Secondary Amine Catalysis in Enzyme Design: Broadening Protein Template Diversity through Genetic Code Expansion
Secondary amines, due to their reactivity, can transform protein templates into catalytically active entities, accelerating the development of artificial enzymes. However, existing methods, predominantly reliant on modified ligands or N‐terminal prolines, impose significant limitations on template s...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 63; no. 22; pp. e202403098 - n/a |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
27.05.2024
John Wiley and Sons Inc |
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Secondary amines, due to their reactivity, can transform protein templates into catalytically active entities, accelerating the development of artificial enzymes. However, existing methods, predominantly reliant on modified ligands or N‐terminal prolines, impose significant limitations on template selection. In this study, genetic code expansion was used to break this boundary, enabling secondary amines to be incorporated into alternative proteins and positions of choice. Pyrrolysine analogues carrying different secondary amines could be incorporated into superfolder green fluorescent protein (sfGFP), multidrug‐binding LmrR and nucleotide‐binding dihydrofolate reductase (DHFR). Notably, the analogue containing a D‐proline moiety demonstrated both proteolytic stability and catalytic activity, conferring LmrR and DHFR with the desired transfer hydrogenation activity. While the LmrR variants were confined to the biomimetic 1‐benzyl‐1,4‐dihydronicotinamide (BNAH) as the hydride source, the optimal DHFR variant favorably used the pro‐R hydride from NADPH for stereoselective reactions (e.r. up to 92 : 8), highlighting that a switch of protein template could broaden the nucleophile option for catalysis. Owing to the cofactor compatibility, the DHFR‐based secondary amine catalysis could be integrated into an enzymatic recycling scheme. This established method shows substantial potential in enzyme design, applicable from studies on enzyme evolution to the development of new biocatalysts.
The importance of protein templates in artificial enzyme design is illustrated through genetic code expansion. Incorporation of a secondary amine into the nucleotide‐binding DHFR and multidrug‐binding LmrR resulted in catalytic entities, with the former favoring the use of NADPH as the hydride source for reactions, whereas the latter required biomimetic 1‐benzyl‐1,4‐dihydronicotinamide (BNAH). |
---|---|
AbstractList | Secondary amines, due to their reactivity, can transform protein templates into catalytically active entities, accelerating the development of artificial enzymes. However, existing methods, predominantly reliant on modified ligands or N-terminal prolines, impose significant limitations on template selection. In this study, genetic code expansion was used to break this boundary, enabling secondary amines to be incorporated into alternative proteins and positions of choice. Pyrrolysine analogues carrying different secondary amines could be incorporated into superfolder green fluorescent protein (sfGFP), multidrug-binding LmrR and nucleotide-binding dihydrofolate reductase (DHFR). Notably, the analogue containing a D-proline moiety demonstrated both proteolytic stability and catalytic activity, conferring LmrR and DHFR with the desired transfer hydrogenation activity. While the LmrR variants were confined to the biomimetic 1-benzyl-1,4-dihydronicotinamide (BNAH) as the hydride source, the optimal DHFR variant favorably used the pro-R hydride from NADPH for stereoselective reactions (e.r. up to 92 : 8), highlighting that a switch of protein template could broaden the nucleophile option for catalysis. Owing to the cofactor compatibility, the DHFR-based secondary amine catalysis could be integrated into an enzymatic recycling scheme. This established method shows substantial potential in enzyme design, applicable from studies on enzyme evolution to the development of new biocatalysts. Secondary amines, due to their reactivity, can transform protein templates into catalytically active entities, accelerating the development of artificial enzymes. However, existing methods, predominantly reliant on modified ligands or N‐terminal prolines, impose significant limitations on template selection. In this study, genetic code expansion was used to break this boundary, enabling secondary amines to be incorporated into alternative proteins and positions of choice. Pyrrolysine analogues carrying different secondary amines could be incorporated into superfolder green fluorescent protein (sfGFP), multidrug‐binding LmrR and nucleotide‐binding dihydrofolate reductase (DHFR). Notably, the analogue containing a D‐proline moiety demonstrated both proteolytic stability and catalytic activity, conferring LmrR and DHFR with the desired transfer hydrogenation activity. While the LmrR variants were confined to the biomimetic 1‐benzyl‐1,4‐dihydronicotinamide (BNAH) as the hydride source, the optimal DHFR variant favorably used the pro‐ R hydride from NADPH for stereoselective reactions ( e.r . up to 92 : 8), highlighting that a switch of protein template could broaden the nucleophile option for catalysis. Owing to the cofactor compatibility, the DHFR‐based secondary amine catalysis could be integrated into an enzymatic recycling scheme. This established method shows substantial potential in enzyme design, applicable from studies on enzyme evolution to the development of new biocatalysts. The importance of protein templates in artificial enzyme design is illustrated through genetic code expansion. Incorporation of a secondary amine into the nucleotide‐binding DHFR and multidrug‐binding LmrR resulted in catalytic entities, with the former favoring the use of NADPH as the hydride source for reactions, whereas the latter required biomimetic 1‐benzyl‐1,4‐dihydronicotinamide (BNAH). Secondary amines, due to their reactivity, can transform protein templates into catalytically active entities, accelerating the development of artificial enzymes. However, existing methods, predominantly reliant on modified ligands or N‐terminal prolines, impose significant limitations on template selection. In this study, genetic code expansion was used to break this boundary, enabling secondary amines to be incorporated into alternative proteins and positions of choice. Pyrrolysine analogues carrying different secondary amines could be incorporated into superfolder green fluorescent protein (sfGFP), multidrug‐binding LmrR and nucleotide‐binding dihydrofolate reductase (DHFR). Notably, the analogue containing a D‐proline moiety demonstrated both proteolytic stability and catalytic activity, conferring LmrR and DHFR with the desired transfer hydrogenation activity. While the LmrR variants were confined to the biomimetic 1‐benzyl‐1,4‐dihydronicotinamide (BNAH) as the hydride source, the optimal DHFR variant favorably used the pro‐R hydride from NADPH for stereoselective reactions (e.r. up to 92 : 8), highlighting that a switch of protein template could broaden the nucleophile option for catalysis. Owing to the cofactor compatibility, the DHFR‐based secondary amine catalysis could be integrated into an enzymatic recycling scheme. This established method shows substantial potential in enzyme design, applicable from studies on enzyme evolution to the development of new biocatalysts. The importance of protein templates in artificial enzyme design is illustrated through genetic code expansion. Incorporation of a secondary amine into the nucleotide‐binding DHFR and multidrug‐binding LmrR resulted in catalytic entities, with the former favoring the use of NADPH as the hydride source for reactions, whereas the latter required biomimetic 1‐benzyl‐1,4‐dihydronicotinamide (BNAH). Secondary amines, due to their reactivity, can transform protein templates into catalytically active entities, accelerating the development of artificial enzymes. However, existing methods, predominantly reliant on modified ligands or N-terminal prolines, impose significant limitations on template selection. In this study, genetic code expansion was used to break this boundary, enabling secondary amines to be incorporated into alternative proteins and positions of choice. Pyrrolysine analogues carrying different secondary amines could be incorporated into superfolder green fluorescent protein (sfGFP), multidrug-binding LmrR and nucleotide-binding dihydrofolate reductase (DHFR). Notably, the analogue containing a D-proline moiety demonstrated both proteolytic stability and catalytic activity, conferring LmrR and DHFR with the desired transfer hydrogenation activity. While the LmrR variants were confined to the biomimetic 1-benzyl-1,4-dihydronicotinamide (BNAH) as the hydride source, the optimal DHFR variant favorably used the pro-R hydride from NADPH for stereoselective reactions (e.r. up to 92 : 8), highlighting that a switch of protein template could broaden the nucleophile option for catalysis. Owing to the cofactor compatibility, the DHFR-based secondary amine catalysis could be integrated into an enzymatic recycling scheme. This established method shows substantial potential in enzyme design, applicable from studies on enzyme evolution to the development of new biocatalysts.Secondary amines, due to their reactivity, can transform protein templates into catalytically active entities, accelerating the development of artificial enzymes. However, existing methods, predominantly reliant on modified ligands or N-terminal prolines, impose significant limitations on template selection. In this study, genetic code expansion was used to break this boundary, enabling secondary amines to be incorporated into alternative proteins and positions of choice. Pyrrolysine analogues carrying different secondary amines could be incorporated into superfolder green fluorescent protein (sfGFP), multidrug-binding LmrR and nucleotide-binding dihydrofolate reductase (DHFR). Notably, the analogue containing a D-proline moiety demonstrated both proteolytic stability and catalytic activity, conferring LmrR and DHFR with the desired transfer hydrogenation activity. While the LmrR variants were confined to the biomimetic 1-benzyl-1,4-dihydronicotinamide (BNAH) as the hydride source, the optimal DHFR variant favorably used the pro-R hydride from NADPH for stereoselective reactions (e.r. up to 92 : 8), highlighting that a switch of protein template could broaden the nucleophile option for catalysis. Owing to the cofactor compatibility, the DHFR-based secondary amine catalysis could be integrated into an enzymatic recycling scheme. This established method shows substantial potential in enzyme design, applicable from studies on enzyme evolution to the development of new biocatalysts. Secondary amines, due to their reactivity, can transform protein templates into catalytically active entities, accelerating the development of artificial enzymes. However, existing methods, predominantly reliant on modified ligands or N‐terminal prolines, impose significant limitations on template selection. In this study, genetic code expansion was used to break this boundary, enabling secondary amines to be incorporated into alternative proteins and positions of choice. Pyrrolysine analogues carrying different secondary amines could be incorporated into superfolder green fluorescent protein (sfGFP), multidrug‐binding LmrR and nucleotide‐binding dihydrofolate reductase (DHFR). Notably, the analogue containing a D‐proline moiety demonstrated both proteolytic stability and catalytic activity, conferring LmrR and DHFR with the desired transfer hydrogenation activity. While the LmrR variants were confined to the biomimetic 1‐benzyl‐1,4‐dihydronicotinamide (BNAH) as the hydride source, the optimal DHFR variant favorably used the pro‐ R hydride from NADPH for stereoselective reactions ( e.r . up to 92 : 8), highlighting that a switch of protein template could broaden the nucleophile option for catalysis. Owing to the cofactor compatibility, the DHFR‐based secondary amine catalysis could be integrated into an enzymatic recycling scheme. This established method shows substantial potential in enzyme design, applicable from studies on enzyme evolution to the development of new biocatalysts. |
Author | Williams, Thomas L. Wu, Yi‐Lin Tsai, Yu‐Hsuan Taily, Irshad M. Hatton, Lewis Luk, Louis Y. P. Świderek, Katarzyna Moliner, Vicent Berezin, Andrey A |
AuthorAffiliation | 1 School of Chemistry and Cardiff Catalysis Institute Cardiff University Main Building, Park Place Cardiff CF10 3AT United Kingdom 3 Institute of Molecular Physiology Shenzhen Bay Laboratory Gaoke International Innovation Center Guangming District 518132 Shenzhen, Guangdong China 2 BioComp Group, Institute of Advanced Materials (INAM) Universitat Jaume I 12071 Castelló Spain |
AuthorAffiliation_xml | – name: 3 Institute of Molecular Physiology Shenzhen Bay Laboratory Gaoke International Innovation Center Guangming District 518132 Shenzhen, Guangdong China – name: 1 School of Chemistry and Cardiff Catalysis Institute Cardiff University Main Building, Park Place Cardiff CF10 3AT United Kingdom – name: 2 BioComp Group, Institute of Advanced Materials (INAM) Universitat Jaume I 12071 Castelló Spain |
Author_xml | – sequence: 1 givenname: Thomas L. surname: Williams fullname: Williams, Thomas L. organization: Cardiff University – sequence: 2 givenname: Irshad M. orcidid: 0009-0002-2268-1479 surname: Taily fullname: Taily, Irshad M. organization: Cardiff University – sequence: 3 givenname: Lewis surname: Hatton fullname: Hatton, Lewis organization: Cardiff University – sequence: 4 givenname: Andrey A surname: Berezin fullname: Berezin, Andrey A organization: Cardiff University – sequence: 5 givenname: Yi‐Lin orcidid: 0000-0003-0253-1625 surname: Wu fullname: Wu, Yi‐Lin organization: Cardiff University – sequence: 6 givenname: Vicent orcidid: 0000-0002-3665-3391 surname: Moliner fullname: Moliner, Vicent organization: Universitat Jaume I – sequence: 7 givenname: Katarzyna orcidid: 0000-0002-7528-1551 surname: Świderek fullname: Świderek, Katarzyna email: swiderek@uji.es organization: Universitat Jaume I – sequence: 8 givenname: Yu‐Hsuan orcidid: 0000-0003-0589-5088 surname: Tsai fullname: Tsai, Yu‐Hsuan email: tsai.y-h@outlook.com organization: Gaoke International Innovation Center – sequence: 9 givenname: Louis Y. P. orcidid: 0000-0002-7864-6261 surname: Luk fullname: Luk, Louis Y. P. email: lukly@cardiff.ac.uk organization: Cardiff University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38545954$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkcFv0zAYxS00xLbClSOyxIVLih3bic0FlVLGpAmQGGfLcb60nhK72Mmg_PW46igwCXGype_3Pr_nd45OfPCA0FNK5pSQ8qXxDuYlKTlhRMkH6IyKkhasrtlJvnPGiloKeorOU7rJvJSkeoROmRRcKMHP0PYz2OBbE3d4MTgPeGlG0--SS9h5vPI_dgPgt5Dc2r_Cb2IwLXjn1_hTDCNk4hqGbW_GzLhbiMmNOzxuYpjWG3wBHkZn8TK0gFfft8YnF_xj9LAzfYInd-cMfXm3ul6-L64-XlwuF1eF5ZWShe2Y4sQKKUtVNp0gqqMGZNW1TSVpW7FS2JyCqaohYKu6Ja1lpDFC1XkOnM3Q68Pe7dQM0FrwYzS93kY35LA6GKf_nni30etwqynlqi4lzRte3G2I4esEadSDSxb63ngIU9KMUE5Ixas9-vweehOm6HO-TAkhuZLZ6ww9-9PS0cuvNjIwPwA2hpQidEeEEr2vW-_r1se6s4DfE1g3mjF_c47k-n_L1EH2zfWw-88jevHhcvVb-xMzB8As |
CitedBy_id | crossref_primary_10_1002_chem_202404519 crossref_primary_10_1002_ange_202411347 crossref_primary_10_1002_anie_202411347 crossref_primary_10_1021_jacs_4c03795 crossref_primary_10_1021_acs_chemrev_4c00007 |
Cites_doi | 10.1038/nature19114 10.1038/nchembio.2273 10.1021/jacs.6b02470 10.1038/s41467-020-17580-z 10.1021/ja203111c 10.1074/jbc.275.14.9924 10.1021/acscatal.8b04299 10.1039/C5CP00794A 10.1007/s00726-020-02927-z 10.1021/acs.jctc.7b00875 10.1002/cctc.201902044 10.1021/acs.accounts.9b00004 10.1038/nsmb772 10.1021/jo062586z 10.1016/S0003-9861(02)00052-8 10.1021/ar200316n 10.1021/ja209425w 10.1038/s41467-023-39201-1 10.1021/cr068388p 10.1039/b713273e 10.1021/ja207785f 10.1039/C7SC03477F 10.1038/nature07367 10.1126/science.1101710 10.1042/EBC20180042 10.1126/science.3511529 10.1016/j.abb.2013.09.017 10.1007/s00253-019-10036-5 10.1021/ja043834g 10.1021/bi00387a052 10.1016/S0021-9258(19)37101-7 10.1002/anie.201806850 10.1038/s41557-021-00833-9 10.1002/anie.201202070 10.1515/znc-2017-0087 10.1002/jcc.20289 10.1002/cbic.201200225 10.1002/anie.201108175 10.1021/acs.accounts.8b00618 10.1002/anie.201813499 10.1016/j.theochem.2008.11.009 10.3390/ijms20215507 10.1039/D1RA04333A 10.3389/fmolb.2019.00004 10.1038/nchem.1498 10.1038/s41929-019-0420-6 10.1002/cctc.202301004 10.1021/ja302788c 10.1002/anie.202001373 10.1016/j.febslet.2006.11.028 10.1038/s41586-019-1262-8 10.1006/abbi.1993.1543 10.1021/bi951732k 10.1002/cbic.201000633 10.1039/D0CC08142F 10.1016/0010-4655(95)00053-I 10.1002/jcc.20139 10.1002/jcc.540130812 10.1074/jbc.270.19.11671 10.1073/pnas.1415856111 10.1073/pnas.0400091101 10.1038/s41557-018-0082-z 10.1016/0021-9991(77)90121-8 10.1021/acscatal.1c00996 10.3390/molecules25102457 10.1021/bi973065w 10.1038/s41570-019-0143-x 10.1073/pnas.1312437110 10.1021/ja00406a037 10.1021/bi962337c 10.1039/C7CS00509A 10.1039/C7CY02556D 10.1021/acs.jpca.7b11803 10.1021/acscatal.9b00780 10.1128/JB.01151-07 10.1021/acs.chemrev.7b00014 10.1007/s00253-013-5232-z 10.1021/jacs.5b12252 |
ContentType | Journal Article |
Copyright | 2024 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH 2024 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH. 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH – notice: 2024 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH. – notice: 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TM K9. 7X8 5PM |
DOI | 10.1002/anie.202403098 |
DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | n/a |
ExternalDocumentID | PMC11497281 38545954 10_1002_anie_202403098 ANIE202403098 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Ministerio de Ciencia e Innovación and Fondo Social Europeo funderid: PID2021-123332OB-C21 – fundername: Engineering and Physical Sciences Research Council funderid: EP/L027240/1 – fundername: Leverhulme Trust funderid: RPG-2017-195 – fundername: Royal Society funderid: RG170187 – fundername: Ramon y Cajal funderid: RYC2020-030596-I – fundername: Biotechnology and Biological Sciences Research Council funderid: BB/T015799/1 – fundername: Generalitat Valenciana funderid: CIPROM/2021/079 – fundername: Ramon y Cajal grantid: RYC2020-030596-I – fundername: Engineering and Physical Sciences Research Council grantid: EP/L027240/1 – fundername: Ministerio de Ciencia e Innovación and Fondo Social Europeo grantid: PID2021-123332OB-C21 – fundername: Leverhulme Trust grantid: RPG-2017-195 – fundername: Biotechnology and Biological Sciences Research Council grantid: BB/T015799/1 – fundername: Royal Society grantid: RG170187 – fundername: Generalitat Valenciana grantid: CIPROM/2021/079 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 24P 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABJNI ABLJU ABPPZ ABPVW ACAHQ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEIGN AEIMD AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGYGG AHBTC AHMBA AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAHHS AAYXX ACCFJ ADZOD AEEZP AEQDE AIWBW AJBDE CITATION CGR CUY CVF ECM EIF NPM 7TM K9. 7X8 5PM |
ID | FETCH-LOGICAL-c4698-cf3940c588292bf509f1ae86fdb681d6325c385396b0ec67d0dc30ba597681e43 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Thu Aug 21 18:30:49 EDT 2025 Fri Jul 11 11:59:40 EDT 2025 Fri Jul 25 11:59:55 EDT 2025 Thu Apr 03 07:05:14 EDT 2025 Thu Apr 24 22:56:46 EDT 2025 Tue Jul 01 01:47:34 EDT 2025 Sun Jul 06 04:45:35 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 22 |
Keywords | Artificial Enzyme Genetic Code Expansion Organocatalysis Secondary Amine Catalysis Protein Engineering |
Language | English |
License | Attribution 2024 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4698-cf3940c588292bf509f1ae86fdb681d6325c385396b0ec67d0dc30ba597681e43 |
Notes | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-0253-1625 0000-0002-3665-3391 0000-0002-7528-1551 0000-0002-7864-6261 0000-0003-0589-5088 0009-0002-2268-1479 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202403098 |
PMID | 38545954 |
PQID | 3055849885 |
PQPubID | 946352 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_11497281 proquest_miscellaneous_3014006461 proquest_journals_3055849885 pubmed_primary_38545954 crossref_primary_10_1002_anie_202403098 crossref_citationtrail_10_1002_anie_202403098 wiley_primary_10_1002_anie_202403098_ANIE202403098 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 27, 2024 |
PublicationDateYYYYMMDD | 2024-05-27 |
PublicationDate_xml | – month: 05 year: 2024 text: May 27, 2024 day: 27 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim – name: Hoboken |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc John Wiley and Sons Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: John Wiley and Sons Inc |
References | 2008; 190 2018; 122 2017; 8 2007; 107 2019; 52 2004; 25 2019; 58 2020; 59 1992; 13 2007; 72 2011; 12 2020; 12 2020; 11 1977; 23 2005; 26 1996; 35 2012; 13 2013; 5 2018; 47 2012; 51 2018; 8 2020; 3 2012; 134 2019; 20 2019; 63 2002; 103 2013; 97 2018; 73 2013; 110 2004; 101 2019; 9 2015; 17 2019; 3 2023; 14 2019; 6 1995; 91 1993; 306 1986; 231 1992; 267 2007 2019; 103 2000; 275 2014; 111 2004; 305 2024; 16 1995; 270 2009; 896 2011; 133 2004; 11 2021; 57 1998; 37 2021; 53 2021; 11 2021 2016; 537 2018; 118 1997; 36 2017; 13 2005; 127 2006; 580 2022; 14 2002; 402 2020; 25 2016; 138 2008; 455 2019; 570 2012; 45 2018; 10 2014; 544 1987; 26 2018; 57 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_73_1 e_1_2_7_50_1 e_1_2_7_71_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_77_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_75_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_58_1 e_1_2_7_79_1 e_1_2_7_39_1 Williams T. T. (e_1_2_7_37_1) 2021 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_69_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_72_1 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_76_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_74_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_78_1 e_1_2_7_38_1 |
References_xml | – volume: 91 start-page: 275 year: 1995 end-page: 282 publication-title: Comput. Phys. Commun. – volume: 52 start-page: 545 year: 2019 end-page: 556 publication-title: Acc. Chem. Res. – volume: 9 start-page: 1503 year: 2019 end-page: 1513 publication-title: ACS Catal. – volume: 51 start-page: 3897 year: 2012 end-page: 3900 publication-title: Angew. Chem. Int. Ed. – volume: 110 start-page: 16344 year: 2013 end-page: 16349 publication-title: Proc. Natl. Acad. Sci. USA – volume: 17 start-page: 30817 year: 2015 end-page: 30827 publication-title: Phys. Chem. Chem. Phys. – volume: 537 start-page: 661 year: 2016 end-page: 665 publication-title: Nature – volume: 12 start-page: 602 year: 2011 end-page: 609 publication-title: ChemBioChem – volume: 3 start-page: 687 year: 2019 end-page: 705 publication-title: Nat. Chem. Rev. – volume: 107 start-page: 5416 year: 2007 end-page: 5470 publication-title: Chem. Rev. – volume: 53 start-page: 89 year: 2021 end-page: 96 publication-title: Amino Acids – volume: 26 start-page: 1781 year: 2005 end-page: 1802 publication-title: J. Comput. Chem. – volume: 896 start-page: 73 year: 2009 end-page: 79 publication-title: J. Mol. Struct. – volume: 134 start-page: 367 year: 2012 end-page: 374 publication-title: J. Am. Chem. Soc. – volume: 305 start-page: 1752 year: 2004 end-page: 1755 publication-title: Science – volume: 455 start-page: 304 year: 2008 end-page: 308 publication-title: Nature – volume: 101 start-page: 2764 year: 2004 end-page: 2769 publication-title: Proc. Natl. Acad. Sci. USA – volume: 73 start-page: 67 year: 2018 end-page: 75 publication-title: Z. Naturforsch. C .J. Biosci. – volume: 14 start-page: 3556 year: 2023 publication-title: Nat. Commun. – volume: 231 start-page: 1123 year: 1986 end-page: 1128 publication-title: Science – volume: 580 start-page: 6695 year: 2006 end-page: 6700 publication-title: FEBS Lett. – volume: 306 start-page: 501 year: 1993 end-page: 509 publication-title: Arch. Biochem. Biophys. – volume: 63 start-page: 237 year: 2019 end-page: 266 publication-title: Essays Biochem. – volume: 47 start-page: 278 year: 2018 end-page: 290 publication-title: Chem. Soc. Rev. – volume: 12 start-page: 1368 year: 2020 end-page: 1375 publication-title: ChemCatChem – volume: 58 start-page: 2083 year: 2019 end-page: 2087 publication-title: Angew. Chem. Int. Ed. – volume: 52 start-page: 585 year: 2019 end-page: 595 publication-title: Acc. Chem. Res. – volume: 36 start-page: 586 year: 1997 end-page: 603 publication-title: Biochemistry – volume: 14 start-page: 313 year: 2022 publication-title: Nat. Chem. – volume: 72 start-page: 3679 year: 2007 end-page: 3688 publication-title: J. Org. Chem. – volume: 133 start-page: 11418 year: 2011 end-page: 11421 publication-title: J. Am. Chem. Soc. – volume: 118 start-page: 142 year: 2018 end-page: 231 publication-title: Chem. Rev. – volume: 6 start-page: 4 year: 2019 publication-title: Front. Mol. Biosci. – volume: 275 start-page: 9924 year: 2000 end-page: 9929 publication-title: J. Biol. Chem. – volume: 37 start-page: 6336 year: 1998 end-page: 6342 publication-title: Biochemistry – volume: 13 start-page: 290 year: 2017 end-page: 294 publication-title: Nat. Chem. Biol. – year: 2021 publication-title: Research Square – volume: 26 start-page: 4085 year: 1987 end-page: 4092 publication-title: Biochemistry – volume: 190 start-page: 759 year: 2008 end-page: 763 publication-title: J. Bacteriol. – volume: 35 start-page: 792 year: 1996 end-page: 802 publication-title: Biochemistry – volume: 138 start-page: 1033 year: 2016 end-page: 1039 publication-title: J. Am. Chem. Soc. – volume: 16 year: 2024 publication-title: ChemCatChem – volume: 11 start-page: 6763 year: 2021 end-page: 6770 publication-title: ACS Catal. – volume: 13 start-page: 1011 year: 1992 end-page: 1021 publication-title: J. Comput. Chem. – volume: 544 start-page: 128 year: 2014 end-page: 141 publication-title: Arch. Biochem. Biophys. – volume: 97 start-page: 9343 year: 2013 end-page: 9353 publication-title: Appl. Microbiol. Biotechnol. – volume: 402 start-page: 1 year: 2002 end-page: 13 publication-title: Arch. Biochem. Biophys. – volume: 127 start-page: 32 year: 2005 end-page: 33 publication-title: J. Am. Chem. Soc. – volume: 23 start-page: 187 year: 1977 end-page: 199 publication-title: J. Comput. Phys. – volume: 103 start-page: 4890 year: 2002 end-page: 4899 publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 4369 year: 2019 end-page: 4373 publication-title: ACS Catal. – volume: 20 start-page: 5507 year: 2019 publication-title: Int. J. Mol. Sci. – volume: 57 start-page: 12478 year: 2018 end-page: 12482 publication-title: Angew. Chem. Int. Ed. – volume: 138 start-page: 5781 year: 2016 end-page: 5784 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 7228 year: 2017 end-page: 7235 publication-title: Chem. Sci. – volume: 8 start-page: 1677 year: 2018 end-page: 1685 publication-title: Catal. Sci. Technol. – volume: 25 start-page: 2038 year: 2004 end-page: 2048 publication-title: J. Comput. Chem. – volume: 51 start-page: 7472 year: 2012 end-page: 7475 publication-title: Angew. Chem. Int. Ed. – volume: 134 start-page: 1738 year: 2012 end-page: 1745 publication-title: J. Am. Chem. Soc. – volume: 57 start-page: 1919 year: 2021 end-page: 1922 publication-title: Chem. Commun. – volume: 122 start-page: 451 year: 2018 end-page: 459 publication-title: J. Phys. Chem. A – volume: 13 start-page: 1274 year: 2012 end-page: 1277 publication-title: ChemBioChem – volume: 45 start-page: 2045 year: 2012 end-page: 2054 publication-title: Acc. Chem. Res. – volume: 10 start-page: 946 year: 2018 end-page: 952 publication-title: Nat. Chem. – volume: 570 start-page: 219 year: 2019 end-page: 223 publication-title: Nature – volume: 13 start-page: 5933 year: 2017 end-page: 5944 publication-title: J. Chem. Theory Comput. – volume: 103 start-page: 7355 year: 2019 end-page: 7365 publication-title: Appl. Microbiol. Biotechnol. – volume: 5 start-page: 93 year: 2013 end-page: 99 publication-title: Nat. Chem. – volume: 3 start-page: 289 year: 2020 end-page: 294 publication-title: Nat. Catal. – volume: 134 start-page: 9417 year: 2012 end-page: 9427 publication-title: J. Am. Chem. Soc. – volume: 111 start-page: 18225 year: 2014 end-page: 18230 publication-title: Proc. Natl. Acad. Sci. USA – volume: 11 start-page: 3786 year: 2020 publication-title: Nat. Commun. – volume: 270 start-page: 11671 year: 1995 end-page: 11677 publication-title: J. Biol. Chem. – volume: 11 start-page: 539 year: 2004 end-page: 543 publication-title: Nat. Struct. Mol. Biol. – volume: 25 start-page: 2457 year: 2020 publication-title: Molecules – volume: 11 start-page: 24607 year: 2021 end-page: 24612 publication-title: RSC Adv. – volume: 267 start-page: 17716 year: 1992 end-page: 17721 publication-title: J. Biol. Chem. – volume: 59 start-page: 10374 year: 2020 end-page: 10378 publication-title: Angew. Chem. Int. Ed. – start-page: 4952 year: 2007 end-page: 4954 publication-title: Chem. Commun. – ident: e_1_2_7_61_1 doi: 10.1038/nature19114 – ident: e_1_2_7_1_1 doi: 10.1038/nchembio.2273 – ident: e_1_2_7_52_1 doi: 10.1021/jacs.6b02470 – ident: e_1_2_7_15_1 doi: 10.1038/s41467-020-17580-z – ident: e_1_2_7_39_1 doi: 10.1021/ja203111c – ident: e_1_2_7_7_1 doi: 10.1074/jbc.275.14.9924 – ident: e_1_2_7_22_1 doi: 10.1021/acscatal.8b04299 – ident: e_1_2_7_58_1 doi: 10.1039/C5CP00794A – ident: e_1_2_7_40_1 doi: 10.1007/s00726-020-02927-z – ident: e_1_2_7_69_1 doi: 10.1021/acs.jctc.7b00875 – ident: e_1_2_7_60_1 doi: 10.1002/cctc.201902044 – ident: e_1_2_7_42_1 doi: 10.1021/acs.accounts.9b00004 – ident: e_1_2_7_9_1 doi: 10.1038/nsmb772 – ident: e_1_2_7_12_1 doi: 10.1021/jo062586z – ident: e_1_2_7_5_1 doi: 10.1016/S0003-9861(02)00052-8 – ident: e_1_2_7_18_1 doi: 10.1021/ar200316n – ident: e_1_2_7_64_1 doi: 10.1021/ja209425w – ident: e_1_2_7_67_1 doi: 10.1038/s41467-023-39201-1 – ident: e_1_2_7_11_1 doi: 10.1021/cr068388p – ident: e_1_2_7_48_1 doi: 10.1039/b713273e – ident: e_1_2_7_51_1 doi: 10.1021/ja207785f – ident: e_1_2_7_44_1 doi: 10.1039/C7SC03477F – ident: e_1_2_7_13_1 doi: 10.1038/nature07367 – ident: e_1_2_7_17_1 doi: 10.1126/science.1101710 – year: 2021 ident: e_1_2_7_37_1 publication-title: Research Square – ident: e_1_2_7_38_1 doi: 10.1042/EBC20180042 – ident: e_1_2_7_73_1 doi: 10.1126/science.3511529 – ident: e_1_2_7_8_1 doi: 10.1016/j.abb.2013.09.017 – ident: e_1_2_7_28_1 doi: 10.1007/s00253-019-10036-5 – ident: e_1_2_7_47_1 doi: 10.1021/ja043834g – ident: e_1_2_7_55_1 doi: 10.1021/bi00387a052 – ident: e_1_2_7_3_1 doi: 10.1016/S0021-9258(19)37101-7 – ident: e_1_2_7_23_1 doi: 10.1002/anie.201806850 – ident: e_1_2_7_34_1 doi: 10.1038/s41557-021-00833-9 – ident: e_1_2_7_43_1 doi: 10.1002/anie.201202070 – ident: e_1_2_7_79_1 doi: 10.1515/znc-2017-0087 – ident: e_1_2_7_70_1 doi: 10.1002/jcc.20289 – ident: e_1_2_7_20_1 doi: 10.1002/cbic.201200225 – ident: e_1_2_7_49_1 doi: 10.1002/anie.201108175 – ident: e_1_2_7_53_1 doi: 10.1021/acs.accounts.8b00618 – ident: e_1_2_7_29_1 doi: 10.1002/anie.201813499 – ident: e_1_2_7_10_1 doi: 10.1016/j.theochem.2008.11.009 – ident: e_1_2_7_16_1 doi: 10.3390/ijms20215507 – ident: e_1_2_7_66_1 doi: 10.1039/D1RA04333A – ident: e_1_2_7_2_1 doi: 10.3389/fmolb.2019.00004 – ident: e_1_2_7_78_1 doi: 10.1038/nchem.1498 – ident: e_1_2_7_31_1 doi: 10.1038/s41929-019-0420-6 – ident: e_1_2_7_36_1 doi: 10.1002/cctc.202301004 – ident: e_1_2_7_50_1 doi: 10.1021/ja302788c – ident: e_1_2_7_26_1 doi: 10.1002/anie.202001373 – ident: e_1_2_7_35_1 doi: 10.1016/j.febslet.2006.11.028 – ident: e_1_2_7_33_1 doi: 10.1038/s41586-019-1262-8 – ident: e_1_2_7_72_1 doi: 10.1006/abbi.1993.1543 – ident: e_1_2_7_4_1 doi: 10.1021/bi951732k – ident: e_1_2_7_19_1 doi: 10.1002/cbic.201000633 – ident: e_1_2_7_25_1 doi: 10.1039/D0CC08142F – ident: e_1_2_7_74_1 doi: 10.1016/0010-4655(95)00053-I – ident: e_1_2_7_68_1 doi: 10.1002/jcc.20139 – ident: e_1_2_7_76_1 doi: 10.1002/jcc.540130812 – ident: e_1_2_7_6_1 doi: 10.1074/jbc.270.19.11671 – ident: e_1_2_7_71_1 doi: 10.1073/pnas.1415856111 – ident: e_1_2_7_56_1 doi: 10.1073/pnas.0400091101 – ident: e_1_2_7_30_1 doi: 10.1038/s41557-018-0082-z – ident: e_1_2_7_75_1 doi: 10.1016/0021-9991(77)90121-8 – ident: e_1_2_7_32_1 doi: 10.1021/acscatal.1c00996 – ident: e_1_2_7_24_1 doi: 10.3390/molecules25102457 – ident: e_1_2_7_57_1 doi: 10.1021/bi973065w – ident: e_1_2_7_45_1 doi: 10.1038/s41570-019-0143-x – ident: e_1_2_7_54_1 doi: 10.1073/pnas.1312437110 – ident: e_1_2_7_77_1 doi: 10.1021/ja00406a037 – ident: e_1_2_7_63_1 doi: 10.1021/bi962337c – ident: e_1_2_7_14_1 doi: 10.1039/C7CS00509A – ident: e_1_2_7_46_1 doi: 10.1039/C7CY02556D – ident: e_1_2_7_65_1 doi: 10.1021/acs.jpca.7b11803 – ident: e_1_2_7_21_1 doi: 10.1021/acscatal.9b00780 – ident: e_1_2_7_41_1 doi: 10.1128/JB.01151-07 – ident: e_1_2_7_62_1 doi: 10.1021/acs.chemrev.7b00014 – ident: e_1_2_7_27_1 doi: 10.1007/s00253-013-5232-z – ident: e_1_2_7_59_1 doi: 10.1021/jacs.5b12252 |
SSID | ssj0028806 |
Score | 2.4963706 |
Snippet | Secondary amines, due to their reactivity, can transform protein templates into catalytically active entities, accelerating the development of artificial... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e202403098 |
SubjectTerms | Amines Artificial Enzyme Binding Biocatalysis Biocatalysts Biomimetics Catalysis Catalytic activity Dihydrofolate reductase Enzymes Fluorescence Genetic Code Genetic Code Expansion Genetic diversity Green fluorescent protein Green Fluorescent Proteins - chemistry Green Fluorescent Proteins - genetics Green Fluorescent Proteins - metabolism Hydrides Lysine - analogs & derivatives Lysine - chemistry Lysine - metabolism Nucleophiles Nucleotides Organocatalysis Protein Engineering Proteins Proteolysis Recycling programs Reductases Secondary Amine Catalysis Stereoselectivity Tetrahydrofolate Dehydrogenase - chemistry Tetrahydrofolate Dehydrogenase - genetics Tetrahydrofolate Dehydrogenase - metabolism |
Title | Secondary Amine Catalysis in Enzyme Design: Broadening Protein Template Diversity through Genetic Code Expansion |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202403098 https://www.ncbi.nlm.nih.gov/pubmed/38545954 https://www.proquest.com/docview/3055849885 https://www.proquest.com/docview/3014006461 https://pubmed.ncbi.nlm.nih.gov/PMC11497281 |
Volume | 63 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BL3Dh_QiUykhInNwmfiXmttpuVZCoKmil3iLbcURFN7uiuxL01zOTF10qhAS3RB7HsTO2v3FmvgF4U2Ve5NqmXBhpuMqqwL2NhouoNJpjTuma4p0_HpnDU_XhTJ9di-Lv-CHGAzeaGe16TRPc-cu9X6ShFIGN9h3xyaWWon3JYYtQ0aeRP0qgcnbhRVJyykI_sDamYm-z-uaudANq3vSYvI5k263o4D64oROdB8rX3fXK74ar3_gd_6eXD-Bej1PZpFOsh3ArNo_gznRID_cYlp_JlK7wyWwyx2bYlA6CiN-EnTds1lz9mEe23_qHvGNo7Dtc4HCbZMdEDIESJ3G-vECgy_YHzxDW5wxiRIWNzbLpoops9h3XKzrSewKnB7OT6SHv0zfwQGkpeagp63rQiOGt8DUikzpzsTB15Q2iZCOFDhLRgjU-jcHkVVoFmXqHJg6WRyWfwlazaOJzYHVlHW6kIkQbKJTX195JXJ0Kl2e1kCYBPny-MvTc5pRi46LsWJlFSeNYjuOYwNtRftmxevxRcnvQhrKf3ZclsaQVyhaFTuD1WIzjTz9bXBMXa5JB0xXxnskSeNYpz9gU9lppq1UCxYZajQLE-b1Z0px_abm_0Xy1uSjwoaJVm7-8fjk5ej8b7178S6WXcJeuyWNC5Nuwtfq2jq8QiK38DtwW6ninnXI_AXsILBg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED_BeBgvML5GYAMjIfHkLbFjJ95b1XbqYKsQdBJvUew4YmJNK2gl2F_PXb5GmRASPCY-x7Fztn_n3P0O4HURWZEoE3KhpeZxVDhujddc-FihOZbHqqR457OpnpzHbz-pzpuQYmEafoj-wI1mRr1e0wSnA-nDa9ZQCsFGA48I5UKT3oY7lNab6PNHH3oGKYHq2QQYSckpD33H2xiKw836m_vSDbB502fyVyxbb0bH98F23Wh8UL4crFf2wF39xvD4X_3cgXstVGWDRrcewC1fPYTtYZch7hEsP5I1XeCj2WCO7bAhnQURxQm7qNi4uvox92xUu4gcMbT3c1zjcKdk74kbAiVmfr68RKzLRp1zCGvTBjFiw8Zm2XBReDb-jksWneo9hvPj8Ww44W0GB-4oMyV3JSVedwphvBG2RHBSRrlPdVlYjUBZS6GcRMBgtA2900kRFk6GNkcrB8t9LJ_AVrWo_FNgZWFy3EuF88ZRNK8tbS5xgUrzJCqF1AHw7vtlrqU3pywbl1lDzCwyGsesH8cA3vTyy4bY44-Se506ZO0E_5YRUVoamzRVAbzqi3H86X9LXvnFmmTQekXIp6MAdhvt6ZvCXsfKqDiAdEOvegGi_d4sqS4-1_TfaMGaRKT4UFHrzV9ePxtMT8b91bN_qfQStiezs9Ps9GT67jncpfvkQCGSPdhafV37fcRlK_uinnk_ARUiL10 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwEB5BkYAXxE2ggJGQeLKa2I4T87baQy3HaiVaqW9RfIlK3ewKWgn49czkoqsKIfGYeHI4E3u-sWe-AXjrMyuK3KRcaKm5yrzj1gTNRVA5umO1yiPlO39e6sMT9eE0P72Sxd_xQ4wLbjQy2vmaBvjWx4M_pKGUgY3-HfHJpaa8Cbdox4-CuoRajS4X_p1dfpGUnMrQD7SNqTjYvX7XLF3DmtdDJq9C2dYWLe7DvR5Eskmn9QdwIzQP4c50qN32CLZfyM_12Dk2WWNP2ZRWaYh8hJ01bN78-rkObNYGb7xn6InXOPugDWMrYm1AieOw3p4jCmWzIWyD9QV9GPFU42PZdOMDm__AyYTW2x7DyWJ-PD3kfW0F7qhmJHeRSqK7HAG2ETYibIhZHUodvdUIYbUUuZNoyo22aXC68Kl3MrU1-h_YHpR8AnvNpgnPgEVvarRywgXjKM_WRltLnDrKusiikDoBPnzayvXE41T_4rzqKJNFRaqoRlUk8G6U33aUG3-V3B80VfVD73tFFGalMmWZJ_BmbMbvTzshdRM2lySDfiWCMZ0l8LRT7Pgo7LXKTa4SKHdUPgoQIfduS3P2tSXmRt_SFKLEm4r27_jH61eT5dF8PHr-Pxe9htur2aL6dLT8-ALu0mmKbBDFPuxdfLsMLxEwXdhX7Zj4DZGcDK0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Secondary+Amine+Catalysis+in+Enzyme+Design%3A+Broadening+Protein+Template+Diversity+through+Genetic+Code+Expansion&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Williams%2C+Thomas+L&rft.au=Taily%2C+Irshad+M&rft.au=Hatton%2C+Lewis&rft.au=Berezin%2C+Andrey+A&rft.date=2024-05-27&rft.eissn=1521-3773&rft.volume=63&rft.issue=22&rft.spage=e202403098&rft_id=info:doi/10.1002%2Fanie.202403098&rft_id=info%3Apmid%2F38545954&rft.externalDocID=38545954 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |