Hemolysis effect and calcium-phosphate precipitation of heat-organic-film treated magnesium

A heat-organic-films process was employed to induce calcium-phosphate apatites formation on magnesium, consequently the corrosion resistance and hemolysis properties of magnesium were improved for biomedical applications. Firstly, magnesium samples were heat-treated at 773 K for 10 h; secondly, stea...

Full description

Saved in:
Bibliographic Details
Published inTransactions of Nonferrous Metals Society of China Vol. 16; no. 3; pp. 539 - 544
Main Author 高家诚 乔丽英 李龙川 王勇
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.06.2006
College of Materials Science and Engineering, Chongqing University, Chongqing 400030, China
Subjects
Online AccessGet full text
ISSN1003-6326
DOI10.1016/s1003-6326(06)60094-0

Cover

Abstract A heat-organic-films process was employed to induce calcium-phosphate apatites formation on magnesium, consequently the corrosion resistance and hemolysis properties of magnesium were improved for biomedical applications. Firstly, magnesium samples were heat-treated at 773 K for 10 h; secondly, stearic acid films were coated on the surface of the heat-treated magnesium. Then the surface modified magnesium was soaked in simulated body fluid (SBF) to test its corrosion resistance. The results show that the heat treatment process allows magnesium to form a dense oxide layer with a thickness of around 20 μm, thereby the surface modified magnesium has higher corrosion resistance. After 24 h in SBF island apatite was deposited on magnesium. The unevenly precipitates were characterized by XRD and FTIR as the mixture of hydroxyapatite(HA) and octacalcium phosphate(OCP). The preliminary hemolysis experiment indicates that untreated magnesium has hemolytic effect (about 60%); whereas the heat-organic film treated samples has no hemolytic effect. The mechanism of fast nucleation and growth of calcium-phosphate apatites on surface modified magnesium in SBF was also discussed.
AbstractList A heat-organic-films process was employed to induce calcium-phosphate apatites formation on magnesium, consequently the corrosion resistance and hemolysis properties of magnesium were improved for biomedical applications. Firstly, magnesium samples were heat-treated at 773 K for 10 h; secondly, stearic acid films were coated on the surface of the heat-treated magnesium. Then the surface modified magnesium was soaked in simulated body fluid (SBF) to test its corrosion resistance. The results show that the heat treatment process allows magnesium to form a dense oxide layer with a thickness of around 20 μm, thereby the surface modified magnesium has higher corrosion resistance. After 24 h in SBF island apatite was deposited on magnesium. The unevenly precipitates were characterized by XRD and FTIR as the mixture of hydroxyapatite(HA) and octacalcium phosphate(OCP). The preliminary hemolysis experiment indicates that untreated magnesium has hemolytic effect (about 60%); whereas the heat-organic film treated samples has no hemolytic effect. The mechanism of fast nucleation and growth of calcium-phosphate apatites on surface modified magnesium in SBF was also discussed.
A heat-organic-films process was employed to induce calcium-phosphate apatites formation on magnesium, consequently the corrosion resistance and hemolysis properties of magnesium were improved for biomedical applications. Firstly, magnesium samples were heat-treated at 773 K for 10 h; secondly, stearic acid films were coated on the surface of the heat-treated magnesium. Then the surface modified magnesium was soaked in simulated body fluid (SBF) to test its corrosion resistance. The results show that the heat treatment process allows magnesium to form a dense oxide layer with a thickness of around 20 mum, thereby the surface modified magnesium has higher corrosion resistance. After 24 h in SBF island apatite was deposited on magnesium. The unevenly precipitates were characterized by XRD and FTIR as the mixture of hydroxyapatite(HA) and octacalcium phosphate(OCP). The preliminary hemolysis experiment indicates that untreated magnesium has hemolytic effect (about 60%); whereas the heat-organic film treated samples has no hemolytic effect. The mechanism of fast nucleation and growth of calcium-phosphate apatites on surface modified magnesium in SBF was also discussed.
TG1; A heat-organic-films process was employed to induce calcium-phosphate apatites formation on magnesium, consequently the corrosion resistance and hemolysis properties of magnesium were improved for biomedical applications. Firstly, magnesium samples were heat-treated at 773 K for 10 h; secondly, stearic acid films were coated on the surface of the heat-treated magnesium.Then the surface modified magnesium was soaked in simulated body fluid (SBF) to test its corrosion resistance. The results show that the heat treatment process allows magnesium to form a dense oxide layer with a thickness of around 20 μm, thereby the surface modified magnesium has higher corrosion resistance. After 24 h in SBF island apatite was deposited on magnesium. The unevenly precipitates were characterized by XRD and FTIR as the mixture of hydroxyapatite(HA) and octacalcium phosphate(OCP). The preliminary hemolysis experiment indicates that untreated magnesium has hemolytic effect (about 60%); whereas the heat-organic film treated samples has no hemolytic effect. The mechanism of fast nucleation and growth of calcium-phosphate apatites on surface modified magnesium in SBF was also discussed.
A heat-organic-films process was employed to induce calcium-phosphate apatites formation on magnesium, consequently the corrosion resistance and hemolysis properties of magnesium were improved for biomedical applications. Firstly, magnesium samples were heat-treated at 773 K for 10 h; secondly, stearic acid films were coated on the surface of the heat-treated magnesium. Then the surface modified magnesium was soaked in simulated body fluid (SBF) to test its corrosion resistance. The results show that the heat treatment process allows magnesium to form a dense oxide layer with a thickness of around 20 μm, thereby the surface modified magnesium has higher corrosion resistance. After 24 h in SBF island apatite was deposited on magnesium. The unevenly precipitates were characterized by XRD and FTIR as the mixture of hydroxyapatite(HA) and octacalcium phosphate(OCP). The preliminary hemolysis experiment indicates that untreated magnesium has hemolytic effect (about 60%); whereas the heat-organic film treated samples has no hemolytic effect. The mechanism of fast nucleation and growth of calcium-phosphate apatites on surface modified magnesium in SBF was also discussed.
Author 高家诚 乔丽英 李龙川 王勇
AuthorAffiliation College of Materials Science and Engineering, Chongqing University, Chongqing 400030, China
AuthorAffiliation_xml – name: College of Materials Science and Engineering, Chongqing University, Chongqing 400030, China
Author_xml – sequence: 1
  fullname: 高家诚 乔丽英 李龙川 王勇
BookMark eNqFkcFu1DAQhn1oJdqFR0CKOKBWKMV2HDcRB1RVQCtV4gCcOFgTZ5z1ktip7YUuT4_TXfXApSfLo_-bGX1zSo6cd0jIa0YvGGXyfWSUVqWsuDyj8lxS2oqSHpGTp_ILchrjhlIhpGQn5OcNTn7cRRsLNAZ1KsD1hYZR2-1Uzmsf5zUkLOaA2s42QbLeFd4Ua4RU-jCAs7o0dpyKFHIJ-2KCwWHM-EtybGCM-OrwrsiPz5--X9-Ud1-_3F5f3ZVayDaVjAOtjGkQ2g4lM00tdP4D71h3WbewLMq72uhGatNhDT0K1lyKBqnpa26qFXm37_sHnAE3qI3fBpcnqr_DLm7iQ6eQUypplXXk9Nt9eg7-fosxqclGjeMIDv02Kt4KzkQOr0i9D-rgYwxo1BzsBGGnGFWLbPVtsaoWq4pK9ShbLdyH_zh98JYC2PFZ-uOexmzst8WgorboNPY2nyCp3ttnO7w5zF97N9zbLKQD_SvfCBXnvKoEb6p_-12qXw
CitedBy_id crossref_primary_10_3390_ijms241713455
crossref_primary_10_1016_j_mseb_2011_06_005
crossref_primary_10_1016_j_msec_2013_08_008
crossref_primary_10_1016_j_colsurfb_2014_06_036
crossref_primary_10_1016_j_msec_2008_09_051
crossref_primary_10_1016_j_surfcoat_2009_11_024
crossref_primary_10_2485_jhtb_22_177
crossref_primary_10_3233_BME_221415
crossref_primary_10_1002_jbm_b_34943
crossref_primary_10_1016_j_apsusc_2011_04_141
crossref_primary_10_1016_S1003_6326_11_61587_2
crossref_primary_10_1016_j_jma_2025_01_011
crossref_primary_10_1016_j_jmst_2015_07_008
crossref_primary_10_1021_acsami_6b00527
crossref_primary_10_1002_jbm_b_33208
crossref_primary_10_1016_j_jmst_2013_02_005
crossref_primary_10_1016_j_corsci_2016_07_027
crossref_primary_10_1038_s41598_017_08238_w
crossref_primary_10_1021_acs_langmuir_9b02415
crossref_primary_10_3390_catal13040758
crossref_primary_10_1016_j_msec_2009_03_001
crossref_primary_10_4028_www_scientific_net_AMR_413_160
Cites_doi 10.2320/matertrans.42.1317
10.1016/0022-0248(95)00229-4
10.1039/a801384e
10.2320/matertrans.42.1777
10.1016/S0142-9612(02)00523-9
10.1016/S0304-4165(97)00121-9
10.1002/jab.770060404
10.1016/j.biomaterials.2004.10.034
10.1023/A:1008838813120
10.1002/jbm.820270408
10.1016/0142-9612(90)90067-Z
10.1016/S0257-8972(00)01100-2
ClassificationCodes TG1
ContentType Journal Article
Copyright 2006 The Nonferrous Metals Society of China
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: 2006 The Nonferrous Metals Society of China
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W91
~WA
AAYXX
CITATION
7SE
8BQ
8FD
JG9
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1016/s1003-6326(06)60094-0
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-医药卫生
中文科技期刊数据库- 镜像站点
CrossRef
Corrosion Abstracts
METADEX
Technology Research Database
Materials Research Database
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Corrosion Abstracts
METADEX
DatabaseTitleList
Materials Research Database


DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitleAlternate Hemolysis effect and calcium-phosphate precipitation of heat-organic-film treated magnesium
EndPage 544
ExternalDocumentID zgysjsxb_e200603009
10_1016_S1003_6326_06_60094_0
S1003632606600940
22233428
GrantInformation_xml – fundername: 重庆市科委资助项目
  funderid: (2004AA4003)
GroupedDBID --K
--M
-02
-0B
-SB
-S~
.~1
0R~
123
188
1B1
1~.
1~5
2B.
2C0
2RA
4.4
457
4G.
5VR
5VS
5XA
5XC
5XL
7-5
71M
8P~
8RM
92H
92I
92L
92M
92R
93N
9D9
9DB
AABNK
AABXZ
AACTN
AAEDT
AAEPC
AAIAV
AAIKJ
AAKOC
AALMO
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABMAC
ABPIF
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADALY
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFTJW
AFUIB
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AINHJ
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CAJEB
CAJUS
CCEZO
CDRFL
CDYEO
CHBEP
CLXHM
CQIGP
CS3
CW9
DU5
EBS
EFJIC
EJD
EO9
EP2
EP3
FA0
FDB
FIRID
FNPLU
FYGXN
GBLVA
HZ~
J1W
JUIAU
KOM
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q--
Q38
R-B
ROL
RT2
S..
SDC
SDF
SDG
SES
SPC
SSM
SSZ
T5K
T8R
TCJ
TGT
U1F
U1G
U5B
U5L
UGNYK
UZ4
W91
~02
~G-
~WA
AAEDW
ADMUD
AFRZQ
EFLBG
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
BNPGV
CITATION
SSH
7SE
8BQ
8FD
EFKBS
JG9
4A8
PSX
ID FETCH-LOGICAL-c469t-12a03ff8ea9be61f854c3ffa2b1b759a46612b5fc86cfbe5ade418748e0fd52f3
IEDL.DBID AIKHN
ISSN 1003-6326
IngestDate Thu May 29 04:01:16 EDT 2025
Fri Sep 05 11:02:57 EDT 2025
Tue Jul 01 01:58:46 EDT 2025
Thu Apr 24 23:09:59 EDT 2025
Fri Feb 23 02:30:56 EST 2024
Fri Nov 25 19:14:57 EST 2022
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords magnesium
heat-organic films
biomaterials
corrosion resistance
hemolysis
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c469t-12a03ff8ea9be61f854c3ffa2b1b759a46612b5fc86cfbe5ade418748e0fd52f3
Notes heat-organic films
43-1239/TG
magnesium; biomaterials; heat-organic films; corrosion resistance; hemolysis
magnesium
biomaterials
R318.08
corrosion resistance
hemolysis
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 29421460
PQPubID 23500
PageCount 6
ParticipantIDs wanfang_journals_zgysjsxb_e200603009
proquest_miscellaneous_29421460
crossref_primary_10_1016_S1003_6326_06_60094_0
crossref_citationtrail_10_1016_S1003_6326_06_60094_0
elsevier_sciencedirect_doi_10_1016_S1003_6326_06_60094_0
chongqing_backfile_22233428
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2006-06-01
PublicationDateYYYYMMDD 2006-06-01
PublicationDate_xml – month: 06
  year: 2006
  text: 2006-06-01
  day: 01
PublicationDecade 2000
PublicationTitle Transactions of Nonferrous Metals Society of China
PublicationTitleAlternate Transactions of Nonferrous Metals Society of China
PublicationTitle_FL TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA
PublicationYear 2006
Publisher Elsevier Ltd
College of Materials Science and Engineering, Chongqing University, Chongqing 400030, China
Publisher_xml – name: Elsevier Ltd
– name: College of Materials Science and Engineering, Chongqing University, Chongqing 400030, China
References ISO 10993–12. Biological Evaluation of Medical Devices-Part 12: Sample Preparation and Reference Materials, 1996.
DASARATHY, RILEY, COBLE (bib9) 1993; 27
ISO 10993–4. Biological Evaluation of Medical Devices-Part 4: Selection of Tests for Interactions with Blood, Annex D, 1993.
KOMA, LEEB, KIMB (bib12) 2003; 24
KLEIN, BLIEK-HOGERVOST, WOLKE (bib14) 1990; 11
LU, MA, CUI (bib15) 1995; 155
SHIRKHANZDEH (bib10) 1998; 9
GURRAPPA (bib1) 2001; 1
AM, RICHARDSON, ABERMAN (bib3) 1995; 6
KUWAHARA, AL-ABDULLAT, MAZAKI (bib8) 2001
AL-ABDULLAT, TSUTSUMIL, NALAJIMA (bib2) 2001; 42
MAO, LI, CUI (bib4) 1998; 8
SHO, DING, WU (bib11) 2001; 137
ADRIANA, ELISA, BARBARA (bib5) 2005; 26
LETELLIER, LOCHHEAD, CAMPBELL (bib13) 1998; 1380
10.1016/S1003-6326(06)60094-0_bib7
AL-ABDULLAT (10.1016/S1003-6326(06)60094-0_bib2) 2001; 42
10.1016/S1003-6326(06)60094-0_bib6
SHO (10.1016/S1003-6326(06)60094-0_bib11) 2001; 137
KUWAHARA (10.1016/S1003-6326(06)60094-0_bib8) 2001
SHIRKHANZDEH (10.1016/S1003-6326(06)60094-0_bib10) 1998; 9
KLEIN (10.1016/S1003-6326(06)60094-0_bib14) 1990; 11
LU (10.1016/S1003-6326(06)60094-0_bib15) 1995; 155
ADRIANA (10.1016/S1003-6326(06)60094-0_bib5) 2005; 26
KOMA (10.1016/S1003-6326(06)60094-0_bib12) 2003; 24
GURRAPPA (10.1016/S1003-6326(06)60094-0_bib1) 2001; 1
AM (10.1016/S1003-6326(06)60094-0_bib3) 1995; 6
LETELLIER (10.1016/S1003-6326(06)60094-0_bib13) 1998; 1380
MAO (10.1016/S1003-6326(06)60094-0_bib4) 1998; 8
DASARATHY (10.1016/S1003-6326(06)60094-0_bib9) 1993; 27
References_xml – volume: 1
  start-page: 23
  year: 2001
  end-page: 27
  ident: bib1
  article-title: Corrosion and its importance in selection of materials for biomedical applications [J]
  publication-title: Corrosion Prevention & Control
– volume: 11
  start-page: 509
  year: 1990
  end-page: 512
  ident: bib14
  article-title: Studies of the solubility of different calcium phosphate ceramic particles in vitro [J]
  publication-title: Biomaterials
– volume: 26
  start-page: 4085
  year: 2005
  end-page: 4089
  ident: bib5
  article-title: Nanocrystalline hydroxyapatite coatings on titanium: a new fast biomimetic method [J]
  publication-title: Biomaterials
– start-page: 1317
  year: 2001
  end-page: 1321
  ident: bib8
  article-title: Precipitation of magnesium apatite on pure magnesium surface during immersing in Hank's solution [J]
  publication-title: Materials Transactions
– reference: ISO 10993–4. Biological Evaluation of Medical Devices-Part 4: Selection of Tests for Interactions with Blood, Annex D, 1993.
– volume: 42
  start-page: 1777
  year: 2001
  end-page: 1780
  ident: bib2
  article-title: Surface modification of magnesium by NaHCO
  publication-title: Materials Transaction
– volume: 155
  start-page: 120
  year: 1995
  end-page: 125
  ident: bib15
  article-title: Controlled crystallization of calcium phosphate under stearic acid monolayers [J]
  publication-title: Journal of Crystal Growth
– reference: ISO 10993–12. Biological Evaluation of Medical Devices-Part 12: Sample Preparation and Reference Materials, 1996.
– volume: 6
  start-page: 237
  year: 1995
  end-page: 242
  ident: bib3
  article-title: The response of cancellous and cortical canine bone to hydroxylapatite-coated and uncoated titanium rods [J]
  publication-title: Journal of Applied Biomaterials
– volume: 9
  start-page: 67
  year: 1998
  end-page: 72
  ident: bib10
  article-title: Direct formation of nanophase hydroxyapatite on catholically polarized electrodes [J]
  publication-title: Journal of Materials Science: Materials in Medicine
– volume: 24
  start-page: 1389
  year: 2003
  end-page: 1398
  ident: bib12
  article-title: Synthesis of Si, Mg substituted hydroxyapatites and their sintering behaviors [J]
  publication-title: Biomaterials
– volume: 1380
  start-page: 31
  year: 1998
  end-page: 45
  ident: bib13
  article-title: Oriented growth of calcium oxalate monohydrate crystals beneath phospholipid monolayers [J]
  publication-title: Biochemical & Biophysical Act
– volume: 8
  start-page: 2795
  year: 1998
  end-page: 2801
  ident: bib4
  article-title: Oriented growth of hydroxyapatite on (001) textured titanium with functionalized self-assembled silane monolayer as template [J]
  publication-title: Journal of Materials Chemistry
– volume: 137
  start-page: 97
  year: 2001
  end-page: 103
  ident: bib11
  article-title: Biomimetic apatite layers on plasma-sprayed titanium coatings after surface modification [J]
  publication-title: Surface and Coatings Technology
– volume: 27
  start-page: 477
  year: 1993
  end-page: 482
  ident: bib9
  article-title: Analysis of apatite deposits on substrates [J]
  publication-title: Journal of Biomedical Materials Research
– start-page: 1317
  issue: 7
  year: 2001
  ident: 10.1016/S1003-6326(06)60094-0_bib8
  article-title: Precipitation of magnesium apatite on pure magnesium surface during immersing in Hank's solution [J]
  publication-title: Materials Transactions
  doi: 10.2320/matertrans.42.1317
– volume: 155
  start-page: 120
  issue: 1–2
  year: 1995
  ident: 10.1016/S1003-6326(06)60094-0_bib15
  article-title: Controlled crystallization of calcium phosphate under stearic acid monolayers [J]
  publication-title: Journal of Crystal Growth
  doi: 10.1016/0022-0248(95)00229-4
– volume: 8
  start-page: 2795
  year: 1998
  ident: 10.1016/S1003-6326(06)60094-0_bib4
  article-title: Oriented growth of hydroxyapatite on (001) textured titanium with functionalized self-assembled silane monolayer as template [J]
  publication-title: Journal of Materials Chemistry
  doi: 10.1039/a801384e
– volume: 42
  start-page: 1777
  issue: 8
  year: 2001
  ident: 10.1016/S1003-6326(06)60094-0_bib2
  article-title: Surface modification of magnesium by NaHCO3 and corrosion behavior in Hank's solution for new biomaterial applications [J]
  publication-title: Materials Transaction
  doi: 10.2320/matertrans.42.1777
– volume: 24
  start-page: 1389
  issue: 8
  year: 2003
  ident: 10.1016/S1003-6326(06)60094-0_bib12
  article-title: Synthesis of Si, Mg substituted hydroxyapatites and their sintering behaviors [J]
  publication-title: Biomaterials
  doi: 10.1016/S0142-9612(02)00523-9
– volume: 1380
  start-page: 31
  issue: 1
  year: 1998
  ident: 10.1016/S1003-6326(06)60094-0_bib13
  article-title: Oriented growth of calcium oxalate monohydrate crystals beneath phospholipid monolayers [J]
  publication-title: Biochemical & Biophysical Act
  doi: 10.1016/S0304-4165(97)00121-9
– volume: 1
  start-page: 23
  year: 2001
  ident: 10.1016/S1003-6326(06)60094-0_bib1
  article-title: Corrosion and its importance in selection of materials for biomedical applications [J]
  publication-title: Corrosion Prevention & Control
– volume: 6
  start-page: 237
  issue: 4
  year: 1995
  ident: 10.1016/S1003-6326(06)60094-0_bib3
  article-title: The response of cancellous and cortical canine bone to hydroxylapatite-coated and uncoated titanium rods [J]
  publication-title: Journal of Applied Biomaterials
  doi: 10.1002/jab.770060404
– ident: 10.1016/S1003-6326(06)60094-0_bib6
– ident: 10.1016/S1003-6326(06)60094-0_bib7
– volume: 26
  start-page: 4085
  issue: 19
  year: 2005
  ident: 10.1016/S1003-6326(06)60094-0_bib5
  article-title: Nanocrystalline hydroxyapatite coatings on titanium: a new fast biomimetic method [J]
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2004.10.034
– volume: 9
  start-page: 67
  issue: 2
  year: 1998
  ident: 10.1016/S1003-6326(06)60094-0_bib10
  article-title: Direct formation of nanophase hydroxyapatite on catholically polarized electrodes [J]
  publication-title: Journal of Materials Science: Materials in Medicine
  doi: 10.1023/A:1008838813120
– volume: 27
  start-page: 477
  issue: 4
  year: 1993
  ident: 10.1016/S1003-6326(06)60094-0_bib9
  article-title: Analysis of apatite deposits on substrates [J]
  publication-title: Journal of Biomedical Materials Research
  doi: 10.1002/jbm.820270408
– volume: 11
  start-page: 509
  issue: 7
  year: 1990
  ident: 10.1016/S1003-6326(06)60094-0_bib14
  article-title: Studies of the solubility of different calcium phosphate ceramic particles in vitro [J]
  publication-title: Biomaterials
  doi: 10.1016/0142-9612(90)90067-Z
– volume: 137
  start-page: 97
  issue: 1
  year: 2001
  ident: 10.1016/S1003-6326(06)60094-0_bib11
  article-title: Biomimetic apatite layers on plasma-sprayed titanium coatings after surface modification [J]
  publication-title: Surface and Coatings Technology
  doi: 10.1016/S0257-8972(00)01100-2
SSID ssj0044661
Score 1.867202
Snippet A heat-organic-films process was employed to induce calcium-phosphate apatites formation on magnesium, consequently the corrosion resistance and hemolysis...
TG1; A heat-organic-films process was employed to induce calcium-phosphate apatites formation on magnesium, consequently the corrosion resistance and hemolysis...
SourceID wanfang
proquest
crossref
elsevier
chongqing
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 539
SubjectTerms biomaterials
corrosion resistance
heat-organic films
hemolysis
magnesium
溶血效应
生物材料
磷酸钙
腐蚀抗力
Title Hemolysis effect and calcium-phosphate precipitation of heat-organic-film treated magnesium
URI http://lib.cqvip.com/qk/85276X/20063/22233428.html
https://dx.doi.org/10.1016/S1003-6326(06)60094-0
https://www.proquest.com/docview/29421460
https://d.wanfangdata.com.cn/periodical/zgysjsxb-e200603009
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbKVkhwQOUllkLxoQc4uOvEzutYVVQLSL1ApUocLNuxd7d0k0B21cKB385M4myXA6rEMVbGSjz2POzP3xByWHgphbGOuUR6Jl3BmY6tgJxHZrGXmcvLDm1xlk7P5ceL5GKHnAx3YRBWGWx_b9M7ax1aJmE0J81iMfkcIZcKRB_gNBEfB3n7biyKNBmR3eMPn6Zng0HGE8su70IYFgrcXuTpO-ka3_L0XdcP40izMK-r2XdwHv9yV1vh6P1rXXldzbb80ukeeRQCSnrcf_NjsuOqJ-ThFs3gU_J16pZ1Rz1Ce_gG1VVJQTl2sV6yZl63zRxCTtog00UTSLtp7SkaatbXfbLML66WtMOlu5Iu9QxsJIg_I-en77-cTFkoqsAsZMIrFsWaC-9zpwvj0sjnibTwrGMTmSwpNA5WbBDZlVpvXKJLJ7FuX-64L5PYi-dkVNWVe0GoLLRwReZ5aYw0mTC8hIQGXB43wgjnx2R_M47glO03pJpSGJAISHrGRA4jq2z4NSyLcaU2wDNUjkLlKJ6qTjmKj8nRRqzpCTnuEsgHtam_ZpYCp3GX6JtBzQpWHR6l6MrV61bFhcSK6PDGYdC-Cmu_Vb9mP9vL9sYoh9s1YER58fL_v2GfPOh3fXDj5xUZrX6s3WuIg1bmgNw7-h0dhNn-BxEMAfY
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqrRBwqHiKbaH1oQc4mPXGzutYVVQpLXuhlSpxsOzE3t3STUKzqwK_npnE2S4HVIljrIyVzNjzcL58Q8hh6qQUJrfMhtIxaVPOdJALqHlkHDgZ26Ro0RaTKLuUn6_Cqy1y3P8Lg7BK7_s7n956az8y8toc1fP56OsYuVQg-4Cgifg4qNu3ZQjV3oBsH52eZZPeIeMXy7buQhgWCtz_yNNN0g6-59GHdh7GkWZhVpXTHxA8_hWuNtLRR3e6dLqcbsSlk2dkxyeU9Kh75udky5YvyNMNmsGX5FtmF1VLPUI7-AbVZUHBOPl8tWD1rGrqGaSctEami9qTdtPKUXTUrOv7lDM3v1nQFpduC7rQU_CRIP6KXJ58ujjOmG-qwHLQzZKNA82Fc4nVqbHR2CWhzOFaB2Zs4jDVqKzAILIryp2xoS6sxL59ieWuCAMnXpNBWZX2DaEy1cKmseOFMdLEwvACChoIedwII6wbkr21HiEo59-RakphQiKg6BkS2WtW5f7VsC3GjVoDz9A4Co2jeKRa4yg-JB_XYnVHyPGQQNKbTf21shQEjYdED3ozK9h1-ClFl7ZaNSpIJXZEhzsOvfWV3_uN-j391Vw3P42yeFwDTpSnu___DAfkcXbx5Vydn07O9siT7gQID4HeksHydmXfQU60NPt-zf8BPqoD5Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hemolysis+effect+and+calcium-phosphate+precipitation+of+heat-organic-film+treated+magnesium&rft.jtitle=Transactions+of+Nonferrous+Metals+Society+of+China&rft.au=GAO%2C+Jia-cheng&rft.au=QIAO%2C+Li-ying&rft.au=LI%2C+Long-chuan&rft.au=WANG%2C+Yong&rft.date=2006-06-01&rft.pub=Elsevier+Ltd&rft.issn=1003-6326&rft.volume=16&rft.issue=3&rft.spage=539&rft.epage=544&rft_id=info:doi/10.1016%2FS1003-6326%2806%2960094-0&rft.externalDocID=S1003632606600940
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F85276X%2F85276X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzgysjsxb-e%2Fzgysjsxb-e.jpg