Breathing Rate Estimation from Head-Worn Photoplethysmography Sensor Data Using Machine Learning

Breathing rate is considered one of the fundamental vital signs and a highly informative indicator of physiological state. Given that the monitoring of heart activity is less complex than the monitoring of breathing, a variety of algorithms have been developed to estimate breathing activity from hea...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 22; no. 6; p. 2079
Main Authors Stankoski, Simon, Kiprijanovska, Ivana, Mavridou, Ifigeneia, Nduka, Charles, Gjoreski, Hristijan, Gjoreski, Martin
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 08.03.2022
MDPI
Subjects
Online AccessGet full text
ISSN1424-8220
1424-8220
DOI10.3390/s22062079

Cover

Abstract Breathing rate is considered one of the fundamental vital signs and a highly informative indicator of physiological state. Given that the monitoring of heart activity is less complex than the monitoring of breathing, a variety of algorithms have been developed to estimate breathing activity from heart activity. However, estimating breathing rate from heart activity outside of laboratory conditions is still a challenge. The challenge is even greater when new wearable devices with novel sensor placements are being used. In this paper, we present a novel algorithm for breathing rate estimation from photoplethysmography (PPG) data acquired from a head-worn virtual reality mask equipped with a PPG sensor placed on the forehead of a subject. The algorithm is based on advanced signal processing and machine learning techniques and includes a novel quality assessment and motion artifacts removal procedure. The proposed algorithm is evaluated and compared to existing approaches from the related work using two separate datasets that contains data from a total of 37 subjects overall. Numerous experiments show that the proposed algorithm outperforms the compared algorithms, achieving a mean absolute error of 1.38 breaths per minute and a Pearson’s correlation coefficient of 0.86. These results indicate that reliable estimation of breathing rate is possible based on PPG data acquired from a head-worn device.
AbstractList Breathing rate is considered one of the fundamental vital signs and a highly informative indicator of physiological state. Given that the monitoring of heart activity is less complex than the monitoring of breathing, a variety of algorithms have been developed to estimate breathing activity from heart activity. However, estimating breathing rate from heart activity outside of laboratory conditions is still a challenge. The challenge is even greater when new wearable devices with novel sensor placements are being used. In this paper, we present a novel algorithm for breathing rate estimation from photoplethysmography (PPG) data acquired from a head-worn virtual reality mask equipped with a PPG sensor placed on the forehead of a subject. The algorithm is based on advanced signal processing and machine learning techniques and includes a novel quality assessment and motion artifacts removal procedure. The proposed algorithm is evaluated and compared to existing approaches from the related work using two separate datasets that contains data from a total of 37 subjects overall. Numerous experiments show that the proposed algorithm outperforms the compared algorithms, achieving a mean absolute error of 1.38 breaths per minute and a Pearson’s correlation coefficient of 0.86. These results indicate that reliable estimation of breathing rate is possible based on PPG data acquired from a head-worn device.
Breathing rate is considered one of the fundamental vital signs and a highly informative indicator of physiological state. Given that the monitoring of heart activity is less complex than the monitoring of breathing, a variety of algorithms have been developed to estimate breathing activity from heart activity. However, estimating breathing rate from heart activity outside of laboratory conditions is still a challenge. The challenge is even greater when new wearable devices with novel sensor placements are being used. In this paper, we present a novel algorithm for breathing rate estimation from photoplethysmography (PPG) data acquired from a head-worn virtual reality mask equipped with a PPG sensor placed on the forehead of a subject. The algorithm is based on advanced signal processing and machine learning techniques and includes a novel quality assessment and motion artifacts removal procedure. The proposed algorithm is evaluated and compared to existing approaches from the related work using two separate datasets that contains data from a total of 37 subjects overall. Numerous experiments show that the proposed algorithm outperforms the compared algorithms, achieving a mean absolute error of 1.38 breaths per minute and a Pearson's correlation coefficient of 0.86. These results indicate that reliable estimation of breathing rate is possible based on PPG data acquired from a head-worn device.Breathing rate is considered one of the fundamental vital signs and a highly informative indicator of physiological state. Given that the monitoring of heart activity is less complex than the monitoring of breathing, a variety of algorithms have been developed to estimate breathing activity from heart activity. However, estimating breathing rate from heart activity outside of laboratory conditions is still a challenge. The challenge is even greater when new wearable devices with novel sensor placements are being used. In this paper, we present a novel algorithm for breathing rate estimation from photoplethysmography (PPG) data acquired from a head-worn virtual reality mask equipped with a PPG sensor placed on the forehead of a subject. The algorithm is based on advanced signal processing and machine learning techniques and includes a novel quality assessment and motion artifacts removal procedure. The proposed algorithm is evaluated and compared to existing approaches from the related work using two separate datasets that contains data from a total of 37 subjects overall. Numerous experiments show that the proposed algorithm outperforms the compared algorithms, achieving a mean absolute error of 1.38 breaths per minute and a Pearson's correlation coefficient of 0.86. These results indicate that reliable estimation of breathing rate is possible based on PPG data acquired from a head-worn device.
Author Nduka, Charles
Mavridou, Ifigeneia
Gjoreski, Hristijan
Stankoski, Simon
Kiprijanovska, Ivana
Gjoreski, Martin
AuthorAffiliation 1 Emteq Ltd., Brighton BN1 9SB, UK; ivana.kiprijanovska@emteqlabs.com (I.K.); ifi.mavridou@emteqlabs.com (I.M.); charles@emteqlabs.com (C.N.); hristijang@feit.ukim.edu.mk (H.G.)
2 Faculty of Electrical Engineering and Information Technologies, Ss. Cyril and Methodius University in Skopje, 1000 Skopje, North Macedonia
3 Faculty of Informatics, Università della Svizzera Italiana, 6900 Lugano, Switzerland; martin.gjoreski@usi.ch
AuthorAffiliation_xml – name: 3 Faculty of Informatics, Università della Svizzera Italiana, 6900 Lugano, Switzerland; martin.gjoreski@usi.ch
– name: 2 Faculty of Electrical Engineering and Information Technologies, Ss. Cyril and Methodius University in Skopje, 1000 Skopje, North Macedonia
– name: 1 Emteq Ltd., Brighton BN1 9SB, UK; ivana.kiprijanovska@emteqlabs.com (I.K.); ifi.mavridou@emteqlabs.com (I.M.); charles@emteqlabs.com (C.N.); hristijang@feit.ukim.edu.mk (H.G.)
Author_xml – sequence: 1
  givenname: Simon
  surname: Stankoski
  fullname: Stankoski, Simon
– sequence: 2
  givenname: Ivana
  surname: Kiprijanovska
  fullname: Kiprijanovska, Ivana
– sequence: 3
  givenname: Ifigeneia
  surname: Mavridou
  fullname: Mavridou, Ifigeneia
– sequence: 4
  givenname: Charles
  surname: Nduka
  fullname: Nduka, Charles
– sequence: 5
  givenname: Hristijan
  orcidid: 0000-0002-0770-4268
  surname: Gjoreski
  fullname: Gjoreski, Hristijan
– sequence: 6
  givenname: Martin
  orcidid: 0000-0002-1220-7418
  surname: Gjoreski
  fullname: Gjoreski, Martin
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35336250$$D View this record in MEDLINE/PubMed
BookMark eNplkktP3DAQgK0KVB7l0D9QReqlHFL8SBznUolSWpAWtSpUPboTZ7LJKrG3thdp_329LCCgJ1vjz9-MPXNAdqyzSMhbRj8KUdOTwDmVnFb1K7LPCl7kKgV2nuz3yEEIC0q5EEK9JnuiFELyku6TP589QuwHO89-QsTsPMRhgjg4m3XeTdkFQpv_dt5mP3oX3XLE2K_D5OYelv06u0YbnM--QITsV9hYrsAkG2YzBG9T4A3Z7WAMeHS_HpKbr-c3Zxf57Pu3y7PTWW4KWcecsaZhEmpgjRSM1ZIygbJkUhlRdbwVJSvatmIgSqyqipm25aoEJXmBSlBxSC632tbBQi99eoRfaweDvgs4P9fg42BG1FXTmaQAKQ0WreLQpFyybCBlKwopk-vT1rVcNRO2Bm30MD6TPj-xQ6_n7larumRUVUnw4V7g3d8VhqinIRgcR7DoVkHzlIcyxWqR0Pcv0IVbeZt-akNxKWjFNtS7pxU9lvLQxwScbAHjXQgeO22GeNfGVOAwakb1ZlL046SkG8cvbjxI_2f_Aaomu9s
CitedBy_id crossref_primary_10_1007_s42114_024_00949_9
crossref_primary_10_1145_3712280
crossref_primary_10_1038_s41598_022_21456_1
crossref_primary_10_1109_TIM_2024_3372222
crossref_primary_10_1002_adfm_202415044
crossref_primary_10_1177_00405175241261401
crossref_primary_10_3390_s23125736
crossref_primary_10_1371_journal_pone_0307385
crossref_primary_10_1016_j_carbpol_2022_120509
crossref_primary_10_1002_adfm_202305328
crossref_primary_10_3390_s23031599
crossref_primary_10_3390_diagnostics13142442
crossref_primary_10_3390_diagnostics14030284
Cites_doi 10.1007/978-3-319-18191-2_10
10.1145/3460418.3479276
10.3390/s18113705
10.1109/ACCESS.2021.3095380
10.3389/frvir.2022.781218
10.1109/BHI.2012.6211599
10.1109/ISCAS.2018.8351076
10.1109/TBME.2016.2613124
10.1117/1.2236285
10.15369/sujms.24.69
10.1007/978-3-319-50478-0
10.3390/s19040908
10.3390/s20185446
10.1016/S0008-6363(98)00029-7
10.1093/intqhc/mzv019
10.1007/s42452-021-04148-9
10.1109/TBME.2013.2246160
10.1371/journal.pone.0086427
10.3109/03091902.2015.1105316
10.1007/s10439-007-9428-1
10.1111/j.1469-8986.1993.tb01731.x
10.1109/T-AFFC.2010.1
10.1145/2504335.2504353
10.1186/s13634-016-0383-6
10.3389/fpsyg.2020.01980
10.1109/RBME.2017.2763681
10.3390/s21165651
10.1016/S0034-5687(01)00278-X
10.1145/2939672.2939785
10.3390/s21051902
10.1213/ANE.0b013e31828098b2
10.3389/fphys.2019.00732
10.3233/THC-161145
10.1109/EMBC44109.2020.9176231
10.12968/bjon.2020.29.1.12
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s22062079
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
CrossRef
Publicly Available Content Database
MEDLINE

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_7bfc777a66ce4d82ab01365ba5164466
PMC8951087
35336250
10_3390_s22062079
Genre Journal Article
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ARAPS
CGR
CUY
CVF
ECM
EIF
HCIFZ
KB.
M7S
NPM
PDBOC
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c469t-11bb16a9a1b631196013e65168c37f2d3514dd71a35e7771cdd285a8624e8303
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:13:25 EDT 2025
Thu Aug 21 13:52:12 EDT 2025
Fri Sep 05 00:01:53 EDT 2025
Fri Jul 25 20:41:43 EDT 2025
Wed Feb 19 02:27:25 EST 2025
Tue Jul 01 02:41:47 EDT 2025
Thu Apr 24 22:56:08 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords breathing rate
VR headset
information fusion
machine learning
PPG
motion artifact removal
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c469t-11bb16a9a1b631196013e65168c37f2d3514dd71a35e7771cdd285a8624e8303
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0770-4268
0000-0002-1220-7418
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s22062079
PMID 35336250
PQID 2642630713
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_7bfc777a66ce4d82ab01365ba5164466
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8951087
proquest_miscellaneous_2644018193
proquest_journals_2642630713
pubmed_primary_35336250
crossref_citationtrail_10_3390_s22062079
crossref_primary_10_3390_s22062079
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220308
PublicationDateYYYYMMDD 2022-03-08
PublicationDate_xml – month: 3
  year: 2022
  text: 20220308
  day: 8
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Nayan (ref_29) 2016; 24
Pimentel (ref_22) 2017; 64
Mok (ref_4) 2015; 27
ref_13
Hartmann (ref_18) 2019; 10
ref_35
ref_12
ref_34
Hill (ref_43) 2020; 29
ref_11
ref_10
ref_32
ref_31
Shah (ref_25) 2015; 39
Shuzan (ref_27) 2021; 9
ref_19
ref_16
ref_38
ref_15
Calvo (ref_2) 2010; 1
Charlton (ref_33) 2018; 11
Pimentel (ref_21) 2015; 15
ref_47
ref_24
Karlen (ref_23) 2013; 60
ref_45
Nilsson (ref_14) 2013; 117
Pearson (ref_37) 2016; 2016
ref_44
Berntson (ref_39) 1993; 30
ref_20
ref_42
Pitzalis (ref_36) 1998; 38
ref_41
ref_1
Saarela (ref_46) 2021; 3
ref_3
Nitzan (ref_40) 2006; 11
Jerath (ref_7) 2020; 11
Noguchi (ref_6) 2012; 24
ref_28
Kratky (ref_17) 2008; 36
ref_26
Khambhati (ref_30) 2017; 4
ref_9
ref_8
Masaoka (ref_5) 2001; 128
References_xml – volume: 15
  start-page: 241
  year: 2015
  ident: ref_21
  article-title: Probabilistic Estimation of Respiratory Rate from Wearable Sensors
  publication-title: Smart Sens. Meas. Instrum.
  doi: 10.1007/978-3-319-18191-2_10
– ident: ref_31
  doi: 10.1145/3460418.3479276
– ident: ref_9
– ident: ref_20
  doi: 10.3390/s18113705
– volume: 9
  start-page: 96775
  year: 2021
  ident: ref_27
  article-title: A Novel Non-Invasive Estimation of Respiration Rate from Motion Corrupted Photoplethysmograph Signal Using Machine Learning Model
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3095380
– ident: ref_32
  doi: 10.3389/frvir.2022.781218
– ident: ref_3
– ident: ref_45
  doi: 10.1109/BHI.2012.6211599
– ident: ref_35
  doi: 10.1109/ISCAS.2018.8351076
– ident: ref_47
– volume: 64
  start-page: 1914
  year: 2017
  ident: ref_22
  article-title: Toward a robust estimation of respiratory rate from pulse oximeters
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2016.2613124
– volume: 11
  start-page: 040506
  year: 2006
  ident: ref_40
  article-title: Respiration-induced changes in tissue blood volume distal to occluded artery, measured by photoplethysmography
  publication-title: J. Biomed. Opt.
  doi: 10.1117/1.2236285
– volume: 24
  start-page: 69
  year: 2012
  ident: ref_6
  article-title: Effect of Music on Emotions and Respiration
  publication-title: Showa Univ. J. Med. Sci.
  doi: 10.15369/sujms.24.69
– ident: ref_26
  doi: 10.1007/978-3-319-50478-0
– ident: ref_11
  doi: 10.3390/s19040908
– ident: ref_16
– ident: ref_10
  doi: 10.3390/s20185446
– volume: 38
  start-page: 332
  year: 1998
  ident: ref_36
  article-title: Effect of respiratory rate on the relationships between RR interval and systolic blood pressure fluctuations: A frequency-dependent phenomenon
  publication-title: Cardiovasc. Res.
  doi: 10.1016/S0008-6363(98)00029-7
– volume: 27
  start-page: 207
  year: 2015
  ident: ref_4
  article-title: Attitudes towards vital signs monitoring in the detection of clinical deterioration: Scale development and survey of ward nurses
  publication-title: Int. J. Qual. Health Care
  doi: 10.1093/intqhc/mzv019
– volume: 3
  start-page: 272
  year: 2021
  ident: ref_46
  article-title: Comparison of feature importance measures as explanations for classification models
  publication-title: SN Appl. Sci.
  doi: 10.1007/s42452-021-04148-9
– ident: ref_42
– ident: ref_1
– ident: ref_44
– volume: 60
  start-page: 1946
  year: 2013
  ident: ref_23
  article-title: Multiparameter respiratory rate estimation from the photoplethysmogram
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2013.2246160
– ident: ref_24
  doi: 10.1371/journal.pone.0086427
– volume: 39
  start-page: 514
  year: 2015
  ident: ref_25
  article-title: Respiratory rate estimation during triage of children in hospitals
  publication-title: J. Med. Eng. Technol.
  doi: 10.3109/03091902.2015.1105316
– volume: 36
  start-page: 476
  year: 2008
  ident: ref_17
  article-title: Estimation of breathing rate from respiratory sinus arrhythmia: Comparison of various methods
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-007-9428-1
– ident: ref_8
– volume: 30
  start-page: 183
  year: 1993
  ident: ref_39
  article-title: Respiratory sinus arrhythmia: Autonomic origins, physiological mechanisms, and psychophysiological implications
  publication-title: Psychophysiology
  doi: 10.1111/j.1469-8986.1993.tb01731.x
– volume: 1
  start-page: 18
  year: 2010
  ident: ref_2
  article-title: Affect detection: An interdisciplinary review of models, methods, and their applications
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/T-AFFC.2010.1
– ident: ref_34
  doi: 10.1145/2504335.2504353
– volume: 2016
  start-page: 87
  year: 2016
  ident: ref_37
  article-title: Generalized Hampel Filters
  publication-title: EURASIP J. Adv. Signal Process.
  doi: 10.1186/s13634-016-0383-6
– volume: 11
  start-page: 1980
  year: 2020
  ident: ref_7
  article-title: Respiratory Rhythm, Autonomic Modulation, and the Spectrum of Emotions: The Future of Emotion Recognition and Modulation
  publication-title: Front. Psychol.
  doi: 10.3389/fpsyg.2020.01980
– volume: 11
  start-page: 2
  year: 2018
  ident: ref_33
  article-title: Breathing Rate Estimation from the Electrocardiogram and Photoplethysmogram: A Review
  publication-title: IEEE Rev. Biomed. Eng.
  doi: 10.1109/RBME.2017.2763681
– ident: ref_19
  doi: 10.3390/s21165651
– volume: 128
  start-page: 171
  year: 2001
  ident: ref_5
  article-title: The effect of anticipatory anxiety on breathing and metabolism in humans
  publication-title: Respir. Physiol.
  doi: 10.1016/S0034-5687(01)00278-X
– ident: ref_12
– ident: ref_41
  doi: 10.1145/2939672.2939785
– ident: ref_38
  doi: 10.3390/s21051902
– volume: 117
  start-page: 859
  year: 2013
  ident: ref_14
  article-title: Respiration signals from photoplethysmography
  publication-title: Anesth. Analg.
  doi: 10.1213/ANE.0b013e31828098b2
– ident: ref_15
– volume: 10
  start-page: 732
  year: 2019
  ident: ref_18
  article-title: Toward accurate extraction of respiratory frequency from the photoplethysmogram: Effect of measurement site
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2019.00732
– volume: 24
  start-page: 591
  year: 2016
  ident: ref_29
  article-title: A portable respiratory rate estimation system with a passive single-lead electrocardiogram acquisition module
  publication-title: Technol. Health Care
  doi: 10.3233/THC-161145
– ident: ref_13
– ident: ref_28
  doi: 10.1109/EMBC44109.2020.9176231
– volume: 29
  start-page: 12
  year: 2020
  ident: ref_43
  article-title: Monitoring respiratory rate in adults
  publication-title: Br. J. Nurs.
  doi: 10.12968/bjon.2020.29.1.12
– volume: 4
  start-page: 1878
  year: 2017
  ident: ref_30
  article-title: A Comparative approach: Estimation of Respiration rate from ECG Signal during stress testing
  publication-title: Int. Res. J. Eng. Technol.
SSID ssj0023338
Score 2.442977
Snippet Breathing rate is considered one of the fundamental vital signs and a highly informative indicator of physiological state. Given that the monitoring of heart...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 2079
SubjectTerms Affect (Psychology)
Algorithms
breathing rate
Datasets
Electrocardiography
Heart rate
Heart Rate - physiology
Humans
information fusion
Laboratories
Machine Learning
motion artifact removal
Photoplethysmography - methods
Physiology
PPG
Respiration
Respiratory Rate
Sensors
Signal processing
Signal Processing, Computer-Assisted
Virtual reality
VR headset
Wearable computers
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iSQ_i2_oiigcvxSZpk-7R9cEiKOIDvdUkTV1BW1m7_9-ZtFt2RfDitZlDOjNpvi-d-ULIUWFQJcviH1anw1iLPDSJkaEtUvhmKmEKf2nf9Y0cPMZXz8nz1FVfWBPWyAM3jjtRprBKKS2ldXGeco0HdzIxOgGgH0svth31ogmZaqmWAObV6AgJIPUnX5xHkkdYrzW1-3iR_t-Q5c8Cyakd53KZLLVQkZ42U1whc65cJYtTAoJr5KWPmA8PkegdgEZ6AQu26UWk2DdCBxDB8KkalfR2WNVYK45x-Whlquk9cNhqRM91ramvHaDXvrbS0VZ29XWdPFxePJwNwvbOhNAC0a1DxoxhUvc0M1IwWF54zCnBV6kVquA5Fu7nuWJaJA7cymye8zTR2CbiUtjONsh8WZVui1BuYfMXtogLY2PtYJT1rHAxNzkD1sMDcjxxZWZbPXG81uI9A16BXs86rwfksDP9bEQ0fjPqYzw6A9S99g8gG7I2G7K_siEgu5NoZu1i_MoA83EpkI4H5KAbhmWE_0Z06aqxt4lRu6wHNptN8LuZCIDEQBOjgKiZtJiZ6uxI-Tb0Ut0pAthUbf_Hu-2QBY69F1gAl-6S-Xo0dnuAiGqz75P_G7yKCZU
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fTxQxEG4UX_TBiKgsIinGB182XNvdtvdEQDgvJBiiGHlb-2uBBHfhbvn_nen21jtDeN3OQ7fT6cw3nX5DyKfaIkuWwxvWYPLCCJ_b0src1RrOTCVsHZv2nX6T05_FyUV5kRJu81RWuTgT40HtW4c58j1w3FwKxFT7t3c5do3C29XUQuMpecbA0-A-15OvA-ASgL96NiEB0H5vzvlI8hFWbS35oEjV_1B8-X-Z5JLfmbwiL1PASA96Da-TJ6F5TV4s0QhukN-HGPlhKol-h9CRHoPZ9i8SKb4eoVPQY_6rnTX07KrtsGIctfMnkVXTH4Bk2xk9Mp2hsYKAnsYKy0AT-erlG3I-OT7_Ms1T54TcAdztcsasZdKMDbNSMDAyTHbKkknthKq5x_J97xUzogxKKea857o0-FgkaHBqb8la0zZhk1DuIAQQri5q6woTYJSNnQgFt54B9uEZ-bxYysolVnFsbnFTAbrAVa-GVc_Ix0H0tqfSeEjoEPUxCCD7dfzQzi6rZEyVsrWDaRspXSi85gaTubK0Bv4Q76czsr3QZpVMcl7920AZ2R2GwZjwhsQ0ob2PMgUymI1B5l2v_GEmAgJjAIujjKiVbbEy1dWR5voqEnZrDGO12np8Wu_Jc45vK7DATW-TtW52Hz5AxNPZnbit_wK4hwFH
  priority: 102
  providerName: ProQuest
Title Breathing Rate Estimation from Head-Worn Photoplethysmography Sensor Data Using Machine Learning
URI https://www.ncbi.nlm.nih.gov/pubmed/35336250
https://www.proquest.com/docview/2642630713
https://www.proquest.com/docview/2644018193
https://pubmed.ncbi.nlm.nih.gov/PMC8951087
https://doaj.org/article/7bfc777a66ce4d82ab01365ba5164466
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwEB7t4wIHxHsDS2UQBy6B2k7s9IAQhZYKqavVsit6C7bj7CItCWSzEvx7Ztw02qAeuORQTxXX4-nMZ898A_CytMSS5eiG1Zs4MbKIbWpV7MoM_zO1tGVo2rc8Uouz5PMqXe3Apsdmt4BXW6Ed9ZM6ay5f__715x0a_FtCnAjZ31wJMVZirCe7sI8OSREGWyb9ZYKQMjS0ppquGP3heE0wNPzqwC0F9v5tIee_mZM3XNH8LtzpYkj2fq30e7Djq_tw-waz4AP4NqVgkE6X2AlGk2yGlrwuUmRUUMIWqNr4a91U7PiibimJnBT2o-OvZl8Q3NYN-2haw0JSAVuGpEvPOj7W84dwOp-dfljEXTOF2CECbmPOreXKTAy3SnK0Ozr_VClXmZO6FAVl9BeF5kamXmvNXVGILDVUP-Iz9HOPYK-qK38ATDiMCqQrk9K6xHgc5RMnfSJswREOiQhebZYydx3ROPW7uMwRcNCq5_2qR_CiF_25ZtfYJjQlffQCRIgdPqib87yzr1zb0uG0jVLOJ0UmDJ3vqtQa_IV0ZR3B4Uab-WaT5RgMCiUJp0fwvB9G-6JLE1P5-jrIJERqNkGZx2vl9zORGCsjfhxHoAfbYjDV4Uj1_SJweGcU2Wb6yX-89yncElRzQYlv2SHstc21f4aRUGtHsKtXGp_Z_NMI9qezo-OTUThVGAUL-AuIZgr_
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOqLwDBQwCiUvUtZ3Y2UOFKG21pd0KwSL2ltqO0yJBUnZTIX5U_2Nn8uouqrj1uh5FXns8nm888w3Am9wSS5ajF1ZvwsjILLSxVaHLE7SZWtq8bto3PlSjb9GnaTxdgfOuFobSKjubWBvqrHQUI9_Ai1soSZjq_envkLpG0etq10KjUYt9__cPQrb55t427u9bIXZ3Jh9HYdtVIHQIBauQc2u5MkPDrZIcFZACgSrmKnFS5yKj1PYs09zI2GutucsykcSGCil8ggYfP3sDbkYUGMfjo6eX-E4i3GvIi6QcDjbmQgyUGFCS2MKVV3cGuMqd_Tcrc-Ga212Du61_yj40CnUPVnxxH-4ssBY-gKMtcjQpcsW-oKfKdtBKNAWQjIpV2AjVJvxezgr2-aSsKEGdlOFXy43NviJwLmds21SG1QkLbFwndHrWcr0eP4TJdSzpI1gtysI_ASYcehzS5VFuXWQ8jvKhkz4SNuMItUQA77qlTF1LYk69NH6mCGZo1dN-1QN43YueNswdVwlt0X70AkS2Xf9Qzo7T9uym2uYOp22Ucj7KEmEodqxia_Af0nN4AOvdbqatBZinl_oawKt-GM8uPciYwpdntUxEhGlDlHncbH4_E4l-OGLTQQB6SS2Wpro8Uvw4qfnBE_KaE_30_9N6CbdGk_FBerB3uP8Mbgsq66DcumQdVqvZmX-OzlZlX9QqziC95iN1AUCBOyw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NISF4QHwTGGAQSLxEre3ETh8QYnRVx9g0wRB9y2zH2ZC2ZLSZEH8a_x13-VqLJt72Wp8i174738---x3A69wSS5ajF1ZvwsjILLSxVaHLE_SZWtq8btq3u6em36JPs3i2Bn-6WhhKq-x8Yu2os9LRHfkAD26hJGGqQd6mReyPJ-_PfobUQYpeWrt2Go2K7PjfvxC-Ld5tj3Gv3wgx2Tr4OA3bDgOhQ1hYhZxby5UZGW6V5KiMdCmoYq4SJ3UuMkpzzzLNjYy91pq7LBNJbKiowifo_PGz1-C6lhhUoSnp2QXWkwj9GiIjKUfDwUKIoRJDShhbOv7qLgGXhbb_ZmguHXmTO3C7jVXZh0a57sKaL-7BrSUGw_twuElBJ91isS8YtbIt9BhNMSSjwhU2RRUKv5fzgu0flxUlq5NinLY82ewrguhyzsamMqxOXmC7dXKnZy3v69EDOLiKJX0I60VZ-MfAhMPoQ7o8yq2LjMdRPnLSR8JmHGGXCOBtt5SpawnNqa_GSYrAhlY97Vc9gFe96FnD4nGZ0CbtRy9AxNv1D-X8KG3tONU2dzhto5TzUZYIQ_fIKrYG_yE9jQew0e1m2nqDRXqhuwG87IfRjulxxhS-PK9lIiJPG6HMo2bz-5lIjMkRpw4D0CtqsTLV1ZHix3HNFZ5QBJ3oJ_-f1gu4gcaUft7e23kKNwVVeFCaXbIB69X83D_DuKuyz2sNZ5BesUX9Bf9mP2s
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Breathing+Rate+Estimation+from+Head-Worn+Photoplethysmography+Sensor+Data+Using+Machine+Learning&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Stankoski%2C+Simon&rft.au=Kiprijanovska%2C+Ivana&rft.au=Mavridou%2C+Ifigeneia&rft.au=Nduka%2C+Charles&rft.date=2022-03-08&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=22&rft.issue=6&rft_id=info:doi/10.3390%2Fs22062079&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon