Breathing Rate Estimation from Head-Worn Photoplethysmography Sensor Data Using Machine Learning
Breathing rate is considered one of the fundamental vital signs and a highly informative indicator of physiological state. Given that the monitoring of heart activity is less complex than the monitoring of breathing, a variety of algorithms have been developed to estimate breathing activity from hea...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 22; no. 6; p. 2079 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
08.03.2022
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 1424-8220 1424-8220 |
DOI | 10.3390/s22062079 |
Cover
Abstract | Breathing rate is considered one of the fundamental vital signs and a highly informative indicator of physiological state. Given that the monitoring of heart activity is less complex than the monitoring of breathing, a variety of algorithms have been developed to estimate breathing activity from heart activity. However, estimating breathing rate from heart activity outside of laboratory conditions is still a challenge. The challenge is even greater when new wearable devices with novel sensor placements are being used. In this paper, we present a novel algorithm for breathing rate estimation from photoplethysmography (PPG) data acquired from a head-worn virtual reality mask equipped with a PPG sensor placed on the forehead of a subject. The algorithm is based on advanced signal processing and machine learning techniques and includes a novel quality assessment and motion artifacts removal procedure. The proposed algorithm is evaluated and compared to existing approaches from the related work using two separate datasets that contains data from a total of 37 subjects overall. Numerous experiments show that the proposed algorithm outperforms the compared algorithms, achieving a mean absolute error of 1.38 breaths per minute and a Pearson’s correlation coefficient of 0.86. These results indicate that reliable estimation of breathing rate is possible based on PPG data acquired from a head-worn device. |
---|---|
AbstractList | Breathing rate is considered one of the fundamental vital signs and a highly informative indicator of physiological state. Given that the monitoring of heart activity is less complex than the monitoring of breathing, a variety of algorithms have been developed to estimate breathing activity from heart activity. However, estimating breathing rate from heart activity outside of laboratory conditions is still a challenge. The challenge is even greater when new wearable devices with novel sensor placements are being used. In this paper, we present a novel algorithm for breathing rate estimation from photoplethysmography (PPG) data acquired from a head-worn virtual reality mask equipped with a PPG sensor placed on the forehead of a subject. The algorithm is based on advanced signal processing and machine learning techniques and includes a novel quality assessment and motion artifacts removal procedure. The proposed algorithm is evaluated and compared to existing approaches from the related work using two separate datasets that contains data from a total of 37 subjects overall. Numerous experiments show that the proposed algorithm outperforms the compared algorithms, achieving a mean absolute error of 1.38 breaths per minute and a Pearson’s correlation coefficient of 0.86. These results indicate that reliable estimation of breathing rate is possible based on PPG data acquired from a head-worn device. Breathing rate is considered one of the fundamental vital signs and a highly informative indicator of physiological state. Given that the monitoring of heart activity is less complex than the monitoring of breathing, a variety of algorithms have been developed to estimate breathing activity from heart activity. However, estimating breathing rate from heart activity outside of laboratory conditions is still a challenge. The challenge is even greater when new wearable devices with novel sensor placements are being used. In this paper, we present a novel algorithm for breathing rate estimation from photoplethysmography (PPG) data acquired from a head-worn virtual reality mask equipped with a PPG sensor placed on the forehead of a subject. The algorithm is based on advanced signal processing and machine learning techniques and includes a novel quality assessment and motion artifacts removal procedure. The proposed algorithm is evaluated and compared to existing approaches from the related work using two separate datasets that contains data from a total of 37 subjects overall. Numerous experiments show that the proposed algorithm outperforms the compared algorithms, achieving a mean absolute error of 1.38 breaths per minute and a Pearson's correlation coefficient of 0.86. These results indicate that reliable estimation of breathing rate is possible based on PPG data acquired from a head-worn device.Breathing rate is considered one of the fundamental vital signs and a highly informative indicator of physiological state. Given that the monitoring of heart activity is less complex than the monitoring of breathing, a variety of algorithms have been developed to estimate breathing activity from heart activity. However, estimating breathing rate from heart activity outside of laboratory conditions is still a challenge. The challenge is even greater when new wearable devices with novel sensor placements are being used. In this paper, we present a novel algorithm for breathing rate estimation from photoplethysmography (PPG) data acquired from a head-worn virtual reality mask equipped with a PPG sensor placed on the forehead of a subject. The algorithm is based on advanced signal processing and machine learning techniques and includes a novel quality assessment and motion artifacts removal procedure. The proposed algorithm is evaluated and compared to existing approaches from the related work using two separate datasets that contains data from a total of 37 subjects overall. Numerous experiments show that the proposed algorithm outperforms the compared algorithms, achieving a mean absolute error of 1.38 breaths per minute and a Pearson's correlation coefficient of 0.86. These results indicate that reliable estimation of breathing rate is possible based on PPG data acquired from a head-worn device. |
Author | Nduka, Charles Mavridou, Ifigeneia Gjoreski, Hristijan Stankoski, Simon Kiprijanovska, Ivana Gjoreski, Martin |
AuthorAffiliation | 1 Emteq Ltd., Brighton BN1 9SB, UK; ivana.kiprijanovska@emteqlabs.com (I.K.); ifi.mavridou@emteqlabs.com (I.M.); charles@emteqlabs.com (C.N.); hristijang@feit.ukim.edu.mk (H.G.) 2 Faculty of Electrical Engineering and Information Technologies, Ss. Cyril and Methodius University in Skopje, 1000 Skopje, North Macedonia 3 Faculty of Informatics, Università della Svizzera Italiana, 6900 Lugano, Switzerland; martin.gjoreski@usi.ch |
AuthorAffiliation_xml | – name: 3 Faculty of Informatics, Università della Svizzera Italiana, 6900 Lugano, Switzerland; martin.gjoreski@usi.ch – name: 2 Faculty of Electrical Engineering and Information Technologies, Ss. Cyril and Methodius University in Skopje, 1000 Skopje, North Macedonia – name: 1 Emteq Ltd., Brighton BN1 9SB, UK; ivana.kiprijanovska@emteqlabs.com (I.K.); ifi.mavridou@emteqlabs.com (I.M.); charles@emteqlabs.com (C.N.); hristijang@feit.ukim.edu.mk (H.G.) |
Author_xml | – sequence: 1 givenname: Simon surname: Stankoski fullname: Stankoski, Simon – sequence: 2 givenname: Ivana surname: Kiprijanovska fullname: Kiprijanovska, Ivana – sequence: 3 givenname: Ifigeneia surname: Mavridou fullname: Mavridou, Ifigeneia – sequence: 4 givenname: Charles surname: Nduka fullname: Nduka, Charles – sequence: 5 givenname: Hristijan orcidid: 0000-0002-0770-4268 surname: Gjoreski fullname: Gjoreski, Hristijan – sequence: 6 givenname: Martin orcidid: 0000-0002-1220-7418 surname: Gjoreski fullname: Gjoreski, Martin |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35336250$$D View this record in MEDLINE/PubMed |
BookMark | eNplkktP3DAQgK0KVB7l0D9QReqlHFL8SBznUolSWpAWtSpUPboTZ7LJKrG3thdp_329LCCgJ1vjz9-MPXNAdqyzSMhbRj8KUdOTwDmVnFb1K7LPCl7kKgV2nuz3yEEIC0q5EEK9JnuiFELyku6TP589QuwHO89-QsTsPMRhgjg4m3XeTdkFQpv_dt5mP3oX3XLE2K_D5OYelv06u0YbnM--QITsV9hYrsAkG2YzBG9T4A3Z7WAMeHS_HpKbr-c3Zxf57Pu3y7PTWW4KWcecsaZhEmpgjRSM1ZIygbJkUhlRdbwVJSvatmIgSqyqipm25aoEJXmBSlBxSC632tbBQi99eoRfaweDvgs4P9fg42BG1FXTmaQAKQ0WreLQpFyybCBlKwopk-vT1rVcNRO2Bm30MD6TPj-xQ6_n7larumRUVUnw4V7g3d8VhqinIRgcR7DoVkHzlIcyxWqR0Pcv0IVbeZt-akNxKWjFNtS7pxU9lvLQxwScbAHjXQgeO22GeNfGVOAwakb1ZlL046SkG8cvbjxI_2f_Aaomu9s |
CitedBy_id | crossref_primary_10_1007_s42114_024_00949_9 crossref_primary_10_1145_3712280 crossref_primary_10_1038_s41598_022_21456_1 crossref_primary_10_1109_TIM_2024_3372222 crossref_primary_10_1002_adfm_202415044 crossref_primary_10_1177_00405175241261401 crossref_primary_10_3390_s23125736 crossref_primary_10_1371_journal_pone_0307385 crossref_primary_10_1016_j_carbpol_2022_120509 crossref_primary_10_1002_adfm_202305328 crossref_primary_10_3390_s23031599 crossref_primary_10_3390_diagnostics13142442 crossref_primary_10_3390_diagnostics14030284 |
Cites_doi | 10.1007/978-3-319-18191-2_10 10.1145/3460418.3479276 10.3390/s18113705 10.1109/ACCESS.2021.3095380 10.3389/frvir.2022.781218 10.1109/BHI.2012.6211599 10.1109/ISCAS.2018.8351076 10.1109/TBME.2016.2613124 10.1117/1.2236285 10.15369/sujms.24.69 10.1007/978-3-319-50478-0 10.3390/s19040908 10.3390/s20185446 10.1016/S0008-6363(98)00029-7 10.1093/intqhc/mzv019 10.1007/s42452-021-04148-9 10.1109/TBME.2013.2246160 10.1371/journal.pone.0086427 10.3109/03091902.2015.1105316 10.1007/s10439-007-9428-1 10.1111/j.1469-8986.1993.tb01731.x 10.1109/T-AFFC.2010.1 10.1145/2504335.2504353 10.1186/s13634-016-0383-6 10.3389/fpsyg.2020.01980 10.1109/RBME.2017.2763681 10.3390/s21165651 10.1016/S0034-5687(01)00278-X 10.1145/2939672.2939785 10.3390/s21051902 10.1213/ANE.0b013e31828098b2 10.3389/fphys.2019.00732 10.3233/THC-161145 10.1109/EMBC44109.2020.9176231 10.12968/bjon.2020.29.1.12 |
ContentType | Journal Article |
Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/s22062079 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central ProQuest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Publicly Available Content Database MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_7bfc777a66ce4d82ab01365ba5164466 PMC8951087 35336250 10_3390_s22062079 |
Genre | Journal Article |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. ABJCF ARAPS CGR CUY CVF ECM EIF HCIFZ KB. M7S NPM PDBOC 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c469t-11bb16a9a1b631196013e65168c37f2d3514dd71a35e7771cdd285a8624e8303 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:13:25 EDT 2025 Thu Aug 21 13:52:12 EDT 2025 Fri Sep 05 00:01:53 EDT 2025 Fri Jul 25 20:41:43 EDT 2025 Wed Feb 19 02:27:25 EST 2025 Tue Jul 01 02:41:47 EDT 2025 Thu Apr 24 22:56:08 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | breathing rate VR headset information fusion machine learning PPG motion artifact removal |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c469t-11bb16a9a1b631196013e65168c37f2d3514dd71a35e7771cdd285a8624e8303 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-0770-4268 0000-0002-1220-7418 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s22062079 |
PMID | 35336250 |
PQID | 2642630713 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_7bfc777a66ce4d82ab01365ba5164466 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8951087 proquest_miscellaneous_2644018193 proquest_journals_2642630713 pubmed_primary_35336250 crossref_citationtrail_10_3390_s22062079 crossref_primary_10_3390_s22062079 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220308 |
PublicationDateYYYYMMDD | 2022-03-08 |
PublicationDate_xml | – month: 3 year: 2022 text: 20220308 day: 8 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2022 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Nayan (ref_29) 2016; 24 Pimentel (ref_22) 2017; 64 Mok (ref_4) 2015; 27 ref_13 Hartmann (ref_18) 2019; 10 ref_35 ref_12 ref_34 Hill (ref_43) 2020; 29 ref_11 ref_10 ref_32 ref_31 Shah (ref_25) 2015; 39 Shuzan (ref_27) 2021; 9 ref_19 ref_16 ref_38 ref_15 Calvo (ref_2) 2010; 1 Charlton (ref_33) 2018; 11 Pimentel (ref_21) 2015; 15 ref_47 ref_24 Karlen (ref_23) 2013; 60 ref_45 Nilsson (ref_14) 2013; 117 Pearson (ref_37) 2016; 2016 ref_44 Berntson (ref_39) 1993; 30 ref_20 ref_42 Pitzalis (ref_36) 1998; 38 ref_41 ref_1 Saarela (ref_46) 2021; 3 ref_3 Nitzan (ref_40) 2006; 11 Jerath (ref_7) 2020; 11 Noguchi (ref_6) 2012; 24 ref_28 Kratky (ref_17) 2008; 36 ref_26 Khambhati (ref_30) 2017; 4 ref_9 ref_8 Masaoka (ref_5) 2001; 128 |
References_xml | – volume: 15 start-page: 241 year: 2015 ident: ref_21 article-title: Probabilistic Estimation of Respiratory Rate from Wearable Sensors publication-title: Smart Sens. Meas. Instrum. doi: 10.1007/978-3-319-18191-2_10 – ident: ref_31 doi: 10.1145/3460418.3479276 – ident: ref_9 – ident: ref_20 doi: 10.3390/s18113705 – volume: 9 start-page: 96775 year: 2021 ident: ref_27 article-title: A Novel Non-Invasive Estimation of Respiration Rate from Motion Corrupted Photoplethysmograph Signal Using Machine Learning Model publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3095380 – ident: ref_32 doi: 10.3389/frvir.2022.781218 – ident: ref_3 – ident: ref_45 doi: 10.1109/BHI.2012.6211599 – ident: ref_35 doi: 10.1109/ISCAS.2018.8351076 – ident: ref_47 – volume: 64 start-page: 1914 year: 2017 ident: ref_22 article-title: Toward a robust estimation of respiratory rate from pulse oximeters publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2016.2613124 – volume: 11 start-page: 040506 year: 2006 ident: ref_40 article-title: Respiration-induced changes in tissue blood volume distal to occluded artery, measured by photoplethysmography publication-title: J. Biomed. Opt. doi: 10.1117/1.2236285 – volume: 24 start-page: 69 year: 2012 ident: ref_6 article-title: Effect of Music on Emotions and Respiration publication-title: Showa Univ. J. Med. Sci. doi: 10.15369/sujms.24.69 – ident: ref_26 doi: 10.1007/978-3-319-50478-0 – ident: ref_11 doi: 10.3390/s19040908 – ident: ref_16 – ident: ref_10 doi: 10.3390/s20185446 – volume: 38 start-page: 332 year: 1998 ident: ref_36 article-title: Effect of respiratory rate on the relationships between RR interval and systolic blood pressure fluctuations: A frequency-dependent phenomenon publication-title: Cardiovasc. Res. doi: 10.1016/S0008-6363(98)00029-7 – volume: 27 start-page: 207 year: 2015 ident: ref_4 article-title: Attitudes towards vital signs monitoring in the detection of clinical deterioration: Scale development and survey of ward nurses publication-title: Int. J. Qual. Health Care doi: 10.1093/intqhc/mzv019 – volume: 3 start-page: 272 year: 2021 ident: ref_46 article-title: Comparison of feature importance measures as explanations for classification models publication-title: SN Appl. Sci. doi: 10.1007/s42452-021-04148-9 – ident: ref_42 – ident: ref_1 – ident: ref_44 – volume: 60 start-page: 1946 year: 2013 ident: ref_23 article-title: Multiparameter respiratory rate estimation from the photoplethysmogram publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2013.2246160 – ident: ref_24 doi: 10.1371/journal.pone.0086427 – volume: 39 start-page: 514 year: 2015 ident: ref_25 article-title: Respiratory rate estimation during triage of children in hospitals publication-title: J. Med. Eng. Technol. doi: 10.3109/03091902.2015.1105316 – volume: 36 start-page: 476 year: 2008 ident: ref_17 article-title: Estimation of breathing rate from respiratory sinus arrhythmia: Comparison of various methods publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-007-9428-1 – ident: ref_8 – volume: 30 start-page: 183 year: 1993 ident: ref_39 article-title: Respiratory sinus arrhythmia: Autonomic origins, physiological mechanisms, and psychophysiological implications publication-title: Psychophysiology doi: 10.1111/j.1469-8986.1993.tb01731.x – volume: 1 start-page: 18 year: 2010 ident: ref_2 article-title: Affect detection: An interdisciplinary review of models, methods, and their applications publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/T-AFFC.2010.1 – ident: ref_34 doi: 10.1145/2504335.2504353 – volume: 2016 start-page: 87 year: 2016 ident: ref_37 article-title: Generalized Hampel Filters publication-title: EURASIP J. Adv. Signal Process. doi: 10.1186/s13634-016-0383-6 – volume: 11 start-page: 1980 year: 2020 ident: ref_7 article-title: Respiratory Rhythm, Autonomic Modulation, and the Spectrum of Emotions: The Future of Emotion Recognition and Modulation publication-title: Front. Psychol. doi: 10.3389/fpsyg.2020.01980 – volume: 11 start-page: 2 year: 2018 ident: ref_33 article-title: Breathing Rate Estimation from the Electrocardiogram and Photoplethysmogram: A Review publication-title: IEEE Rev. Biomed. Eng. doi: 10.1109/RBME.2017.2763681 – ident: ref_19 doi: 10.3390/s21165651 – volume: 128 start-page: 171 year: 2001 ident: ref_5 article-title: The effect of anticipatory anxiety on breathing and metabolism in humans publication-title: Respir. Physiol. doi: 10.1016/S0034-5687(01)00278-X – ident: ref_12 – ident: ref_41 doi: 10.1145/2939672.2939785 – ident: ref_38 doi: 10.3390/s21051902 – volume: 117 start-page: 859 year: 2013 ident: ref_14 article-title: Respiration signals from photoplethysmography publication-title: Anesth. Analg. doi: 10.1213/ANE.0b013e31828098b2 – ident: ref_15 – volume: 10 start-page: 732 year: 2019 ident: ref_18 article-title: Toward accurate extraction of respiratory frequency from the photoplethysmogram: Effect of measurement site publication-title: Front. Physiol. doi: 10.3389/fphys.2019.00732 – volume: 24 start-page: 591 year: 2016 ident: ref_29 article-title: A portable respiratory rate estimation system with a passive single-lead electrocardiogram acquisition module publication-title: Technol. Health Care doi: 10.3233/THC-161145 – ident: ref_13 – ident: ref_28 doi: 10.1109/EMBC44109.2020.9176231 – volume: 29 start-page: 12 year: 2020 ident: ref_43 article-title: Monitoring respiratory rate in adults publication-title: Br. J. Nurs. doi: 10.12968/bjon.2020.29.1.12 – volume: 4 start-page: 1878 year: 2017 ident: ref_30 article-title: A Comparative approach: Estimation of Respiration rate from ECG Signal during stress testing publication-title: Int. Res. J. Eng. Technol. |
SSID | ssj0023338 |
Score | 2.442977 |
Snippet | Breathing rate is considered one of the fundamental vital signs and a highly informative indicator of physiological state. Given that the monitoring of heart... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 2079 |
SubjectTerms | Affect (Psychology) Algorithms breathing rate Datasets Electrocardiography Heart rate Heart Rate - physiology Humans information fusion Laboratories Machine Learning motion artifact removal Photoplethysmography - methods Physiology PPG Respiration Respiratory Rate Sensors Signal processing Signal Processing, Computer-Assisted Virtual reality VR headset Wearable computers |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iSQ_i2_oiigcvxSZpk-7R9cEiKOIDvdUkTV1BW1m7_9-ZtFt2RfDitZlDOjNpvi-d-ULIUWFQJcviH1anw1iLPDSJkaEtUvhmKmEKf2nf9Y0cPMZXz8nz1FVfWBPWyAM3jjtRprBKKS2ldXGeco0HdzIxOgGgH0svth31ogmZaqmWAObV6AgJIPUnX5xHkkdYrzW1-3iR_t-Q5c8Cyakd53KZLLVQkZ42U1whc65cJYtTAoJr5KWPmA8PkegdgEZ6AQu26UWk2DdCBxDB8KkalfR2WNVYK45x-Whlquk9cNhqRM91ramvHaDXvrbS0VZ29XWdPFxePJwNwvbOhNAC0a1DxoxhUvc0M1IwWF54zCnBV6kVquA5Fu7nuWJaJA7cymye8zTR2CbiUtjONsh8WZVui1BuYfMXtogLY2PtYJT1rHAxNzkD1sMDcjxxZWZbPXG81uI9A16BXs86rwfksDP9bEQ0fjPqYzw6A9S99g8gG7I2G7K_siEgu5NoZu1i_MoA83EpkI4H5KAbhmWE_0Z06aqxt4lRu6wHNptN8LuZCIDEQBOjgKiZtJiZ6uxI-Tb0Ut0pAthUbf_Hu-2QBY69F1gAl-6S-Xo0dnuAiGqz75P_G7yKCZU priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fTxQxEG4UX_TBiKgsIinGB182XNvdtvdEQDgvJBiiGHlb-2uBBHfhbvn_nen21jtDeN3OQ7fT6cw3nX5DyKfaIkuWwxvWYPLCCJ_b0src1RrOTCVsHZv2nX6T05_FyUV5kRJu81RWuTgT40HtW4c58j1w3FwKxFT7t3c5do3C29XUQuMpecbA0-A-15OvA-ASgL96NiEB0H5vzvlI8hFWbS35oEjV_1B8-X-Z5JLfmbwiL1PASA96Da-TJ6F5TV4s0QhukN-HGPlhKol-h9CRHoPZ9i8SKb4eoVPQY_6rnTX07KrtsGIctfMnkVXTH4Bk2xk9Mp2hsYKAnsYKy0AT-erlG3I-OT7_Ms1T54TcAdztcsasZdKMDbNSMDAyTHbKkknthKq5x_J97xUzogxKKea857o0-FgkaHBqb8la0zZhk1DuIAQQri5q6woTYJSNnQgFt54B9uEZ-bxYysolVnFsbnFTAbrAVa-GVc_Ix0H0tqfSeEjoEPUxCCD7dfzQzi6rZEyVsrWDaRspXSi85gaTubK0Bv4Q76czsr3QZpVMcl7920AZ2R2GwZjwhsQ0ob2PMgUymI1B5l2v_GEmAgJjAIujjKiVbbEy1dWR5voqEnZrDGO12np8Wu_Jc45vK7DATW-TtW52Hz5AxNPZnbit_wK4hwFH priority: 102 providerName: ProQuest |
Title | Breathing Rate Estimation from Head-Worn Photoplethysmography Sensor Data Using Machine Learning |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35336250 https://www.proquest.com/docview/2642630713 https://www.proquest.com/docview/2644018193 https://pubmed.ncbi.nlm.nih.gov/PMC8951087 https://doaj.org/article/7bfc777a66ce4d82ab01365ba5164466 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwEB7t4wIHxHsDS2UQBy6B2k7s9IAQhZYKqavVsit6C7bj7CItCWSzEvx7Ztw02qAeuORQTxXX4-nMZ898A_CytMSS5eiG1Zs4MbKIbWpV7MoM_zO1tGVo2rc8Uouz5PMqXe3Apsdmt4BXW6Ed9ZM6ay5f__715x0a_FtCnAjZ31wJMVZirCe7sI8OSREGWyb9ZYKQMjS0ppquGP3heE0wNPzqwC0F9v5tIee_mZM3XNH8LtzpYkj2fq30e7Djq_tw-waz4AP4NqVgkE6X2AlGk2yGlrwuUmRUUMIWqNr4a91U7PiibimJnBT2o-OvZl8Q3NYN-2haw0JSAVuGpEvPOj7W84dwOp-dfljEXTOF2CECbmPOreXKTAy3SnK0Ozr_VClXmZO6FAVl9BeF5kamXmvNXVGILDVUP-Iz9HOPYK-qK38ATDiMCqQrk9K6xHgc5RMnfSJswREOiQhebZYydx3ROPW7uMwRcNCq5_2qR_CiF_25ZtfYJjQlffQCRIgdPqib87yzr1zb0uG0jVLOJ0UmDJ3vqtQa_IV0ZR3B4Uab-WaT5RgMCiUJp0fwvB9G-6JLE1P5-jrIJERqNkGZx2vl9zORGCsjfhxHoAfbYjDV4Uj1_SJweGcU2Wb6yX-89yncElRzQYlv2SHstc21f4aRUGtHsKtXGp_Z_NMI9qezo-OTUThVGAUL-AuIZgr_ |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOqLwDBQwCiUvUtZ3Y2UOFKG21pd0KwSL2ltqO0yJBUnZTIX5U_2Nn8uouqrj1uh5FXns8nm888w3Am9wSS5ajF1ZvwsjILLSxVaHLE7SZWtq8bto3PlSjb9GnaTxdgfOuFobSKjubWBvqrHQUI9_Ai1soSZjq_envkLpG0etq10KjUYt9__cPQrb55t427u9bIXZ3Jh9HYdtVIHQIBauQc2u5MkPDrZIcFZACgSrmKnFS5yKj1PYs09zI2GutucsykcSGCil8ggYfP3sDbkYUGMfjo6eX-E4i3GvIi6QcDjbmQgyUGFCS2MKVV3cGuMqd_Tcrc-Ga212Du61_yj40CnUPVnxxH-4ssBY-gKMtcjQpcsW-oKfKdtBKNAWQjIpV2AjVJvxezgr2-aSsKEGdlOFXy43NviJwLmds21SG1QkLbFwndHrWcr0eP4TJdSzpI1gtysI_ASYcehzS5VFuXWQ8jvKhkz4SNuMItUQA77qlTF1LYk69NH6mCGZo1dN-1QN43YueNswdVwlt0X70AkS2Xf9Qzo7T9uym2uYOp22Ucj7KEmEodqxia_Af0nN4AOvdbqatBZinl_oawKt-GM8uPciYwpdntUxEhGlDlHncbH4_E4l-OGLTQQB6SS2Wpro8Uvw4qfnBE_KaE_30_9N6CbdGk_FBerB3uP8Mbgsq66DcumQdVqvZmX-OzlZlX9QqziC95iN1AUCBOyw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NISF4QHwTGGAQSLxEre3ETh8QYnRVx9g0wRB9y2zH2ZC2ZLSZEH8a_x13-VqLJt72Wp8i174738---x3A69wSS5ajF1ZvwsjILLSxVaHLE_SZWtq8btq3u6em36JPs3i2Bn-6WhhKq-x8Yu2os9LRHfkAD26hJGGqQd6mReyPJ-_PfobUQYpeWrt2Go2K7PjfvxC-Ld5tj3Gv3wgx2Tr4OA3bDgOhQ1hYhZxby5UZGW6V5KiMdCmoYq4SJ3UuMkpzzzLNjYy91pq7LBNJbKiowifo_PGz1-C6lhhUoSnp2QXWkwj9GiIjKUfDwUKIoRJDShhbOv7qLgGXhbb_ZmguHXmTO3C7jVXZh0a57sKaL-7BrSUGw_twuElBJ91isS8YtbIt9BhNMSSjwhU2RRUKv5fzgu0flxUlq5NinLY82ewrguhyzsamMqxOXmC7dXKnZy3v69EDOLiKJX0I60VZ-MfAhMPoQ7o8yq2LjMdRPnLSR8JmHGGXCOBtt5SpawnNqa_GSYrAhlY97Vc9gFe96FnD4nGZ0CbtRy9AxNv1D-X8KG3tONU2dzhto5TzUZYIQ_fIKrYG_yE9jQew0e1m2nqDRXqhuwG87IfRjulxxhS-PK9lIiJPG6HMo2bz-5lIjMkRpw4D0CtqsTLV1ZHix3HNFZ5QBJ3oJ_-f1gu4gcaUft7e23kKNwVVeFCaXbIB69X83D_DuKuyz2sNZ5BesUX9Bf9mP2s |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Breathing+Rate+Estimation+from+Head-Worn+Photoplethysmography+Sensor+Data+Using+Machine+Learning&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Stankoski%2C+Simon&rft.au=Kiprijanovska%2C+Ivana&rft.au=Mavridou%2C+Ifigeneia&rft.au=Nduka%2C+Charles&rft.date=2022-03-08&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=22&rft.issue=6&rft_id=info:doi/10.3390%2Fs22062079&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |