Secondary Amine Catalysis in Enzyme Design: Broadening Protein Template Diversity through Genetic Code Expansion

Secondary amines, due to their reactivity, can transform protein templates into catalytically active entities, accelerating the development of artificial enzymes. However, existing methods, predominantly reliant on modified ligands or N‐terminal prolines, impose significant limitations on template s...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 63; no. 22; pp. e202403098 - n/a
Main Authors Williams, Thomas L., Taily, Irshad M., Hatton, Lewis, Berezin, Andrey A, Wu, Yi‐Lin, Moliner, Vicent, Świderek, Katarzyna, Tsai, Yu‐Hsuan, Luk, Louis Y. P.
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 27.05.2024
John Wiley and Sons Inc
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Secondary amines, due to their reactivity, can transform protein templates into catalytically active entities, accelerating the development of artificial enzymes. However, existing methods, predominantly reliant on modified ligands or N‐terminal prolines, impose significant limitations on template selection. In this study, genetic code expansion was used to break this boundary, enabling secondary amines to be incorporated into alternative proteins and positions of choice. Pyrrolysine analogues carrying different secondary amines could be incorporated into superfolder green fluorescent protein (sfGFP), multidrug‐binding LmrR and nucleotide‐binding dihydrofolate reductase (DHFR). Notably, the analogue containing a D‐proline moiety demonstrated both proteolytic stability and catalytic activity, conferring LmrR and DHFR with the desired transfer hydrogenation activity. While the LmrR variants were confined to the biomimetic 1‐benzyl‐1,4‐dihydronicotinamide (BNAH) as the hydride source, the optimal DHFR variant favorably used the pro‐R hydride from NADPH for stereoselective reactions (e.r. up to 92 : 8), highlighting that a switch of protein template could broaden the nucleophile option for catalysis. Owing to the cofactor compatibility, the DHFR‐based secondary amine catalysis could be integrated into an enzymatic recycling scheme. This established method shows substantial potential in enzyme design, applicable from studies on enzyme evolution to the development of new biocatalysts. The importance of protein templates in artificial enzyme design is illustrated through genetic code expansion. Incorporation of a secondary amine into the nucleotide‐binding DHFR and multidrug‐binding LmrR resulted in catalytic entities, with the former favoring the use of NADPH as the hydride source for reactions, whereas the latter required biomimetic 1‐benzyl‐1,4‐dihydronicotinamide (BNAH).
AbstractList Secondary amines, due to their reactivity, can transform protein templates into catalytically active entities, accelerating the development of artificial enzymes. However, existing methods, predominantly reliant on modified ligands or N-terminal prolines, impose significant limitations on template selection. In this study, genetic code expansion was used to break this boundary, enabling secondary amines to be incorporated into alternative proteins and positions of choice. Pyrrolysine analogues carrying different secondary amines could be incorporated into superfolder green fluorescent protein (sfGFP), multidrug-binding LmrR and nucleotide-binding dihydrofolate reductase (DHFR). Notably, the analogue containing a D-proline moiety demonstrated both proteolytic stability and catalytic activity, conferring LmrR and DHFR with the desired transfer hydrogenation activity. While the LmrR variants were confined to the biomimetic 1-benzyl-1,4-dihydronicotinamide (BNAH) as the hydride source, the optimal DHFR variant favorably used the pro-R hydride from NADPH for stereoselective reactions (e.r. up to 92 : 8), highlighting that a switch of protein template could broaden the nucleophile option for catalysis. Owing to the cofactor compatibility, the DHFR-based secondary amine catalysis could be integrated into an enzymatic recycling scheme. This established method shows substantial potential in enzyme design, applicable from studies on enzyme evolution to the development of new biocatalysts.
Secondary amines, due to their reactivity, can transform protein templates into catalytically active entities, accelerating the development of artificial enzymes. However, existing methods, predominantly reliant on modified ligands or N‐terminal prolines, impose significant limitations on template selection. In this study, genetic code expansion was used to break this boundary, enabling secondary amines to be incorporated into alternative proteins and positions of choice. Pyrrolysine analogues carrying different secondary amines could be incorporated into superfolder green fluorescent protein (sfGFP), multidrug‐binding LmrR and nucleotide‐binding dihydrofolate reductase (DHFR). Notably, the analogue containing a D‐proline moiety demonstrated both proteolytic stability and catalytic activity, conferring LmrR and DHFR with the desired transfer hydrogenation activity. While the LmrR variants were confined to the biomimetic 1‐benzyl‐1,4‐dihydronicotinamide (BNAH) as the hydride source, the optimal DHFR variant favorably used the pro‐ R hydride from NADPH for stereoselective reactions ( e.r . up to 92 : 8), highlighting that a switch of protein template could broaden the nucleophile option for catalysis. Owing to the cofactor compatibility, the DHFR‐based secondary amine catalysis could be integrated into an enzymatic recycling scheme. This established method shows substantial potential in enzyme design, applicable from studies on enzyme evolution to the development of new biocatalysts. The importance of protein templates in artificial enzyme design is illustrated through genetic code expansion. Incorporation of a secondary amine into the nucleotide‐binding DHFR and multidrug‐binding LmrR resulted in catalytic entities, with the former favoring the use of NADPH as the hydride source for reactions, whereas the latter required biomimetic 1‐benzyl‐1,4‐dihydronicotinamide (BNAH).
Secondary amines, due to their reactivity, can transform protein templates into catalytically active entities, accelerating the development of artificial enzymes. However, existing methods, predominantly reliant on modified ligands or N‐terminal prolines, impose significant limitations on template selection. In this study, genetic code expansion was used to break this boundary, enabling secondary amines to be incorporated into alternative proteins and positions of choice. Pyrrolysine analogues carrying different secondary amines could be incorporated into superfolder green fluorescent protein (sfGFP), multidrug‐binding LmrR and nucleotide‐binding dihydrofolate reductase (DHFR). Notably, the analogue containing a D‐proline moiety demonstrated both proteolytic stability and catalytic activity, conferring LmrR and DHFR with the desired transfer hydrogenation activity. While the LmrR variants were confined to the biomimetic 1‐benzyl‐1,4‐dihydronicotinamide (BNAH) as the hydride source, the optimal DHFR variant favorably used the pro‐R hydride from NADPH for stereoselective reactions (e.r. up to 92 : 8), highlighting that a switch of protein template could broaden the nucleophile option for catalysis. Owing to the cofactor compatibility, the DHFR‐based secondary amine catalysis could be integrated into an enzymatic recycling scheme. This established method shows substantial potential in enzyme design, applicable from studies on enzyme evolution to the development of new biocatalysts. The importance of protein templates in artificial enzyme design is illustrated through genetic code expansion. Incorporation of a secondary amine into the nucleotide‐binding DHFR and multidrug‐binding LmrR resulted in catalytic entities, with the former favoring the use of NADPH as the hydride source for reactions, whereas the latter required biomimetic 1‐benzyl‐1,4‐dihydronicotinamide (BNAH).
Secondary amines, due to their reactivity, can transform protein templates into catalytically active entities, accelerating the development of artificial enzymes. However, existing methods, predominantly reliant on modified ligands or N-terminal prolines, impose significant limitations on template selection. In this study, genetic code expansion was used to break this boundary, enabling secondary amines to be incorporated into alternative proteins and positions of choice. Pyrrolysine analogues carrying different secondary amines could be incorporated into superfolder green fluorescent protein (sfGFP), multidrug-binding LmrR and nucleotide-binding dihydrofolate reductase (DHFR). Notably, the analogue containing a D-proline moiety demonstrated both proteolytic stability and catalytic activity, conferring LmrR and DHFR with the desired transfer hydrogenation activity. While the LmrR variants were confined to the biomimetic 1-benzyl-1,4-dihydronicotinamide (BNAH) as the hydride source, the optimal DHFR variant favorably used the pro-R hydride from NADPH for stereoselective reactions (e.r. up to 92 : 8), highlighting that a switch of protein template could broaden the nucleophile option for catalysis. Owing to the cofactor compatibility, the DHFR-based secondary amine catalysis could be integrated into an enzymatic recycling scheme. This established method shows substantial potential in enzyme design, applicable from studies on enzyme evolution to the development of new biocatalysts.Secondary amines, due to their reactivity, can transform protein templates into catalytically active entities, accelerating the development of artificial enzymes. However, existing methods, predominantly reliant on modified ligands or N-terminal prolines, impose significant limitations on template selection. In this study, genetic code expansion was used to break this boundary, enabling secondary amines to be incorporated into alternative proteins and positions of choice. Pyrrolysine analogues carrying different secondary amines could be incorporated into superfolder green fluorescent protein (sfGFP), multidrug-binding LmrR and nucleotide-binding dihydrofolate reductase (DHFR). Notably, the analogue containing a D-proline moiety demonstrated both proteolytic stability and catalytic activity, conferring LmrR and DHFR with the desired transfer hydrogenation activity. While the LmrR variants were confined to the biomimetic 1-benzyl-1,4-dihydronicotinamide (BNAH) as the hydride source, the optimal DHFR variant favorably used the pro-R hydride from NADPH for stereoselective reactions (e.r. up to 92 : 8), highlighting that a switch of protein template could broaden the nucleophile option for catalysis. Owing to the cofactor compatibility, the DHFR-based secondary amine catalysis could be integrated into an enzymatic recycling scheme. This established method shows substantial potential in enzyme design, applicable from studies on enzyme evolution to the development of new biocatalysts.
Secondary amines, due to their reactivity, can transform protein templates into catalytically active entities, accelerating the development of artificial enzymes. However, existing methods, predominantly reliant on modified ligands or N‐terminal prolines, impose significant limitations on template selection. In this study, genetic code expansion was used to break this boundary, enabling secondary amines to be incorporated into alternative proteins and positions of choice. Pyrrolysine analogues carrying different secondary amines could be incorporated into superfolder green fluorescent protein (sfGFP), multidrug‐binding LmrR and nucleotide‐binding dihydrofolate reductase (DHFR). Notably, the analogue containing a D‐proline moiety demonstrated both proteolytic stability and catalytic activity, conferring LmrR and DHFR with the desired transfer hydrogenation activity. While the LmrR variants were confined to the biomimetic 1‐benzyl‐1,4‐dihydronicotinamide (BNAH) as the hydride source, the optimal DHFR variant favorably used the pro‐ R hydride from NADPH for stereoselective reactions ( e.r . up to 92 : 8), highlighting that a switch of protein template could broaden the nucleophile option for catalysis. Owing to the cofactor compatibility, the DHFR‐based secondary amine catalysis could be integrated into an enzymatic recycling scheme. This established method shows substantial potential in enzyme design, applicable from studies on enzyme evolution to the development of new biocatalysts.
Author Williams, Thomas L.
Wu, Yi‐Lin
Tsai, Yu‐Hsuan
Taily, Irshad M.
Hatton, Lewis
Luk, Louis Y. P.
Świderek, Katarzyna
Moliner, Vicent
Berezin, Andrey A
AuthorAffiliation 1 School of Chemistry and Cardiff Catalysis Institute Cardiff University Main Building, Park Place Cardiff CF10 3AT United Kingdom
3 Institute of Molecular Physiology Shenzhen Bay Laboratory Gaoke International Innovation Center Guangming District 518132 Shenzhen, Guangdong China
2 BioComp Group, Institute of Advanced Materials (INAM) Universitat Jaume I 12071 Castelló Spain
AuthorAffiliation_xml – name: 3 Institute of Molecular Physiology Shenzhen Bay Laboratory Gaoke International Innovation Center Guangming District 518132 Shenzhen, Guangdong China
– name: 1 School of Chemistry and Cardiff Catalysis Institute Cardiff University Main Building, Park Place Cardiff CF10 3AT United Kingdom
– name: 2 BioComp Group, Institute of Advanced Materials (INAM) Universitat Jaume I 12071 Castelló Spain
Author_xml – sequence: 1
  givenname: Thomas L.
  surname: Williams
  fullname: Williams, Thomas L.
  organization: Cardiff University
– sequence: 2
  givenname: Irshad M.
  orcidid: 0009-0002-2268-1479
  surname: Taily
  fullname: Taily, Irshad M.
  organization: Cardiff University
– sequence: 3
  givenname: Lewis
  surname: Hatton
  fullname: Hatton, Lewis
  organization: Cardiff University
– sequence: 4
  givenname: Andrey A
  surname: Berezin
  fullname: Berezin, Andrey A
  organization: Cardiff University
– sequence: 5
  givenname: Yi‐Lin
  orcidid: 0000-0003-0253-1625
  surname: Wu
  fullname: Wu, Yi‐Lin
  organization: Cardiff University
– sequence: 6
  givenname: Vicent
  orcidid: 0000-0002-3665-3391
  surname: Moliner
  fullname: Moliner, Vicent
  organization: Universitat Jaume I
– sequence: 7
  givenname: Katarzyna
  orcidid: 0000-0002-7528-1551
  surname: Świderek
  fullname: Świderek, Katarzyna
  email: swiderek@uji.es
  organization: Universitat Jaume I
– sequence: 8
  givenname: Yu‐Hsuan
  orcidid: 0000-0003-0589-5088
  surname: Tsai
  fullname: Tsai, Yu‐Hsuan
  email: tsai.y-h@outlook.com
  organization: Gaoke International Innovation Center
– sequence: 9
  givenname: Louis Y. P.
  orcidid: 0000-0002-7864-6261
  surname: Luk
  fullname: Luk, Louis Y. P.
  email: lukly@cardiff.ac.uk
  organization: Cardiff University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38545954$$D View this record in MEDLINE/PubMed
BookMark eNqFkcFv0zAYxS00xLbClSOyxIVLih3bic0FlVLGpAmQGGfLcb60nhK72Mmg_PW46igwCXGype_3Pr_nd45OfPCA0FNK5pSQ8qXxDuYlKTlhRMkH6IyKkhasrtlJvnPGiloKeorOU7rJvJSkeoROmRRcKMHP0PYz2OBbE3d4MTgPeGlG0--SS9h5vPI_dgPgt5Dc2r_Cb2IwLXjn1_hTDCNk4hqGbW_GzLhbiMmNOzxuYpjWG3wBHkZn8TK0gFfft8YnF_xj9LAzfYInd-cMfXm3ul6-L64-XlwuF1eF5ZWShe2Y4sQKKUtVNp0gqqMGZNW1TSVpW7FS2JyCqaohYKu6Ja1lpDFC1XkOnM3Q68Pe7dQM0FrwYzS93kY35LA6GKf_nni30etwqynlqi4lzRte3G2I4esEadSDSxb63ngIU9KMUE5Ixas9-vweehOm6HO-TAkhuZLZ6ww9-9PS0cuvNjIwPwA2hpQidEeEEr2vW-_r1se6s4DfE1g3mjF_c47k-n_L1EH2zfWw-88jevHhcvVb-xMzB8As
CitedBy_id crossref_primary_10_1002_chem_202404519
crossref_primary_10_1002_ange_202411347
crossref_primary_10_1002_anie_202411347
crossref_primary_10_1021_jacs_4c03795
crossref_primary_10_1021_acs_chemrev_4c00007
Cites_doi 10.1038/nature19114
10.1038/nchembio.2273
10.1021/jacs.6b02470
10.1038/s41467-020-17580-z
10.1021/ja203111c
10.1074/jbc.275.14.9924
10.1021/acscatal.8b04299
10.1039/C5CP00794A
10.1007/s00726-020-02927-z
10.1021/acs.jctc.7b00875
10.1002/cctc.201902044
10.1021/acs.accounts.9b00004
10.1038/nsmb772
10.1021/jo062586z
10.1016/S0003-9861(02)00052-8
10.1021/ar200316n
10.1021/ja209425w
10.1038/s41467-023-39201-1
10.1021/cr068388p
10.1039/b713273e
10.1021/ja207785f
10.1039/C7SC03477F
10.1038/nature07367
10.1126/science.1101710
10.1042/EBC20180042
10.1126/science.3511529
10.1016/j.abb.2013.09.017
10.1007/s00253-019-10036-5
10.1021/ja043834g
10.1021/bi00387a052
10.1016/S0021-9258(19)37101-7
10.1002/anie.201806850
10.1038/s41557-021-00833-9
10.1002/anie.201202070
10.1515/znc-2017-0087
10.1002/jcc.20289
10.1002/cbic.201200225
10.1002/anie.201108175
10.1021/acs.accounts.8b00618
10.1002/anie.201813499
10.1016/j.theochem.2008.11.009
10.3390/ijms20215507
10.1039/D1RA04333A
10.3389/fmolb.2019.00004
10.1038/nchem.1498
10.1038/s41929-019-0420-6
10.1002/cctc.202301004
10.1021/ja302788c
10.1002/anie.202001373
10.1016/j.febslet.2006.11.028
10.1038/s41586-019-1262-8
10.1006/abbi.1993.1543
10.1021/bi951732k
10.1002/cbic.201000633
10.1039/D0CC08142F
10.1016/0010-4655(95)00053-I
10.1002/jcc.20139
10.1002/jcc.540130812
10.1074/jbc.270.19.11671
10.1073/pnas.1415856111
10.1073/pnas.0400091101
10.1038/s41557-018-0082-z
10.1016/0021-9991(77)90121-8
10.1021/acscatal.1c00996
10.3390/molecules25102457
10.1021/bi973065w
10.1038/s41570-019-0143-x
10.1073/pnas.1312437110
10.1021/ja00406a037
10.1021/bi962337c
10.1039/C7CS00509A
10.1039/C7CY02556D
10.1021/acs.jpca.7b11803
10.1021/acscatal.9b00780
10.1128/JB.01151-07
10.1021/acs.chemrev.7b00014
10.1007/s00253-013-5232-z
10.1021/jacs.5b12252
ContentType Journal Article
Copyright 2024 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH
2024 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH.
2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH
– notice: 2024 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH.
– notice: 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TM
K9.
7X8
5PM
DOI 10.1002/anie.202403098
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE


ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage n/a
ExternalDocumentID PMC11497281
38545954
10_1002_anie_202403098
ANIE202403098
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Ministerio de Ciencia e Innovación and Fondo Social Europeo
  funderid: PID2021-123332OB-C21
– fundername: Engineering and Physical Sciences Research Council
  funderid: EP/L027240/1
– fundername: Leverhulme Trust
  funderid: RPG-2017-195
– fundername: Royal Society
  funderid: RG170187
– fundername: Ramon y Cajal
  funderid: RYC2020-030596-I
– fundername: Biotechnology and Biological Sciences Research Council
  funderid: BB/T015799/1
– fundername: Generalitat Valenciana
  funderid: CIPROM/2021/079
– fundername: Ramon y Cajal
  grantid: RYC2020-030596-I
– fundername: Engineering and Physical Sciences Research Council
  grantid: EP/L027240/1
– fundername: Ministerio de Ciencia e Innovación and Fondo Social Europeo
  grantid: PID2021-123332OB-C21
– fundername: Leverhulme Trust
  grantid: RPG-2017-195
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/T015799/1
– fundername: Royal Society
  grantid: RG170187
– fundername: Generalitat Valenciana
  grantid: CIPROM/2021/079
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
24P
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJNI
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEIGN
AEIMD
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGYGG
AHBTC
AHMBA
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAHHS
AAYXX
ACCFJ
ADZOD
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TM
K9.
7X8
5PM
ID FETCH-LOGICAL-c4698-cf3940c588292bf509f1ae86fdb681d6325c385396b0ec67d0dc30ba597681e43
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Thu Aug 21 18:30:49 EDT 2025
Fri Jul 11 11:59:40 EDT 2025
Fri Jul 25 11:59:55 EDT 2025
Thu Apr 03 07:05:14 EDT 2025
Thu Apr 24 22:56:46 EDT 2025
Tue Jul 01 01:47:34 EDT 2025
Sun Jul 06 04:45:35 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 22
Keywords Artificial Enzyme
Genetic Code Expansion
Organocatalysis
Secondary Amine Catalysis
Protein Engineering
Language English
License Attribution
2024 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4698-cf3940c588292bf509f1ae86fdb681d6325c385396b0ec67d0dc30ba597681e43
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0253-1625
0000-0002-3665-3391
0000-0002-7528-1551
0000-0002-7864-6261
0000-0003-0589-5088
0009-0002-2268-1479
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202403098
PMID 38545954
PQID 3055849885
PQPubID 946352
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11497281
proquest_miscellaneous_3014006461
proquest_journals_3055849885
pubmed_primary_38545954
crossref_primary_10_1002_anie_202403098
crossref_citationtrail_10_1002_anie_202403098
wiley_primary_10_1002_anie_202403098_ANIE202403098
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 27, 2024
PublicationDateYYYYMMDD 2024-05-27
PublicationDate_xml – month: 05
  year: 2024
  text: May 27, 2024
  day: 27
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
– name: Hoboken
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
John Wiley and Sons Inc
Publisher_xml – name: Wiley Subscription Services, Inc
– name: John Wiley and Sons Inc
References 2008; 190
2018; 122
2017; 8
2007; 107
2019; 52
2004; 25
2019; 58
2020; 59
1992; 13
2007; 72
2011; 12
2020; 12
2020; 11
1977; 23
2005; 26
1996; 35
2012; 13
2013; 5
2018; 47
2012; 51
2018; 8
2020; 3
2012; 134
2019; 20
2019; 63
2002; 103
2013; 97
2018; 73
2013; 110
2004; 101
2019; 9
2015; 17
2019; 3
2023; 14
2019; 6
1995; 91
1993; 306
1986; 231
1992; 267
2007
2019; 103
2000; 275
2014; 111
2004; 305
2024; 16
1995; 270
2009; 896
2011; 133
2004; 11
2021; 57
1998; 37
2021; 53
2021; 11
2021
2016; 537
2018; 118
1997; 36
2017; 13
2005; 127
2006; 580
2022; 14
2002; 402
2020; 25
2016; 138
2008; 455
2019; 570
2012; 45
2018; 10
2014; 544
1987; 26
2018; 57
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_73_1
e_1_2_7_50_1
e_1_2_7_71_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_77_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_75_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_58_1
e_1_2_7_79_1
e_1_2_7_39_1
Williams T. T. (e_1_2_7_37_1) 2021
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_69_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_72_1
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_76_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_74_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_78_1
e_1_2_7_38_1
References_xml – volume: 91
  start-page: 275
  year: 1995
  end-page: 282
  publication-title: Comput. Phys. Commun.
– volume: 52
  start-page: 545
  year: 2019
  end-page: 556
  publication-title: Acc. Chem. Res.
– volume: 9
  start-page: 1503
  year: 2019
  end-page: 1513
  publication-title: ACS Catal.
– volume: 51
  start-page: 3897
  year: 2012
  end-page: 3900
  publication-title: Angew. Chem. Int. Ed.
– volume: 110
  start-page: 16344
  year: 2013
  end-page: 16349
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 17
  start-page: 30817
  year: 2015
  end-page: 30827
  publication-title: Phys. Chem. Chem. Phys.
– volume: 537
  start-page: 661
  year: 2016
  end-page: 665
  publication-title: Nature
– volume: 12
  start-page: 602
  year: 2011
  end-page: 609
  publication-title: ChemBioChem
– volume: 3
  start-page: 687
  year: 2019
  end-page: 705
  publication-title: Nat. Chem. Rev.
– volume: 107
  start-page: 5416
  year: 2007
  end-page: 5470
  publication-title: Chem. Rev.
– volume: 53
  start-page: 89
  year: 2021
  end-page: 96
  publication-title: Amino Acids
– volume: 26
  start-page: 1781
  year: 2005
  end-page: 1802
  publication-title: J. Comput. Chem.
– volume: 896
  start-page: 73
  year: 2009
  end-page: 79
  publication-title: J. Mol. Struct.
– volume: 134
  start-page: 367
  year: 2012
  end-page: 374
  publication-title: J. Am. Chem. Soc.
– volume: 305
  start-page: 1752
  year: 2004
  end-page: 1755
  publication-title: Science
– volume: 455
  start-page: 304
  year: 2008
  end-page: 308
  publication-title: Nature
– volume: 101
  start-page: 2764
  year: 2004
  end-page: 2769
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 73
  start-page: 67
  year: 2018
  end-page: 75
  publication-title: Z. Naturforsch. C .J. Biosci.
– volume: 14
  start-page: 3556
  year: 2023
  publication-title: Nat. Commun.
– volume: 231
  start-page: 1123
  year: 1986
  end-page: 1128
  publication-title: Science
– volume: 580
  start-page: 6695
  year: 2006
  end-page: 6700
  publication-title: FEBS Lett.
– volume: 306
  start-page: 501
  year: 1993
  end-page: 509
  publication-title: Arch. Biochem. Biophys.
– volume: 63
  start-page: 237
  year: 2019
  end-page: 266
  publication-title: Essays Biochem.
– volume: 47
  start-page: 278
  year: 2018
  end-page: 290
  publication-title: Chem. Soc. Rev.
– volume: 12
  start-page: 1368
  year: 2020
  end-page: 1375
  publication-title: ChemCatChem
– volume: 58
  start-page: 2083
  year: 2019
  end-page: 2087
  publication-title: Angew. Chem. Int. Ed.
– volume: 52
  start-page: 585
  year: 2019
  end-page: 595
  publication-title: Acc. Chem. Res.
– volume: 36
  start-page: 586
  year: 1997
  end-page: 603
  publication-title: Biochemistry
– volume: 14
  start-page: 313
  year: 2022
  publication-title: Nat. Chem.
– volume: 72
  start-page: 3679
  year: 2007
  end-page: 3688
  publication-title: J. Org. Chem.
– volume: 133
  start-page: 11418
  year: 2011
  end-page: 11421
  publication-title: J. Am. Chem. Soc.
– volume: 118
  start-page: 142
  year: 2018
  end-page: 231
  publication-title: Chem. Rev.
– volume: 6
  start-page: 4
  year: 2019
  publication-title: Front. Mol. Biosci.
– volume: 275
  start-page: 9924
  year: 2000
  end-page: 9929
  publication-title: J. Biol. Chem.
– volume: 37
  start-page: 6336
  year: 1998
  end-page: 6342
  publication-title: Biochemistry
– volume: 13
  start-page: 290
  year: 2017
  end-page: 294
  publication-title: Nat. Chem. Biol.
– year: 2021
  publication-title: Research Square
– volume: 26
  start-page: 4085
  year: 1987
  end-page: 4092
  publication-title: Biochemistry
– volume: 190
  start-page: 759
  year: 2008
  end-page: 763
  publication-title: J. Bacteriol.
– volume: 35
  start-page: 792
  year: 1996
  end-page: 802
  publication-title: Biochemistry
– volume: 138
  start-page: 1033
  year: 2016
  end-page: 1039
  publication-title: J. Am. Chem. Soc.
– volume: 16
  year: 2024
  publication-title: ChemCatChem
– volume: 11
  start-page: 6763
  year: 2021
  end-page: 6770
  publication-title: ACS Catal.
– volume: 13
  start-page: 1011
  year: 1992
  end-page: 1021
  publication-title: J. Comput. Chem.
– volume: 544
  start-page: 128
  year: 2014
  end-page: 141
  publication-title: Arch. Biochem. Biophys.
– volume: 97
  start-page: 9343
  year: 2013
  end-page: 9353
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 402
  start-page: 1
  year: 2002
  end-page: 13
  publication-title: Arch. Biochem. Biophys.
– volume: 127
  start-page: 32
  year: 2005
  end-page: 33
  publication-title: J. Am. Chem. Soc.
– volume: 23
  start-page: 187
  year: 1977
  end-page: 199
  publication-title: J. Comput. Phys.
– volume: 103
  start-page: 4890
  year: 2002
  end-page: 4899
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 4369
  year: 2019
  end-page: 4373
  publication-title: ACS Catal.
– volume: 20
  start-page: 5507
  year: 2019
  publication-title: Int. J. Mol. Sci.
– volume: 57
  start-page: 12478
  year: 2018
  end-page: 12482
  publication-title: Angew. Chem. Int. Ed.
– volume: 138
  start-page: 5781
  year: 2016
  end-page: 5784
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 7228
  year: 2017
  end-page: 7235
  publication-title: Chem. Sci.
– volume: 8
  start-page: 1677
  year: 2018
  end-page: 1685
  publication-title: Catal. Sci. Technol.
– volume: 25
  start-page: 2038
  year: 2004
  end-page: 2048
  publication-title: J. Comput. Chem.
– volume: 51
  start-page: 7472
  year: 2012
  end-page: 7475
  publication-title: Angew. Chem. Int. Ed.
– volume: 134
  start-page: 1738
  year: 2012
  end-page: 1745
  publication-title: J. Am. Chem. Soc.
– volume: 57
  start-page: 1919
  year: 2021
  end-page: 1922
  publication-title: Chem. Commun.
– volume: 122
  start-page: 451
  year: 2018
  end-page: 459
  publication-title: J. Phys. Chem. A
– volume: 13
  start-page: 1274
  year: 2012
  end-page: 1277
  publication-title: ChemBioChem
– volume: 45
  start-page: 2045
  year: 2012
  end-page: 2054
  publication-title: Acc. Chem. Res.
– volume: 10
  start-page: 946
  year: 2018
  end-page: 952
  publication-title: Nat. Chem.
– volume: 570
  start-page: 219
  year: 2019
  end-page: 223
  publication-title: Nature
– volume: 13
  start-page: 5933
  year: 2017
  end-page: 5944
  publication-title: J. Chem. Theory Comput.
– volume: 103
  start-page: 7355
  year: 2019
  end-page: 7365
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 5
  start-page: 93
  year: 2013
  end-page: 99
  publication-title: Nat. Chem.
– volume: 3
  start-page: 289
  year: 2020
  end-page: 294
  publication-title: Nat. Catal.
– volume: 134
  start-page: 9417
  year: 2012
  end-page: 9427
  publication-title: J. Am. Chem. Soc.
– volume: 111
  start-page: 18225
  year: 2014
  end-page: 18230
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 11
  start-page: 3786
  year: 2020
  publication-title: Nat. Commun.
– volume: 270
  start-page: 11671
  year: 1995
  end-page: 11677
  publication-title: J. Biol. Chem.
– volume: 11
  start-page: 539
  year: 2004
  end-page: 543
  publication-title: Nat. Struct. Mol. Biol.
– volume: 25
  start-page: 2457
  year: 2020
  publication-title: Molecules
– volume: 11
  start-page: 24607
  year: 2021
  end-page: 24612
  publication-title: RSC Adv.
– volume: 267
  start-page: 17716
  year: 1992
  end-page: 17721
  publication-title: J. Biol. Chem.
– volume: 59
  start-page: 10374
  year: 2020
  end-page: 10378
  publication-title: Angew. Chem. Int. Ed.
– start-page: 4952
  year: 2007
  end-page: 4954
  publication-title: Chem. Commun.
– ident: e_1_2_7_61_1
  doi: 10.1038/nature19114
– ident: e_1_2_7_1_1
  doi: 10.1038/nchembio.2273
– ident: e_1_2_7_52_1
  doi: 10.1021/jacs.6b02470
– ident: e_1_2_7_15_1
  doi: 10.1038/s41467-020-17580-z
– ident: e_1_2_7_39_1
  doi: 10.1021/ja203111c
– ident: e_1_2_7_7_1
  doi: 10.1074/jbc.275.14.9924
– ident: e_1_2_7_22_1
  doi: 10.1021/acscatal.8b04299
– ident: e_1_2_7_58_1
  doi: 10.1039/C5CP00794A
– ident: e_1_2_7_40_1
  doi: 10.1007/s00726-020-02927-z
– ident: e_1_2_7_69_1
  doi: 10.1021/acs.jctc.7b00875
– ident: e_1_2_7_60_1
  doi: 10.1002/cctc.201902044
– ident: e_1_2_7_42_1
  doi: 10.1021/acs.accounts.9b00004
– ident: e_1_2_7_9_1
  doi: 10.1038/nsmb772
– ident: e_1_2_7_12_1
  doi: 10.1021/jo062586z
– ident: e_1_2_7_5_1
  doi: 10.1016/S0003-9861(02)00052-8
– ident: e_1_2_7_18_1
  doi: 10.1021/ar200316n
– ident: e_1_2_7_64_1
  doi: 10.1021/ja209425w
– ident: e_1_2_7_67_1
  doi: 10.1038/s41467-023-39201-1
– ident: e_1_2_7_11_1
  doi: 10.1021/cr068388p
– ident: e_1_2_7_48_1
  doi: 10.1039/b713273e
– ident: e_1_2_7_51_1
  doi: 10.1021/ja207785f
– ident: e_1_2_7_44_1
  doi: 10.1039/C7SC03477F
– ident: e_1_2_7_13_1
  doi: 10.1038/nature07367
– ident: e_1_2_7_17_1
  doi: 10.1126/science.1101710
– year: 2021
  ident: e_1_2_7_37_1
  publication-title: Research Square
– ident: e_1_2_7_38_1
  doi: 10.1042/EBC20180042
– ident: e_1_2_7_73_1
  doi: 10.1126/science.3511529
– ident: e_1_2_7_8_1
  doi: 10.1016/j.abb.2013.09.017
– ident: e_1_2_7_28_1
  doi: 10.1007/s00253-019-10036-5
– ident: e_1_2_7_47_1
  doi: 10.1021/ja043834g
– ident: e_1_2_7_55_1
  doi: 10.1021/bi00387a052
– ident: e_1_2_7_3_1
  doi: 10.1016/S0021-9258(19)37101-7
– ident: e_1_2_7_23_1
  doi: 10.1002/anie.201806850
– ident: e_1_2_7_34_1
  doi: 10.1038/s41557-021-00833-9
– ident: e_1_2_7_43_1
  doi: 10.1002/anie.201202070
– ident: e_1_2_7_79_1
  doi: 10.1515/znc-2017-0087
– ident: e_1_2_7_70_1
  doi: 10.1002/jcc.20289
– ident: e_1_2_7_20_1
  doi: 10.1002/cbic.201200225
– ident: e_1_2_7_49_1
  doi: 10.1002/anie.201108175
– ident: e_1_2_7_53_1
  doi: 10.1021/acs.accounts.8b00618
– ident: e_1_2_7_29_1
  doi: 10.1002/anie.201813499
– ident: e_1_2_7_10_1
  doi: 10.1016/j.theochem.2008.11.009
– ident: e_1_2_7_16_1
  doi: 10.3390/ijms20215507
– ident: e_1_2_7_66_1
  doi: 10.1039/D1RA04333A
– ident: e_1_2_7_2_1
  doi: 10.3389/fmolb.2019.00004
– ident: e_1_2_7_78_1
  doi: 10.1038/nchem.1498
– ident: e_1_2_7_31_1
  doi: 10.1038/s41929-019-0420-6
– ident: e_1_2_7_36_1
  doi: 10.1002/cctc.202301004
– ident: e_1_2_7_50_1
  doi: 10.1021/ja302788c
– ident: e_1_2_7_26_1
  doi: 10.1002/anie.202001373
– ident: e_1_2_7_35_1
  doi: 10.1016/j.febslet.2006.11.028
– ident: e_1_2_7_33_1
  doi: 10.1038/s41586-019-1262-8
– ident: e_1_2_7_72_1
  doi: 10.1006/abbi.1993.1543
– ident: e_1_2_7_4_1
  doi: 10.1021/bi951732k
– ident: e_1_2_7_19_1
  doi: 10.1002/cbic.201000633
– ident: e_1_2_7_25_1
  doi: 10.1039/D0CC08142F
– ident: e_1_2_7_74_1
  doi: 10.1016/0010-4655(95)00053-I
– ident: e_1_2_7_68_1
  doi: 10.1002/jcc.20139
– ident: e_1_2_7_76_1
  doi: 10.1002/jcc.540130812
– ident: e_1_2_7_6_1
  doi: 10.1074/jbc.270.19.11671
– ident: e_1_2_7_71_1
  doi: 10.1073/pnas.1415856111
– ident: e_1_2_7_56_1
  doi: 10.1073/pnas.0400091101
– ident: e_1_2_7_30_1
  doi: 10.1038/s41557-018-0082-z
– ident: e_1_2_7_75_1
  doi: 10.1016/0021-9991(77)90121-8
– ident: e_1_2_7_32_1
  doi: 10.1021/acscatal.1c00996
– ident: e_1_2_7_24_1
  doi: 10.3390/molecules25102457
– ident: e_1_2_7_57_1
  doi: 10.1021/bi973065w
– ident: e_1_2_7_45_1
  doi: 10.1038/s41570-019-0143-x
– ident: e_1_2_7_54_1
  doi: 10.1073/pnas.1312437110
– ident: e_1_2_7_77_1
  doi: 10.1021/ja00406a037
– ident: e_1_2_7_63_1
  doi: 10.1021/bi962337c
– ident: e_1_2_7_14_1
  doi: 10.1039/C7CS00509A
– ident: e_1_2_7_46_1
  doi: 10.1039/C7CY02556D
– ident: e_1_2_7_65_1
  doi: 10.1021/acs.jpca.7b11803
– ident: e_1_2_7_21_1
  doi: 10.1021/acscatal.9b00780
– ident: e_1_2_7_41_1
  doi: 10.1128/JB.01151-07
– ident: e_1_2_7_62_1
  doi: 10.1021/acs.chemrev.7b00014
– ident: e_1_2_7_27_1
  doi: 10.1007/s00253-013-5232-z
– ident: e_1_2_7_59_1
  doi: 10.1021/jacs.5b12252
SSID ssj0028806
Score 2.4963706
Snippet Secondary amines, due to their reactivity, can transform protein templates into catalytically active entities, accelerating the development of artificial...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e202403098
SubjectTerms Amines
Artificial Enzyme
Binding
Biocatalysis
Biocatalysts
Biomimetics
Catalysis
Catalytic activity
Dihydrofolate reductase
Enzymes
Fluorescence
Genetic Code
Genetic Code Expansion
Genetic diversity
Green fluorescent protein
Green Fluorescent Proteins - chemistry
Green Fluorescent Proteins - genetics
Green Fluorescent Proteins - metabolism
Hydrides
Lysine - analogs & derivatives
Lysine - chemistry
Lysine - metabolism
Nucleophiles
Nucleotides
Organocatalysis
Protein Engineering
Proteins
Proteolysis
Recycling programs
Reductases
Secondary Amine Catalysis
Stereoselectivity
Tetrahydrofolate Dehydrogenase - chemistry
Tetrahydrofolate Dehydrogenase - genetics
Tetrahydrofolate Dehydrogenase - metabolism
Title Secondary Amine Catalysis in Enzyme Design: Broadening Protein Template Diversity through Genetic Code Expansion
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202403098
https://www.ncbi.nlm.nih.gov/pubmed/38545954
https://www.proquest.com/docview/3055849885
https://www.proquest.com/docview/3014006461
https://pubmed.ncbi.nlm.nih.gov/PMC11497281
Volume 63
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BL3Dh_QiUykhInNwmfiXmttpuVZCoKmil3iLbcURFN7uiuxL01zOTF10qhAS3RB7HsTO2v3FmvgF4U2Ve5NqmXBhpuMqqwL2NhouoNJpjTuma4p0_HpnDU_XhTJ9di-Lv-CHGAzeaGe16TRPc-cu9X6ShFIGN9h3xyaWWon3JYYtQ0aeRP0qgcnbhRVJyykI_sDamYm-z-uaudANq3vSYvI5k263o4D64oROdB8rX3fXK74ar3_gd_6eXD-Bej1PZpFOsh3ArNo_gznRID_cYlp_JlK7wyWwyx2bYlA6CiN-EnTds1lz9mEe23_qHvGNo7Dtc4HCbZMdEDIESJ3G-vECgy_YHzxDW5wxiRIWNzbLpoops9h3XKzrSewKnB7OT6SHv0zfwQGkpeagp63rQiOGt8DUikzpzsTB15Q2iZCOFDhLRgjU-jcHkVVoFmXqHJg6WRyWfwlazaOJzYHVlHW6kIkQbKJTX195JXJ0Kl2e1kCYBPny-MvTc5pRi46LsWJlFSeNYjuOYwNtRftmxevxRcnvQhrKf3ZclsaQVyhaFTuD1WIzjTz9bXBMXa5JB0xXxnskSeNYpz9gU9lppq1UCxYZajQLE-b1Z0px_abm_0Xy1uSjwoaJVm7-8fjk5ej8b7178S6WXcJeuyWNC5Nuwtfq2jq8QiK38DtwW6ninnXI_AXsILBg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED_BeBgvML5GYAMjIfHkLbFjJ95b1XbqYKsQdBJvUew4YmJNK2gl2F_PXb5GmRASPCY-x7Fztn_n3P0O4HURWZEoE3KhpeZxVDhujddc-FihOZbHqqR457OpnpzHbz-pzpuQYmEafoj-wI1mRr1e0wSnA-nDa9ZQCsFGA48I5UKT3oY7lNab6PNHH3oGKYHq2QQYSckpD33H2xiKw836m_vSDbB502fyVyxbb0bH98F23Wh8UL4crFf2wF39xvD4X_3cgXstVGWDRrcewC1fPYTtYZch7hEsP5I1XeCj2WCO7bAhnQURxQm7qNi4uvox92xUu4gcMbT3c1zjcKdk74kbAiVmfr68RKzLRp1zCGvTBjFiw8Zm2XBReDb-jksWneo9hvPj8Ww44W0GB-4oMyV3JSVedwphvBG2RHBSRrlPdVlYjUBZS6GcRMBgtA2900kRFk6GNkcrB8t9LJ_AVrWo_FNgZWFy3EuF88ZRNK8tbS5xgUrzJCqF1AHw7vtlrqU3pywbl1lDzCwyGsesH8cA3vTyy4bY44-Se506ZO0E_5YRUVoamzRVAbzqi3H86X9LXvnFmmTQekXIp6MAdhvt6ZvCXsfKqDiAdEOvegGi_d4sqS4-1_TfaMGaRKT4UFHrzV9ePxtMT8b91bN_qfQStiezs9Ps9GT67jncpfvkQCGSPdhafV37fcRlK_uinnk_ARUiL10
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwEB5BkYAXxE2ggJGQeLKa2I4T87baQy3HaiVaqW9RfIlK3ewKWgn49czkoqsKIfGYeHI4E3u-sWe-AXjrMyuK3KRcaKm5yrzj1gTNRVA5umO1yiPlO39e6sMT9eE0P72Sxd_xQ4wLbjQy2vmaBvjWx4M_pKGUgY3-HfHJpaa8Cbdox4-CuoRajS4X_p1dfpGUnMrQD7SNqTjYvX7XLF3DmtdDJq9C2dYWLe7DvR5Eskmn9QdwIzQP4c50qN32CLZfyM_12Dk2WWNP2ZRWaYh8hJ01bN78-rkObNYGb7xn6InXOPugDWMrYm1AieOw3p4jCmWzIWyD9QV9GPFU42PZdOMDm__AyYTW2x7DyWJ-PD3kfW0F7qhmJHeRSqK7HAG2ETYibIhZHUodvdUIYbUUuZNoyo22aXC68Kl3MrU1-h_YHpR8AnvNpgnPgEVvarRywgXjKM_WRltLnDrKusiikDoBPnzayvXE41T_4rzqKJNFRaqoRlUk8G6U33aUG3-V3B80VfVD73tFFGalMmWZJ_BmbMbvTzshdRM2lySDfiWCMZ0l8LRT7Pgo7LXKTa4SKHdUPgoQIfduS3P2tSXmRt_SFKLEm4r27_jH61eT5dF8PHr-Pxe9htur2aL6dLT8-ALu0mmKbBDFPuxdfLsMLxEwXdhX7Zj4DZGcDK0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Secondary+Amine+Catalysis+in+Enzyme+Design%3A+Broadening+Protein+Template+Diversity+through+Genetic+Code+Expansion&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Williams%2C+Thomas+L&rft.au=Taily%2C+Irshad+M&rft.au=Hatton%2C+Lewis&rft.au=Berezin%2C+Andrey+A&rft.date=2024-05-27&rft.eissn=1521-3773&rft.volume=63&rft.issue=22&rft.spage=e202403098&rft_id=info:doi/10.1002%2Fanie.202403098&rft_id=info%3Apmid%2F38545954&rft.externalDocID=38545954
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon