A Facile Strategy for the Fabrication of Cell‐Laden Porous Alginate Hydrogels based on Two‐Phase Aqueous Emulsions

Porous alginate (Alg) hydrogels possess many advantages as cell carriers. However, current pore generation methods require either complex or harsh fabrication processes, toxic components, or extra purification steps, limiting the feasibility and affecting the cellular survival and function. In this...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 33; no. 35
Main Authors Xue, Wen, Lee, Donghee, Kong, Yunfan, Kuss, Mitchell, Huang, Ying, Kim, Taesung, Chung, Soonkyu, Dudley, Andrew T., Ro, Seung‐Hyun, Duan, Bin
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 29.08.2023
Subjects
Online AccessGet full text
ISSN1616-301X
1616-3028
DOI10.1002/adfm.202214129

Cover

Loading…
Abstract Porous alginate (Alg) hydrogels possess many advantages as cell carriers. However, current pore generation methods require either complex or harsh fabrication processes, toxic components, or extra purification steps, limiting the feasibility and affecting the cellular survival and function. In this study, a simple and cell‐friendly approach to generate highly porous cell‐laden Alg hydrogels based on two‐phase aqueous emulsions is reported. The pre‐gel solutions, which contain two immiscible aqueous phases of Alg and caseinate (Cas), are cross‐linked by calcium ions. The porous structure of the hydrogel construct is formed by subsequently removing the Cas phase from the ion‐cross‐linked Alg hydrogel. Those porous Alg hydrogels possess heterogeneous pores ≈100 µm and interconnected paths. Human white adipose progenitors (WAPs) encapsulated in these hydrogels self‐organize into spheroids and show enhanced viability, proliferation, and adipogenic differentiation, compared to non‐porous constructs. As a proof of concept, this porous Alg hydrogel platform is employed to prepare core‐shell spheres for coculture of WAPs and colon cancer cells, with WAP clusters distributed around cancer cell aggregates, to investigate cellular crosstalk. This efficacious approach is believed to provide a robust and versatile platform for engineering porous‐structured Alg hydrogels for applications as cell carriers and in disease modeling. A simple and biocompatible approach to generate porous cell‐laden alginate (Alg) hydrogels based on two‐phase aqueous emulsions is developed. The heterogeneous pores, interconnected paths, and bioinert matrix of porous Alg hydrogels facilitate encapsulated cell survival, proliferation, in situ spheroid organization, and differentiation. This study also provides a feasible platform to investigate adipocyte and cancer cell crosstalk.
AbstractList Porous alginate hydrogels possess many advantages as cell carriers. However, current pore generation methods require either complex or harsh fabrication processes, toxic components, or extra purification steps, limiting the feasibility and affecting the cellular survival and function. In this study, a simple and cell-friendly approach to generate highly porous cell-laden alginate hydrogels based on two-phase aqueous emulsions is reported. The pre-gel solutions, which contain two immiscible aqueous phases of alginate and caseinate, are crosslinked by calcium ions. The porous structure of the hydrogel construct is formed by subsequently removing the caseinate phase from the ion-crosslinked alginate hydrogel. Those porous alginate hydrogels possess heterogeneous pores around 100 μm and interconnected paths. Human white adipose progenitors (WAPs) encapsulated in these hydrogels self-organize into spheroids and show enhanced viability, proliferation, and adipogenic differentiation, compared to non-porous constructs. As a proof of concept, this porous alginate hydrogel platform is employed to prepare core-shell spheres for coculture of WAPs and colon cancer cells, with WAP clusters distributed around cancer cell aggregates, to investigate cellular crosstalk. This efficacious approach is believed to provide a robust and versatile platform for engineering porous-structured alginate hydrogels for applications as cell carriers and in disease modeling.Porous alginate hydrogels possess many advantages as cell carriers. However, current pore generation methods require either complex or harsh fabrication processes, toxic components, or extra purification steps, limiting the feasibility and affecting the cellular survival and function. In this study, a simple and cell-friendly approach to generate highly porous cell-laden alginate hydrogels based on two-phase aqueous emulsions is reported. The pre-gel solutions, which contain two immiscible aqueous phases of alginate and caseinate, are crosslinked by calcium ions. The porous structure of the hydrogel construct is formed by subsequently removing the caseinate phase from the ion-crosslinked alginate hydrogel. Those porous alginate hydrogels possess heterogeneous pores around 100 μm and interconnected paths. Human white adipose progenitors (WAPs) encapsulated in these hydrogels self-organize into spheroids and show enhanced viability, proliferation, and adipogenic differentiation, compared to non-porous constructs. As a proof of concept, this porous alginate hydrogel platform is employed to prepare core-shell spheres for coculture of WAPs and colon cancer cells, with WAP clusters distributed around cancer cell aggregates, to investigate cellular crosstalk. This efficacious approach is believed to provide a robust and versatile platform for engineering porous-structured alginate hydrogels for applications as cell carriers and in disease modeling.
Porous alginate hydrogels possess many advantages as cell carriers. However, current pore generation methods require either complex or harsh fabrication processes, toxic components, or extra purification steps, limiting the feasibility and affecting the cellular survival and function. In this study, a simple and cell-friendly approach to generate highly porous cell-laden alginate hydrogels based on two-phase aqueous emulsions is reported. The pre-gel solutions, which contain two immiscible aqueous phases of alginate and caseinate, are crosslinked by calcium ions. The porous structure of the hydrogel construct is formed by subsequently removing the caseinate phase from the ion-crosslinked alginate hydrogel. Those porous alginate hydrogels possess heterogeneous pores around 100 μm and interconnected paths. Human white adipose progenitors (WAPs) encapsulated in these hydrogels self-organize into spheroids and show enhanced viability, proliferation, and adipogenic differentiation, compared to non-porous constructs. As a proof of concept, this porous alginate hydrogel platform is employed to prepare core-shell spheres for coculture of WAPs and colon cancer cells, with WAP clusters distributed around cancer cell aggregates, to investigate cellular crosstalk. This efficacious approach is believed to provide a robust and versatile platform for engineering porous-structured alginate hydrogels for applications as cell carriers and in disease modeling.
Porous alginate hydrogels possess many advantages as cell carriers. However, current pore generation methods require either complex or harsh fabrication processes, toxic components, or extra purification steps, limiting the feasibility and affecting the cellular survival and function. In this study, a simple and cell-friendly approach to generate highly porous cell-laden alginate hydrogels based on two-phase aqueous emulsions is reported. The pre-gel solutions, which contain two immiscible aqueous phases of alginate and caseinate, are crosslinked by calcium ions. The porous structure of the hydrogel construct is formed by subsequently removing the caseinate phase from the ion-crosslinked alginate hydrogel. Those porous alginate hydrogels possess heterogeneous pores around 100 μm and interconnected paths. Human white adipose progenitors (WAPs) encapsulated in these hydrogels self-organize into spheroids and show enhanced viability, proliferation, and adipogenic differentiation, compared to non-porous constructs. As a proof of concept, this porous alginate hydrogel platform is employed to prepare core-shell spheres for coculture of WAPs and colon cancer cells, with WAP clusters distributed around cancer cell aggregates, to investigate cellular crosstalk. This efficacious approach is believed to provide a robust and versatile platform for engineering porous-structured alginate hydrogels for applications as cell carriers and in disease modeling. A simple and biocompatible approach to generate porous cell-laden alginate hydrogels based on two-phase aqueous emulsions is developed. The heterogeneous pores, interconnected paths, and bioinert matrix of porous alginate hydrogels facilitate encapsulated cell survival, proliferation, in situ spheroid organization, and differentiation. This study also provides a feasible platform to investigate adipocyte and cancer cell crosstalk.
Porous alginate (Alg) hydrogels possess many advantages as cell carriers. However, current pore generation methods require either complex or harsh fabrication processes, toxic components, or extra purification steps, limiting the feasibility and affecting the cellular survival and function. In this study, a simple and cell‐friendly approach to generate highly porous cell‐laden Alg hydrogels based on two‐phase aqueous emulsions is reported. The pre‐gel solutions, which contain two immiscible aqueous phases of Alg and caseinate (Cas), are cross‐linked by calcium ions. The porous structure of the hydrogel construct is formed by subsequently removing the Cas phase from the ion‐cross‐linked Alg hydrogel. Those porous Alg hydrogels possess heterogeneous pores ≈100 µm and interconnected paths. Human white adipose progenitors (WAPs) encapsulated in these hydrogels self‐organize into spheroids and show enhanced viability, proliferation, and adipogenic differentiation, compared to non‐porous constructs. As a proof of concept, this porous Alg hydrogel platform is employed to prepare core‐shell spheres for coculture of WAPs and colon cancer cells, with WAP clusters distributed around cancer cell aggregates, to investigate cellular crosstalk. This efficacious approach is believed to provide a robust and versatile platform for engineering porous‐structured Alg hydrogels for applications as cell carriers and in disease modeling.
Porous alginate (Alg) hydrogels possess many advantages as cell carriers. However, current pore generation methods require either complex or harsh fabrication processes, toxic components, or extra purification steps, limiting the feasibility and affecting the cellular survival and function. In this study, a simple and cell‐friendly approach to generate highly porous cell‐laden Alg hydrogels based on two‐phase aqueous emulsions is reported. The pre‐gel solutions, which contain two immiscible aqueous phases of Alg and caseinate (Cas), are cross‐linked by calcium ions. The porous structure of the hydrogel construct is formed by subsequently removing the Cas phase from the ion‐cross‐linked Alg hydrogel. Those porous Alg hydrogels possess heterogeneous pores ≈100 µm and interconnected paths. Human white adipose progenitors (WAPs) encapsulated in these hydrogels self‐organize into spheroids and show enhanced viability, proliferation, and adipogenic differentiation, compared to non‐porous constructs. As a proof of concept, this porous Alg hydrogel platform is employed to prepare core‐shell spheres for coculture of WAPs and colon cancer cells, with WAP clusters distributed around cancer cell aggregates, to investigate cellular crosstalk. This efficacious approach is believed to provide a robust and versatile platform for engineering porous‐structured Alg hydrogels for applications as cell carriers and in disease modeling. A simple and biocompatible approach to generate porous cell‐laden alginate (Alg) hydrogels based on two‐phase aqueous emulsions is developed. The heterogeneous pores, interconnected paths, and bioinert matrix of porous Alg hydrogels facilitate encapsulated cell survival, proliferation, in situ spheroid organization, and differentiation. This study also provides a feasible platform to investigate adipocyte and cancer cell crosstalk.
Porous alginate (Alg) hydrogels possess many advantages as cell carriers. However, current pore generation methods require either complex or harsh fabrication processes, toxic components, or extra purification steps, limiting the feasibility and affecting the cellular survival and function. In this study, a simple and cell‐friendly approach to generate highly porous cell‐laden Alg hydrogels based on two‐phase aqueous emulsions is reported. The pre‐gel solutions, which contain two immiscible aqueous phases of Alg and caseinate (Cas), are cross‐linked by calcium ions. The porous structure of the hydrogel construct is formed by subsequently removing the Cas phase from the ion‐cross‐linked Alg hydrogel. Those porous Alg hydrogels possess heterogeneous pores ≈100 µm and interconnected paths. Human white adipose progenitors (WAPs) encapsulated in these hydrogels self‐organize into spheroids and show enhanced viability, proliferation, and adipogenic differentiation, compared to non‐porous constructs. As a proof of concept, this porous Alg hydrogel platform is employed to prepare core‐shell spheres for coculture of WAPs and colon cancer cells, with WAP clusters distributed around cancer cell aggregates, to investigate cellular crosstalk. This efficacious approach is believed to provide a robust and versatile platform for engineering porous‐structured Alg hydrogels for applications as cell carriers and in disease modeling.
Author Chung, Soonkyu
Xue, Wen
Duan, Bin
Kuss, Mitchell
Kong, Yunfan
Dudley, Andrew T.
Ro, Seung‐Hyun
Huang, Ying
Kim, Taesung
Lee, Donghee
Author_xml – sequence: 1
  givenname: Wen
  surname: Xue
  fullname: Xue, Wen
  organization: University of Nebraska Medical Center
– sequence: 2
  givenname: Donghee
  surname: Lee
  fullname: Lee, Donghee
  organization: University of Nebraska Medical Center
– sequence: 3
  givenname: Yunfan
  surname: Kong
  fullname: Kong, Yunfan
  organization: University of Nebraska Medical Center
– sequence: 4
  givenname: Mitchell
  surname: Kuss
  fullname: Kuss, Mitchell
  organization: University of Nebraska Medical Center
– sequence: 5
  givenname: Ying
  surname: Huang
  fullname: Huang, Ying
  organization: University of Nebraska Medical Center
– sequence: 6
  givenname: Taesung
  surname: Kim
  fullname: Kim, Taesung
  organization: University of Nebraska‐Lincoln
– sequence: 7
  givenname: Soonkyu
  surname: Chung
  fullname: Chung, Soonkyu
  organization: University of Massachusetts Amherst
– sequence: 8
  givenname: Andrew T.
  surname: Dudley
  fullname: Dudley, Andrew T.
  organization: University of Nebraska Medical Center
– sequence: 9
  givenname: Seung‐Hyun
  surname: Ro
  fullname: Ro, Seung‐Hyun
  email: shro@unl.edu
  organization: University of Nebraska‐Lincoln
– sequence: 10
  givenname: Bin
  orcidid: 0000-0002-5647-3793
  surname: Duan
  fullname: Duan, Bin
  email: bin.duan@unmc.edu
  organization: University of Nebraska‐Lincoln
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38131003$$D View this record in MEDLINE/PubMed
BookMark eNqFkctu1DAYhS1URC-wZYkssWEzg6-JvULR0GmRBlGJIrGznMSeceXExU5azY5H4Bn7JDhMO0AlxMq38x2d3-cYHPShNwC8xGiOESJvdWu7OUGEYIaJfAKOcIGLGUVEHOz3-OshOE7pCiFclpQ9A4dUYJpxegRuKrjUjfMGfh6iHsx6C22IcNiYfF9H1-jBhR4GCxfG-7vvP1a6NT28CDGMCVZ-7fpMwfNtG8Pa-ARrnUwLM3J5G7L8YpPPsPo2mkl_2o0-Zb_0HDy12ifz4n49AV-Wp5eL89nq09mHRbWaNayQciY5t7LkbctxoRETTBLBypojyWxTtyXlzLBaWF3r2mAqCbPSWMMxp0JmA3oC3u18r8e6M21j-jylV9fRdTpuVdBO_f3Su41ahxuFUUkJZzg7vLl3iCFPkQbVudTkv9D9NJIiEnFOiCAoS18_kl6FMfZ5PkUEF1wiUUyGr_6MtM_y0EkWsJ2giSGlaKxq3PCrhpzQ-RxNTdWrqXq1rz5j80fYg_M_AbkDbnP92_-oVfV--fE3-xMT-sML
CitedBy_id crossref_primary_10_1002_smll_202311510
crossref_primary_10_3390_molecules28155931
crossref_primary_10_1002_adfm_202423356
crossref_primary_10_1002_adhm_202403583
crossref_primary_10_1093_rb_rbae034
crossref_primary_10_1039_D4CS01074D
crossref_primary_10_1016_j_xcrp_2024_102311
crossref_primary_10_1021_acsami_4c22450
crossref_primary_10_1039_D3TB02575F
crossref_primary_10_1039_D4MH00924J
crossref_primary_10_1016_j_indcrop_2024_120155
crossref_primary_10_1002_adma_202305374
Cites_doi 10.1155/2016/9176357
10.1089/ten.teb.2013.0537
10.1002/smll.201901397
10.1038/s41598-019-55034-9
10.1088/1758-5090/abc1be
10.1002/aic.690420504
10.1038/cddis.2017.21
10.1021/acsami.1c20320
10.1038/nrendo.2014.94
10.18063/ijb.v7i4.444
10.1016/j.trecan.2018.03.004
10.1007/s11010-020-03882-9
10.1007/s10853-007-1533-x
10.1038/s41419-018-0391-6
10.1038/nmat4407
10.1007/s12015-017-9772-y
10.1007/s10549-007-9549-0
10.1089/ten.teb.2009.0639
10.3390/gels6010010
10.1309/MX6KKA1UNJ1YG8VN
10.1002/adma.200501423
10.1038/nrm3908
10.1038/s41598-021-97390-5
10.1210/jc.86.3.1267
10.1016/j.biomaterials.2019.01.047
10.3390/microarrays4020133
10.1002/adma.201805460
10.1016/j.stem.2016.06.001
10.3892/mmr.2014.2914
10.3390/mi10060357
10.1038/ncomms7060
10.1021/bm900517q
10.1016/j.progpolymsci.2011.06.003
10.1002/adma.200802106
10.1007/s10544-021-00561-4
10.1016/S0169-409X(97)00124-5
10.1007/s10555-020-09934-2
10.1016/j.colsurfb.2013.03.005
10.1046/j.1464-410X.2003.04218.x
10.1002/adhm.201700927
10.1038/nature22379
10.1002/admi.201500386
10.1186/s40170-016-0163-7
10.1088/1758-5082/2/3/035003
10.1016/j.molliq.2020.115122
10.1016/j.actbio.2021.11.004
10.1007/s40204-014-0033-8
10.1016/S0142-9612(00)00033-8
10.1038/nm.3881
10.1021/acs.biomac.8b00218
10.3748/wjg.v23.i32.5829
10.1016/j.bbalip.2013.02.010
10.1038/ncomms4056
10.1016/j.biomaterials.2017.10.002
10.1096/fj.07-9277com
10.4252/wjsc.v11.i12.1065
10.1002/pi.1218
10.1158/2159-8290.CD-13-0397
10.1210/er.2001-0033
10.2174/0929867321666131129114742
10.1016/j.carbpol.2021.117779
10.1097/CEJ.0b013e32834c9b55
10.1111/dom.14033
10.1088/1758-5090/ac6c4b
10.1186/s12935-015-0198-9
10.1021/acs.langmuir.7b02834
10.1016/j.biomaterials.2020.120622
ContentType Journal Article
Copyright 2023 The Authors. Advanced Functional Materials published by Wiley‐VCH GmbH
2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 The Authors. Advanced Functional Materials published by Wiley‐VCH GmbH
– notice: 2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
NPM
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
5PM
DOI 10.1002/adfm.202214129
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

Materials Research Database

CrossRef
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID PMC10732541
38131003
10_1002_adfm_202214129
ADFM202214129
Genre article
Journal Article
GrantInformation_xml – fundername: University of Nebraska Initiative Team Seed
– fundername: National Institute of General Medical Sciences of the National Institute of Health
  funderid: P20GM104320
– fundername: University of Nebraska Collaboration Initiative Grant; Undergraduate Creative Activities and Research Experience (UCARE) program‐scholarship from the Pepsi Quasi Endowment and Union Bank & Trust
– fundername: NIGMS NIH HHS
  grantid: P20 GM104320
– fundername: NIAMS NIH HHS
  grantid: R21 AR078439
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
24P
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
NPM
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
1OB
7X8
5PM
ID FETCH-LOGICAL-c4699-955f975dd516a048492847b5094fcbd7354e4b8fababe13924f9efe5153896993
IEDL.DBID 24P
ISSN 1616-301X
IngestDate Thu Aug 21 18:32:03 EDT 2025
Tue Aug 05 11:23:29 EDT 2025
Fri Jul 25 06:26:14 EDT 2025
Mon Jul 21 05:58:32 EDT 2025
Tue Jul 01 00:30:45 EDT 2025
Thu Apr 24 23:09:23 EDT 2025
Wed Jan 22 16:15:22 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 35
Keywords porous hydrogel
adipose-cancer interaction
two-phase aqueous emulsions
core-shell
spheroid
Language English
License Attribution-NonCommercial-NoDerivs
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4699-955f975dd516a048492847b5094fcbd7354e4b8fababe13924f9efe5153896993
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Author contributions: W.X. and B.D. conceived the study idea. W.X., S.R. and B.D. designed the experiments. W. X. conducted experiments, wrote the manuscript, and revised the manuscript. D.L. and M.K. designed and prepared the sphere generation device. T.K. and S.R. performed the western blot and conducted its analysis. Y. H. helped with the cytokine array. All authors contributed to discussing the results and implications and editing the manuscript.
ORCID 0000-0002-5647-3793
0000-00002-7744-7615
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202214129
PMID 38131003
PQID 2858590861
PQPubID 2045204
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10732541
proquest_miscellaneous_2905522820
proquest_journals_2858590861
pubmed_primary_38131003
crossref_citationtrail_10_1002_adfm_202214129
crossref_primary_10_1002_adfm_202214129
wiley_primary_10_1002_adfm_202214129_ADFM202214129
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 29, 2023
PublicationDateYYYYMMDD 2023-08-29
PublicationDate_xml – month: 08
  year: 2023
  text: August 29, 2023
  day: 29
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Hoboken
PublicationTitle Advanced functional materials
PublicationTitleAlternate Adv Funct Mater
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2013; 3
2015; 4
2021; 23
2016; 19
2013; 109
2009 2015 2018 1996; 21 6 34 42
2019; 15
2015; 11
2017; 23
2002 2008; 23 107
2000 2009 2021; 21 10 260
2006 2007; 18 42
2019; 200
2022; 138
2010 2003; 16 52
2014; 21
2001; 86
2018; 7
2018; 19
2018; 9
2010 2015 2019 2021; 2 2 10 324
2014; 5
2013 2017; 1831 8
2018; 4
2021; 11
2021; 476
2019 2020 2019 2020; 9 22 11 13
2003 2020 2021; 91 6 269
2015; 21
2022; 14
1998 2012; 31 37
2015 2018; 14 30
2008 2015; 22 4
2018 2021; 154 7
2021; 40
2008; 130
2012; 21
2016 2014 2014; 2016 20 15
2014; 10
2017; 546
2015 2017 2018; 15 5 14
e_1_2_9_31_1
e_1_2_9_10_2
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_12_2
e_1_2_9_10_3
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_12_4
e_1_2_9_14_2
e_1_2_9_12_3
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_2
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_16_3
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_24_1
e_1_2_9_8_1
e_1_2_9_6_2
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_2_1
e_1_2_9_8_4
e_1_2_9_8_3
e_1_2_9_8_2
e_1_2_9_26_1
e_1_2_9_28_1
e_1_2_9_30_1
e_1_2_9_30_2
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_11_2
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_17_3
e_1_2_9_19_1
e_1_2_9_17_2
e_1_2_9_42_1
e_1_2_9_40_1
e_1_2_9_21_2
e_1_2_9_21_1
e_1_2_9_21_3
e_1_2_9_23_1
e_1_2_9_7_2
e_1_2_9_7_1
e_1_2_9_3_4
e_1_2_9_5_2
e_1_2_9_3_3
e_1_2_9_5_1
e_1_2_9_3_2
e_1_2_9_3_1
e_1_2_9_1_2
e_1_2_9_1_1
e_1_2_9_9_2
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – volume: 21
  start-page: 126
  year: 2012
  publication-title: Eur. J. Cancer Prev.
– volume: 23 107
  start-page: 824 181
  year: 2002 2008
  publication-title: Endocr. Rev. Breast Cancer Res. Treat.
– volume: 9
  start-page: 356
  year: 2018
  publication-title: Cell Death Dis.
– volume: 11
  start-page: 1566
  year: 2015
  publication-title: Mol. Med. Rep.
– volume: 2016 20 15
  start-page: 365 761
  year: 2016 2014 2014
  publication-title: Stem Cells Int. Tissue Eng., Part B Nat. Rev. Mol. Cell Biol.
– volume: 19
  start-page: 1732
  year: 2018
  publication-title: Biomacromolecules
– volume: 109
  start-page: 266
  year: 2013
  publication-title: Colloids Surf., B
– volume: 10
  start-page: 455
  year: 2014
  publication-title: Nat. Rev. Endocrinol.
– volume: 23
  start-page: 22
  year: 2021
  publication-title: Biomed. Microdevices
– volume: 11
  year: 2021
  publication-title: Sci. Rep.
– volume: 200
  start-page: 56
  year: 2019
  publication-title: Biomaterials
– volume: 21 10 260
  start-page: 1921 2328
  year: 2000 2009 2021
  publication-title: Biomaterials Biomacromolecules Carbohydr. Polym.
– volume: 4
  start-page: 1
  year: 2015
  publication-title: Prog. Biomater.
– volume: 14
  year: 2022
  publication-title: Biofabrication
– volume: 9 22 11 13
  start-page: 1302 1065
  year: 2019 2020 2019 2020
  publication-title: Sci. Rep. Diabetes, Obes. Metab. World J. Stem Cells Biofabrication
– volume: 86
  start-page: 1267
  year: 2001
  publication-title: J. Clin. Endocrinol. Metab.
– volume: 18 42
  start-page: 501 3502
  year: 2006 2007
  publication-title: Adv. Mater. J. Mater. Sci.
– volume: 19
  start-page: 23
  year: 2016
  publication-title: Cell Stem Cell
– volume: 15
  year: 2019
  publication-title: Small
– volume: 23
  start-page: 5829
  year: 2017
  publication-title: World J. Gastroenterol.
– volume: 476
  start-page: 23
  year: 2021
  publication-title: Mol. Cell. Biochem.
– volume: 7
  year: 2018
  publication-title: Adv. Healthcare Mater.
– volume: 138
  start-page: 182
  year: 2022
  publication-title: Acta Biomater.
– volume: 2 2 10 324
  start-page: 357
  year: 2010 2015 2019 2021
  publication-title: Biofabrication Adv. Mater. Interfaces Micromachines J. Mol. Liq.
– volume: 14 30
  start-page: 1269
  year: 2015 2018
  publication-title: Nat. Mater. Adv. Mater.
– volume: 40
  start-page: 31
  year: 2021
  publication-title: Cancer Metastasis Rev.
– volume: 21 6 34 42
  start-page: 3307 6060 756 1220
  year: 2009 2015 2018 1996
  publication-title: Adv. Mater. Nat. Commun. Langmuir AIChE J.
– volume: 1831 8
  start-page: 1533 2593
  year: 2013 2017
  publication-title: Biochim. Biophys. Acta Cell Death Dis.
– volume: 21
  start-page: 1255
  year: 2014
  publication-title: Curr. Med. Chem.
– volume: 31 37
  start-page: 267 106
  year: 1998 2012
  publication-title: Adv. Drug Delivery Rev. Prog. Polym. Sci.
– volume: 21
  start-page: 760
  year: 2015
  publication-title: Nat. Med.
– volume: 154 7
  start-page: 113 444
  year: 2018 2021
  publication-title: Biomaterials Int. J. Bioprint
– volume: 3
  start-page: 1272
  year: 2013
  publication-title: Cancer Discovery
– volume: 22 4
  start-page: 1440 133
  year: 2008 2015
  publication-title: FASEB J. Microarrays
– volume: 4
  start-page: 374
  year: 2018
  publication-title: Trends Cancer
– volume: 5
  start-page: 3056
  year: 2014
  publication-title: Nat. Commun.
– volume: 546
  start-page: 234
  year: 2017
  publication-title: Nature
– volume: 16 52
  start-page: 371 1158
  year: 2010 2003
  publication-title: Tissue Eng., Part B Polym. Int.
– volume: 130
  start-page: 382
  year: 2008
  publication-title: Am. J. Clin. Pathol.
– volume: 91 6 269
  start-page: 716 10
  year: 2003 2020 2021
  publication-title: BJU Int. Gels Biomaterials
– volume: 14
  start-page: 8693
  year: 2022
  publication-title: ACS Appl. Mater. Interfaces
– volume: 15 5 14
  start-page: 42 1 125
  year: 2015 2017 2018
  publication-title: Cancer Cell Int. Cancer Metab. Stem Cell Rev. Rep.
– ident: e_1_2_9_21_1
  doi: 10.1155/2016/9176357
– ident: e_1_2_9_21_2
  doi: 10.1089/ten.teb.2013.0537
– ident: e_1_2_9_2_1
  doi: 10.1002/smll.201901397
– ident: e_1_2_9_12_1
  doi: 10.1038/s41598-019-55034-9
– ident: e_1_2_9_12_4
  doi: 10.1088/1758-5090/abc1be
– ident: e_1_2_9_3_4
  doi: 10.1002/aic.690420504
– ident: e_1_2_9_14_2
  doi: 10.1038/cddis.2017.21
– ident: e_1_2_9_42_1
  doi: 10.1021/acsami.1c20320
– ident: e_1_2_9_36_1
  doi: 10.1038/nrendo.2014.94
– ident: e_1_2_9_7_2
  doi: 10.18063/ijb.v7i4.444
– ident: e_1_2_9_13_1
  doi: 10.1016/j.trecan.2018.03.004
– ident: e_1_2_9_24_1
  doi: 10.1007/s11010-020-03882-9
– ident: e_1_2_9_9_2
  doi: 10.1007/s10853-007-1533-x
– ident: e_1_2_9_34_1
  doi: 10.1038/s41419-018-0391-6
– ident: e_1_2_9_5_1
  doi: 10.1038/nmat4407
– ident: e_1_2_9_16_3
  doi: 10.1007/s12015-017-9772-y
– ident: e_1_2_9_30_2
  doi: 10.1007/s10549-007-9549-0
– ident: e_1_2_9_11_1
  doi: 10.1089/ten.teb.2009.0639
– ident: e_1_2_9_17_2
  doi: 10.3390/gels6010010
– ident: e_1_2_9_15_1
  doi: 10.1309/MX6KKA1UNJ1YG8VN
– ident: e_1_2_9_9_1
  doi: 10.1002/adma.200501423
– ident: e_1_2_9_21_3
  doi: 10.1038/nrm3908
– ident: e_1_2_9_31_1
  doi: 10.1038/s41598-021-97390-5
– ident: e_1_2_9_35_1
  doi: 10.1210/jc.86.3.1267
– ident: e_1_2_9_20_1
  doi: 10.1016/j.biomaterials.2019.01.047
– ident: e_1_2_9_6_2
  doi: 10.3390/microarrays4020133
– ident: e_1_2_9_5_2
  doi: 10.1002/adma.201805460
– ident: e_1_2_9_38_1
  doi: 10.1016/j.stem.2016.06.001
– ident: e_1_2_9_27_1
  doi: 10.3892/mmr.2014.2914
– ident: e_1_2_9_8_3
  doi: 10.3390/mi10060357
– ident: e_1_2_9_3_2
  doi: 10.1038/ncomms7060
– ident: e_1_2_9_10_2
  doi: 10.1021/bm900517q
– ident: e_1_2_9_1_2
  doi: 10.1016/j.progpolymsci.2011.06.003
– ident: e_1_2_9_3_1
  doi: 10.1002/adma.200802106
– ident: e_1_2_9_23_1
  doi: 10.1007/s10544-021-00561-4
– ident: e_1_2_9_1_1
  doi: 10.1016/S0169-409X(97)00124-5
– ident: e_1_2_9_32_1
  doi: 10.1007/s10555-020-09934-2
– ident: e_1_2_9_19_1
  doi: 10.1016/j.colsurfb.2013.03.005
– ident: e_1_2_9_17_1
  doi: 10.1046/j.1464-410X.2003.04218.x
– ident: e_1_2_9_4_1
  doi: 10.1002/adhm.201700927
– ident: e_1_2_9_37_1
  doi: 10.1038/nature22379
– ident: e_1_2_9_8_2
  doi: 10.1002/admi.201500386
– ident: e_1_2_9_16_2
  doi: 10.1186/s40170-016-0163-7
– ident: e_1_2_9_8_1
  doi: 10.1088/1758-5082/2/3/035003
– ident: e_1_2_9_8_4
  doi: 10.1016/j.molliq.2020.115122
– ident: e_1_2_9_39_1
  doi: 10.1016/j.actbio.2021.11.004
– ident: e_1_2_9_22_1
  doi: 10.1007/s40204-014-0033-8
– ident: e_1_2_9_10_1
  doi: 10.1016/S0142-9612(00)00033-8
– ident: e_1_2_9_40_1
  doi: 10.1038/nm.3881
– ident: e_1_2_9_18_1
  doi: 10.1021/acs.biomac.8b00218
– ident: e_1_2_9_25_1
  doi: 10.3748/wjg.v23.i32.5829
– ident: e_1_2_9_14_1
  doi: 10.1016/j.bbalip.2013.02.010
– ident: e_1_2_9_28_1
  doi: 10.1038/ncomms4056
– ident: e_1_2_9_7_1
  doi: 10.1016/j.biomaterials.2017.10.002
– ident: e_1_2_9_6_1
  doi: 10.1096/fj.07-9277com
– ident: e_1_2_9_12_3
  doi: 10.4252/wjsc.v11.i12.1065
– ident: e_1_2_9_11_2
  doi: 10.1002/pi.1218
– ident: e_1_2_9_29_1
  doi: 10.1158/2159-8290.CD-13-0397
– ident: e_1_2_9_30_1
  doi: 10.1210/er.2001-0033
– ident: e_1_2_9_33_1
  doi: 10.2174/0929867321666131129114742
– ident: e_1_2_9_10_3
  doi: 10.1016/j.carbpol.2021.117779
– ident: e_1_2_9_26_1
  doi: 10.1097/CEJ.0b013e32834c9b55
– ident: e_1_2_9_12_2
  doi: 10.1111/dom.14033
– ident: e_1_2_9_41_1
  doi: 10.1088/1758-5090/ac6c4b
– ident: e_1_2_9_16_1
  doi: 10.1186/s12935-015-0198-9
– ident: e_1_2_9_3_3
  doi: 10.1021/acs.langmuir.7b02834
– ident: e_1_2_9_17_3
  doi: 10.1016/j.biomaterials.2020.120622
SSID ssj0017734
Score 2.508135
Snippet Porous alginate (Alg) hydrogels possess many advantages as cell carriers. However, current pore generation methods require either complex or harsh fabrication...
Porous alginate hydrogels possess many advantages as cell carriers. However, current pore generation methods require either complex or harsh fabrication...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
SubjectTerms adipose‐cancer interaction
Alginates
Calcium ions
core‐shell
Current carriers
Emulsions
Hydrogels
Materials science
porous hydrogels
Spheroids
two‐phase aqueous emulsions
Title A Facile Strategy for the Fabrication of Cell‐Laden Porous Alginate Hydrogels based on Two‐Phase Aqueous Emulsions
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202214129
https://www.ncbi.nlm.nih.gov/pubmed/38131003
https://www.proquest.com/docview/2858590861
https://www.proquest.com/docview/2905522820
https://pubmed.ncbi.nlm.nih.gov/PMC10732541
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NitswEB666aV7KP2v223RQqEns7Es2dbRZDeE0paw7EJuRrKlpuDaJT-75NZH6DP2STpjO25CKAt7MbY1so3Go_lGI30C-GC4deg4cz92OvKFldo3XAlfGoUOpQhpyx2abfE1mlyLTzM521nF3_JD9ANuZBlNf00Grs3y7B9pqC4crSTnPBDos47gIa2vpT-di2mfR4jjNq8cBTTDK5htaRuH_Gy__r5bOsCah1Mmd6Fs44vGT-BxByJZ2mr9KTyw1TM43qEWfA43KRvrHCuzjn92wxCeMoR7eN8supE6Vjs2smX559fvzxp7IDatF_V6ydKStmtYWTbZFIv6G_pPRu6uYFjl6rZG8ekcr1mK30_yFz_WJQ27LV_A9fjiajTxuz0W_BwDY-UrKZ2KZVHIINJozUKRvzJEq-dyU8ShFFaYxGmjjUW0yIVT1llJHaXCB4QvYVDVlX0NLEgQCymhI8M1hkEisbT2ZJgUjnNtVOyBv23iLO8IyGkfjDJrqZN5RirJepV48LGX_9lSb_xX8mSrsawzwWXGKeOpMGILPDjti9F4KCOiK2qdjKuhRACKKMiDV62C-1chlKHkR-hBsqf6XoCIufdLqu_zhqAbQ-oQA298MW_-kjs-P0vPx1_6qzf3qfQWHuF5SIPdXJ3AYLVY23eIllbmfWMQeDy_5H8B77QOAw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB5BOQCHin8CBYyExCnqxrGT-BiVrhbYVnvYSr1ZdmK3SCFB-wPqjUfoM_ZJOpNkQ1cVQuKYZJxEmYznmxn7G4APljuPjrMIU2-SUDhpQsuVCKVV6FDKmFru0GqL42RyIr6cys1qQtoL0_FDDAk3sox2viYDp4T0_h_WUFN62krOeSTQad2FeyLhKXVv4GI2FBLStCssJxEt8YpON7yNI76_PX7bL90Cm7fXTN7Esq0zGj-C3R5FsrxT-2O44-on8PAGt-BT-JmzsSlwMOsJaC8Y4lOGeA_P20WfqmONZweuqq5-X04NTkFs1iya9ZLlFfVrWDk2uSgXzRk6UEb-rmQ4ZP6rQfHZOR6zHN-f5A-_ryvKuy2fwcn4cH4wCfsmC2GBkbEKlZRepbIsZZQYNGehyGFZ4tXzhS3TWAonbOaNNdYhXOTCK-edpJlS4Q3i57BTN7V7CSzKEAwpYRLLDcZBInO0-WSUlZ5zY1UaQLj5xLroGcipEUalO-5krkklelBJAB8H-R8d98ZfJfc2GtO9DS41p5KnwpAtCuD9cBmth0oipqavo7kaSUSgCIMCeNEpeHgUYhmqfsQBZFuqHwSImXv7Sv3tvGXoxpg6xsgbH8zbv-Qfr6_zT-Oj4ejV_wx6B_cn86Opnn4-_voaHuD5mDLfXO3Bzmqxdm8QOq3s29Y4rgEikBCG
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB5BkRAcEP8EChgJiVPUjWMn8TFqGy1Qqj200t4iO7YpUkiq_QH1xiPwjDwJM0k27KpCSByTjBPLk_F8M2N_BnhruPPoOKsw9ToJhZM6NFyJUBqFDsXGdOQOrbY4Tabn4sNczrd28ff8EGPCjSyjm6_JwC-tP_hDGqqtp53knEcCfdZNuEUVP_rHuZiNdYQ07evKSUQrvKL5hrZxwg922--6pWtY8_qSyW0o2_mi4j7cG0Aky3utP4AbrnkId7eoBR_Bt5wVusLGbOCfvWIITxnCPbxvFkOmjrWeHbq6_vXj54nGGYjN2kW7XrK8puMaVo5Nr-yi_Yz-k5G7swybnH1vUXx2gdcsx_6T_PHXdU1pt-VjOC-Ozw6n4XDGQlhhYKxCJaVXqbRWRolGaxaK_JUhWj1fGZvGUjhhMq-NNg7RIhdeOe8kTZQKXxA_gb2mbdwzYFGGWEgJnRiuMQwSmaO9J5PMes61UWkA4WaIy2ogIKdzMOqyp07mJamkHFUSwLtR_rKn3vir5P5GY-VggsuSU8VTYcQWBfBmfIzGQxUR3dDolFxNJAJQREEBPO0VPH4KoQwVP-IAsh3VjwJEzL37pPly0RF0Y0gdY-CNH-bdX_KP7pf5UfFpvHr-P41ew-3ZUVGevD_9-ALu4O2Y8t5c7cPearF2LxE4rcyrzjZ-A3t2D7g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Facile+Strategy+for+the+Fabrication+of+Cell-laden+Porous+Alginate+Hydrogels+Based+on+Two-phase+Aqueous+Emulsions&rft.jtitle=Advanced+functional+materials&rft.au=Xue%2C+Wen&rft.au=Lee%2C+Donghee&rft.au=Kong%2C+Yunfan&rft.au=Kuss%2C+Mitchell&rft.date=2023-08-29&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=33&rft.issue=35&rft_id=info:doi/10.1002%2Fadfm.202214129&rft_id=info%3Apmid%2F38131003&rft.externalDocID=PMC10732541
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon