A Facile Strategy for the Fabrication of Cell‐Laden Porous Alginate Hydrogels based on Two‐Phase Aqueous Emulsions
Porous alginate (Alg) hydrogels possess many advantages as cell carriers. However, current pore generation methods require either complex or harsh fabrication processes, toxic components, or extra purification steps, limiting the feasibility and affecting the cellular survival and function. In this...
Saved in:
Published in | Advanced functional materials Vol. 33; no. 35 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
29.08.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 1616-301X 1616-3028 |
DOI | 10.1002/adfm.202214129 |
Cover
Loading…
Abstract | Porous alginate (Alg) hydrogels possess many advantages as cell carriers. However, current pore generation methods require either complex or harsh fabrication processes, toxic components, or extra purification steps, limiting the feasibility and affecting the cellular survival and function. In this study, a simple and cell‐friendly approach to generate highly porous cell‐laden Alg hydrogels based on two‐phase aqueous emulsions is reported. The pre‐gel solutions, which contain two immiscible aqueous phases of Alg and caseinate (Cas), are cross‐linked by calcium ions. The porous structure of the hydrogel construct is formed by subsequently removing the Cas phase from the ion‐cross‐linked Alg hydrogel. Those porous Alg hydrogels possess heterogeneous pores ≈100 µm and interconnected paths. Human white adipose progenitors (WAPs) encapsulated in these hydrogels self‐organize into spheroids and show enhanced viability, proliferation, and adipogenic differentiation, compared to non‐porous constructs. As a proof of concept, this porous Alg hydrogel platform is employed to prepare core‐shell spheres for coculture of WAPs and colon cancer cells, with WAP clusters distributed around cancer cell aggregates, to investigate cellular crosstalk. This efficacious approach is believed to provide a robust and versatile platform for engineering porous‐structured Alg hydrogels for applications as cell carriers and in disease modeling.
A simple and biocompatible approach to generate porous cell‐laden alginate (Alg) hydrogels based on two‐phase aqueous emulsions is developed. The heterogeneous pores, interconnected paths, and bioinert matrix of porous Alg hydrogels facilitate encapsulated cell survival, proliferation, in situ spheroid organization, and differentiation. This study also provides a feasible platform to investigate adipocyte and cancer cell crosstalk. |
---|---|
AbstractList | Porous alginate hydrogels possess many advantages as cell carriers. However, current pore generation methods require either complex or harsh fabrication processes, toxic components, or extra purification steps, limiting the feasibility and affecting the cellular survival and function. In this study, a simple and cell-friendly approach to generate highly porous cell-laden alginate hydrogels based on two-phase aqueous emulsions is reported. The pre-gel solutions, which contain two immiscible aqueous phases of alginate and caseinate, are crosslinked by calcium ions. The porous structure of the hydrogel construct is formed by subsequently removing the caseinate phase from the ion-crosslinked alginate hydrogel. Those porous alginate hydrogels possess heterogeneous pores around 100 μm and interconnected paths. Human white adipose progenitors (WAPs) encapsulated in these hydrogels self-organize into spheroids and show enhanced viability, proliferation, and adipogenic differentiation, compared to non-porous constructs. As a proof of concept, this porous alginate hydrogel platform is employed to prepare core-shell spheres for coculture of WAPs and colon cancer cells, with WAP clusters distributed around cancer cell aggregates, to investigate cellular crosstalk. This efficacious approach is believed to provide a robust and versatile platform for engineering porous-structured alginate hydrogels for applications as cell carriers and in disease modeling.Porous alginate hydrogels possess many advantages as cell carriers. However, current pore generation methods require either complex or harsh fabrication processes, toxic components, or extra purification steps, limiting the feasibility and affecting the cellular survival and function. In this study, a simple and cell-friendly approach to generate highly porous cell-laden alginate hydrogels based on two-phase aqueous emulsions is reported. The pre-gel solutions, which contain two immiscible aqueous phases of alginate and caseinate, are crosslinked by calcium ions. The porous structure of the hydrogel construct is formed by subsequently removing the caseinate phase from the ion-crosslinked alginate hydrogel. Those porous alginate hydrogels possess heterogeneous pores around 100 μm and interconnected paths. Human white adipose progenitors (WAPs) encapsulated in these hydrogels self-organize into spheroids and show enhanced viability, proliferation, and adipogenic differentiation, compared to non-porous constructs. As a proof of concept, this porous alginate hydrogel platform is employed to prepare core-shell spheres for coculture of WAPs and colon cancer cells, with WAP clusters distributed around cancer cell aggregates, to investigate cellular crosstalk. This efficacious approach is believed to provide a robust and versatile platform for engineering porous-structured alginate hydrogels for applications as cell carriers and in disease modeling. Porous alginate hydrogels possess many advantages as cell carriers. However, current pore generation methods require either complex or harsh fabrication processes, toxic components, or extra purification steps, limiting the feasibility and affecting the cellular survival and function. In this study, a simple and cell-friendly approach to generate highly porous cell-laden alginate hydrogels based on two-phase aqueous emulsions is reported. The pre-gel solutions, which contain two immiscible aqueous phases of alginate and caseinate, are crosslinked by calcium ions. The porous structure of the hydrogel construct is formed by subsequently removing the caseinate phase from the ion-crosslinked alginate hydrogel. Those porous alginate hydrogels possess heterogeneous pores around 100 μm and interconnected paths. Human white adipose progenitors (WAPs) encapsulated in these hydrogels self-organize into spheroids and show enhanced viability, proliferation, and adipogenic differentiation, compared to non-porous constructs. As a proof of concept, this porous alginate hydrogel platform is employed to prepare core-shell spheres for coculture of WAPs and colon cancer cells, with WAP clusters distributed around cancer cell aggregates, to investigate cellular crosstalk. This efficacious approach is believed to provide a robust and versatile platform for engineering porous-structured alginate hydrogels for applications as cell carriers and in disease modeling. Porous alginate hydrogels possess many advantages as cell carriers. However, current pore generation methods require either complex or harsh fabrication processes, toxic components, or extra purification steps, limiting the feasibility and affecting the cellular survival and function. In this study, a simple and cell-friendly approach to generate highly porous cell-laden alginate hydrogels based on two-phase aqueous emulsions is reported. The pre-gel solutions, which contain two immiscible aqueous phases of alginate and caseinate, are crosslinked by calcium ions. The porous structure of the hydrogel construct is formed by subsequently removing the caseinate phase from the ion-crosslinked alginate hydrogel. Those porous alginate hydrogels possess heterogeneous pores around 100 μm and interconnected paths. Human white adipose progenitors (WAPs) encapsulated in these hydrogels self-organize into spheroids and show enhanced viability, proliferation, and adipogenic differentiation, compared to non-porous constructs. As a proof of concept, this porous alginate hydrogel platform is employed to prepare core-shell spheres for coculture of WAPs and colon cancer cells, with WAP clusters distributed around cancer cell aggregates, to investigate cellular crosstalk. This efficacious approach is believed to provide a robust and versatile platform for engineering porous-structured alginate hydrogels for applications as cell carriers and in disease modeling. A simple and biocompatible approach to generate porous cell-laden alginate hydrogels based on two-phase aqueous emulsions is developed. The heterogeneous pores, interconnected paths, and bioinert matrix of porous alginate hydrogels facilitate encapsulated cell survival, proliferation, in situ spheroid organization, and differentiation. This study also provides a feasible platform to investigate adipocyte and cancer cell crosstalk. Porous alginate (Alg) hydrogels possess many advantages as cell carriers. However, current pore generation methods require either complex or harsh fabrication processes, toxic components, or extra purification steps, limiting the feasibility and affecting the cellular survival and function. In this study, a simple and cell‐friendly approach to generate highly porous cell‐laden Alg hydrogels based on two‐phase aqueous emulsions is reported. The pre‐gel solutions, which contain two immiscible aqueous phases of Alg and caseinate (Cas), are cross‐linked by calcium ions. The porous structure of the hydrogel construct is formed by subsequently removing the Cas phase from the ion‐cross‐linked Alg hydrogel. Those porous Alg hydrogels possess heterogeneous pores ≈100 µm and interconnected paths. Human white adipose progenitors (WAPs) encapsulated in these hydrogels self‐organize into spheroids and show enhanced viability, proliferation, and adipogenic differentiation, compared to non‐porous constructs. As a proof of concept, this porous Alg hydrogel platform is employed to prepare core‐shell spheres for coculture of WAPs and colon cancer cells, with WAP clusters distributed around cancer cell aggregates, to investigate cellular crosstalk. This efficacious approach is believed to provide a robust and versatile platform for engineering porous‐structured Alg hydrogels for applications as cell carriers and in disease modeling. Porous alginate (Alg) hydrogels possess many advantages as cell carriers. However, current pore generation methods require either complex or harsh fabrication processes, toxic components, or extra purification steps, limiting the feasibility and affecting the cellular survival and function. In this study, a simple and cell‐friendly approach to generate highly porous cell‐laden Alg hydrogels based on two‐phase aqueous emulsions is reported. The pre‐gel solutions, which contain two immiscible aqueous phases of Alg and caseinate (Cas), are cross‐linked by calcium ions. The porous structure of the hydrogel construct is formed by subsequently removing the Cas phase from the ion‐cross‐linked Alg hydrogel. Those porous Alg hydrogels possess heterogeneous pores ≈100 µm and interconnected paths. Human white adipose progenitors (WAPs) encapsulated in these hydrogels self‐organize into spheroids and show enhanced viability, proliferation, and adipogenic differentiation, compared to non‐porous constructs. As a proof of concept, this porous Alg hydrogel platform is employed to prepare core‐shell spheres for coculture of WAPs and colon cancer cells, with WAP clusters distributed around cancer cell aggregates, to investigate cellular crosstalk. This efficacious approach is believed to provide a robust and versatile platform for engineering porous‐structured Alg hydrogels for applications as cell carriers and in disease modeling. A simple and biocompatible approach to generate porous cell‐laden alginate (Alg) hydrogels based on two‐phase aqueous emulsions is developed. The heterogeneous pores, interconnected paths, and bioinert matrix of porous Alg hydrogels facilitate encapsulated cell survival, proliferation, in situ spheroid organization, and differentiation. This study also provides a feasible platform to investigate adipocyte and cancer cell crosstalk. Porous alginate (Alg) hydrogels possess many advantages as cell carriers. However, current pore generation methods require either complex or harsh fabrication processes, toxic components, or extra purification steps, limiting the feasibility and affecting the cellular survival and function. In this study, a simple and cell‐friendly approach to generate highly porous cell‐laden Alg hydrogels based on two‐phase aqueous emulsions is reported. The pre‐gel solutions, which contain two immiscible aqueous phases of Alg and caseinate (Cas), are cross‐linked by calcium ions. The porous structure of the hydrogel construct is formed by subsequently removing the Cas phase from the ion‐cross‐linked Alg hydrogel. Those porous Alg hydrogels possess heterogeneous pores ≈100 µm and interconnected paths. Human white adipose progenitors (WAPs) encapsulated in these hydrogels self‐organize into spheroids and show enhanced viability, proliferation, and adipogenic differentiation, compared to non‐porous constructs. As a proof of concept, this porous Alg hydrogel platform is employed to prepare core‐shell spheres for coculture of WAPs and colon cancer cells, with WAP clusters distributed around cancer cell aggregates, to investigate cellular crosstalk. This efficacious approach is believed to provide a robust and versatile platform for engineering porous‐structured Alg hydrogels for applications as cell carriers and in disease modeling. |
Author | Chung, Soonkyu Xue, Wen Duan, Bin Kuss, Mitchell Kong, Yunfan Dudley, Andrew T. Ro, Seung‐Hyun Huang, Ying Kim, Taesung Lee, Donghee |
Author_xml | – sequence: 1 givenname: Wen surname: Xue fullname: Xue, Wen organization: University of Nebraska Medical Center – sequence: 2 givenname: Donghee surname: Lee fullname: Lee, Donghee organization: University of Nebraska Medical Center – sequence: 3 givenname: Yunfan surname: Kong fullname: Kong, Yunfan organization: University of Nebraska Medical Center – sequence: 4 givenname: Mitchell surname: Kuss fullname: Kuss, Mitchell organization: University of Nebraska Medical Center – sequence: 5 givenname: Ying surname: Huang fullname: Huang, Ying organization: University of Nebraska Medical Center – sequence: 6 givenname: Taesung surname: Kim fullname: Kim, Taesung organization: University of Nebraska‐Lincoln – sequence: 7 givenname: Soonkyu surname: Chung fullname: Chung, Soonkyu organization: University of Massachusetts Amherst – sequence: 8 givenname: Andrew T. surname: Dudley fullname: Dudley, Andrew T. organization: University of Nebraska Medical Center – sequence: 9 givenname: Seung‐Hyun surname: Ro fullname: Ro, Seung‐Hyun email: shro@unl.edu organization: University of Nebraska‐Lincoln – sequence: 10 givenname: Bin orcidid: 0000-0002-5647-3793 surname: Duan fullname: Duan, Bin email: bin.duan@unmc.edu organization: University of Nebraska‐Lincoln |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38131003$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctu1DAYhS1URC-wZYkssWEzg6-JvULR0GmRBlGJIrGznMSeceXExU5azY5H4Bn7JDhMO0AlxMq38x2d3-cYHPShNwC8xGiOESJvdWu7OUGEYIaJfAKOcIGLGUVEHOz3-OshOE7pCiFclpQ9A4dUYJpxegRuKrjUjfMGfh6iHsx6C22IcNiYfF9H1-jBhR4GCxfG-7vvP1a6NT28CDGMCVZ-7fpMwfNtG8Pa-ARrnUwLM3J5G7L8YpPPsPo2mkl_2o0-Zb_0HDy12ifz4n49AV-Wp5eL89nq09mHRbWaNayQciY5t7LkbctxoRETTBLBypojyWxTtyXlzLBaWF3r2mAqCbPSWMMxp0JmA3oC3u18r8e6M21j-jylV9fRdTpuVdBO_f3Su41ahxuFUUkJZzg7vLl3iCFPkQbVudTkv9D9NJIiEnFOiCAoS18_kl6FMfZ5PkUEF1wiUUyGr_6MtM_y0EkWsJ2giSGlaKxq3PCrhpzQ-RxNTdWrqXq1rz5j80fYg_M_AbkDbnP92_-oVfV--fE3-xMT-sML |
CitedBy_id | crossref_primary_10_1002_smll_202311510 crossref_primary_10_3390_molecules28155931 crossref_primary_10_1002_adfm_202423356 crossref_primary_10_1002_adhm_202403583 crossref_primary_10_1093_rb_rbae034 crossref_primary_10_1039_D4CS01074D crossref_primary_10_1016_j_xcrp_2024_102311 crossref_primary_10_1021_acsami_4c22450 crossref_primary_10_1039_D3TB02575F crossref_primary_10_1039_D4MH00924J crossref_primary_10_1016_j_indcrop_2024_120155 crossref_primary_10_1002_adma_202305374 |
Cites_doi | 10.1155/2016/9176357 10.1089/ten.teb.2013.0537 10.1002/smll.201901397 10.1038/s41598-019-55034-9 10.1088/1758-5090/abc1be 10.1002/aic.690420504 10.1038/cddis.2017.21 10.1021/acsami.1c20320 10.1038/nrendo.2014.94 10.18063/ijb.v7i4.444 10.1016/j.trecan.2018.03.004 10.1007/s11010-020-03882-9 10.1007/s10853-007-1533-x 10.1038/s41419-018-0391-6 10.1038/nmat4407 10.1007/s12015-017-9772-y 10.1007/s10549-007-9549-0 10.1089/ten.teb.2009.0639 10.3390/gels6010010 10.1309/MX6KKA1UNJ1YG8VN 10.1002/adma.200501423 10.1038/nrm3908 10.1038/s41598-021-97390-5 10.1210/jc.86.3.1267 10.1016/j.biomaterials.2019.01.047 10.3390/microarrays4020133 10.1002/adma.201805460 10.1016/j.stem.2016.06.001 10.3892/mmr.2014.2914 10.3390/mi10060357 10.1038/ncomms7060 10.1021/bm900517q 10.1016/j.progpolymsci.2011.06.003 10.1002/adma.200802106 10.1007/s10544-021-00561-4 10.1016/S0169-409X(97)00124-5 10.1007/s10555-020-09934-2 10.1016/j.colsurfb.2013.03.005 10.1046/j.1464-410X.2003.04218.x 10.1002/adhm.201700927 10.1038/nature22379 10.1002/admi.201500386 10.1186/s40170-016-0163-7 10.1088/1758-5082/2/3/035003 10.1016/j.molliq.2020.115122 10.1016/j.actbio.2021.11.004 10.1007/s40204-014-0033-8 10.1016/S0142-9612(00)00033-8 10.1038/nm.3881 10.1021/acs.biomac.8b00218 10.3748/wjg.v23.i32.5829 10.1016/j.bbalip.2013.02.010 10.1038/ncomms4056 10.1016/j.biomaterials.2017.10.002 10.1096/fj.07-9277com 10.4252/wjsc.v11.i12.1065 10.1002/pi.1218 10.1158/2159-8290.CD-13-0397 10.1210/er.2001-0033 10.2174/0929867321666131129114742 10.1016/j.carbpol.2021.117779 10.1097/CEJ.0b013e32834c9b55 10.1111/dom.14033 10.1088/1758-5090/ac6c4b 10.1186/s12935-015-0198-9 10.1021/acs.langmuir.7b02834 10.1016/j.biomaterials.2020.120622 |
ContentType | Journal Article |
Copyright | 2023 The Authors. Advanced Functional Materials published by Wiley‐VCH GmbH 2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023 The Authors. Advanced Functional Materials published by Wiley‐VCH GmbH – notice: 2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION NPM 7SP 7SR 7U5 8BQ 8FD JG9 L7M 7X8 5PM |
DOI | 10.1002/adfm.202214129 |
DatabaseName | Wiley Online Library Open Access CrossRef PubMed Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed Materials Research Database CrossRef |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | PMC10732541 38131003 10_1002_adfm_202214129 ADFM202214129 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: University of Nebraska Initiative Team Seed – fundername: National Institute of General Medical Sciences of the National Institute of Health funderid: P20GM104320 – fundername: University of Nebraska Collaboration Initiative Grant; Undergraduate Creative Activities and Research Experience (UCARE) program‐scholarship from the Pepsi Quasi Endowment and Union Bank & Trust – fundername: NIGMS NIH HHS grantid: P20 GM104320 – fundername: NIAMS NIH HHS grantid: R21 AR078439 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 24P 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 AAMMB AEFGJ AGXDD AIDQK AIDYY NPM 7SP 7SR 7U5 8BQ 8FD JG9 L7M 1OB 7X8 5PM |
ID | FETCH-LOGICAL-c4699-955f975dd516a048492847b5094fcbd7354e4b8fababe13924f9efe5153896993 |
IEDL.DBID | 24P |
ISSN | 1616-301X |
IngestDate | Thu Aug 21 18:32:03 EDT 2025 Tue Aug 05 11:23:29 EDT 2025 Fri Jul 25 06:26:14 EDT 2025 Mon Jul 21 05:58:32 EDT 2025 Tue Jul 01 00:30:45 EDT 2025 Thu Apr 24 23:09:23 EDT 2025 Wed Jan 22 16:15:22 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 35 |
Keywords | porous hydrogel adipose-cancer interaction two-phase aqueous emulsions core-shell spheroid |
Language | English |
License | Attribution-NonCommercial-NoDerivs |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4699-955f975dd516a048492847b5094fcbd7354e4b8fababe13924f9efe5153896993 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Author contributions: W.X. and B.D. conceived the study idea. W.X., S.R. and B.D. designed the experiments. W. X. conducted experiments, wrote the manuscript, and revised the manuscript. D.L. and M.K. designed and prepared the sphere generation device. T.K. and S.R. performed the western blot and conducted its analysis. Y. H. helped with the cytokine array. All authors contributed to discussing the results and implications and editing the manuscript. |
ORCID | 0000-0002-5647-3793 0000-00002-7744-7615 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202214129 |
PMID | 38131003 |
PQID | 2858590861 |
PQPubID | 2045204 |
PageCount | 14 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_10732541 proquest_miscellaneous_2905522820 proquest_journals_2858590861 pubmed_primary_38131003 crossref_citationtrail_10_1002_adfm_202214129 crossref_primary_10_1002_adfm_202214129 wiley_primary_10_1002_adfm_202214129_ADFM202214129 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 29, 2023 |
PublicationDateYYYYMMDD | 2023-08-29 |
PublicationDate_xml | – month: 08 year: 2023 text: August 29, 2023 day: 29 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationTitleAlternate | Adv Funct Mater |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2013; 3 2015; 4 2021; 23 2016; 19 2013; 109 2009 2015 2018 1996; 21 6 34 42 2019; 15 2015; 11 2017; 23 2002 2008; 23 107 2000 2009 2021; 21 10 260 2006 2007; 18 42 2019; 200 2022; 138 2010 2003; 16 52 2014; 21 2001; 86 2018; 7 2018; 19 2018; 9 2010 2015 2019 2021; 2 2 10 324 2014; 5 2013 2017; 1831 8 2018; 4 2021; 11 2021; 476 2019 2020 2019 2020; 9 22 11 13 2003 2020 2021; 91 6 269 2015; 21 2022; 14 1998 2012; 31 37 2015 2018; 14 30 2008 2015; 22 4 2018 2021; 154 7 2021; 40 2008; 130 2012; 21 2016 2014 2014; 2016 20 15 2014; 10 2017; 546 2015 2017 2018; 15 5 14 e_1_2_9_31_1 e_1_2_9_10_2 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_12_2 e_1_2_9_10_3 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_12_4 e_1_2_9_14_2 e_1_2_9_12_3 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_2 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_16_3 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_24_1 e_1_2_9_8_1 e_1_2_9_6_2 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_2_1 e_1_2_9_8_4 e_1_2_9_8_3 e_1_2_9_8_2 e_1_2_9_26_1 e_1_2_9_28_1 e_1_2_9_30_1 e_1_2_9_30_2 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_11_2 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_17_3 e_1_2_9_19_1 e_1_2_9_17_2 e_1_2_9_42_1 e_1_2_9_40_1 e_1_2_9_21_2 e_1_2_9_21_1 e_1_2_9_21_3 e_1_2_9_23_1 e_1_2_9_7_2 e_1_2_9_7_1 e_1_2_9_3_4 e_1_2_9_5_2 e_1_2_9_3_3 e_1_2_9_5_1 e_1_2_9_3_2 e_1_2_9_3_1 e_1_2_9_1_2 e_1_2_9_1_1 e_1_2_9_9_2 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_29_1 |
References_xml | – volume: 21 start-page: 126 year: 2012 publication-title: Eur. J. Cancer Prev. – volume: 23 107 start-page: 824 181 year: 2002 2008 publication-title: Endocr. Rev. Breast Cancer Res. Treat. – volume: 9 start-page: 356 year: 2018 publication-title: Cell Death Dis. – volume: 11 start-page: 1566 year: 2015 publication-title: Mol. Med. Rep. – volume: 2016 20 15 start-page: 365 761 year: 2016 2014 2014 publication-title: Stem Cells Int. Tissue Eng., Part B Nat. Rev. Mol. Cell Biol. – volume: 19 start-page: 1732 year: 2018 publication-title: Biomacromolecules – volume: 109 start-page: 266 year: 2013 publication-title: Colloids Surf., B – volume: 10 start-page: 455 year: 2014 publication-title: Nat. Rev. Endocrinol. – volume: 23 start-page: 22 year: 2021 publication-title: Biomed. Microdevices – volume: 11 year: 2021 publication-title: Sci. Rep. – volume: 200 start-page: 56 year: 2019 publication-title: Biomaterials – volume: 21 10 260 start-page: 1921 2328 year: 2000 2009 2021 publication-title: Biomaterials Biomacromolecules Carbohydr. Polym. – volume: 4 start-page: 1 year: 2015 publication-title: Prog. Biomater. – volume: 14 year: 2022 publication-title: Biofabrication – volume: 9 22 11 13 start-page: 1302 1065 year: 2019 2020 2019 2020 publication-title: Sci. Rep. Diabetes, Obes. Metab. World J. Stem Cells Biofabrication – volume: 86 start-page: 1267 year: 2001 publication-title: J. Clin. Endocrinol. Metab. – volume: 18 42 start-page: 501 3502 year: 2006 2007 publication-title: Adv. Mater. J. Mater. Sci. – volume: 19 start-page: 23 year: 2016 publication-title: Cell Stem Cell – volume: 15 year: 2019 publication-title: Small – volume: 23 start-page: 5829 year: 2017 publication-title: World J. Gastroenterol. – volume: 476 start-page: 23 year: 2021 publication-title: Mol. Cell. Biochem. – volume: 7 year: 2018 publication-title: Adv. Healthcare Mater. – volume: 138 start-page: 182 year: 2022 publication-title: Acta Biomater. – volume: 2 2 10 324 start-page: 357 year: 2010 2015 2019 2021 publication-title: Biofabrication Adv. Mater. Interfaces Micromachines J. Mol. Liq. – volume: 14 30 start-page: 1269 year: 2015 2018 publication-title: Nat. Mater. Adv. Mater. – volume: 40 start-page: 31 year: 2021 publication-title: Cancer Metastasis Rev. – volume: 21 6 34 42 start-page: 3307 6060 756 1220 year: 2009 2015 2018 1996 publication-title: Adv. Mater. Nat. Commun. Langmuir AIChE J. – volume: 1831 8 start-page: 1533 2593 year: 2013 2017 publication-title: Biochim. Biophys. Acta Cell Death Dis. – volume: 21 start-page: 1255 year: 2014 publication-title: Curr. Med. Chem. – volume: 31 37 start-page: 267 106 year: 1998 2012 publication-title: Adv. Drug Delivery Rev. Prog. Polym. Sci. – volume: 21 start-page: 760 year: 2015 publication-title: Nat. Med. – volume: 154 7 start-page: 113 444 year: 2018 2021 publication-title: Biomaterials Int. J. Bioprint – volume: 3 start-page: 1272 year: 2013 publication-title: Cancer Discovery – volume: 22 4 start-page: 1440 133 year: 2008 2015 publication-title: FASEB J. Microarrays – volume: 4 start-page: 374 year: 2018 publication-title: Trends Cancer – volume: 5 start-page: 3056 year: 2014 publication-title: Nat. Commun. – volume: 546 start-page: 234 year: 2017 publication-title: Nature – volume: 16 52 start-page: 371 1158 year: 2010 2003 publication-title: Tissue Eng., Part B Polym. Int. – volume: 130 start-page: 382 year: 2008 publication-title: Am. J. Clin. Pathol. – volume: 91 6 269 start-page: 716 10 year: 2003 2020 2021 publication-title: BJU Int. Gels Biomaterials – volume: 14 start-page: 8693 year: 2022 publication-title: ACS Appl. Mater. Interfaces – volume: 15 5 14 start-page: 42 1 125 year: 2015 2017 2018 publication-title: Cancer Cell Int. Cancer Metab. Stem Cell Rev. Rep. – ident: e_1_2_9_21_1 doi: 10.1155/2016/9176357 – ident: e_1_2_9_21_2 doi: 10.1089/ten.teb.2013.0537 – ident: e_1_2_9_2_1 doi: 10.1002/smll.201901397 – ident: e_1_2_9_12_1 doi: 10.1038/s41598-019-55034-9 – ident: e_1_2_9_12_4 doi: 10.1088/1758-5090/abc1be – ident: e_1_2_9_3_4 doi: 10.1002/aic.690420504 – ident: e_1_2_9_14_2 doi: 10.1038/cddis.2017.21 – ident: e_1_2_9_42_1 doi: 10.1021/acsami.1c20320 – ident: e_1_2_9_36_1 doi: 10.1038/nrendo.2014.94 – ident: e_1_2_9_7_2 doi: 10.18063/ijb.v7i4.444 – ident: e_1_2_9_13_1 doi: 10.1016/j.trecan.2018.03.004 – ident: e_1_2_9_24_1 doi: 10.1007/s11010-020-03882-9 – ident: e_1_2_9_9_2 doi: 10.1007/s10853-007-1533-x – ident: e_1_2_9_34_1 doi: 10.1038/s41419-018-0391-6 – ident: e_1_2_9_5_1 doi: 10.1038/nmat4407 – ident: e_1_2_9_16_3 doi: 10.1007/s12015-017-9772-y – ident: e_1_2_9_30_2 doi: 10.1007/s10549-007-9549-0 – ident: e_1_2_9_11_1 doi: 10.1089/ten.teb.2009.0639 – ident: e_1_2_9_17_2 doi: 10.3390/gels6010010 – ident: e_1_2_9_15_1 doi: 10.1309/MX6KKA1UNJ1YG8VN – ident: e_1_2_9_9_1 doi: 10.1002/adma.200501423 – ident: e_1_2_9_21_3 doi: 10.1038/nrm3908 – ident: e_1_2_9_31_1 doi: 10.1038/s41598-021-97390-5 – ident: e_1_2_9_35_1 doi: 10.1210/jc.86.3.1267 – ident: e_1_2_9_20_1 doi: 10.1016/j.biomaterials.2019.01.047 – ident: e_1_2_9_6_2 doi: 10.3390/microarrays4020133 – ident: e_1_2_9_5_2 doi: 10.1002/adma.201805460 – ident: e_1_2_9_38_1 doi: 10.1016/j.stem.2016.06.001 – ident: e_1_2_9_27_1 doi: 10.3892/mmr.2014.2914 – ident: e_1_2_9_8_3 doi: 10.3390/mi10060357 – ident: e_1_2_9_3_2 doi: 10.1038/ncomms7060 – ident: e_1_2_9_10_2 doi: 10.1021/bm900517q – ident: e_1_2_9_1_2 doi: 10.1016/j.progpolymsci.2011.06.003 – ident: e_1_2_9_3_1 doi: 10.1002/adma.200802106 – ident: e_1_2_9_23_1 doi: 10.1007/s10544-021-00561-4 – ident: e_1_2_9_1_1 doi: 10.1016/S0169-409X(97)00124-5 – ident: e_1_2_9_32_1 doi: 10.1007/s10555-020-09934-2 – ident: e_1_2_9_19_1 doi: 10.1016/j.colsurfb.2013.03.005 – ident: e_1_2_9_17_1 doi: 10.1046/j.1464-410X.2003.04218.x – ident: e_1_2_9_4_1 doi: 10.1002/adhm.201700927 – ident: e_1_2_9_37_1 doi: 10.1038/nature22379 – ident: e_1_2_9_8_2 doi: 10.1002/admi.201500386 – ident: e_1_2_9_16_2 doi: 10.1186/s40170-016-0163-7 – ident: e_1_2_9_8_1 doi: 10.1088/1758-5082/2/3/035003 – ident: e_1_2_9_8_4 doi: 10.1016/j.molliq.2020.115122 – ident: e_1_2_9_39_1 doi: 10.1016/j.actbio.2021.11.004 – ident: e_1_2_9_22_1 doi: 10.1007/s40204-014-0033-8 – ident: e_1_2_9_10_1 doi: 10.1016/S0142-9612(00)00033-8 – ident: e_1_2_9_40_1 doi: 10.1038/nm.3881 – ident: e_1_2_9_18_1 doi: 10.1021/acs.biomac.8b00218 – ident: e_1_2_9_25_1 doi: 10.3748/wjg.v23.i32.5829 – ident: e_1_2_9_14_1 doi: 10.1016/j.bbalip.2013.02.010 – ident: e_1_2_9_28_1 doi: 10.1038/ncomms4056 – ident: e_1_2_9_7_1 doi: 10.1016/j.biomaterials.2017.10.002 – ident: e_1_2_9_6_1 doi: 10.1096/fj.07-9277com – ident: e_1_2_9_12_3 doi: 10.4252/wjsc.v11.i12.1065 – ident: e_1_2_9_11_2 doi: 10.1002/pi.1218 – ident: e_1_2_9_29_1 doi: 10.1158/2159-8290.CD-13-0397 – ident: e_1_2_9_30_1 doi: 10.1210/er.2001-0033 – ident: e_1_2_9_33_1 doi: 10.2174/0929867321666131129114742 – ident: e_1_2_9_10_3 doi: 10.1016/j.carbpol.2021.117779 – ident: e_1_2_9_26_1 doi: 10.1097/CEJ.0b013e32834c9b55 – ident: e_1_2_9_12_2 doi: 10.1111/dom.14033 – ident: e_1_2_9_41_1 doi: 10.1088/1758-5090/ac6c4b – ident: e_1_2_9_16_1 doi: 10.1186/s12935-015-0198-9 – ident: e_1_2_9_3_3 doi: 10.1021/acs.langmuir.7b02834 – ident: e_1_2_9_17_3 doi: 10.1016/j.biomaterials.2020.120622 |
SSID | ssj0017734 |
Score | 2.508135 |
Snippet | Porous alginate (Alg) hydrogels possess many advantages as cell carriers. However, current pore generation methods require either complex or harsh fabrication... Porous alginate hydrogels possess many advantages as cell carriers. However, current pore generation methods require either complex or harsh fabrication... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
SubjectTerms | adipose‐cancer interaction Alginates Calcium ions core‐shell Current carriers Emulsions Hydrogels Materials science porous hydrogels Spheroids two‐phase aqueous emulsions |
Title | A Facile Strategy for the Fabrication of Cell‐Laden Porous Alginate Hydrogels based on Two‐Phase Aqueous Emulsions |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202214129 https://www.ncbi.nlm.nih.gov/pubmed/38131003 https://www.proquest.com/docview/2858590861 https://www.proquest.com/docview/2905522820 https://pubmed.ncbi.nlm.nih.gov/PMC10732541 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NitswEB666aV7KP2v223RQqEns7Es2dbRZDeE0paw7EJuRrKlpuDaJT-75NZH6DP2STpjO25CKAt7MbY1so3Go_lGI30C-GC4deg4cz92OvKFldo3XAlfGoUOpQhpyx2abfE1mlyLTzM521nF3_JD9ANuZBlNf00Grs3y7B9pqC4crSTnPBDos47gIa2vpT-di2mfR4jjNq8cBTTDK5htaRuH_Gy__r5bOsCah1Mmd6Fs44vGT-BxByJZ2mr9KTyw1TM43qEWfA43KRvrHCuzjn92wxCeMoR7eN8supE6Vjs2smX559fvzxp7IDatF_V6ydKStmtYWTbZFIv6G_pPRu6uYFjl6rZG8ekcr1mK30_yFz_WJQ27LV_A9fjiajTxuz0W_BwDY-UrKZ2KZVHIINJozUKRvzJEq-dyU8ShFFaYxGmjjUW0yIVT1llJHaXCB4QvYVDVlX0NLEgQCymhI8M1hkEisbT2ZJgUjnNtVOyBv23iLO8IyGkfjDJrqZN5RirJepV48LGX_9lSb_xX8mSrsawzwWXGKeOpMGILPDjti9F4KCOiK2qdjKuhRACKKMiDV62C-1chlKHkR-hBsqf6XoCIufdLqu_zhqAbQ-oQA298MW_-kjs-P0vPx1_6qzf3qfQWHuF5SIPdXJ3AYLVY23eIllbmfWMQeDy_5H8B77QOAw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB5BOQCHin8CBYyExCnqxrGT-BiVrhbYVnvYSr1ZdmK3SCFB-wPqjUfoM_ZJOpNkQ1cVQuKYZJxEmYznmxn7G4APljuPjrMIU2-SUDhpQsuVCKVV6FDKmFru0GqL42RyIr6cys1qQtoL0_FDDAk3sox2viYDp4T0_h_WUFN62krOeSTQad2FeyLhKXVv4GI2FBLStCssJxEt8YpON7yNI76_PX7bL90Cm7fXTN7Esq0zGj-C3R5FsrxT-2O44-on8PAGt-BT-JmzsSlwMOsJaC8Y4lOGeA_P20WfqmONZweuqq5-X04NTkFs1iya9ZLlFfVrWDk2uSgXzRk6UEb-rmQ4ZP6rQfHZOR6zHN-f5A-_ryvKuy2fwcn4cH4wCfsmC2GBkbEKlZRepbIsZZQYNGehyGFZ4tXzhS3TWAonbOaNNdYhXOTCK-edpJlS4Q3i57BTN7V7CSzKEAwpYRLLDcZBInO0-WSUlZ5zY1UaQLj5xLroGcipEUalO-5krkklelBJAB8H-R8d98ZfJfc2GtO9DS41p5KnwpAtCuD9cBmth0oipqavo7kaSUSgCIMCeNEpeHgUYhmqfsQBZFuqHwSImXv7Sv3tvGXoxpg6xsgbH8zbv-Qfr6_zT-Oj4ejV_wx6B_cn86Opnn4-_voaHuD5mDLfXO3Bzmqxdm8QOq3s29Y4rgEikBCG |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB5BkRAcEP8EChgJiVPUjWMn8TFqGy1Qqj200t4iO7YpUkiq_QH1xiPwjDwJM0k27KpCSByTjBPLk_F8M2N_BnhruPPoOKsw9ToJhZM6NFyJUBqFDsXGdOQOrbY4Tabn4sNczrd28ff8EGPCjSyjm6_JwC-tP_hDGqqtp53knEcCfdZNuEUVP_rHuZiNdYQ07evKSUQrvKL5hrZxwg922--6pWtY8_qSyW0o2_mi4j7cG0Aky3utP4AbrnkId7eoBR_Bt5wVusLGbOCfvWIITxnCPbxvFkOmjrWeHbq6_vXj54nGGYjN2kW7XrK8puMaVo5Nr-yi_Yz-k5G7swybnH1vUXx2gdcsx_6T_PHXdU1pt-VjOC-Ozw6n4XDGQlhhYKxCJaVXqbRWRolGaxaK_JUhWj1fGZvGUjhhMq-NNg7RIhdeOe8kTZQKXxA_gb2mbdwzYFGGWEgJnRiuMQwSmaO9J5PMes61UWkA4WaIy2ogIKdzMOqyp07mJamkHFUSwLtR_rKn3vir5P5GY-VggsuSU8VTYcQWBfBmfIzGQxUR3dDolFxNJAJQREEBPO0VPH4KoQwVP-IAsh3VjwJEzL37pPly0RF0Y0gdY-CNH-bdX_KP7pf5UfFpvHr-P41ew-3ZUVGevD_9-ALu4O2Y8t5c7cPearF2LxE4rcyrzjZ-A3t2D7g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Facile+Strategy+for+the+Fabrication+of+Cell-laden+Porous+Alginate+Hydrogels+Based+on+Two-phase+Aqueous+Emulsions&rft.jtitle=Advanced+functional+materials&rft.au=Xue%2C+Wen&rft.au=Lee%2C+Donghee&rft.au=Kong%2C+Yunfan&rft.au=Kuss%2C+Mitchell&rft.date=2023-08-29&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=33&rft.issue=35&rft_id=info:doi/10.1002%2Fadfm.202214129&rft_id=info%3Apmid%2F38131003&rft.externalDocID=PMC10732541 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |