Prediction and Elimination of Physiological Tremor During Control of Teleoperated Robot Based on Deep Learning

Currently, teleoperated robots, with the operator’s input, can fully perceive unknown factors in a complex environment and have strong environmental interaction and perception abilities. However, physiological tremors in the human hand can seriously affect the accuracy of processes that require high...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 24; no. 22; p. 7359
Main Authors Chen, Juntao, Zhang, Zhiqing, Guan, Wei, Cao, Xinxin, Liang, Ke
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 18.11.2024
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Currently, teleoperated robots, with the operator’s input, can fully perceive unknown factors in a complex environment and have strong environmental interaction and perception abilities. However, physiological tremors in the human hand can seriously affect the accuracy of processes that require high-precision control. Therefore, this paper proposes an EEMD-IWOA-LSTM model, which can decompose the physiological tremor of the hand into several intrinsic modal components (IMF) by using the EEMD decomposition strategy and convert the complex nonlinear and non-stationary physiological tremor curve of the human hand into multiple simple sequences. An LSTM neural network is used to build a prediction model for each (IMF) component, and an IWOA is proposed to optimize the model, thereby improving the prediction accuracy of the physiological tremor and eliminating it. At the same time, the prediction results of this model are compared with those of different models, and the results of EEMD-IWOA-LSTM presented in this study show obvious superior performance. In the two examples, the MSE of the prediction model proposed are 0.1148 and 0.00623, respectively. The defibrillation model proposed in this study can effectively eliminate the physiological tremor of the human hand during teleoperation and improve the control accuracy of the robot during teleoperation.
AbstractList Currently, teleoperated robots, with the operator's input, can fully perceive unknown factors in a complex environment and have strong environmental interaction and perception abilities. However, physiological tremors in the human hand can seriously affect the accuracy of processes that require high-precision control. Therefore, this paper proposes an EEMD-IWOA-LSTM model, which can decompose the physiological tremor of the hand into several intrinsic modal components (IMF) by using the EEMD decomposition strategy and convert the complex nonlinear and non-stationary physiological tremor curve of the human hand into multiple simple sequences. An LSTM neural network is used to build a prediction model for each (IMF) component, and an IWOA is proposed to optimize the model, thereby improving the prediction accuracy of the physiological tremor and eliminating it. At the same time, the prediction results of this model are compared with those of different models, and the results of EEMD-IWOA-LSTM presented in this study show obvious superior performance. In the two examples, the MSE of the prediction model proposed are 0.1148 and 0.00623, respectively. The defibrillation model proposed in this study can effectively eliminate the physiological tremor of the human hand during teleoperation and improve the control accuracy of the robot during teleoperation.Currently, teleoperated robots, with the operator's input, can fully perceive unknown factors in a complex environment and have strong environmental interaction and perception abilities. However, physiological tremors in the human hand can seriously affect the accuracy of processes that require high-precision control. Therefore, this paper proposes an EEMD-IWOA-LSTM model, which can decompose the physiological tremor of the hand into several intrinsic modal components (IMF) by using the EEMD decomposition strategy and convert the complex nonlinear and non-stationary physiological tremor curve of the human hand into multiple simple sequences. An LSTM neural network is used to build a prediction model for each (IMF) component, and an IWOA is proposed to optimize the model, thereby improving the prediction accuracy of the physiological tremor and eliminating it. At the same time, the prediction results of this model are compared with those of different models, and the results of EEMD-IWOA-LSTM presented in this study show obvious superior performance. In the two examples, the MSE of the prediction model proposed are 0.1148 and 0.00623, respectively. The defibrillation model proposed in this study can effectively eliminate the physiological tremor of the human hand during teleoperation and improve the control accuracy of the robot during teleoperation.
Currently, teleoperated robots, with the operator's input, can fully perceive unknown factors in a complex environment and have strong environmental interaction and perception abilities. However, physiological tremors in the human hand can seriously affect the accuracy of processes that require high-precision control. Therefore, this paper proposes an EEMD-IWOA-LSTM model, which can decompose the physiological tremor of the hand into several intrinsic modal components (IMF) by using the EEMD decomposition strategy and convert the complex nonlinear and non-stationary physiological tremor curve of the human hand into multiple simple sequences. An LSTM neural network is used to build a prediction model for each (IMF) component, and an IWOA is proposed to optimize the model, thereby improving the prediction accuracy of the physiological tremor and eliminating it. At the same time, the prediction results of this model are compared with those of different models, and the results of EEMD-IWOA-LSTM presented in this study show obvious superior performance. In the two examples, the MSE of the prediction model proposed are 0.1148 and 0.00623, respectively. The defibrillation model proposed in this study can effectively eliminate the physiological tremor of the human hand during teleoperation and improve the control accuracy of the robot during teleoperation.
Audience Academic
Author Guan, Wei
Liang, Ke
Zhang, Zhiqing
Cao, Xinxin
Chen, Juntao
AuthorAffiliation 1 College of Mechanical Engineering, Guangxi University, Nanning 530004, China
3 Guangxi Key Laboratory of Manufacturing System & Advanced Manufacturing Technology, School of Mechanical Engineering, Guangxi University, Nanning 530004, China
2 College of Mechanical and Automotive Engineering, Guangxi University of Science and Technology, Liuzhou 545000, China
AuthorAffiliation_xml – name: 1 College of Mechanical Engineering, Guangxi University, Nanning 530004, China
– name: 3 Guangxi Key Laboratory of Manufacturing System & Advanced Manufacturing Technology, School of Mechanical Engineering, Guangxi University, Nanning 530004, China
– name: 2 College of Mechanical and Automotive Engineering, Guangxi University of Science and Technology, Liuzhou 545000, China
Author_xml – sequence: 1
  givenname: Juntao
  surname: Chen
  fullname: Chen, Juntao
– sequence: 2
  givenname: Zhiqing
  orcidid: 0000-0002-5999-958X
  surname: Zhang
  fullname: Zhang, Zhiqing
– sequence: 3
  givenname: Wei
  surname: Guan
  fullname: Guan, Wei
– sequence: 4
  givenname: Xinxin
  surname: Cao
  fullname: Cao, Xinxin
– sequence: 5
  givenname: Ke
  orcidid: 0000-0002-3785-4806
  surname: Liang
  fullname: Liang, Ke
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39599135$$D View this record in MEDLINE/PubMed
BookMark eNpdkk1v1DAQhi1URD_gwB9AkbjQwxZ_JvYJlW0LlVaiQsvZcuxJ6lViL3aC1H-Pu1tWLfLB9viZ1zOj9xQdhRgAofcEXzCm8OdMOaUNE-oVOiGc8oWkFB89Ox-j05w3GFPGmHyDjpkSShEmTlC4S-C8nXwMlQmuuh786IPZ3WNX3d0_ZB-H2HtrhmqdYIypupqTD321jGFKcXjE1jBA3EIyE7jqZ2zjVH01uZyLyhXAtlqBSaEkvUWvOzNkePe0n6FfN9fr5ffF6se32-XlamF5raYFwR2WmDWqUW2DBanrUq0yteJgpQCoiWglOO4MtK5RDNpOKodd02EqakHYGbrd67poNnqb_GjSg47G610gpl6bNHk7gDYcE-IcsayxnErcmpq0rRJQU9WIndaXvdZ2bkdwFkrbZngh-vIl-Hvdxz-aEKEkl3VR-PSkkOLvGfKkR58tDIMJEOesGWGMC4WFKOjH_9BNnFMos9pRTEpc40Jd7KnelA586GL52JblYPS2mKPzJX4pieRlfJSWhA_PezgU_88IBTjfAzbFnBN0B4Rg_WgyfTAZ-wu_JcHw
Cites_doi 10.1109/ROBOT.2007.363056
10.1007/s00521-023-08917-y
10.1088/1742-6596/2503/1/012039
10.1109/ACCESS.2020.2983588
10.3390/rs15082076
10.1007/s10439-018-2094-7
10.1109/TSMC.2017.2694020
10.3389/fmars.2023.1089357
10.1016/j.advengsoft.2016.01.008
10.1007/s12559-022-10099-z
10.1109/JSEN.2023.3279555
10.1007/s00500-023-09519-5
10.1016/j.measurement.2023.113544
10.1016/j.chaos.2023.114394
10.1007/s11633-022-1332-5
10.1109/TASE.2020.3041427
10.1109/JPROC.2022.3169466
10.1109/IEMBS.2008.4649569
10.1002/rcs.1741
10.1016/j.oceaneng.2024.117398
10.1007/s12206-023-0544-0
10.1109/TFUZZ.2019.2941173
10.1109/JSEN.2013.2271737
10.1002/aisy.202300299
10.1007/s00423-022-02710-6
10.1007/s00034-023-02319-0
10.1016/j.jmsy.2021.02.013
10.1109/10.841338
10.1109/ACCESS.2023.3276628
10.1002/aisy.202200277
10.1109/CEC.2007.4424748
10.1016/j.envres.2023.116365
10.1109/ACCESS.2022.3203813
10.1109/MCS.2022.3216653
10.1007/s00521-017-3210-6
10.1016/j.euromechsol.2018.10.004
10.1371/journal.pone.0267041
10.1002/rcs.340
10.1007/s10710-024-09481-7
10.1142/S1793536909000047
10.1016/j.asoc.2021.107863
10.5694/mja2.51726
10.1109/ACCESS.2018.2852323
10.1016/j.postharvbio.2024.112874
10.1038/s41598-024-51359-2
10.1016/j.knosys.2019.105295
10.1016/j.neucom.2019.04.017
10.1186/s13638-019-1462-9
10.1109/ACCESS.2017.2764471
10.1007/s11356-022-22959-0
10.3390/s21124196
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2024 by the authors. 2024
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2024 by the authors. 2024
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s24227359
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
Medical Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

Publicly Available Content Database

CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_a4011dd1c37c4280ba61bb95e6297551
PMC11598486
A818470522
39599135
10_3390_s24227359
Genre Journal Article
GrantInformation_xml – fundername: This research was funded by the National Natural Science Foundation of China(Grant No.U23A202599), Guangxi Science and Technology Major Project(Grant No. Guike AA23062074)
  grantid: Grant No.U23A202599 and Grant No. Guike AA23062074
– fundername: Guangxi Science and Technology Major Project
  grantid: Guike AA23062074
– fundername: Guangxi Science and Technology Base and Talent Project
  grantid: Guike AD22035180
– fundername: National Natural Science Foundation of China
  grantid: U23A202599
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ARAPS
CGR
CUY
CVF
ECM
EIF
HCIFZ
KB.
M7S
NPM
PDBOC
PMFND
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c469t-10f08037979b7051669139a694ec85ee615b8ed4daebd793ebf89d0d7f0256513
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:30:57 EDT 2025
Thu Aug 21 18:35:01 EDT 2025
Fri Jul 11 16:57:53 EDT 2025
Fri Jul 25 23:30:16 EDT 2025
Tue Jun 10 21:06:16 EDT 2025
Wed Feb 19 02:03:57 EST 2025
Tue Jul 01 03:51:20 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 22
Keywords EEMD-IWOA-LSTM
physiological tremor
teleoperated robot
control accuracy
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c469t-10f08037979b7051669139a694ec85ee615b8ed4daebd793ebf89d0d7f0256513
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5999-958X
0000-0002-3785-4806
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s24227359
PMID 39599135
PQID 3133388060
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_a4011dd1c37c4280ba61bb95e6297551
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11598486
proquest_miscellaneous_3133459055
proquest_journals_3133388060
gale_infotracacademiconefile_A818470522
pubmed_primary_39599135
crossref_primary_10_3390_s24227359
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20241118
PublicationDateYYYYMMDD 2024-11-18
PublicationDate_xml – month: 11
  year: 2024
  text: 20241118
  day: 18
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2024
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Kebria (ref_35) 2020; 28
Yang (ref_19) 2018; 48
Zhang (ref_36) 2022; 19
Marvi (ref_2) 2023; 5
Wen (ref_41) 2023; 11
Guedes (ref_32) 2024; 28
Chen (ref_43) 2024; 301
Elmogy (ref_48) 2023; 35
Veluvolu (ref_13) 2010; 6
Liu (ref_46) 2022; 10
ref_17
Che (ref_34) 2024; 178
McGurrin (ref_37) 2021; 9
Iordachita (ref_11) 2022; 110
Scheidegger (ref_8) 2018; 46
Tan (ref_1) 2022; 217
Yang (ref_26) 2020; 8
Li (ref_30) 2023; 2503
Solanes (ref_5) 2021; 59
ref_25
ref_23
Lu (ref_12) 2019; 10
Shrivastava (ref_50) 2019; 73
Farzad (ref_52) 2019; 31
Li (ref_4) 2023; 14
Najafinejad (ref_10) 2023; 221
ref_27
Nakauchi (ref_7) 2022; 407
Sang (ref_16) 2016; 12
Wu (ref_24) 2009; 1
Wang (ref_29) 2023; 232
Li (ref_42) 2023; 23
Chakraborty (ref_49) 2023; 15
Gonzalez (ref_14) 2000; 47
ref_33
Shin (ref_38) 2023; 37
Lin (ref_40) 2020; 192
Tatinati (ref_15) 2013; 13
Yang (ref_28) 2023; 30
Adhikari (ref_20) 2022; 19
ref_39
Lin (ref_51) 2019; 356
Qu (ref_3) 2024; 6
(ref_53) 2017; 5
Yang (ref_21) 2021; 112
Wang (ref_18) 2018; 6
Pretorius (ref_31) 2024; 25
ref_47
ref_45
Hoffman (ref_22) 2023; 42
Mirjalili (ref_44) 2016; 95
ref_9
Rubagotti (ref_6) 2023; 43
References_xml – ident: ref_9
  doi: 10.1109/ROBOT.2007.363056
– volume: 35
  start-page: 22671
  year: 2023
  ident: ref_48
  article-title: ANWOA: An adaptive nonlinear whale optimization algorithm for high-dimensional optimization problems
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-023-08917-y
– volume: 2503
  start-page: 012039
  year: 2023
  ident: ref_30
  article-title: Short-term power forecasting model based on GWO-LSTM network
  publication-title: J. Phys. Conf. Ser. IOP Publ.
  doi: 10.1088/1742-6596/2503/1/012039
– volume: 8
  start-page: 61915
  year: 2020
  ident: ref_26
  article-title: Hybrid method for short-term time series forecasting based on EEMD
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2983588
– ident: ref_27
  doi: 10.3390/rs15082076
– volume: 46
  start-page: 1568
  year: 2018
  ident: ref_8
  article-title: Neuromonitoring During Robotic Cochlear Implantation: Initial Clinical Experience
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-018-2094-7
– volume: 48
  start-page: 1759
  year: 2018
  ident: ref_19
  article-title: Personalized Variable Gain Control with Tremor Attenuation for Robot Teleoperation
  publication-title: IEEE Trans. Syst. Man Cybern.-Syst.
  doi: 10.1109/TSMC.2017.2694020
– ident: ref_25
  doi: 10.3389/fmars.2023.1089357
– volume: 95
  start-page: 51
  year: 2016
  ident: ref_44
  article-title: The whale optimization algorithm
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2016.01.008
– volume: 15
  start-page: 1497
  year: 2023
  ident: ref_49
  article-title: Improving whale optimization algorithm with elite strategy and its application to engineering-design and cloud task scheduling problems
  publication-title: Cogn. Comput.
  doi: 10.1007/s12559-022-10099-z
– volume: 23
  start-page: 16332
  year: 2023
  ident: ref_42
  article-title: Gesture Recognition Based on EEMD and Cosine Laplacian Eigenmap
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2023.3279555
– volume: 28
  start-page: 6709
  year: 2024
  ident: ref_32
  article-title: Three-phase induction motor fault identification using optimization algorithms and intelligent systems
  publication-title: Soft Comput.
  doi: 10.1007/s00500-023-09519-5
– volume: 221
  start-page: 10
  year: 2023
  ident: ref_10
  article-title: Detection and minimizing the error caused by hand tremors using a leap motion sensor in operating a surgeon robot
  publication-title: Measurement
  doi: 10.1016/j.measurement.2023.113544
– volume: 178
  start-page: 114394
  year: 2024
  ident: ref_34
  article-title: Optimizing LSTM with multi-strategy improved WOA for robust prediction of high-speed machine tests data
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2023.114394
– volume: 19
  start-page: 288
  year: 2022
  ident: ref_36
  article-title: From Teleoperation to Autonomous Robot-assisted Microsurgery: A Survey
  publication-title: Mach. Intell. Res.
  doi: 10.1007/s11633-022-1332-5
– volume: 19
  start-page: 497
  year: 2022
  ident: ref_20
  article-title: Physiological Tremor Filtering Without Phase Distortion for Robotic Microsurgery
  publication-title: IEEE Trans. Autom. Sci. Eng.
  doi: 10.1109/TASE.2020.3041427
– volume: 110
  start-page: 893
  year: 2022
  ident: ref_11
  article-title: Robotic Assistance for Intraocular Microsurgery: Challenges and Perspectives
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2022.3169466
– ident: ref_17
  doi: 10.1109/IEMBS.2008.4649569
– volume: 12
  start-page: 658
  year: 2016
  ident: ref_16
  article-title: A zero phase adaptive fuzzy Kalman filter for physiological tremor suppression in robotically assisted minimally invasive surgery
  publication-title: Int. J. Med. Robot. Comput. Assist. Surg.
  doi: 10.1002/rcs.1741
– volume: 301
  start-page: 117398
  year: 2024
  ident: ref_43
  article-title: Short-term forecasting for ship fuel consumption based on deep learning
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2024.117398
– volume: 37
  start-page: 3205
  year: 2023
  ident: ref_38
  article-title: Stretchable optical fiber strain sensor comprising zinc oxide and PDMS for human motion monitoring
  publication-title: J. Mech. Sci. Technol.
  doi: 10.1007/s12206-023-0544-0
– volume: 28
  start-page: 2543
  year: 2020
  ident: ref_35
  article-title: Adaptive Type-2 Fuzzy Neural-Network Control for Teleoperation Systems with Delay and Uncertainties
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2019.2941173
– volume: 13
  start-page: 4977
  year: 2013
  ident: ref_15
  article-title: Physiological Tremor Estimation with Autoregressive (AR) Model and Kalman Filter for Robotics Applications
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2013.2271737
– volume: 6
  start-page: 37
  year: 2024
  ident: ref_3
  article-title: Recent Advances on Underwater Soft Robots
  publication-title: Adv. Intell. Syst.
  doi: 10.1002/aisy.202300299
– volume: 407
  start-page: 3783
  year: 2022
  ident: ref_7
  article-title: Establishment of a new practical telesurgical platform using the hinotori™ Surgical Robot System: A preclinical study
  publication-title: Langenbecks Arch. Surg.
  doi: 10.1007/s00423-022-02710-6
– volume: 42
  start-page: 4669
  year: 2023
  ident: ref_22
  article-title: Local Change Point Detection and Cleaning of EEMD Signals
  publication-title: Circuits Syst. Signal Process.
  doi: 10.1007/s00034-023-02319-0
– volume: 59
  start-page: 283
  year: 2021
  ident: ref_5
  article-title: Advanced teleoperation and control system for industrial robots based on augmented virtuality and haptic feedback
  publication-title: J. Manuf. Syst.
  doi: 10.1016/j.jmsy.2021.02.013
– volume: 47
  start-page: 664
  year: 2000
  ident: ref_14
  article-title: Optimal digital filtering for tremor suppression
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/10.841338
– volume: 11
  start-page: 48322
  year: 2023
  ident: ref_41
  article-title: Time series prediction based on LSTM-attention-LSTM model
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3276628
– volume: 5
  start-page: 1
  year: 2023
  ident: ref_2
  article-title: Opportunities and Challenges in Space Robotics
  publication-title: Adv. Intell. Syst.
  doi: 10.1002/aisy.202200277
– ident: ref_45
  doi: 10.1109/CEC.2007.4424748
– volume: 232
  start-page: 14
  year: 2023
  ident: ref_29
  article-title: An AQI decomposition ensemble model based on SSA-LSTM using improved AMSSA-VMD decomposition reconstruction technique
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2023.116365
– volume: 10
  start-page: 95197
  year: 2022
  ident: ref_46
  article-title: Improved African Vulture Optimization Algorithm Based on Quasi-Oppositional Differential Evolution Operator
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3203813
– volume: 43
  start-page: 44
  year: 2023
  ident: ref_6
  article-title: Shared Control of Robot Manipulators with Obstacle Avoidance: A Deep Reinforcement Learning Approach
  publication-title: IEEE Control Syst. Mag.
  doi: 10.1109/MCS.2022.3216653
– volume: 31
  start-page: 2507
  year: 2019
  ident: ref_52
  article-title: A comparative performance analysis of different activation functions in LSTM networks for classification
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-017-3210-6
– volume: 14
  start-page: 10
  year: 2023
  ident: ref_4
  article-title: Bioinspired soft robots for deep-sea exploration
  publication-title: Nat. Commun.
– volume: 73
  start-page: 381
  year: 2019
  ident: ref_50
  article-title: A comparative study of EMD and EEMD approaches for identifying chatter frequency in CNC turning
  publication-title: Eur. J. Mech.-A/Solids
  doi: 10.1016/j.euromechsol.2018.10.004
– ident: ref_47
  doi: 10.1371/journal.pone.0267041
– volume: 6
  start-page: 334
  year: 2010
  ident: ref_13
  article-title: Estimation and filtering of physiological tremor for real-time compensation in surgical robotics applications
  publication-title: Int. J. Med. Robot. Comput. Assist. Surg.
  doi: 10.1002/rcs.340
– volume: 25
  start-page: 7
  year: 2024
  ident: ref_31
  article-title: Neural network crossover in genetic algorithms using genetic programming
  publication-title: Genet. Program. Evolvable Mach.
  doi: 10.1007/s10710-024-09481-7
– volume: 9
  start-page: 2700110
  year: 2021
  ident: ref_37
  article-title: Quantifying Tremor in Essential Tremor Using Inertial Sensors-Validation of an Algorithm
  publication-title: IEEE J. Transl. Eng. Health Med.-JTEHM
– volume: 1
  start-page: 1
  year: 2009
  ident: ref_24
  article-title: Ensemble empirical mode decomposition: A noise-assisted data analysis method
  publication-title: Adv. Adapt. Data Anal.
  doi: 10.1142/S1793536909000047
– volume: 112
  start-page: 16
  year: 2021
  ident: ref_21
  article-title: Broad learning extreme learning machine for forecasting and eliminating tremors in teleoperation
  publication-title: Appl. Soft. Comput.
  doi: 10.1016/j.asoc.2021.107863
– volume: 217
  start-page: 391
  year: 2022
  ident: ref_1
  article-title: Robotic surgery: Getting the evidence right
  publication-title: Med. J. Aust.
  doi: 10.5694/mja2.51726
– volume: 6
  start-page: 42216
  year: 2018
  ident: ref_18
  article-title: Multi-Step Prediction of Physiological Tremor with Random Quaternion Neurons for Surgical Robotics Applications
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2852323
– ident: ref_23
  doi: 10.1016/j.postharvbio.2024.112874
– ident: ref_33
  doi: 10.1038/s41598-024-51359-2
– volume: 192
  start-page: 105295
  year: 2020
  ident: ref_40
  article-title: Three-domain fuzzy wavelet broad learning system for tremor estimation
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2019.105295
– volume: 356
  start-page: 170
  year: 2019
  ident: ref_51
  article-title: A wavelet broad learning adaptive filter for forecasting and cancelling the physiological tremor in teleoperation
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.04.017
– volume: 10
  start-page: 140
  year: 2019
  ident: ref_12
  article-title: Robot indoor location modeling and simulation based on Kalman filtering
  publication-title: EURASIP J. Wirel. Commun. Netw.
  doi: 10.1186/s13638-019-1462-9
– volume: 5
  start-page: 23320
  year: 2017
  ident: ref_53
  article-title: Hand tremor based biometric recognition using leap motion device
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2764471
– volume: 30
  start-page: 11689
  year: 2023
  ident: ref_28
  article-title: A novel model based on CEEMDAN, IWOA, and LSTM for ultra-short-term wind power forecasting
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-022-22959-0
– ident: ref_39
  doi: 10.3390/s21124196
SSID ssj0023338
Score 2.4391506
Snippet Currently, teleoperated robots, with the operator’s input, can fully perceive unknown factors in a complex environment and have strong environmental...
Currently, teleoperated robots, with the operator's input, can fully perceive unknown factors in a complex environment and have strong environmental...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 7359
SubjectTerms Accuracy
Algorithms
Analysis
control accuracy
Decomposition
Deep Learning
EEMD-IWOA-LSTM
Hand - physiology
Humans
Mathematical models
Neural networks
Neural Networks, Computer
Optimization algorithms
physiological tremor
Physiology
Remote control
Robotics - methods
Robots
teleoperated robot
Time series
Tremor - physiopathology
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEB1KTu2hNG3aOh9FCYWeTCxbkqVjPgmBhFI2kJuQLDkJFHvZbP5_ZmTv4qWHXHrclXaRZzR6b_DME8DPgDAgy7bIdWvKXBhMUDDmipw3ZSOoY69NOt03t-rqTlzfy_vJVV9UEzbIAw-GO3aYAPAQeFPV9OPCO8W9NzIq6glNzdMlYt4qmRpTrQozr0FHqMKk_vgZgQhxmgRJJ-iTRPr_PYonWLRZJzkBnstP8HFkjOxkWOk2vIvdZ_gw0RH8At3vBb1vIRsz1wV28Tfd1ZU-9y1LVZ6rQ47NFlRcy85TfyI7G0rVadoMEaifk8hyDOxP7_slO0WMCwz_5TzGORu1WB924O7yYnZ2lY8XKeQNZr9LPGpbJIZVbWrja4xCpUgM1CkjYqNljMhqvI5BBBd9wICNvtUmFKFuiRFJXn2Fra7v4ndgQQWjJQ75RgqlWx8cMhbuhONILrjL4GhlYDsf9DIs5hnkBbv2QganZPr1BJK4Tl-g4-3oePuW4zP4RY6zFIjoncaN_QS4TpK0sidIRQQ-bVlmsL_yrR0j9NlWnPaILlSRweF6GGOLXpi4LvYvwxwhTSFlBt-GrbBec2UkUusKR_TGJtl4qM2R7ukx6XcjCTdaaLX7P8ywB-9L5FnUHsn1PmwtFy_xAHnS0v9IIfEKcxwPWA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED_BeIEHtPEZ2JBBSDxFixPbsZ-mfZUJCYRQJ-3NsmNnQ0JJabv_nzsnDa2QeGztVo7v63fx3c8AHwOGAVm2Ra5bU-bCYIKCNlfkvCkbQR17beLp_vpNXV2LLzfyZnzhthrLKjc-MTnq0Df0jvy4wmSKiEtUcbL4ndOtUXS6Ol6h8RAecYw0VNKlZ5-nhIt-MbAJVZjaH68wHGG0JlrSrRiUqPr_dchbEWm3WnIr_Mz24emIG9npIOgDeBC7Z_Bki03wOXTfl3TqQjvNXBfY5a90Y1f63Lcs1XpuXB2bL6nEll2kLkV2PhSs07Q5xqF-QVTLMbAfve_X7AwjXWD4LxcxLtjIyHr7Aq5nl_Pzq3y8TiFvMAdeo8NtER5WtamNr9EWlSJKUKeMiI2WMSK28ToGEVz0Ac02-labUIS6JVwkefUS9rq-i6-BBRWMljjkGymUbn1wiFu4E44jxOAugw-bDbaLgTXDYrZBUrCTFDI4o62fJhDRdfqiX97a0W6sw_yPh8CbqibdKbxT3Hsjo6KWYMkz-ESCs2SOKJ3GjV0FuE4itrKnCEgEPm1ZZnC4ka0d7XRl_2pVBu-nYbQwOjZxXezvhzlCmkLKDF4NqjCtuTISAXaFI3pHSXYeanek-3mXWLwRihsttHrz_3W9hccl4ihqf-T6EPbWy_t4hDho7d8lZf8D1B8Hkg
  priority: 102
  providerName: ProQuest
Title Prediction and Elimination of Physiological Tremor During Control of Teleoperated Robot Based on Deep Learning
URI https://www.ncbi.nlm.nih.gov/pubmed/39599135
https://www.proquest.com/docview/3133388060
https://www.proquest.com/docview/3133459055
https://pubmed.ncbi.nlm.nih.gov/PMC11598486
https://doaj.org/article/a4011dd1c37c4280ba61bb95e6297551
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV3da9swED_6AaN7GPuety5oY7CnbJYt2dLDGE2brAxaSkkgb0ay5G5Q7M5NYfvvdyfbWcK2F0MsYez70P0u0v0O4J3DMCCTKh6rSidjoTFBQZ-Lx7xMSkEVe1Xg6T47z04X4utSLndg6LHZC_D2n6kd9ZNatNcffv749Rkd_hNlnJiyf7zFMINRWOpd2MeAlFMjgzOx3kxIUkzDOlKh7ekHcC_VEgFS6PX2JyoF8v6_l-iNGLV9fnIjIM0ewoMeSbKjTvWPYMfXj-H-Br_gE6gvWtqHIdkzUzs2vQ49vMLvpmLh9Oew-LF5S4du2UmoW2TH3RF2mjbHyIRCIU4Jxy4b26zYBGOfY_iUE-9vWM_RevUUFrPp_Ph03DdYGJeYFa9wCa4QMKa5zrXN0TuzjEhCTaaFL5X0HtGOVd4JZ7x16MjeVkq72OUVISXJ02ewVze1fwHMZU4riUO2lCJTlXUGkQw3wnAEHdxE8HYQcHHT8WgUmH-QQoq1QiKYkOjXE4j6Otxo2qui96TCYEbIneNlmpM1xdZk3FotfUZFwpJH8J4UV5DJoHZK09cZ4HsS1VVxhBBF4NcmSQSHg26LwfCKlJO5qDiLI3izHkafo40UU_vmrpsjpI6ljOB5Zwrrdx4sKgK1ZSRbH7U9Un__Fni9EZxrJVT28r8PfQUHCYIqqoXk6hD2Vu2df42gaGVHsJsvc7yq2ZcR7E-m5xeXo_AHwyg4w28Hpg1W
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiDeBAgaBOEXNw07iA0Jtt8uWPoTQVurN2LHTVkLJsrsV4k_xG5lxHuwKiVuPu2NFjmc880088xngrcUwIJIqCotKJiGXmKDgnovCuExKTh17lefpPj7JJqf885k424DffS8MlVX2PtE7atuU9I18O8VkiohLsujj7EdIt0bR6Wp_hUZrFofu109M2RYfDkao33dJMt6f7k3C7laBsMRUcIl-p0KUlOYylyZHk8wyYsbUmeSuLIRzGOJN4Sy32hmL1utMVUgb2bwieCDiFJ97A27yFCM5daaPPw0JHs2wZS9CYbS9wPCH6IBoUFdinr8a4N8AsBIB16szV8Ld-B7c7XAq22kN6z5suPoB3FlhL3wI9Zc5nfKQZpmuLdv_7m8I87-bivna0t61sumcSnrZyHdFsr22QJ6GTTHuNTOidnaWfW1Ms2S7GFktw6eMnJuxjgH2_BGcXstCP4bNuqndU2A2s7IQKDKl4FlRGasRJ8Wa6xghTawDeNMvsJq1LB0KsxvSghq0EMAuLf0wgIi1_R_N_Fx1-1RpzDdja-MyzclWI6Oz2BgpXEYtyCIO4D0pTtH2R-2UuutiwHkSkZbaQQDE8W2TJICtXreq8wsL9deKA3g9iHFH0zGNrl1z1Y7hQkZCBPCkNYVhzqkUCOhTlBRrRrL2UuuS-vLCs4Yj9JcFL7Jn_5_XK7g1mR4fqaODk8PncDtBDEetl3GxBZvL-ZV7gRhsaV56w2fw7bp32h8UtUNm
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTkLwgPgmMMAgEE9R82En8QNC69pqY1BVUyftzdixM5BQUtpOiH-Nv467fNEKibc9trYix3e--1189zuANxbdgIiKwM8KGflcYoCCZy7wwzzKOVXsFTVP9-dZcnzOP16Iiz343dXCUFplZxNrQ22rnL6RD2MMpoi4JAmGRZsWMR9PPyx_-NRBim5au3YajYqcul8_MXxbvz8Zo6zfRtF0sjg69tsOA36OYeEGbVCBiClOZSpNiuqZJMSSqRPJXZ4J59Ddm8xZbrUzFjXZmSKTNrBpQVBBhDE-9wbspxQVDWB_NJnNz_pwj9bbcBnFsQyGa3SGiBWIFHXLA9aNAv51B1v-cDdXc8v5Te_CnRa1ssNGze7Bnivvw-0tLsMHUM5XdOdDcma6tGzyve4XVv-uClZnmnaGli1WlODLxnWNJDtq0uVp2gK9YLUkomdn2Vllqg0boZ-1DJ8ydm7JWj7Yy4dwfi1b_QgGZVW6J8BsYmUmcMjkgidZYaxG1BRqrkMEOKH24HW3wWrZcHYojHVICqqXggcj2vp-AtFs139Uq0vVnlqlMfoMrQ3zOCXNDYxOQmOkcAkVJIvQg3ckOEXGAKWT67amAddJtFrqEOEQx7eNIg8OOtmq1kqs1V-d9uBVP4znmy5tdOmqq2YOFzIQwoPHjSr0a46lQHgf40i2oyQ7L7U7Un77WnOIYyAgM54lT_-_rpdwE0-Z-nQyO30GtyIEdFSHGWYHMNisrtxzBGQb86LVfAZfrvuw_QF2Dkj4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+and+Elimination+of+Physiological+Tremor+During+Control+of+Teleoperated+Robot+Based+on+Deep+Learning&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Chen%2C+Juntao&rft.au=Zhang%2C+Zhiqing&rft.au=Guan%2C+Wei&rft.au=Cao%2C+Xinxin&rft.date=2024-11-18&rft.eissn=1424-8220&rft.volume=24&rft.issue=22&rft_id=info:doi/10.3390%2Fs24227359&rft_id=info%3Apmid%2F39599135&rft.externalDocID=39599135
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon