Prediction and Elimination of Physiological Tremor During Control of Teleoperated Robot Based on Deep Learning
Currently, teleoperated robots, with the operator’s input, can fully perceive unknown factors in a complex environment and have strong environmental interaction and perception abilities. However, physiological tremors in the human hand can seriously affect the accuracy of processes that require high...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 24; no. 22; p. 7359 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
18.11.2024
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Currently, teleoperated robots, with the operator’s input, can fully perceive unknown factors in a complex environment and have strong environmental interaction and perception abilities. However, physiological tremors in the human hand can seriously affect the accuracy of processes that require high-precision control. Therefore, this paper proposes an EEMD-IWOA-LSTM model, which can decompose the physiological tremor of the hand into several intrinsic modal components (IMF) by using the EEMD decomposition strategy and convert the complex nonlinear and non-stationary physiological tremor curve of the human hand into multiple simple sequences. An LSTM neural network is used to build a prediction model for each (IMF) component, and an IWOA is proposed to optimize the model, thereby improving the prediction accuracy of the physiological tremor and eliminating it. At the same time, the prediction results of this model are compared with those of different models, and the results of EEMD-IWOA-LSTM presented in this study show obvious superior performance. In the two examples, the MSE of the prediction model proposed are 0.1148 and 0.00623, respectively. The defibrillation model proposed in this study can effectively eliminate the physiological tremor of the human hand during teleoperation and improve the control accuracy of the robot during teleoperation. |
---|---|
AbstractList | Currently, teleoperated robots, with the operator's input, can fully perceive unknown factors in a complex environment and have strong environmental interaction and perception abilities. However, physiological tremors in the human hand can seriously affect the accuracy of processes that require high-precision control. Therefore, this paper proposes an EEMD-IWOA-LSTM model, which can decompose the physiological tremor of the hand into several intrinsic modal components (IMF) by using the EEMD decomposition strategy and convert the complex nonlinear and non-stationary physiological tremor curve of the human hand into multiple simple sequences. An LSTM neural network is used to build a prediction model for each (IMF) component, and an IWOA is proposed to optimize the model, thereby improving the prediction accuracy of the physiological tremor and eliminating it. At the same time, the prediction results of this model are compared with those of different models, and the results of EEMD-IWOA-LSTM presented in this study show obvious superior performance. In the two examples, the MSE of the prediction model proposed are 0.1148 and 0.00623, respectively. The defibrillation model proposed in this study can effectively eliminate the physiological tremor of the human hand during teleoperation and improve the control accuracy of the robot during teleoperation.Currently, teleoperated robots, with the operator's input, can fully perceive unknown factors in a complex environment and have strong environmental interaction and perception abilities. However, physiological tremors in the human hand can seriously affect the accuracy of processes that require high-precision control. Therefore, this paper proposes an EEMD-IWOA-LSTM model, which can decompose the physiological tremor of the hand into several intrinsic modal components (IMF) by using the EEMD decomposition strategy and convert the complex nonlinear and non-stationary physiological tremor curve of the human hand into multiple simple sequences. An LSTM neural network is used to build a prediction model for each (IMF) component, and an IWOA is proposed to optimize the model, thereby improving the prediction accuracy of the physiological tremor and eliminating it. At the same time, the prediction results of this model are compared with those of different models, and the results of EEMD-IWOA-LSTM presented in this study show obvious superior performance. In the two examples, the MSE of the prediction model proposed are 0.1148 and 0.00623, respectively. The defibrillation model proposed in this study can effectively eliminate the physiological tremor of the human hand during teleoperation and improve the control accuracy of the robot during teleoperation. Currently, teleoperated robots, with the operator's input, can fully perceive unknown factors in a complex environment and have strong environmental interaction and perception abilities. However, physiological tremors in the human hand can seriously affect the accuracy of processes that require high-precision control. Therefore, this paper proposes an EEMD-IWOA-LSTM model, which can decompose the physiological tremor of the hand into several intrinsic modal components (IMF) by using the EEMD decomposition strategy and convert the complex nonlinear and non-stationary physiological tremor curve of the human hand into multiple simple sequences. An LSTM neural network is used to build a prediction model for each (IMF) component, and an IWOA is proposed to optimize the model, thereby improving the prediction accuracy of the physiological tremor and eliminating it. At the same time, the prediction results of this model are compared with those of different models, and the results of EEMD-IWOA-LSTM presented in this study show obvious superior performance. In the two examples, the MSE of the prediction model proposed are 0.1148 and 0.00623, respectively. The defibrillation model proposed in this study can effectively eliminate the physiological tremor of the human hand during teleoperation and improve the control accuracy of the robot during teleoperation. |
Audience | Academic |
Author | Guan, Wei Liang, Ke Zhang, Zhiqing Cao, Xinxin Chen, Juntao |
AuthorAffiliation | 1 College of Mechanical Engineering, Guangxi University, Nanning 530004, China 3 Guangxi Key Laboratory of Manufacturing System & Advanced Manufacturing Technology, School of Mechanical Engineering, Guangxi University, Nanning 530004, China 2 College of Mechanical and Automotive Engineering, Guangxi University of Science and Technology, Liuzhou 545000, China |
AuthorAffiliation_xml | – name: 1 College of Mechanical Engineering, Guangxi University, Nanning 530004, China – name: 3 Guangxi Key Laboratory of Manufacturing System & Advanced Manufacturing Technology, School of Mechanical Engineering, Guangxi University, Nanning 530004, China – name: 2 College of Mechanical and Automotive Engineering, Guangxi University of Science and Technology, Liuzhou 545000, China |
Author_xml | – sequence: 1 givenname: Juntao surname: Chen fullname: Chen, Juntao – sequence: 2 givenname: Zhiqing orcidid: 0000-0002-5999-958X surname: Zhang fullname: Zhang, Zhiqing – sequence: 3 givenname: Wei surname: Guan fullname: Guan, Wei – sequence: 4 givenname: Xinxin surname: Cao fullname: Cao, Xinxin – sequence: 5 givenname: Ke orcidid: 0000-0002-3785-4806 surname: Liang fullname: Liang, Ke |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39599135$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkk1v1DAQhi1URD_gwB9AkbjQwxZ_JvYJlW0LlVaiQsvZcuxJ6lViL3aC1H-Pu1tWLfLB9viZ1zOj9xQdhRgAofcEXzCm8OdMOaUNE-oVOiGc8oWkFB89Ox-j05w3GFPGmHyDjpkSShEmTlC4S-C8nXwMlQmuuh786IPZ3WNX3d0_ZB-H2HtrhmqdYIypupqTD321jGFKcXjE1jBA3EIyE7jqZ2zjVH01uZyLyhXAtlqBSaEkvUWvOzNkePe0n6FfN9fr5ffF6se32-XlamF5raYFwR2WmDWqUW2DBanrUq0yteJgpQCoiWglOO4MtK5RDNpOKodd02EqakHYGbrd67poNnqb_GjSg47G610gpl6bNHk7gDYcE-IcsayxnErcmpq0rRJQU9WIndaXvdZ2bkdwFkrbZngh-vIl-Hvdxz-aEKEkl3VR-PSkkOLvGfKkR58tDIMJEOesGWGMC4WFKOjH_9BNnFMos9pRTEpc40Jd7KnelA586GL52JblYPS2mKPzJX4pieRlfJSWhA_PezgU_88IBTjfAzbFnBN0B4Rg_WgyfTAZ-wu_JcHw |
Cites_doi | 10.1109/ROBOT.2007.363056 10.1007/s00521-023-08917-y 10.1088/1742-6596/2503/1/012039 10.1109/ACCESS.2020.2983588 10.3390/rs15082076 10.1007/s10439-018-2094-7 10.1109/TSMC.2017.2694020 10.3389/fmars.2023.1089357 10.1016/j.advengsoft.2016.01.008 10.1007/s12559-022-10099-z 10.1109/JSEN.2023.3279555 10.1007/s00500-023-09519-5 10.1016/j.measurement.2023.113544 10.1016/j.chaos.2023.114394 10.1007/s11633-022-1332-5 10.1109/TASE.2020.3041427 10.1109/JPROC.2022.3169466 10.1109/IEMBS.2008.4649569 10.1002/rcs.1741 10.1016/j.oceaneng.2024.117398 10.1007/s12206-023-0544-0 10.1109/TFUZZ.2019.2941173 10.1109/JSEN.2013.2271737 10.1002/aisy.202300299 10.1007/s00423-022-02710-6 10.1007/s00034-023-02319-0 10.1016/j.jmsy.2021.02.013 10.1109/10.841338 10.1109/ACCESS.2023.3276628 10.1002/aisy.202200277 10.1109/CEC.2007.4424748 10.1016/j.envres.2023.116365 10.1109/ACCESS.2022.3203813 10.1109/MCS.2022.3216653 10.1007/s00521-017-3210-6 10.1016/j.euromechsol.2018.10.004 10.1371/journal.pone.0267041 10.1002/rcs.340 10.1007/s10710-024-09481-7 10.1142/S1793536909000047 10.1016/j.asoc.2021.107863 10.5694/mja2.51726 10.1109/ACCESS.2018.2852323 10.1016/j.postharvbio.2024.112874 10.1038/s41598-024-51359-2 10.1016/j.knosys.2019.105295 10.1016/j.neucom.2019.04.017 10.1186/s13638-019-1462-9 10.1109/ACCESS.2017.2764471 10.1007/s11356-022-22959-0 10.3390/s21124196 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2024 by the authors. 2024 |
Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2024 by the authors. 2024 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/s24227359 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) Medical Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_a4011dd1c37c4280ba61bb95e6297551 PMC11598486 A818470522 39599135 10_3390_s24227359 |
Genre | Journal Article |
GrantInformation_xml | – fundername: This research was funded by the National Natural Science Foundation of China(Grant No.U23A202599), Guangxi Science and Technology Major Project(Grant No. Guike AA23062074) grantid: Grant No.U23A202599 and Grant No. Guike AA23062074 – fundername: Guangxi Science and Technology Major Project grantid: Guike AA23062074 – fundername: Guangxi Science and Technology Base and Talent Project grantid: Guike AD22035180 – fundername: National Natural Science Foundation of China grantid: U23A202599 |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. ABJCF ARAPS CGR CUY CVF ECM EIF HCIFZ KB. M7S NPM PDBOC PMFND 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c469t-10f08037979b7051669139a694ec85ee615b8ed4daebd793ebf89d0d7f0256513 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:30:57 EDT 2025 Thu Aug 21 18:35:01 EDT 2025 Fri Jul 11 16:57:53 EDT 2025 Fri Jul 25 23:30:16 EDT 2025 Tue Jun 10 21:06:16 EDT 2025 Wed Feb 19 02:03:57 EST 2025 Tue Jul 01 03:51:20 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 22 |
Keywords | EEMD-IWOA-LSTM physiological tremor teleoperated robot control accuracy |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c469t-10f08037979b7051669139a694ec85ee615b8ed4daebd793ebf89d0d7f0256513 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-5999-958X 0000-0002-3785-4806 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s24227359 |
PMID | 39599135 |
PQID | 3133388060 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_a4011dd1c37c4280ba61bb95e6297551 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11598486 proquest_miscellaneous_3133459055 proquest_journals_3133388060 gale_infotracacademiconefile_A818470522 pubmed_primary_39599135 crossref_primary_10_3390_s24227359 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20241118 |
PublicationDateYYYYMMDD | 2024-11-18 |
PublicationDate_xml | – month: 11 year: 2024 text: 20241118 day: 18 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2024 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Kebria (ref_35) 2020; 28 Yang (ref_19) 2018; 48 Zhang (ref_36) 2022; 19 Marvi (ref_2) 2023; 5 Wen (ref_41) 2023; 11 Guedes (ref_32) 2024; 28 Chen (ref_43) 2024; 301 Elmogy (ref_48) 2023; 35 Veluvolu (ref_13) 2010; 6 Liu (ref_46) 2022; 10 ref_17 Che (ref_34) 2024; 178 McGurrin (ref_37) 2021; 9 Iordachita (ref_11) 2022; 110 Scheidegger (ref_8) 2018; 46 Tan (ref_1) 2022; 217 Yang (ref_26) 2020; 8 Li (ref_30) 2023; 2503 Solanes (ref_5) 2021; 59 ref_25 ref_23 Lu (ref_12) 2019; 10 Shrivastava (ref_50) 2019; 73 Farzad (ref_52) 2019; 31 Li (ref_4) 2023; 14 Najafinejad (ref_10) 2023; 221 ref_27 Nakauchi (ref_7) 2022; 407 Sang (ref_16) 2016; 12 Wu (ref_24) 2009; 1 Wang (ref_29) 2023; 232 Li (ref_42) 2023; 23 Chakraborty (ref_49) 2023; 15 Gonzalez (ref_14) 2000; 47 ref_33 Shin (ref_38) 2023; 37 Lin (ref_40) 2020; 192 Tatinati (ref_15) 2013; 13 Yang (ref_28) 2023; 30 Adhikari (ref_20) 2022; 19 ref_39 Lin (ref_51) 2019; 356 Qu (ref_3) 2024; 6 (ref_53) 2017; 5 Yang (ref_21) 2021; 112 Wang (ref_18) 2018; 6 Pretorius (ref_31) 2024; 25 ref_47 ref_45 Hoffman (ref_22) 2023; 42 Mirjalili (ref_44) 2016; 95 ref_9 Rubagotti (ref_6) 2023; 43 |
References_xml | – ident: ref_9 doi: 10.1109/ROBOT.2007.363056 – volume: 35 start-page: 22671 year: 2023 ident: ref_48 article-title: ANWOA: An adaptive nonlinear whale optimization algorithm for high-dimensional optimization problems publication-title: Neural Comput. Appl. doi: 10.1007/s00521-023-08917-y – volume: 2503 start-page: 012039 year: 2023 ident: ref_30 article-title: Short-term power forecasting model based on GWO-LSTM network publication-title: J. Phys. Conf. Ser. IOP Publ. doi: 10.1088/1742-6596/2503/1/012039 – volume: 8 start-page: 61915 year: 2020 ident: ref_26 article-title: Hybrid method for short-term time series forecasting based on EEMD publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2983588 – ident: ref_27 doi: 10.3390/rs15082076 – volume: 46 start-page: 1568 year: 2018 ident: ref_8 article-title: Neuromonitoring During Robotic Cochlear Implantation: Initial Clinical Experience publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-018-2094-7 – volume: 48 start-page: 1759 year: 2018 ident: ref_19 article-title: Personalized Variable Gain Control with Tremor Attenuation for Robot Teleoperation publication-title: IEEE Trans. Syst. Man Cybern.-Syst. doi: 10.1109/TSMC.2017.2694020 – ident: ref_25 doi: 10.3389/fmars.2023.1089357 – volume: 95 start-page: 51 year: 2016 ident: ref_44 article-title: The whale optimization algorithm publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2016.01.008 – volume: 15 start-page: 1497 year: 2023 ident: ref_49 article-title: Improving whale optimization algorithm with elite strategy and its application to engineering-design and cloud task scheduling problems publication-title: Cogn. Comput. doi: 10.1007/s12559-022-10099-z – volume: 23 start-page: 16332 year: 2023 ident: ref_42 article-title: Gesture Recognition Based on EEMD and Cosine Laplacian Eigenmap publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2023.3279555 – volume: 28 start-page: 6709 year: 2024 ident: ref_32 article-title: Three-phase induction motor fault identification using optimization algorithms and intelligent systems publication-title: Soft Comput. doi: 10.1007/s00500-023-09519-5 – volume: 221 start-page: 10 year: 2023 ident: ref_10 article-title: Detection and minimizing the error caused by hand tremors using a leap motion sensor in operating a surgeon robot publication-title: Measurement doi: 10.1016/j.measurement.2023.113544 – volume: 178 start-page: 114394 year: 2024 ident: ref_34 article-title: Optimizing LSTM with multi-strategy improved WOA for robust prediction of high-speed machine tests data publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2023.114394 – volume: 19 start-page: 288 year: 2022 ident: ref_36 article-title: From Teleoperation to Autonomous Robot-assisted Microsurgery: A Survey publication-title: Mach. Intell. Res. doi: 10.1007/s11633-022-1332-5 – volume: 19 start-page: 497 year: 2022 ident: ref_20 article-title: Physiological Tremor Filtering Without Phase Distortion for Robotic Microsurgery publication-title: IEEE Trans. Autom. Sci. Eng. doi: 10.1109/TASE.2020.3041427 – volume: 110 start-page: 893 year: 2022 ident: ref_11 article-title: Robotic Assistance for Intraocular Microsurgery: Challenges and Perspectives publication-title: Proc. IEEE doi: 10.1109/JPROC.2022.3169466 – ident: ref_17 doi: 10.1109/IEMBS.2008.4649569 – volume: 12 start-page: 658 year: 2016 ident: ref_16 article-title: A zero phase adaptive fuzzy Kalman filter for physiological tremor suppression in robotically assisted minimally invasive surgery publication-title: Int. J. Med. Robot. Comput. Assist. Surg. doi: 10.1002/rcs.1741 – volume: 301 start-page: 117398 year: 2024 ident: ref_43 article-title: Short-term forecasting for ship fuel consumption based on deep learning publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2024.117398 – volume: 37 start-page: 3205 year: 2023 ident: ref_38 article-title: Stretchable optical fiber strain sensor comprising zinc oxide and PDMS for human motion monitoring publication-title: J. Mech. Sci. Technol. doi: 10.1007/s12206-023-0544-0 – volume: 28 start-page: 2543 year: 2020 ident: ref_35 article-title: Adaptive Type-2 Fuzzy Neural-Network Control for Teleoperation Systems with Delay and Uncertainties publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2019.2941173 – volume: 13 start-page: 4977 year: 2013 ident: ref_15 article-title: Physiological Tremor Estimation with Autoregressive (AR) Model and Kalman Filter for Robotics Applications publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2013.2271737 – volume: 6 start-page: 37 year: 2024 ident: ref_3 article-title: Recent Advances on Underwater Soft Robots publication-title: Adv. Intell. Syst. doi: 10.1002/aisy.202300299 – volume: 407 start-page: 3783 year: 2022 ident: ref_7 article-title: Establishment of a new practical telesurgical platform using the hinotori™ Surgical Robot System: A preclinical study publication-title: Langenbecks Arch. Surg. doi: 10.1007/s00423-022-02710-6 – volume: 42 start-page: 4669 year: 2023 ident: ref_22 article-title: Local Change Point Detection and Cleaning of EEMD Signals publication-title: Circuits Syst. Signal Process. doi: 10.1007/s00034-023-02319-0 – volume: 59 start-page: 283 year: 2021 ident: ref_5 article-title: Advanced teleoperation and control system for industrial robots based on augmented virtuality and haptic feedback publication-title: J. Manuf. Syst. doi: 10.1016/j.jmsy.2021.02.013 – volume: 47 start-page: 664 year: 2000 ident: ref_14 article-title: Optimal digital filtering for tremor suppression publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/10.841338 – volume: 11 start-page: 48322 year: 2023 ident: ref_41 article-title: Time series prediction based on LSTM-attention-LSTM model publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3276628 – volume: 5 start-page: 1 year: 2023 ident: ref_2 article-title: Opportunities and Challenges in Space Robotics publication-title: Adv. Intell. Syst. doi: 10.1002/aisy.202200277 – ident: ref_45 doi: 10.1109/CEC.2007.4424748 – volume: 232 start-page: 14 year: 2023 ident: ref_29 article-title: An AQI decomposition ensemble model based on SSA-LSTM using improved AMSSA-VMD decomposition reconstruction technique publication-title: Environ. Res. doi: 10.1016/j.envres.2023.116365 – volume: 10 start-page: 95197 year: 2022 ident: ref_46 article-title: Improved African Vulture Optimization Algorithm Based on Quasi-Oppositional Differential Evolution Operator publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3203813 – volume: 43 start-page: 44 year: 2023 ident: ref_6 article-title: Shared Control of Robot Manipulators with Obstacle Avoidance: A Deep Reinforcement Learning Approach publication-title: IEEE Control Syst. Mag. doi: 10.1109/MCS.2022.3216653 – volume: 31 start-page: 2507 year: 2019 ident: ref_52 article-title: A comparative performance analysis of different activation functions in LSTM networks for classification publication-title: Neural Comput. Appl. doi: 10.1007/s00521-017-3210-6 – volume: 14 start-page: 10 year: 2023 ident: ref_4 article-title: Bioinspired soft robots for deep-sea exploration publication-title: Nat. Commun. – volume: 73 start-page: 381 year: 2019 ident: ref_50 article-title: A comparative study of EMD and EEMD approaches for identifying chatter frequency in CNC turning publication-title: Eur. J. Mech.-A/Solids doi: 10.1016/j.euromechsol.2018.10.004 – ident: ref_47 doi: 10.1371/journal.pone.0267041 – volume: 6 start-page: 334 year: 2010 ident: ref_13 article-title: Estimation and filtering of physiological tremor for real-time compensation in surgical robotics applications publication-title: Int. J. Med. Robot. Comput. Assist. Surg. doi: 10.1002/rcs.340 – volume: 25 start-page: 7 year: 2024 ident: ref_31 article-title: Neural network crossover in genetic algorithms using genetic programming publication-title: Genet. Program. Evolvable Mach. doi: 10.1007/s10710-024-09481-7 – volume: 9 start-page: 2700110 year: 2021 ident: ref_37 article-title: Quantifying Tremor in Essential Tremor Using Inertial Sensors-Validation of an Algorithm publication-title: IEEE J. Transl. Eng. Health Med.-JTEHM – volume: 1 start-page: 1 year: 2009 ident: ref_24 article-title: Ensemble empirical mode decomposition: A noise-assisted data analysis method publication-title: Adv. Adapt. Data Anal. doi: 10.1142/S1793536909000047 – volume: 112 start-page: 16 year: 2021 ident: ref_21 article-title: Broad learning extreme learning machine for forecasting and eliminating tremors in teleoperation publication-title: Appl. Soft. Comput. doi: 10.1016/j.asoc.2021.107863 – volume: 217 start-page: 391 year: 2022 ident: ref_1 article-title: Robotic surgery: Getting the evidence right publication-title: Med. J. Aust. doi: 10.5694/mja2.51726 – volume: 6 start-page: 42216 year: 2018 ident: ref_18 article-title: Multi-Step Prediction of Physiological Tremor with Random Quaternion Neurons for Surgical Robotics Applications publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2852323 – ident: ref_23 doi: 10.1016/j.postharvbio.2024.112874 – ident: ref_33 doi: 10.1038/s41598-024-51359-2 – volume: 192 start-page: 105295 year: 2020 ident: ref_40 article-title: Three-domain fuzzy wavelet broad learning system for tremor estimation publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2019.105295 – volume: 356 start-page: 170 year: 2019 ident: ref_51 article-title: A wavelet broad learning adaptive filter for forecasting and cancelling the physiological tremor in teleoperation publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.04.017 – volume: 10 start-page: 140 year: 2019 ident: ref_12 article-title: Robot indoor location modeling and simulation based on Kalman filtering publication-title: EURASIP J. Wirel. Commun. Netw. doi: 10.1186/s13638-019-1462-9 – volume: 5 start-page: 23320 year: 2017 ident: ref_53 article-title: Hand tremor based biometric recognition using leap motion device publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2764471 – volume: 30 start-page: 11689 year: 2023 ident: ref_28 article-title: A novel model based on CEEMDAN, IWOA, and LSTM for ultra-short-term wind power forecasting publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-022-22959-0 – ident: ref_39 doi: 10.3390/s21124196 |
SSID | ssj0023338 |
Score | 2.4391506 |
Snippet | Currently, teleoperated robots, with the operator’s input, can fully perceive unknown factors in a complex environment and have strong environmental... Currently, teleoperated robots, with the operator's input, can fully perceive unknown factors in a complex environment and have strong environmental... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 7359 |
SubjectTerms | Accuracy Algorithms Analysis control accuracy Decomposition Deep Learning EEMD-IWOA-LSTM Hand - physiology Humans Mathematical models Neural networks Neural Networks, Computer Optimization algorithms physiological tremor Physiology Remote control Robotics - methods Robots teleoperated robot Time series Tremor - physiopathology |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEB1KTu2hNG3aOh9FCYWeTCxbkqVjPgmBhFI2kJuQLDkJFHvZbP5_ZmTv4qWHXHrclXaRZzR6b_DME8DPgDAgy7bIdWvKXBhMUDDmipw3ZSOoY69NOt03t-rqTlzfy_vJVV9UEzbIAw-GO3aYAPAQeFPV9OPCO8W9NzIq6glNzdMlYt4qmRpTrQozr0FHqMKk_vgZgQhxmgRJJ-iTRPr_PYonWLRZJzkBnstP8HFkjOxkWOk2vIvdZ_gw0RH8At3vBb1vIRsz1wV28Tfd1ZU-9y1LVZ6rQ47NFlRcy85TfyI7G0rVadoMEaifk8hyDOxP7_slO0WMCwz_5TzGORu1WB924O7yYnZ2lY8XKeQNZr9LPGpbJIZVbWrja4xCpUgM1CkjYqNljMhqvI5BBBd9wICNvtUmFKFuiRFJXn2Fra7v4ndgQQWjJQ75RgqlWx8cMhbuhONILrjL4GhlYDsf9DIs5hnkBbv2QganZPr1BJK4Tl-g4-3oePuW4zP4RY6zFIjoncaN_QS4TpK0sidIRQQ-bVlmsL_yrR0j9NlWnPaILlSRweF6GGOLXpi4LvYvwxwhTSFlBt-GrbBec2UkUusKR_TGJtl4qM2R7ukx6XcjCTdaaLX7P8ywB-9L5FnUHsn1PmwtFy_xAHnS0v9IIfEKcxwPWA priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED_BeIEHtPEZ2JBBSDxFixPbsZ-mfZUJCYRQJ-3NsmNnQ0JJabv_nzsnDa2QeGztVo7v63fx3c8AHwOGAVm2Ra5bU-bCYIKCNlfkvCkbQR17beLp_vpNXV2LLzfyZnzhthrLKjc-MTnq0Df0jvy4wmSKiEtUcbL4ndOtUXS6Ol6h8RAecYw0VNKlZ5-nhIt-MbAJVZjaH68wHGG0JlrSrRiUqPr_dchbEWm3WnIr_Mz24emIG9npIOgDeBC7Z_Bki03wOXTfl3TqQjvNXBfY5a90Y1f63Lcs1XpuXB2bL6nEll2kLkV2PhSs07Q5xqF-QVTLMbAfve_X7AwjXWD4LxcxLtjIyHr7Aq5nl_Pzq3y8TiFvMAdeo8NtER5WtamNr9EWlSJKUKeMiI2WMSK28ToGEVz0Ac02-labUIS6JVwkefUS9rq-i6-BBRWMljjkGymUbn1wiFu4E44jxOAugw-bDbaLgTXDYrZBUrCTFDI4o62fJhDRdfqiX97a0W6sw_yPh8CbqibdKbxT3Hsjo6KWYMkz-ESCs2SOKJ3GjV0FuE4itrKnCEgEPm1ZZnC4ka0d7XRl_2pVBu-nYbQwOjZxXezvhzlCmkLKDF4NqjCtuTISAXaFI3pHSXYeanek-3mXWLwRihsttHrz_3W9hccl4ihqf-T6EPbWy_t4hDho7d8lZf8D1B8Hkg priority: 102 providerName: ProQuest |
Title | Prediction and Elimination of Physiological Tremor During Control of Teleoperated Robot Based on Deep Learning |
URI | https://www.ncbi.nlm.nih.gov/pubmed/39599135 https://www.proquest.com/docview/3133388060 https://www.proquest.com/docview/3133459055 https://pubmed.ncbi.nlm.nih.gov/PMC11598486 https://doaj.org/article/a4011dd1c37c4280ba61bb95e6297551 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV3da9swED_6AaN7GPuety5oY7CnbJYt2dLDGE2brAxaSkkgb0ay5G5Q7M5NYfvvdyfbWcK2F0MsYez70P0u0v0O4J3DMCCTKh6rSidjoTFBQZ-Lx7xMSkEVe1Xg6T47z04X4utSLndg6LHZC_D2n6kd9ZNatNcffv749Rkd_hNlnJiyf7zFMINRWOpd2MeAlFMjgzOx3kxIUkzDOlKh7ekHcC_VEgFS6PX2JyoF8v6_l-iNGLV9fnIjIM0ewoMeSbKjTvWPYMfXj-H-Br_gE6gvWtqHIdkzUzs2vQ49vMLvpmLh9Oew-LF5S4du2UmoW2TH3RF2mjbHyIRCIU4Jxy4b26zYBGOfY_iUE-9vWM_RevUUFrPp_Ph03DdYGJeYFa9wCa4QMKa5zrXN0TuzjEhCTaaFL5X0HtGOVd4JZ7x16MjeVkq72OUVISXJ02ewVze1fwHMZU4riUO2lCJTlXUGkQw3wnAEHdxE8HYQcHHT8WgUmH-QQoq1QiKYkOjXE4j6Otxo2qui96TCYEbIneNlmpM1xdZk3FotfUZFwpJH8J4UV5DJoHZK09cZ4HsS1VVxhBBF4NcmSQSHg26LwfCKlJO5qDiLI3izHkafo40UU_vmrpsjpI6ljOB5Zwrrdx4sKgK1ZSRbH7U9Un__Fni9EZxrJVT28r8PfQUHCYIqqoXk6hD2Vu2df42gaGVHsJsvc7yq2ZcR7E-m5xeXo_AHwyg4w28Hpg1W |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiDeBAgaBOEXNw07iA0Jtt8uWPoTQVurN2LHTVkLJsrsV4k_xG5lxHuwKiVuPu2NFjmc880088xngrcUwIJIqCotKJiGXmKDgnovCuExKTh17lefpPj7JJqf885k424DffS8MlVX2PtE7atuU9I18O8VkiohLsujj7EdIt0bR6Wp_hUZrFofu109M2RYfDkao33dJMt6f7k3C7laBsMRUcIl-p0KUlOYylyZHk8wyYsbUmeSuLIRzGOJN4Sy32hmL1utMVUgb2bwieCDiFJ97A27yFCM5daaPPw0JHs2wZS9CYbS9wPCH6IBoUFdinr8a4N8AsBIB16szV8Ld-B7c7XAq22kN6z5suPoB3FlhL3wI9Zc5nfKQZpmuLdv_7m8I87-bivna0t61sumcSnrZyHdFsr22QJ6GTTHuNTOidnaWfW1Ms2S7GFktw6eMnJuxjgH2_BGcXstCP4bNuqndU2A2s7IQKDKl4FlRGasRJ8Wa6xghTawDeNMvsJq1LB0KsxvSghq0EMAuLf0wgIi1_R_N_Fx1-1RpzDdja-MyzclWI6Oz2BgpXEYtyCIO4D0pTtH2R-2UuutiwHkSkZbaQQDE8W2TJICtXreq8wsL9deKA3g9iHFH0zGNrl1z1Y7hQkZCBPCkNYVhzqkUCOhTlBRrRrL2UuuS-vLCs4Yj9JcFL7Jn_5_XK7g1mR4fqaODk8PncDtBDEetl3GxBZvL-ZV7gRhsaV56w2fw7bp32h8UtUNm |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTkLwgPgmMMAgEE9R82En8QNC69pqY1BVUyftzdixM5BQUtpOiH-Nv467fNEKibc9trYix3e--1189zuANxbdgIiKwM8KGflcYoCCZy7wwzzKOVXsFTVP9-dZcnzOP16Iiz343dXCUFplZxNrQ22rnL6RD2MMpoi4JAmGRZsWMR9PPyx_-NRBim5au3YajYqcul8_MXxbvz8Zo6zfRtF0sjg69tsOA36OYeEGbVCBiClOZSpNiuqZJMSSqRPJXZ4J59Ddm8xZbrUzFjXZmSKTNrBpQVBBhDE-9wbspxQVDWB_NJnNz_pwj9bbcBnFsQyGa3SGiBWIFHXLA9aNAv51B1v-cDdXc8v5Te_CnRa1ssNGze7Bnivvw-0tLsMHUM5XdOdDcma6tGzyve4XVv-uClZnmnaGli1WlODLxnWNJDtq0uVp2gK9YLUkomdn2Vllqg0boZ-1DJ8ydm7JWj7Yy4dwfi1b_QgGZVW6J8BsYmUmcMjkgidZYaxG1BRqrkMEOKH24HW3wWrZcHYojHVICqqXggcj2vp-AtFs139Uq0vVnlqlMfoMrQ3zOCXNDYxOQmOkcAkVJIvQg3ckOEXGAKWT67amAddJtFrqEOEQx7eNIg8OOtmq1kqs1V-d9uBVP4znmy5tdOmqq2YOFzIQwoPHjSr0a46lQHgf40i2oyQ7L7U7Un77WnOIYyAgM54lT_-_rpdwE0-Z-nQyO30GtyIEdFSHGWYHMNisrtxzBGQb86LVfAZfrvuw_QF2Dkj4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+and+Elimination+of+Physiological+Tremor+During+Control+of+Teleoperated+Robot+Based+on+Deep+Learning&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Chen%2C+Juntao&rft.au=Zhang%2C+Zhiqing&rft.au=Guan%2C+Wei&rft.au=Cao%2C+Xinxin&rft.date=2024-11-18&rft.eissn=1424-8220&rft.volume=24&rft.issue=22&rft_id=info:doi/10.3390%2Fs24227359&rft_id=info%3Apmid%2F39599135&rft.externalDocID=39599135 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |