancouver British Columbia Canada, Department of Physics and Astronomy University of British Columbia Vancouver British Columbia Canada
– sequence: 7
  givenname: Martin J.
  surname: McKeown
  fullname: McKeown, Martin J.
  organization: Graduate Program in Neuroscience University of British Columbia Vancouver British Columbia Canada, Pacific Parkinson's Research Centre University of British Columbia Hospital Vancouver British Columbia Canada, Faculty of Medicine, Neurology University of British Columbia Vancouver British Columbia Canada
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30240533$$D View this record in MEDLINE/PubMed
BookMark eNplks1u1DAQxy1URD_gwAsgS1xAYls7dpz4UglV5UOqxAXOluNMul45drCdwt54B56AV-NJcHbbCoovM9b85q_5OkYHPnhA6Dklp5SQ6mzdjacVZ5w9QkeUyGZFqGQHiy_qleQNPUTHKW0IobQm9Ak6ZKTipGbsCP267Gejsw3-Dda-x3kNuNNOe1Ms5G8AHvdbr0drdvGUd7COWzzM3ux8h03wHsrnxuYt3gTrs9viNE9TiBnDdzBzicF9RsLW4whOT8n6698_fkYYbc7Fx-Pssp0c4GQcxJBseooeD9oleHZrT9CXd5efLz6srj69_3jx9mpluJB5RXlHBmGAQgW8At10pBZ9x3TfQqMlByNYab-l0AgpB9Z2bS_5QHTb1ryTLTtB53vdae5G6A34HLVTU7Rj6VYFbdW_EW_X6jrcKNEKwcUi8OpWIIavM6SsRpsMuDJMCHNSFS2Pcyargr58gG7CHMskF6qSdVPX1SL44u-K7ku5214BzvaAKZNKEQZl7H4_pUDrFCVquQ9V7kPt7qNkvH6QcSf6P_sHBeTBtQ
CitedBy_id crossref_primary_10_1089_brain_2021_0104
crossref_primary_10_3390_brainsci13020246
crossref_primary_10_1016_j_neubiorev_2024_105846
crossref_primary_10_3233_JAD_215649
crossref_primary_10_1016_j_brainres_2021_147477
crossref_primary_10_1002_hbm_25090
crossref_primary_10_1038_s41582_020_00439_8
crossref_primary_10_1093_scan_nsaa114
crossref_primary_10_1002_brb3_1705
crossref_primary_10_1371_journal_pone_0255324
crossref_primary_10_3389_fnins_2019_00618
crossref_primary_10_1089_brain_2020_0920
crossref_primary_10_3389_fneur_2019_01265
crossref_primary_10_3389_fpsyt_2020_00663
crossref_primary_10_1016_j_msard_2023_105017
crossref_primary_10_3389_fneur_2020_00407
crossref_primary_10_1093_braincomms_fcac095
crossref_primary_10_1016_j_jneumeth_2020_108651
crossref_primary_10_1148_radiol_221512
crossref_primary_10_1007_s00234_020_02393_0
crossref_primary_10_1016_j_nicl_2022_103108
crossref_primary_10_18632_aging_203815
crossref_primary_10_3389_fneur_2021_671894
crossref_primary_10_3389_fnagi_2021_711009
crossref_primary_10_1016_j_nicl_2022_103076
crossref_primary_10_1177_1352458519837707
crossref_primary_10_1007_s40120_022_00368_2
crossref_primary_10_1093_braincomms_fcac255
Cites_doi 10.1016/S1364-6613(00)01564-3
10.1016/j.nicl.2014.07.003
10.3389/fnhum.2015.00061
10.1093/biomet/58.3.433
10.1002/ana.20703
10.1002/hbm.20284
10.1089/brain.2014.0248
10.1016/j.conb.2012.11.015
10.1002/hbm.23219
10.1073/pnas.1422487112
10.1177/1352458512460416
10.1002/hbm.460020107
10.7224/1537-2073.2016-086
10.1177/1352458513516892
10.1016/j.neuroimage.2014.06.052
10.1212/WNL.0b013e3181db9957
10.1097/JGP.0b013e3181b215ec
10.1016/j.neuron.2015.09.027
10.1002/hbm.21142
10.1126/science.1254404
10.1016/j.neuroimage.2013.05.079
10.1002/hbm.20679
10.1177/1352458516628657
10.1016/j.neuroimage.2015.11.055
10.1016/j.neuroimage.2009.10.003
10.1073/pnas.1510619112
10.1093/cercor/bhs352
10.1007/s11682-015-9408-2
10.1212/WNL.33.11.1444
10.1371/journal.pone.0041282
10.1371/journal.pone.0039731
10.1017/S1355617702813248
10.1007/978-0-387-79948-3
10.1016/j.neuroimage.2015.12.001
10.1155/2017/6847070
10.1093/brain/awf125
10.1109/MSP.2016.2521870
10.1002/hbm.22495
10.1038/nn.4206
10.1002/hbm.22499
10.1007/s10334-010-0197-8
10.1073/pnas.1110024108
10.1038/nrneurol.2017.33
10.1016/j.neuroimage.2014.09.007
10.1093/brain/awp089
10.1016/B978-008045046-9.00418-6
10.1016/j.neuroimage.2009.12.011
10.1109/TBME.2014.2359211
10.1007/s00429-014-0896-4
10.1682/JRRD.2004.09.0120
10.3109/13651501.2013.845221
10.1002/hbm.22140
10.1093/med/9780199564118.003.006
10.1016/j.neuroimage.2010.01.062
10.1523/JNEUROSCI.2965-15.2016
10.1016/j.neuroimage.2012.06.078
10.1002/hbm.22158
10.1371/journal.pcbi.1004533
10.1002/hbm.22058
10.1016/j.tics.2013.09.016
10.1016/j.neuroimage.2013.07.019
10.1016/j.neuroimage.2012.10.051
10.1089/brain.2011.0008
10.1016/j.neuroimage.2015.03.047
ContentType Journal Article
Copyright 2018 Wiley Periodicals, Inc.
Copyright_xml – notice: 2018 Wiley Periodicals, Inc.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7TK
7U7
8FD
C1K
FR3
K9.
P64
7X8
5PM
DOI 10.1002/hbm.24343
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Chemoreception Abstracts
Neurosciences Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Toxicology Abstracts
ProQuest Health & Medical Complete (Alumni)
Chemoreception Abstracts
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList CrossRef

Technology Research Database
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
Education
DocumentTitleAlternate Lin et al
EISSN 1097-0193
EndPage 5049
ExternalDocumentID PMC6866468
30240533
10_1002_hbm_24343
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: ;
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
8FI
8FJ
8UM
930
A03
AAESR
AAEVG
AAFWJ
AAHHS
AANHP
AAONW
AAYCA
AAYXX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABIVO
ABJNI
ABPVW
ABUWG
ACBWZ
ACCFJ
ACCMX
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACSCC
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADMGS
ADNMO
ADPDF
ADXAS
ADZOD
AEEZP
AEIMD
AENEX
AEQDE
AFBPY
AFGKR
AFKRA
AFPKN
AFRAH
AFZJQ
AGQPQ
AHMBA
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CCPQU
CITATION
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FYUFA
G-S
G.N
GAKWD
GNP
GODZA
GROUPED_DOAJ
H.T
H.X
HBH
HF~
HHY
HHZ
HMCUK
HVGLF
HZ~
IAO
IHR
ITC
IX1
J0M
JPC
KQQ
L7B
LAW
LC2
LC3
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6M
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OK1
OVD
OVEED
P2P
P2W
P2X
P4D
PALCI
PHGZM
PHGZT
PIMPY
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RPM
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
UB1
UKHRP
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
XSW
XV2
ZZTAW
~IA
~WT
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7TK
7U7
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
FR3
K9.
P64
7X8
WIN
5PM
ID FETCH-LOGICAL-c469t-14b0f6ce1e2e42ea7b056db3ad8e7a94ec6311581e7699f38b8d94f0a8854b983
ISSN 1065-9471
1097-0193
IngestDate Thu Aug 21 13:39:31 EDT 2025
Sun Aug 24 03:45:46 EDT 2025
Sat Jul 26 02:26:31 EDT 2025
Thu Apr 03 07:09:28 EDT 2025
Thu Apr 24 23:11:58 EDT 2025
Tue Jul 01 01:10:51 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords cognitive function
dynamic functional connectivity
graph theory
sliding window approach
multiset canonical correlation analysis
resting-state fMRI
network characteristics
Language English
License 2018 Wiley Periodicals, Inc.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c469t-14b0f6ce1e2e42ea7b056db3ad8e7a94ec6311581e7699f38b8d94f0a8854b983
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Funding information Multiple Sclerosis Society of Canada
ORCID 0000-0003-0044-7446
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/hbm.24343
PMID 30240533
PQID 2129575528
PQPubID 996345
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6866468
proquest_miscellaneous_2111144392
proquest_journals_2129575528
pubmed_primary_30240533
crossref_citationtrail_10_1002_hbm_24343
crossref_primary_10_1002_hbm_24343
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-12-01
PublicationDateYYYYMMDD 2018-12-01
PublicationDate_xml – month: 12
  year: 2018
  text: 2018-12-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Antonio
– name: Hoboken, USA
PublicationTitle Human brain mapping
PublicationTitleAlternate Hum Brain Mapp
PublicationYear 2018
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
Rahn K. (e_1_2_7_51_1) 2012; 2012
e_1_2_7_50_1
e_1_2_7_71_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_54_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
Kucyi A. (e_1_2_7_33_1) 2016; 27
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_69_1
e_1_2_7_27_1
Gelfand J. M. (e_1_2_7_21_1) 2014
e_1_2_7_70_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
Vance E. (e_1_2_7_68_1) 2010; 48
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
Kaiser R. H. (e_1_2_7_29_1) 2015; 7
e_1_2_7_38_1
McIntosh A. R. (e_1_2_7_46_1) 2008
References_xml – ident: e_1_2_7_10_1
  doi: 10.1016/S1364-6613(00)01564-3
– volume: 2012
  year: 2012
  ident: e_1_2_7_51_1
  article-title: Cognitive impairment in multiple sclerosis: A forgotten disability remembered
  publication-title: Cerebrum
– ident: e_1_2_7_15_1
  doi: 10.1016/j.nicl.2014.07.003
– ident: e_1_2_7_48_1
  doi: 10.3389/fnhum.2015.00061
– ident: e_1_2_7_31_1
  doi: 10.1093/biomet/58.3.433
– ident: e_1_2_7_50_1
  doi: 10.1002/ana.20703
– ident: e_1_2_7_18_1
  doi: 10.1002/hbm.20284
– ident: e_1_2_7_41_1
  doi: 10.1089/brain.2014.0248
– ident: e_1_2_7_63_1
  doi: 10.1016/j.conb.2012.11.015
– volume: 27
  start-page: 1831
  year: 2016
  ident: e_1_2_7_33_1
  article-title: Dynamic brain network correlates of spontaneous fluctuations in attention
  publication-title: Cerebral Cortex
– ident: e_1_2_7_52_1
  doi: 10.1002/hbm.23219
– ident: e_1_2_7_9_1
  doi: 10.1073/pnas.1422487112
– ident: e_1_2_7_16_1
  doi: 10.1177/1352458512460416
– ident: e_1_2_7_19_1
  doi: 10.1002/hbm.460020107
– ident: e_1_2_7_42_1
  doi: 10.7224/1537-2073.2016-086
– ident: e_1_2_7_58_1
  doi: 10.1177/1352458513516892
– ident: e_1_2_7_38_1
  doi: 10.1016/j.neuroimage.2014.06.052
– ident: e_1_2_7_59_1
  doi: 10.1212/WNL.0b013e3181db9957
– ident: e_1_2_7_45_1
  doi: 10.1097/JGP.0b013e3181b215ec
– ident: e_1_2_7_49_1
  doi: 10.1016/j.neuron.2015.09.027
– ident: e_1_2_7_4_1
  doi: 10.1002/hbm.21142
– ident: e_1_2_7_60_1
  doi: 10.1126/science.1254404
– ident: e_1_2_7_26_1
  doi: 10.1016/j.neuroimage.2013.05.079
– volume: 48
  start-page: 23
  year: 2010
  ident: e_1_2_7_68_1
  article-title: How neuroplasticity and cognitive reserve protect cognitive functioning
  publication-title: Journal of Psychosocial Nursing
– ident: e_1_2_7_54_1
  doi: 10.1002/hbm.20679
– ident: e_1_2_7_17_1
  doi: 10.1177/1352458516628657
– ident: e_1_2_7_25_1
  doi: 10.1016/j.neuroimage.2015.11.055
– ident: e_1_2_7_55_1
  doi: 10.1016/j.neuroimage.2009.10.003
– ident: e_1_2_7_7_1
  doi: 10.1073/pnas.1510619112
– volume: 7
  start-page: 1
  year: 2015
  ident: e_1_2_7_29_1
  article-title: Dynamic resting‐state functional connectivity in major depression
  publication-title: Neuropsychopharmacology
– ident: e_1_2_7_2_1
  doi: 10.1093/cercor/bhs352
– ident: e_1_2_7_70_1
  doi: 10.1007/s11682-015-9408-2
– ident: e_1_2_7_34_1
  doi: 10.1212/WNL.33.11.1444
– ident: e_1_2_7_40_1
  doi: 10.1371/journal.pone.0041282
– ident: e_1_2_7_28_1
  doi: 10.1371/journal.pone.0039731
– ident: e_1_2_7_65_1
  doi: 10.1017/S1355617702813248
– ident: e_1_2_7_32_1
  doi: 10.1007/978-0-387-79948-3
– ident: e_1_2_7_8_1
  doi: 10.1016/j.neuroimage.2015.12.001
– ident: e_1_2_7_3_1
  doi: 10.1155/2017/6847070
– ident: e_1_2_7_64_1
  doi: 10.1093/brain/awf125
– ident: e_1_2_7_12_1
  doi: 10.1109/MSP.2016.2521870
– start-page: 4
  year: 2008
  ident: e_1_2_7_46_1
  article-title: Increased brain signal variability accompanies lower behavioral variability in development
  publication-title: PLoS Computational Biology
– ident: e_1_2_7_57_1
  doi: 10.1002/hbm.22495
– ident: e_1_2_7_61_1
  doi: 10.1038/nn.4206
– ident: e_1_2_7_5_1
  doi: 10.1002/hbm.22499
– ident: e_1_2_7_56_1
  doi: 10.1007/s10334-010-0197-8
– ident: e_1_2_7_23_1
  doi: 10.1073/pnas.1110024108
– ident: e_1_2_7_43_1
  doi: 10.1038/nrneurol.2017.33
– ident: e_1_2_7_36_1
  doi: 10.1016/j.neuroimage.2014.09.007
– ident: e_1_2_7_24_1
  doi: 10.1093/brain/awp089
– ident: e_1_2_7_47_1
  doi: 10.1016/B978-008045046-9.00418-6
– ident: e_1_2_7_11_1
  doi: 10.1016/j.neuroimage.2009.12.011
– ident: e_1_2_7_39_1
  doi: 10.1109/TBME.2014.2359211
– ident: e_1_2_7_53_1
  doi: 10.1007/s00429-014-0896-4
– ident: e_1_2_7_69_1
  doi: 10.1682/JRRD.2004.09.0120
– ident: e_1_2_7_30_1
  doi: 10.3109/13651501.2013.845221
– ident: e_1_2_7_67_1
  doi: 10.1002/hbm.22140
– ident: e_1_2_7_6_1
  doi: 10.1093/med/9780199564118.003.006
– ident: e_1_2_7_14_1
  doi: 10.1016/j.neuroimage.2010.01.062
– ident: e_1_2_7_13_1
  doi: 10.1523/JNEUROSCI.2965-15.2016
– ident: e_1_2_7_22_1
  doi: 10.1016/j.neuroimage.2012.06.078
– start-page: 269
  volume-title: Handbook of clinical neurology
  year: 2014
  ident: e_1_2_7_21_1
– ident: e_1_2_7_37_1
  doi: 10.1002/hbm.22158
– ident: e_1_2_7_44_1
  doi: 10.1371/journal.pcbi.1004533
– ident: e_1_2_7_27_1
  doi: 10.1002/hbm.22058
– ident: e_1_2_7_62_1
  doi: 10.1016/j.tics.2013.09.016
– ident: e_1_2_7_35_1
  doi: 10.1016/j.neuroimage.2013.07.019
– ident: e_1_2_7_66_1
  doi: 10.1016/j.neuroimage.2012.10.051
– ident: e_1_2_7_20_1
  doi: 10.1089/brain.2011.0008
– ident: e_1_2_7_71_1
  doi: 10.1016/j.neuroimage.2015.03.047
SSID ssj0011501
Score 2.4424286
Snippet Graphical network characteristics and nonstationary functional connectivity features, both derived from resting‐state functional magnetic resonance imaging...
Graphical network characteristics and nonstationary functional connectivity features, both derived from resting-state functional magnetic resonance imaging...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 5039
SubjectTerms Adult
Anxiety
Biomarkers
Cerebral Cortex - diagnostic imaging
Cerebral Cortex - physiopathology
Cerebral hemispheres
Cognition
Cognitive ability
Cognitive tasks
Connectome - methods
Coordination
Correlation analysis
Demographics
Density
Education
Educational Status
Executive function
Executive Function - physiology
Fatigue
Female
Functional magnetic resonance imaging
Functionals
Graph theory
Humans
Intelligence
Magnetic Resonance Imaging
Male
Mental depression
Middle Aged
Mood
Multiple sclerosis
Multiple Sclerosis, Relapsing-Remitting - diagnostic imaging
Multiple Sclerosis, Relapsing-Remitting - physiopathology
Nerve Net - diagnostic imaging
Nerve Net - physiopathology
Severity of Illness Index
Short term memory
Title Education, and the balance between dynamic and stationary functional connectivity jointly support executive functions in relapsing–remitting multiple sclerosis
URI https://www.ncbi.nlm.nih.gov/pubmed/30240533
https://www.proquest.com/docview/2129575528
https://www.proquest.com/docview/2111144392
https://pubmed.ncbi.nlm.nih.gov/PMC6866468
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFLWGIiE2CFoeAwUZhBDSkCEPJ3GWBYGqorKAFnU3shOHBjqZUZMglRX_wBfwS3wCX8K9seNkOl0UZhGNYjsP3RPfa_v4XEKeKhWyKMuYk4N3dljsSydxw8wBZ-0GCQuVx3GD8_77aPeQ7R2FR6PR7wFrqanlNP1-4b6S_7EqnAO74i7Zf7CsvSicgP9gXziCheF4KRv37AzDwcQoUiJZEb7WjoGV6ZzzbXmlF96RKYcOzcwDpkh2SU0aiS-LoqxPziZVs8TQHHMypY0WBzctqm4PzBLnGTq2RHCq5oUmUVuSYgXPC164qIYhsF42kJiaYjIXKA_x2bKCtKDBx0ZZDsZeYdH7SXwTuNbQdmuoxGmdxaISX3UKaWT4iv5ylrU_eTedvJoOpzg8PqCL6F4Z4iQnYTpXy1SZcygj6-n0il1XrnWROsj6g44ZkTdw8qGrhVLXHIgWpD2W86mPe257L9kxA845T0tp1PLP_gyaztqmV8hVH4Yu7TD_g5U0wwC8nQToXqlTu3L9l_auqzHS2sDnPH93EBAd3CQ3zEiG7mhY3iIjVW6SrZ1S1Iv5GX1GW25xu2izSa7tGwrHFvllQfuCAiQpQJYayFIDWWog25b3kKU9ZOkQstRAlhrIUgtZ26KiRUktZP_8-GnBSjuwUgvW2-Tw7ZuD17uOyRPipCxKasdj0s2jVHnKV8xXIpYQ1WcyEBlXsUiYSiPUlOKeiqMkyQMueZaw3BWch0wmPLhDNspFqe4RmjOWY05VFfs40QDBPJhIeTILeCgg8h2T551lZqkR0cdcLiezNfuPyRNbdamVYy6qtN2Zd2Y6lmoG0WQCo6jQ52Py2BZDt49reaJUiwbrwI_BaMIfk7saDfYuAeoWwjBuTOIVnNgKKCm_WlIWx620fMSjiEX8_mWe_QG53n-s22SjPm3UQ4jQa_mohfxf3h3wOQ
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Education%2C+and+the+balance+between+dynamic+and+stationary+functional+connectivity+jointly+support+executive+functions+in+relapsing%E2%80%93remitting+multiple+sclerosis&rft.jtitle=Human+brain+mapping&rft.au=Lin%2C+Sue%E2%80%90Jin&rft.au=Vavasour%2C+Irene&rft.au=Kosaka%2C+Brenda&rft.au=Li%2C+David+K.+B.&rft.date=2018-12-01&rft.issn=1065-9471&rft.eissn=1097-0193&rft.volume=39&rft.issue=12&rft.spage=5039&rft.epage=5049&rft_id=info:doi/10.1002%2Fhbm.24343&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_hbm_24343
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon