Education, and the balance between dynamic and stationary functional connectivity jointly support executive functions in relapsing–remitting multiple sclerosis
Graphical network characteristics and nonstationary functional connectivity features, both derived from resting‐state functional magnetic resonance imaging (rsfMRI) data, have been associated with cognitive performance in healthy subjects. How these features jointly relate to cognition in diseased s...
Saved in:
Published in | Human brain mapping Vol. 39; no. 12; pp. 5039 - 5049 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
John Wiley & Sons, Inc
01.12.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Graphical network characteristics and nonstationary functional connectivity features, both derived from resting‐state functional magnetic resonance imaging (rsfMRI) data, have been associated with cognitive performance in healthy subjects. How these features jointly relate to cognition in diseased states has not been investigated. In this study, 46 relapsing–remitting multiple sclerosis subjects underwent rsfMRI scans and a focused cognitive battery. With a sliding window approach, we examined six dynamic network features that indicated how connectivity changed over time as well as six measures derived from graph theory to reflect static network characteristics. Multiset canonical correlation analysis (MCCA) was then carried out to investigate the relations between dynamic network features, stationary network characteristics, cognitive testing, demographic, disease severity, and mood. Multiple sclerosis (MS) subjects demonstrated weaker connectivity strength, decreased network density, reduced global changes, but increased changes in interhemispheric connectivity compared to controls. The MCCA model determined that executive functions and processing speed ability measured by Wechsler Adult Intelligence Scale IV (WAIS‐IV) Working Memory Index, WAIS‐IV Processing Speed Index, and the Verbal Fluency Test were positively correlated with education, dynamic connectivity, and static connectivity strength; while poor task switching was correlated with disease severity, psychiatric comorbidities such as depression, anxiety, and fatigue, and static network density. Taken together, our results suggest that better executive functioning in MS requires maintenance of a continued coordination between stationary and dynamic functional connectivity as well as the support of education, and dynamic functional connectivity may provide an additional cognitive biomarker of disease severity in the MS population. |
---|---|
AbstractList | Graphical network characteristics and nonstationary functional connectivity features, both derived from resting‐state functional magnetic resonance imaging (rsfMRI) data, have been associated with cognitive performance in healthy subjects. How these features jointly relate to cognition in diseased states has not been investigated. In this study, 46 relapsing–remitting multiple sclerosis subjects underwent rsfMRI scans and a focused cognitive battery. With a sliding window approach, we examined six dynamic network features that indicated how connectivity changed over time as well as six measures derived from graph theory to reflect static network characteristics. Multiset canonical correlation analysis (MCCA) was then carried out to investigate the relations between dynamic network features, stationary network characteristics, cognitive testing, demographic, disease severity, and mood. Multiple sclerosis (MS) subjects demonstrated weaker connectivity strength, decreased network density, reduced global changes, but increased changes in interhemispheric connectivity compared to controls. The MCCA model determined that executive functions and processing speed ability measured by Wechsler Adult Intelligence Scale IV (WAIS‐IV) Working Memory Index, WAIS‐IV Processing Speed Index, and the Verbal Fluency Test were positively correlated with education, dynamic connectivity, and static connectivity strength; while poor task switching was correlated with disease severity, psychiatric comorbidities such as depression, anxiety, and fatigue, and static network density. Taken together, our results suggest that better executive functioning in MS requires maintenance of a continued coordination between stationary and dynamic functional connectivity as well as the support of education, and dynamic functional connectivity may provide an additional cognitive biomarker of disease severity in the MS population. Graphical network characteristics and nonstationary functional connectivity features, both derived from resting-state functional magnetic resonance imaging (rsfMRI) data, have been associated with cognitive performance in healthy subjects. How these features jointly relate to cognition in diseased states has not been investigated. In this study, 46 relapsing-remitting multiple sclerosis subjects underwent rsfMRI scans and a focused cognitive battery. With a sliding window approach, we examined six dynamic network features that indicated how connectivity changed over time as well as six measures derived from graph theory to reflect static network characteristics. Multiset canonical correlation analysis (MCCA) was then carried out to investigate the relations between dynamic network features, stationary network characteristics, cognitive testing, demographic, disease severity, and mood. Multiple sclerosis (MS) subjects demonstrated weaker connectivity strength, decreased network density, reduced global changes, but increased changes in interhemispheric connectivity compared to controls. The MCCA model determined that executive functions and processing speed ability measured by Wechsler Adult Intelligence Scale IV (WAIS-IV) Working Memory Index, WAIS-IV Processing Speed Index, and the Verbal Fluency Test were positively correlated with education, dynamic connectivity, and static connectivity strength; while poor task switching was correlated with disease severity, psychiatric comorbidities such as depression, anxiety, and fatigue, and static network density. Taken together, our results suggest that better executive functioning in MS requires maintenance of a continued coordination between stationary and dynamic functional connectivity as well as the support of education, and dynamic functional connectivity may provide an additional cognitive biomarker of disease severity in the MS population.Graphical network characteristics and nonstationary functional connectivity features, both derived from resting-state functional magnetic resonance imaging (rsfMRI) data, have been associated with cognitive performance in healthy subjects. How these features jointly relate to cognition in diseased states has not been investigated. In this study, 46 relapsing-remitting multiple sclerosis subjects underwent rsfMRI scans and a focused cognitive battery. With a sliding window approach, we examined six dynamic network features that indicated how connectivity changed over time as well as six measures derived from graph theory to reflect static network characteristics. Multiset canonical correlation analysis (MCCA) was then carried out to investigate the relations between dynamic network features, stationary network characteristics, cognitive testing, demographic, disease severity, and mood. Multiple sclerosis (MS) subjects demonstrated weaker connectivity strength, decreased network density, reduced global changes, but increased changes in interhemispheric connectivity compared to controls. The MCCA model determined that executive functions and processing speed ability measured by Wechsler Adult Intelligence Scale IV (WAIS-IV) Working Memory Index, WAIS-IV Processing Speed Index, and the Verbal Fluency Test were positively correlated with education, dynamic connectivity, and static connectivity strength; while poor task switching was correlated with disease severity, psychiatric comorbidities such as depression, anxiety, and fatigue, and static network density. Taken together, our results suggest that better executive functioning in MS requires maintenance of a continued coordination between stationary and dynamic functional connectivity as well as the support of education, and dynamic functional connectivity may provide an additional cognitive biomarker of disease severity in the MS population. |
Author | Kosaka, Brenda McKeown, Martin J. Li, David K. B. MacKay, Alex Traboulsee, Anthony Lin, Sue‐Jin Vavasour, Irene |
AuthorAffiliation | 3 Department of Radiology University of British Columbia Vancouver British Columbia Canada 1 Graduate Program in Neuroscience University of British Columbia Vancouver British Columbia Canada 4 Department of Psychiatry University of British Columbia Hospital Vancouver British Columbia Canada 5 Department of Physics and Astronomy University of British Columbia Vancouver British Columbia Canada 6 Faculty of Medicine, Neurology University of British Columbia Vancouver British Columbia Canada 2 Pacific Parkinson's Research Centre University of British Columbia Hospital Vancouver British Columbia Canada |
AuthorAffiliation_xml | – name: 2 Pacific Parkinson's Research Centre University of British Columbia Hospital Vancouver British Columbia Canada – name: 4 Department of Psychiatry University of British Columbia Hospital Vancouver British Columbia Canada – name: 5 Department of Physics and Astronomy University of British Columbia Vancouver British Columbia Canada – name: 1 Graduate Program in Neuroscience University of British Columbia Vancouver British Columbia Canada – name: 3 Department of Radiology University of British Columbia Vancouver British Columbia Canada – name: 6 Faculty of Medicine, Neurology University of British Columbia Vancouver British Columbia Canada |
Author_xml | – sequence: 1 givenname: Sue‐Jin orcidid: 0000-0003-0044-7446 surname: Lin fullname: Lin, Sue‐Jin organization: Graduate Program in Neuroscience University of British Columbia Vancouver British Columbia Canada, Pacific Parkinson's Research Centre University of British Columbia Hospital Vancouver British Columbia Canada – sequence: 2 givenname: Irene surname: Vavasour fullname: Vavasour, Irene organization: Department of Radiology University of British Columbia Vancouver British Columbia Canada – sequence: 3 givenname: Brenda surname: Kosaka fullname: Kosaka, Brenda organization: Department of Psychiatry University of British Columbia Hospital Vancouver British Columbia Canada – sequence: 4 givenname: David K. B. surname: Li fullname: Li, David K. B. organization: Department of Radiology University of British Columbia Vancouver British Columbia Canada, Faculty of Medicine, Neurology University of British Columbia Vancouver British Columbia Canada – sequence: 5 givenname: Anthony surname: Traboulsee fullname: Traboulsee, Anthony organization: Faculty of Medicine, Neurology University of British Columbia Vancouver British Columbia Canada – sequence: 6 givenname: Alex surname: MacKay fullname: MacKay, Alex organization: Department of Radiology University of British Columbia Vancouver British Columbia Canada, Department of Physics and Astronomy University of British Columbia Vancouver British Columbia Canada – sequence: 7 givenname: Martin J. surname: McKeown fullname: McKeown, Martin J. organization: Graduate Program in Neuroscience University of British Columbia Vancouver British Columbia Canada, Pacific Parkinson's Research Centre University of British Columbia Hospital Vancouver British Columbia Canada, Faculty of Medicine, Neurology University of British Columbia Vancouver British Columbia Canada |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30240533$$D View this record in MEDLINE/PubMed |
BookMark | eNplks1u1DAQxy1URD_gwAsgS1xAYls7dpz4UglV5UOqxAXOluNMul45drCdwt54B56AV-NJcHbbCoovM9b85q_5OkYHPnhA6Dklp5SQ6mzdjacVZ5w9QkeUyGZFqGQHiy_qleQNPUTHKW0IobQm9Ak6ZKTipGbsCP267Gejsw3-Dda-x3kNuNNOe1Ms5G8AHvdbr0drdvGUd7COWzzM3ux8h03wHsrnxuYt3gTrs9viNE9TiBnDdzBzicF9RsLW4whOT8n6698_fkYYbc7Fx-Pssp0c4GQcxJBseooeD9oleHZrT9CXd5efLz6srj69_3jx9mpluJB5RXlHBmGAQgW8At10pBZ9x3TfQqMlByNYab-l0AgpB9Z2bS_5QHTb1ryTLTtB53vdae5G6A34HLVTU7Rj6VYFbdW_EW_X6jrcKNEKwcUi8OpWIIavM6SsRpsMuDJMCHNSFS2Pcyargr58gG7CHMskF6qSdVPX1SL44u-K7ku5214BzvaAKZNKEQZl7H4_pUDrFCVquQ9V7kPt7qNkvH6QcSf6P_sHBeTBtQ |
CitedBy_id | crossref_primary_10_1089_brain_2021_0104 crossref_primary_10_3390_brainsci13020246 crossref_primary_10_1016_j_neubiorev_2024_105846 crossref_primary_10_3233_JAD_215649 crossref_primary_10_1016_j_brainres_2021_147477 crossref_primary_10_1002_hbm_25090 crossref_primary_10_1038_s41582_020_00439_8 crossref_primary_10_1093_scan_nsaa114 crossref_primary_10_1002_brb3_1705 crossref_primary_10_1371_journal_pone_0255324 crossref_primary_10_3389_fnins_2019_00618 crossref_primary_10_1089_brain_2020_0920 crossref_primary_10_3389_fneur_2019_01265 crossref_primary_10_3389_fpsyt_2020_00663 crossref_primary_10_1016_j_msard_2023_105017 crossref_primary_10_3389_fneur_2020_00407 crossref_primary_10_1093_braincomms_fcac095 crossref_primary_10_1016_j_jneumeth_2020_108651 crossref_primary_10_1148_radiol_221512 crossref_primary_10_1007_s00234_020_02393_0 crossref_primary_10_1016_j_nicl_2022_103108 crossref_primary_10_18632_aging_203815 crossref_primary_10_3389_fneur_2021_671894 crossref_primary_10_3389_fnagi_2021_711009 crossref_primary_10_1016_j_nicl_2022_103076 crossref_primary_10_1177_1352458519837707 crossref_primary_10_1007_s40120_022_00368_2 crossref_primary_10_1093_braincomms_fcac255 |
Cites_doi | 10.1016/S1364-6613(00)01564-3 10.1016/j.nicl.2014.07.003 10.3389/fnhum.2015.00061 10.1093/biomet/58.3.433 10.1002/ana.20703 10.1002/hbm.20284 10.1089/brain.2014.0248 10.1016/j.conb.2012.11.015 10.1002/hbm.23219 10.1073/pnas.1422487112 10.1177/1352458512460416 10.1002/hbm.460020107 10.7224/1537-2073.2016-086 10.1177/1352458513516892 10.1016/j.neuroimage.2014.06.052 10.1212/WNL.0b013e3181db9957 10.1097/JGP.0b013e3181b215ec 10.1016/j.neuron.2015.09.027 10.1002/hbm.21142 10.1126/science.1254404 10.1016/j.neuroimage.2013.05.079 10.1002/hbm.20679 10.1177/1352458516628657 10.1016/j.neuroimage.2015.11.055 10.1016/j.neuroimage.2009.10.003 10.1073/pnas.1510619112 10.1093/cercor/bhs352 10.1007/s11682-015-9408-2 10.1212/WNL.33.11.1444 10.1371/journal.pone.0041282 10.1371/journal.pone.0039731 10.1017/S1355617702813248 10.1007/978-0-387-79948-3 10.1016/j.neuroimage.2015.12.001 10.1155/2017/6847070 10.1093/brain/awf125 10.1109/MSP.2016.2521870 10.1002/hbm.22495 10.1038/nn.4206 10.1002/hbm.22499 10.1007/s10334-010-0197-8 10.1073/pnas.1110024108 10.1038/nrneurol.2017.33 10.1016/j.neuroimage.2014.09.007 10.1093/brain/awp089 10.1016/B978-008045046-9.00418-6 10.1016/j.neuroimage.2009.12.011 10.1109/TBME.2014.2359211 10.1007/s00429-014-0896-4 10.1682/JRRD.2004.09.0120 10.3109/13651501.2013.845221 10.1002/hbm.22140 10.1093/med/9780199564118.003.006 10.1016/j.neuroimage.2010.01.062 10.1523/JNEUROSCI.2965-15.2016 10.1016/j.neuroimage.2012.06.078 10.1002/hbm.22158 10.1371/journal.pcbi.1004533 10.1002/hbm.22058 10.1016/j.tics.2013.09.016 10.1016/j.neuroimage.2013.07.019 10.1016/j.neuroimage.2012.10.051 10.1089/brain.2011.0008 10.1016/j.neuroimage.2015.03.047 |
ContentType | Journal Article |
Copyright | 2018 Wiley Periodicals, Inc. |
Copyright_xml | – notice: 2018 Wiley Periodicals, Inc. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QR 7TK 7U7 8FD C1K FR3 K9. P64 7X8 5PM |
DOI | 10.1002/hbm.24343 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Chemoreception Abstracts Neurosciences Abstracts Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Toxicology Abstracts ProQuest Health & Medical Complete (Alumni) Chemoreception Abstracts Engineering Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | CrossRef Technology Research Database MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology Education |
DocumentTitleAlternate | Lin et al |
EISSN | 1097-0193 |
EndPage | 5049 |
ExternalDocumentID | PMC6866468 30240533 10_1002_hbm_24343 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: ; |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 7X7 8-0 8-1 8-3 8-4 8-5 8FI 8FJ 8UM 930 A03 AAESR AAEVG AAFWJ AAHHS AANHP AAONW AAYCA AAYXX AAZKR ABCQN ABCUV ABEML ABIJN ABIVO ABJNI ABPVW ABUWG ACBWZ ACCFJ ACCMX ACGFS ACIWK ACPOU ACPRK ACRPL ACSCC ACXQS ACYXJ ADBBV ADEOM ADIZJ ADMGS ADNMO ADPDF ADXAS ADZOD AEEZP AEIMD AENEX AEQDE AFBPY AFGKR AFKRA AFPKN AFRAH AFZJQ AGQPQ AHMBA AIURR AIWBW AJBDE AJXKR ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BENPR BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CCPQU CITATION CS3 D-E D-F DCZOG DPXWK DR1 DR2 DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE FYUFA G-S G.N GAKWD GNP GODZA GROUPED_DOAJ H.T H.X HBH HF~ HHY HHZ HMCUK HVGLF HZ~ IAO IHR ITC IX1 J0M JPC KQQ L7B LAW LC2 LC3 LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6M MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OK1 OVD OVEED P2P P2W P2X P4D PALCI PHGZM PHGZT PIMPY PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RPM RX1 RYL SAMSI SUPJJ SV3 TEORI UB1 UKHRP V2E W8V W99 WBKPD WIB WIH WIK WJL WNSPC WOHZO WQJ WXSBR WYISQ XG1 XSW XV2 ZZTAW ~IA ~WT CGR CUY CVF ECM EIF NPM 7QR 7TK 7U7 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K FR3 K9. P64 7X8 WIN 5PM |
ID | FETCH-LOGICAL-c469t-14b0f6ce1e2e42ea7b056db3ad8e7a94ec6311581e7699f38b8d94f0a8854b983 |
ISSN | 1065-9471 1097-0193 |
IngestDate | Thu Aug 21 13:39:31 EDT 2025 Sun Aug 24 03:45:46 EDT 2025 Sat Jul 26 02:26:31 EDT 2025 Thu Apr 03 07:09:28 EDT 2025 Thu Apr 24 23:11:58 EDT 2025 Tue Jul 01 01:10:51 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | cognitive function dynamic functional connectivity graph theory sliding window approach multiset canonical correlation analysis resting-state fMRI network characteristics |
Language | English |
License | 2018 Wiley Periodicals, Inc. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c469t-14b0f6ce1e2e42ea7b056db3ad8e7a94ec6311581e7699f38b8d94f0a8854b983 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Funding information Multiple Sclerosis Society of Canada |
ORCID | 0000-0003-0044-7446 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/hbm.24343 |
PMID | 30240533 |
PQID | 2129575528 |
PQPubID | 996345 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6866468 proquest_miscellaneous_2111144392 proquest_journals_2129575528 pubmed_primary_30240533 crossref_citationtrail_10_1002_hbm_24343 crossref_primary_10_1002_hbm_24343 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-12-01 |
PublicationDateYYYYMMDD | 2018-12-01 |
PublicationDate_xml | – month: 12 year: 2018 text: 2018-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Antonio – name: Hoboken, USA |
PublicationTitle | Human brain mapping |
PublicationTitleAlternate | Hum Brain Mapp |
PublicationYear | 2018 |
Publisher | John Wiley & Sons, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc |
References | e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 Rahn K. (e_1_2_7_51_1) 2012; 2012 e_1_2_7_50_1 e_1_2_7_71_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_54_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_39_1 Kucyi A. (e_1_2_7_33_1) 2016; 27 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_69_1 e_1_2_7_27_1 Gelfand J. M. (e_1_2_7_21_1) 2014 e_1_2_7_70_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 Vance E. (e_1_2_7_68_1) 2010; 48 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 Kaiser R. H. (e_1_2_7_29_1) 2015; 7 e_1_2_7_38_1 McIntosh A. R. (e_1_2_7_46_1) 2008 |
References_xml | – ident: e_1_2_7_10_1 doi: 10.1016/S1364-6613(00)01564-3 – volume: 2012 year: 2012 ident: e_1_2_7_51_1 article-title: Cognitive impairment in multiple sclerosis: A forgotten disability remembered publication-title: Cerebrum – ident: e_1_2_7_15_1 doi: 10.1016/j.nicl.2014.07.003 – ident: e_1_2_7_48_1 doi: 10.3389/fnhum.2015.00061 – ident: e_1_2_7_31_1 doi: 10.1093/biomet/58.3.433 – ident: e_1_2_7_50_1 doi: 10.1002/ana.20703 – ident: e_1_2_7_18_1 doi: 10.1002/hbm.20284 – ident: e_1_2_7_41_1 doi: 10.1089/brain.2014.0248 – ident: e_1_2_7_63_1 doi: 10.1016/j.conb.2012.11.015 – volume: 27 start-page: 1831 year: 2016 ident: e_1_2_7_33_1 article-title: Dynamic brain network correlates of spontaneous fluctuations in attention publication-title: Cerebral Cortex – ident: e_1_2_7_52_1 doi: 10.1002/hbm.23219 – ident: e_1_2_7_9_1 doi: 10.1073/pnas.1422487112 – ident: e_1_2_7_16_1 doi: 10.1177/1352458512460416 – ident: e_1_2_7_19_1 doi: 10.1002/hbm.460020107 – ident: e_1_2_7_42_1 doi: 10.7224/1537-2073.2016-086 – ident: e_1_2_7_58_1 doi: 10.1177/1352458513516892 – ident: e_1_2_7_38_1 doi: 10.1016/j.neuroimage.2014.06.052 – ident: e_1_2_7_59_1 doi: 10.1212/WNL.0b013e3181db9957 – ident: e_1_2_7_45_1 doi: 10.1097/JGP.0b013e3181b215ec – ident: e_1_2_7_49_1 doi: 10.1016/j.neuron.2015.09.027 – ident: e_1_2_7_4_1 doi: 10.1002/hbm.21142 – ident: e_1_2_7_60_1 doi: 10.1126/science.1254404 – ident: e_1_2_7_26_1 doi: 10.1016/j.neuroimage.2013.05.079 – volume: 48 start-page: 23 year: 2010 ident: e_1_2_7_68_1 article-title: How neuroplasticity and cognitive reserve protect cognitive functioning publication-title: Journal of Psychosocial Nursing – ident: e_1_2_7_54_1 doi: 10.1002/hbm.20679 – ident: e_1_2_7_17_1 doi: 10.1177/1352458516628657 – ident: e_1_2_7_25_1 doi: 10.1016/j.neuroimage.2015.11.055 – ident: e_1_2_7_55_1 doi: 10.1016/j.neuroimage.2009.10.003 – ident: e_1_2_7_7_1 doi: 10.1073/pnas.1510619112 – volume: 7 start-page: 1 year: 2015 ident: e_1_2_7_29_1 article-title: Dynamic resting‐state functional connectivity in major depression publication-title: Neuropsychopharmacology – ident: e_1_2_7_2_1 doi: 10.1093/cercor/bhs352 – ident: e_1_2_7_70_1 doi: 10.1007/s11682-015-9408-2 – ident: e_1_2_7_34_1 doi: 10.1212/WNL.33.11.1444 – ident: e_1_2_7_40_1 doi: 10.1371/journal.pone.0041282 – ident: e_1_2_7_28_1 doi: 10.1371/journal.pone.0039731 – ident: e_1_2_7_65_1 doi: 10.1017/S1355617702813248 – ident: e_1_2_7_32_1 doi: 10.1007/978-0-387-79948-3 – ident: e_1_2_7_8_1 doi: 10.1016/j.neuroimage.2015.12.001 – ident: e_1_2_7_3_1 doi: 10.1155/2017/6847070 – ident: e_1_2_7_64_1 doi: 10.1093/brain/awf125 – ident: e_1_2_7_12_1 doi: 10.1109/MSP.2016.2521870 – start-page: 4 year: 2008 ident: e_1_2_7_46_1 article-title: Increased brain signal variability accompanies lower behavioral variability in development publication-title: PLoS Computational Biology – ident: e_1_2_7_57_1 doi: 10.1002/hbm.22495 – ident: e_1_2_7_61_1 doi: 10.1038/nn.4206 – ident: e_1_2_7_5_1 doi: 10.1002/hbm.22499 – ident: e_1_2_7_56_1 doi: 10.1007/s10334-010-0197-8 – ident: e_1_2_7_23_1 doi: 10.1073/pnas.1110024108 – ident: e_1_2_7_43_1 doi: 10.1038/nrneurol.2017.33 – ident: e_1_2_7_36_1 doi: 10.1016/j.neuroimage.2014.09.007 – ident: e_1_2_7_24_1 doi: 10.1093/brain/awp089 – ident: e_1_2_7_47_1 doi: 10.1016/B978-008045046-9.00418-6 – ident: e_1_2_7_11_1 doi: 10.1016/j.neuroimage.2009.12.011 – ident: e_1_2_7_39_1 doi: 10.1109/TBME.2014.2359211 – ident: e_1_2_7_53_1 doi: 10.1007/s00429-014-0896-4 – ident: e_1_2_7_69_1 doi: 10.1682/JRRD.2004.09.0120 – ident: e_1_2_7_30_1 doi: 10.3109/13651501.2013.845221 – ident: e_1_2_7_67_1 doi: 10.1002/hbm.22140 – ident: e_1_2_7_6_1 doi: 10.1093/med/9780199564118.003.006 – ident: e_1_2_7_14_1 doi: 10.1016/j.neuroimage.2010.01.062 – ident: e_1_2_7_13_1 doi: 10.1523/JNEUROSCI.2965-15.2016 – ident: e_1_2_7_22_1 doi: 10.1016/j.neuroimage.2012.06.078 – start-page: 269 volume-title: Handbook of clinical neurology year: 2014 ident: e_1_2_7_21_1 – ident: e_1_2_7_37_1 doi: 10.1002/hbm.22158 – ident: e_1_2_7_44_1 doi: 10.1371/journal.pcbi.1004533 – ident: e_1_2_7_27_1 doi: 10.1002/hbm.22058 – ident: e_1_2_7_62_1 doi: 10.1016/j.tics.2013.09.016 – ident: e_1_2_7_35_1 doi: 10.1016/j.neuroimage.2013.07.019 – ident: e_1_2_7_66_1 doi: 10.1016/j.neuroimage.2012.10.051 – ident: e_1_2_7_20_1 doi: 10.1089/brain.2011.0008 – ident: e_1_2_7_71_1 doi: 10.1016/j.neuroimage.2015.03.047 |
SSID | ssj0011501 |
Score | 2.4424286 |
Snippet | Graphical network characteristics and nonstationary functional connectivity features, both derived from resting‐state functional magnetic resonance imaging... Graphical network characteristics and nonstationary functional connectivity features, both derived from resting-state functional magnetic resonance imaging... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 5039 |
SubjectTerms | Adult Anxiety Biomarkers Cerebral Cortex - diagnostic imaging Cerebral Cortex - physiopathology Cerebral hemispheres Cognition Cognitive ability Cognitive tasks Connectome - methods Coordination Correlation analysis Demographics Density Education Educational Status Executive function Executive Function - physiology Fatigue Female Functional magnetic resonance imaging Functionals Graph theory Humans Intelligence Magnetic Resonance Imaging Male Mental depression Middle Aged Mood Multiple sclerosis Multiple Sclerosis, Relapsing-Remitting - diagnostic imaging Multiple Sclerosis, Relapsing-Remitting - physiopathology Nerve Net - diagnostic imaging Nerve Net - physiopathology Severity of Illness Index Short term memory |
Title | Education, and the balance between dynamic and stationary functional connectivity jointly support executive functions in relapsing–remitting multiple sclerosis |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30240533 https://www.proquest.com/docview/2129575528 https://www.proquest.com/docview/2111144392 https://pubmed.ncbi.nlm.nih.gov/PMC6866468 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFLWGIiE2CFoeAwUZhBDSkCEPJ3GWBYGqorKAFnU3shOHBjqZUZMglRX_wBfwS3wCX8K9seNkOl0UZhGNYjsP3RPfa_v4XEKeKhWyKMuYk4N3dljsSydxw8wBZ-0GCQuVx3GD8_77aPeQ7R2FR6PR7wFrqanlNP1-4b6S_7EqnAO74i7Zf7CsvSicgP9gXziCheF4KRv37AzDwcQoUiJZEb7WjoGV6ZzzbXmlF96RKYcOzcwDpkh2SU0aiS-LoqxPziZVs8TQHHMypY0WBzctqm4PzBLnGTq2RHCq5oUmUVuSYgXPC164qIYhsF42kJiaYjIXKA_x2bKCtKDBx0ZZDsZeYdH7SXwTuNbQdmuoxGmdxaISX3UKaWT4iv5ylrU_eTedvJoOpzg8PqCL6F4Z4iQnYTpXy1SZcygj6-n0il1XrnWROsj6g44ZkTdw8qGrhVLXHIgWpD2W86mPe257L9kxA845T0tp1PLP_gyaztqmV8hVH4Yu7TD_g5U0wwC8nQToXqlTu3L9l_auqzHS2sDnPH93EBAd3CQ3zEiG7mhY3iIjVW6SrZ1S1Iv5GX1GW25xu2izSa7tGwrHFvllQfuCAiQpQJYayFIDWWog25b3kKU9ZOkQstRAlhrIUgtZ26KiRUktZP_8-GnBSjuwUgvW2-Tw7ZuD17uOyRPipCxKasdj0s2jVHnKV8xXIpYQ1WcyEBlXsUiYSiPUlOKeiqMkyQMueZaw3BWch0wmPLhDNspFqe4RmjOWY05VFfs40QDBPJhIeTILeCgg8h2T551lZqkR0cdcLiezNfuPyRNbdamVYy6qtN2Zd2Y6lmoG0WQCo6jQ52Py2BZDt49reaJUiwbrwI_BaMIfk7saDfYuAeoWwjBuTOIVnNgKKCm_WlIWx620fMSjiEX8_mWe_QG53n-s22SjPm3UQ4jQa_mohfxf3h3wOQ |
linkProvider | Wiley-Blackwell |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Education%2C+and+the+balance+between+dynamic+and+stationary+functional+connectivity+jointly+support+executive+functions+in+relapsing%E2%80%93remitting+multiple+sclerosis&rft.jtitle=Human+brain+mapping&rft.au=Lin%2C+Sue%E2%80%90Jin&rft.au=Vavasour%2C+Irene&rft.au=Kosaka%2C+Brenda&rft.au=Li%2C+David+K.+B.&rft.date=2018-12-01&rft.issn=1065-9471&rft.eissn=1097-0193&rft.volume=39&rft.issue=12&rft.spage=5039&rft.epage=5049&rft_id=info:doi/10.1002%2Fhbm.24343&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_hbm_24343 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon |