Practical medical applications of quantitative MR relaxometry

Conventional MR images are qualitative, and their signal intensity is dependent on several complementary contrast mechanisms that are manipulated by the MR hardware and software. In the absence of a quantitative metric for absolute interpretation of pixel signal intensities, one that is independent...

Full description

Saved in:
Bibliographic Details
Published inJournal of magnetic resonance imaging Vol. 36; no. 4; pp. 805 - 824
Main Authors Margaret Cheng, Hai-Ling, Stikov, Nikola, Ghugre, Nilesh R., Wright, Graham A.
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.10.2012
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Conventional MR images are qualitative, and their signal intensity is dependent on several complementary contrast mechanisms that are manipulated by the MR hardware and software. In the absence of a quantitative metric for absolute interpretation of pixel signal intensities, one that is independent of scanner hardware and sequences, it is difficult to perform comparisons of MR images across subjects or longitudinally in the same subject. Quantitative relaxometry isolates the contributions of individual MR contrast mechanisms (T1, T2, T2*) and provides maps, which are independent of the MR protocol and have a physical interpretation often expressed in absolute units. In addition to providing an unbiased metric for comparing MR scans, quantitative relaxometry uses the relationship between MR maps and physiology to provide a noninvasive surrogate for biopsy and histology. This study provides an overview of some promising clinical applications of quantitative relaxometry, followed by a description of the methods and challenges of acquiring accurate and precise quantitative MR maps. It concludes with three case studies of quantitative relaxometry applied to studying multiple sclerosis, liver iron, and acute myocardial infarction. J. Magn. Reson. Imaging 2012;36:805–824. © 2012 Wiley Periodicals, Inc.
AbstractList Conventional MR images are qualitative, and their signal intensity is dependent on several complementary contrast mechanisms that are manipulated by the MR hardware and software. In the absence of a quantitative metric for absolute interpretation of pixel signal intensities, one that is independent of scanner hardware and sequences, it is difficult to perform comparisons of MR images across subjects or longitudinally in the same subject. Quantitative relaxometry isolates the contributions of individual MR contrast mechanisms (T1, T2, T2) and provides maps, which are independent of the MR protocol and have a physical interpretation often expressed in absolute units. In addition to providing an unbiased metric for comparing MR scans, quantitative relaxometry uses the relationship between MR maps and physiology to provide a noninvasive surrogate for biopsy and histology. This study provides an overview of some promising clinical applications of quantitative relaxometry, followed by a description of the methods and challenges of acquiring accurate and precise quantitative MR maps. It concludes with three case studies of quantitative relaxometry applied to studying multiple sclerosis, liver iron, and acute myocardial infarction.Conventional MR images are qualitative, and their signal intensity is dependent on several complementary contrast mechanisms that are manipulated by the MR hardware and software. In the absence of a quantitative metric for absolute interpretation of pixel signal intensities, one that is independent of scanner hardware and sequences, it is difficult to perform comparisons of MR images across subjects or longitudinally in the same subject. Quantitative relaxometry isolates the contributions of individual MR contrast mechanisms (T1, T2, T2) and provides maps, which are independent of the MR protocol and have a physical interpretation often expressed in absolute units. In addition to providing an unbiased metric for comparing MR scans, quantitative relaxometry uses the relationship between MR maps and physiology to provide a noninvasive surrogate for biopsy and histology. This study provides an overview of some promising clinical applications of quantitative relaxometry, followed by a description of the methods and challenges of acquiring accurate and precise quantitative MR maps. It concludes with three case studies of quantitative relaxometry applied to studying multiple sclerosis, liver iron, and acute myocardial infarction.
Conventional MR images are qualitative, and their signal intensity is dependent on several complementary contrast mechanisms that are manipulated by the MR hardware and software. In the absence of a quantitative metric for absolute interpretation of pixel signal intensities, one that is independent of scanner hardware and sequences, it is difficult to perform comparisons of MR images across subjects or longitudinally in the same subject. Quantitative relaxometry isolates the contributions of individual MR contrast mechanisms (T1, T2, T2*) and provides maps, which are independent of the MR protocol and have a physical interpretation often expressed in absolute units. In addition to providing an unbiased metric for comparing MR scans, quantitative relaxometry uses the relationship between MR maps and physiology to provide a noninvasive surrogate for biopsy and histology. This study provides an overview of some promising clinical applications of quantitative relaxometry, followed by a description of the methods and challenges of acquiring accurate and precise quantitative MR maps. It concludes with three case studies of quantitative relaxometry applied to studying multiple sclerosis, liver iron, and acute myocardial infarction. J. Magn. Reson. Imaging 2012;36:805–824. © 2012 Wiley Periodicals, Inc.
Conventional MR images are qualitative, and their signal intensity is dependent on several complementary contrast mechanisms that are manipulated by the MR hardware and software. In the absence of a quantitative metric for absolute interpretation of pixel signal intensities, one that is independent of scanner hardware and sequences, it is difficult to perform comparisons of MR images across subjects or longitudinally in the same subject. Quantitative relaxometry isolates the contributions of individual MR contrast mechanisms (T1, T2, T2) and provides maps, which are independent of the MR protocol and have a physical interpretation often expressed in absolute units. In addition to providing an unbiased metric for comparing MR scans, quantitative relaxometry uses the relationship between MR maps and physiology to provide a noninvasive surrogate for biopsy and histology. This study provides an overview of some promising clinical applications of quantitative relaxometry, followed by a description of the methods and challenges of acquiring accurate and precise quantitative MR maps. It concludes with three case studies of quantitative relaxometry applied to studying multiple sclerosis, liver iron, and acute myocardial infarction.
Author Margaret Cheng, Hai-Ling
Wright, Graham A.
Ghugre, Nilesh R.
Stikov, Nikola
Author_xml – sequence: 1
  givenname: Hai-Ling
  surname: Margaret Cheng
  fullname: Margaret Cheng, Hai-Ling
  organization: Physiology and Experimental Medicine, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
– sequence: 2
  givenname: Nikola
  surname: Stikov
  fullname: Stikov, Nikola
  organization: McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
– sequence: 3
  givenname: Nilesh R.
  surname: Ghugre
  fullname: Ghugre, Nilesh R.
  organization: Imaging Research, Sunnybrook Research Institute, Toronto, ON, Canada
– sequence: 4
  givenname: Graham A.
  surname: Wright
  fullname: Wright, Graham A.
  email: gawright@sri.utoronto.ca
  organization: Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22987758$$D View this record in MEDLINE/PubMed
BookMark eNp9kMtKxDAUhoMoXkY3PoB0KULHpGmaZuFCxtuMjjcUlyFNE4im7ZikOvP21qm6EHF1fg7fd-D8W2C1bmoFwC6CQwRhcvhcOTNMMEX5CthEJEnihOTZapchwTHKId0AW94_QwgZS8k62EgSllNK8k1wdOuEDEYKG1WqXE4xm9kuBNPUPmp09NqKOpjQLd5UNL2PnLJi3lQquMU2WNPCerXzNQfg8ez0YXQRX92cj0fHV7FMM5bHiZQYKYF0VpJUCIhJwXShCibLkkiZsoIoTRGSKcUYaqqVLCnDVMKcFVgzPAD7_d2Za15b5QOvjJfKWlGrpvUcwRShFGUZ7NC9L7Qtuo_4zJlKuAX_frkDDnpAusZ7p_QPgiD_7JN_9smXfXYw_AXLZRNNHZww9m8F9cq7sWrxz3E-md6Pv524d4wPav7jCPfCM4op4U_X53xyN7mcXj9AfoI_AFh2l8g
CitedBy_id crossref_primary_10_1007_s00062_015_0433_8
crossref_primary_10_1002_jmri_25972
crossref_primary_10_1002_mrm_30388
crossref_primary_10_1002_mrm_27491
crossref_primary_10_1002_nbm_5300
crossref_primary_10_1002_nbm_3482
crossref_primary_10_1002_mrm_29715
crossref_primary_10_1016_j_jmr_2021_107042
crossref_primary_10_2337_db22_0912
crossref_primary_10_1016_j_zemedi_2014_06_008
crossref_primary_10_1088_1361_6560_ac9e3e
crossref_primary_10_1016_j_mri_2020_08_007
crossref_primary_10_1186_s41747_020_00154_5
crossref_primary_10_1177_0271678X241270198
crossref_primary_10_1002_mrm_26726
crossref_primary_10_33549_physiolres_935250
crossref_primary_10_3348_kjr_2018_19_4_783
crossref_primary_10_1097_MOG_0000000000000727
crossref_primary_10_1016_j_compmedimag_2023_102240
crossref_primary_10_1002_mrm_30493
crossref_primary_10_1002_mp_17353
crossref_primary_10_1002_jor_24684
crossref_primary_10_1038_s41598_023_33618_w
crossref_primary_10_1016_j_jmr_2014_09_025
crossref_primary_10_1002_mrm_25583
crossref_primary_10_3389_fphys_2023_1281147
crossref_primary_10_3390_cancers14225606
crossref_primary_10_1002_ima_22768
crossref_primary_10_1021_acsomega_2c03549
crossref_primary_10_1088_1361_6560_ad5bb8
crossref_primary_10_1177_19714009231173100
crossref_primary_10_1002_mrm_26717
crossref_primary_10_1016_j_mri_2021_08_011
crossref_primary_10_1016_j_jvir_2022_10_006
crossref_primary_10_3390_tomography7040047
crossref_primary_10_1111_jog_14157
crossref_primary_10_3389_fnagi_2014_00240
crossref_primary_10_1002_mrm_28762
crossref_primary_10_1126_scitranslmed_aau1749
crossref_primary_10_1002_acn3_52176
crossref_primary_10_1002_mp_17268
crossref_primary_10_1002_adma_202407262
crossref_primary_10_1002_mp_14710
crossref_primary_10_1002_mrm_25135
crossref_primary_10_1002_mrm_27556
crossref_primary_10_1007_s00393_015_0011_0
crossref_primary_10_1002_mrm_27797
crossref_primary_10_5662_wjm_v7_i3_101
crossref_primary_10_1161_STROKEAHA_123_044606
crossref_primary_10_1002_mrm_28192
crossref_primary_10_1002_hbm_24510
crossref_primary_10_2463_mrms_cr_2016_0137
crossref_primary_10_1007_s00234_024_03400_4
crossref_primary_10_1002_mrm_30433
crossref_primary_10_1016_j_mric_2020_04_001
crossref_primary_10_1002_mrm_26173
crossref_primary_10_1007_s11547_017_0757_3
crossref_primary_10_1002_mrm_28878
crossref_primary_10_1162_imag_a_00470
crossref_primary_10_1016_j_neuroimage_2021_117976
crossref_primary_10_1148_rg_2019180123
crossref_primary_10_1155_2018_2560964
crossref_primary_10_1002_mrm_27421
crossref_primary_10_1007_s11707_022_1007_0
crossref_primary_10_1109_TMI_2019_2954751
crossref_primary_10_1109_TMI_2021_3102852
crossref_primary_10_1371_journal_pntd_0004036
crossref_primary_10_3348_kjr_2014_15_4_411
crossref_primary_10_1177_0284185115617345
crossref_primary_10_1002_jsp2_1060
crossref_primary_10_1177_0284185119874476
crossref_primary_10_1016_j_ejrad_2021_109900
crossref_primary_10_1007_s00330_016_4245_2
crossref_primary_10_1007_s10334_024_01166_7
crossref_primary_10_1002_nbm_4531
crossref_primary_10_3390_jof10080593
crossref_primary_10_1109_TMI_2016_2614967
crossref_primary_10_1002_mrm_26800
crossref_primary_10_1002_mrm_24986
crossref_primary_10_1002_nbm_4416
crossref_primary_10_1016_j_neuroimage_2021_118116
crossref_primary_10_1016_j_neuroimage_2021_118237
crossref_primary_10_1038_s41598_023_28265_0
crossref_primary_10_1093_brain_awy242
crossref_primary_10_1148_ryai_210294
crossref_primary_10_3390_cancers15123252
crossref_primary_10_1109_MSP_2023_3236483
crossref_primary_10_1523_JNEUROSCI_2619_16_2016
crossref_primary_10_1093_brain_awac436
crossref_primary_10_1007_s00395_020_0782_6
crossref_primary_10_1016_j_media_2024_103148
crossref_primary_10_1002_mrm_25559
crossref_primary_10_1016_j_mri_2015_06_013
crossref_primary_10_3390_s19245371
crossref_primary_10_1186_s12880_022_00960_w
crossref_primary_10_1002_jmri_27547
crossref_primary_10_1002_mp_15130
crossref_primary_10_1016_j_mri_2017_10_015
crossref_primary_10_1002_jmri_26057
crossref_primary_10_1016_j_compbiomed_2024_108753
crossref_primary_10_1002_mrm_27442
crossref_primary_10_1002_mrm_28497
crossref_primary_10_1016_j_ejrad_2023_110748
crossref_primary_10_13104_jksmrm_2014_18_1_1
crossref_primary_10_1002_mrm_29065
crossref_primary_10_1007_s00330_017_4891_z
crossref_primary_10_1007_s00723_017_0964_z
crossref_primary_10_1016_j_mri_2020_09_021
crossref_primary_10_1016_j_neuroimage_2022_118989
crossref_primary_10_3389_fvets_2022_802272
crossref_primary_10_1016_j_mri_2016_09_004
crossref_primary_10_1016_j_jmr_2021_107110
crossref_primary_10_1148_radiol_2019190911
crossref_primary_10_1002_mrm_27205
crossref_primary_10_1186_s41747_017_0024_3
crossref_primary_10_3390_s22031260
crossref_primary_10_1007_s00117_013_2496_3
crossref_primary_10_1109_TBME_2017_2661840
crossref_primary_10_3390_cancers14112651
crossref_primary_10_1016_j_rpor_2018_09_007
crossref_primary_10_1148_radiol_2020200425
crossref_primary_10_1016_j_media_2021_102220
crossref_primary_10_1259_bjr_20220675
crossref_primary_10_1002_jmri_29511
crossref_primary_10_1109_TBME_2022_3200626
crossref_primary_10_1002_mrm_28283
crossref_primary_10_3390_biomedicines12061376
crossref_primary_10_1002_mrm_28206
crossref_primary_10_1109_TMI_2014_2333370
crossref_primary_10_1002_mrm_27994
crossref_primary_10_1002_mrm_28962
crossref_primary_10_1016_j_nano_2024_102765
crossref_primary_10_1002_jmri_28662
crossref_primary_10_2463_mrms_tn_2018_0027
crossref_primary_10_1590_2446_4740_00916
crossref_primary_10_1002_mrm_27638
crossref_primary_10_1016_j_neuroimage_2024_120800
crossref_primary_10_1016_j_softx_2019_100369
crossref_primary_10_1016_j_micinf_2023_105127
crossref_primary_10_3345_cep_2023_00514
crossref_primary_10_1016_j_expneurol_2021_113868
crossref_primary_10_1002_jmri_27844
crossref_primary_10_1002_mrm_28391
crossref_primary_10_3390_cancers14246222
crossref_primary_10_1007_s00062_017_0633_5
crossref_primary_10_1016_j_neuroimage_2017_01_025
crossref_primary_10_31348_2023_10
crossref_primary_10_1016_j_acra_2023_05_012
crossref_primary_10_1038_s41467_023_44561_9
crossref_primary_10_1002_mrm_27860
crossref_primary_10_1002_mrm_27981
crossref_primary_10_1097_RLI_0000000000001084
crossref_primary_10_1002_mp_16884
crossref_primary_10_1016_j_mri_2019_01_011
crossref_primary_10_3390_tomography9060161
crossref_primary_10_1002_mrm_26490
crossref_primary_10_1007_s00330_015_3913_y
crossref_primary_10_3390_biomedicines11020364
crossref_primary_10_1002_jmri_26759
crossref_primary_10_3390_diagnostics13020201
crossref_primary_10_1016_j_jor_2019_04_002
crossref_primary_10_1109_TMI_2014_2322815
crossref_primary_10_1016_j_nicl_2024_103647
crossref_primary_10_1140_epjp_s13360_021_01145_0
crossref_primary_10_1002_mrm_29128
crossref_primary_10_1002_mrm_28158
crossref_primary_10_1016_j_crad_2022_08_124
crossref_primary_10_3390_nu15173727
crossref_primary_10_1148_radiol_2019182360
crossref_primary_10_3390_cancers14153624
crossref_primary_10_1097_MOG_0000000000000719
Cites_doi 10.1002/jmri.22660
10.1016/S0730-725X(98)00112-X
10.1002/ana.1053
10.1007/s00247-006-0166-6
10.1148/radiol.2403050569
10.1016/0730-725X(86)90051-2
10.1093/eurheartj/ehp093
10.1002/mrm.20479
10.1002/jmri.21028
10.1097/01.RVI.0000182179.87340.D7
10.1016/j.acra.2011.04.016
10.1002/mrm.22865
10.1016/j.mri.2006.08.004
10.1002/mrm.21704
10.1089/ten.tec.2009.0099
10.1016/j.jacc.2010.11.013
10.1016/j.mri.2005.10.016
10.1016/j.mri.2004.10.001
10.1681/ASN.V4111861
10.1007/s10334-004-0068-2
10.1586/ern.10.129
10.1002/mrm.20110
10.1002/mrm.22005
10.1097/00002142-199812000-00002
10.1103/PhysRev.73.679
10.1196/annals.1345.047
10.1148/radiology.191.1.8134596
10.1161/01.CIR.0000039475.66067.DC
10.1136/jnnp.50.1.37
10.1093/brain/121.1.3
10.1182/blood-2004-01-0177
10.1002/ajh.23114
10.1002/mrm.20602
10.1148/radiology.189.1.8372185
10.1002/jmri.21490
10.1148/radiol.2281011651
10.1161/CIRCULATIONAHA.110.007641
10.1002/jmri.1880070103
10.1053/euhj.2001.2822
10.1088/0031-9155/56/5/001
10.1097/RLI.0b013e3181862413
10.1002/nbm.1063
10.1016/j.mri.2010.08.009
10.1016/j.neuroimage.2004.06.009
10.1002/mrm.20697
10.1093/eurheartj/ehl255
10.1186/1532-429X-11-20
10.1002/mrm.22497
10.1002/(SICI)1522-2586(199909)10:3<223::AID-JMRI2>3.0.CO;2-S
10.1177/1352458506070928
10.1002/art.20062
10.1002/mrm.22657
10.1055/s-0029-1245373
10.1016/0730-725X(94)00126-N
10.1002/ccd.1810200313
10.1177/1352458509350306
10.1002/jmri.20467
10.1007/s00247-007-0449-6
10.1016/0730-725X(90)90041-Y
10.1161/01.CIR.56.5.786
10.22203/eCM.v013a08
10.1001/archneur.64.3.411
10.1186/1532-429X-12-S1-P179
10.1016/j.nic.2008.09.007
10.1212/WNL.45.12.2233
10.1177/1352458509359924
10.1002/jmri.21119
10.1109/TMI.2009.2023515
10.1056/NEJMra071667
10.1002/jmri.21265
10.1378/chest.122.6.1895
10.1212/WNL.50.5.1282
10.1148/radiology.169.3.3187000
10.1093/eurheartj/ehn416
10.1097/JSA.0b013e31818cdcaf
10.1016/S0720-048X(00)00202-3
10.1093/rheumatology/keh130
10.1002/mrm.1910030511
10.1111/j.1365-2141.1990.tb02596.x
10.1002/(SICI)1522-2594(199904)41:4<686::AID-MRM6>3.0.CO;2-9
10.1161/01.STR.18.2.342
10.1002/(SICI)1522-2594(200001)43:1<52::AID-MRM7>3.0.CO;2-5
10.1007/978-1-61737-992-5_4
10.1002/jmri.20469
10.1161/CIRCULATIONAHA.106.653568
10.1007/s00415-004-0306-6
10.1002/mrm.22487
10.1186/1532-429X-11-56
10.1002/mrm.20981
10.1002/mrm.1910330515
10.1097/00004728-200603000-00026
10.1002/mrm.1910310614
10.1002/jmri.21345
10.1002/mrm.20159
10.1007/s00330-002-1366-6
10.1002/mrm.10407
10.1002/mrm.21143
10.1002/ana.410360106
10.1161/01.CIR.91.1.161
10.1021/j150556a015
10.1002/jmri.21835
10.1063/1.1684482
10.1002/mrm.21079
10.1002/(SICI)1522-2586(199906)9:6<814::AID-JMRI8>3.0.CO;2-5
10.1212/01.WNL.0000149642.93493.F4
10.1002/mrm.1910370107
10.1148/radiology.215.1.r00ap07189
10.1016/0022-2364(88)90128-X
10.2214/ajr.182.1.1820167
10.1161/CIRCULATIONAHA.106.613414
10.1002/mrm.22855
10.1016/j.trsl.2006.05.005
10.1006/nimg.2000.0724
10.1148/radiol.10100416
10.1002/mrm.22673
10.1002/mrm.1910400518
10.1182/blood-2004-10-3982
10.1002/jmri.21328
10.1002/jmri.1148
10.1056/NEJM199407283310402
10.1002/jmri.20231
10.1007/s00330-007-0683-1
10.1016/j.jacc.2008.01.019
10.1016/0920-1211(88)90008-3
10.1002/mrm.22972
10.1007/s002470050259
10.1002/mrm.20791
10.1002/mrm.21660
10.1259/0007-1285-62-737-433
10.1002/mrm.22454
10.1002/mrm.1910180123
10.1016/j.neuroimage.2010.03.005
10.1007/s00330-006-0453-5
10.1002/jmri.21707
10.1111/j.1528-1157.1998.tb01353.x
ContentType Journal Article
Copyright Copyright © 2012 Wiley Periodicals, Inc.
Copyright_xml – notice: Copyright © 2012 Wiley Periodicals, Inc.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1002/jmri.23718
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

CrossRef
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1522-2586
EndPage 824
ExternalDocumentID 22987758
10_1002_jmri_23718
JMRI23718
ark_67375_WNG_JQJKMNT0_D
Genre reviewArticle
Journal Article
Review
GroupedDBID ---
-DZ
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAWTL
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ABOCM
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TWZ
UB1
V2E
V8K
V9Y
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
XG1
XV2
ZXP
ZZTAW
~IA
~WT
AAHQN
AAIPD
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
ID FETCH-LOGICAL-c4698-2cc31ea1f6d54aa035b9fbeb9cdd5cc49b5ef711c47330f7fecd7937c089b3f93
IEDL.DBID DR2
ISSN 1053-1807
1522-2586
IngestDate Fri Jul 11 05:31:29 EDT 2025
Thu Apr 03 06:59:55 EDT 2025
Tue Jul 01 03:56:26 EDT 2025
Thu Apr 24 23:06:35 EDT 2025
Wed Jan 22 17:02:04 EST 2025
Wed Oct 30 09:52:00 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
Copyright © 2012 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4698-2cc31ea1f6d54aa035b9fbeb9cdd5cc49b5ef711c47330f7fecd7937c089b3f93
Notes ArticleID:JMRI23718
istex:5F45D7423FFBF746DF8F4B2DACA270F88C40892A
ark:/67375/WNG-JQJKMNT0-D
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/jmri.23718
PMID 22987758
PQID 1041141660
PQPubID 23479
PageCount 20
ParticipantIDs proquest_miscellaneous_1041141660
pubmed_primary_22987758
crossref_primary_10_1002_jmri_23718
crossref_citationtrail_10_1002_jmri_23718
wiley_primary_10_1002_jmri_23718_JMRI23718
istex_primary_ark_67375_WNG_JQJKMNT0_D
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2012
PublicationDateYYYYMMDD 2012-10-01
PublicationDate_xml – month: 10
  year: 2012
  text: October 2012
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: United States
PublicationTitle Journal of magnetic resonance imaging
PublicationTitleAlternate J. Magn. Reson. Imaging
PublicationYear 2012
Publisher Wiley Subscription Services, Inc., A Wiley Company
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
References Laule C, Leung E, Lis DK, et al. Myelin water imaging in multiple sclerosis: quantitative correlations with histopathology. Mult Scler 2006; 12: 747-753.
Schmidt A, Azevedo CF, Cheng A, et al. Infarct tissue heterogeneity by magnetic resonance imaging identifies enhanced cardiac arrhythmia susceptibility in patients with left ventricular dysfunction. Circulation 2007; 115: 2006-2014.
Argyropoulou MI, Kiortsis DN, Astrakas L, Metafratzi Z, Chalissos N, Efremidis SC. Liver, bone marrow, pancreas and pituitary gland iron overload in young and adult thalassemic patients: a T2 relaxometry study. Eur Radiol 2007; 17: 3025-3030.
Tardif CL, Collins DL, Eskildsen SF, Richardson JB, Pike GB. Segmentation of cortical MS lesions on MRI using automated laminar profile shape analysis. Med Image Comput Comput Assist Interv 2010; 13( Pt 3): 181-188.
Ghugre NR, Enriquez CM, Gonzalez I, Nelson MD Jr, Coates TD, Wood JC. MRI detects myocardial iron in the human heart. Magn Reson Med 2006; 56: 681-686.
Yellon DM, Hausenloy DJ. Myocardial reperfusion injury. N Engl J Med 2007; 357: 1121-1135.
Garcia-Dorado D, Theroux P, Solares J, et al. Determinants of hemorrhagic infarcts. Histologic observations from experiments involving coronary occlusion, coronary reperfusion, and reocclusion. Am J Pathol 1990; 137: 301-311.
Wood JC, Enriquez C, Ghugre N, et al. MRI R2 and R2* mapping accurately estimates hepatic iron concentration in transfusion-dependent thalassemia and sickle cell disease patients. Blood 2005; 106: 1460-1465.
Ghugre NR, Ramanan V, Pop M, et al. Myocardial BOLD imaging at 3 T using quantitative T2: application in a myocardial infarct model. Magn Reson Med 2011; 66: 1739-1747.
Kornreich L, Horev G, Yaniv I, Stein J, Grunebaum M, Zaizov R. Iron overload following bone marrow transplantation in children: MR findings. Pediatr Radiol 1997; 27: 869-872.
Recht MP, Resnick D. Magnetic resonance imaging of articular cartilage: an overview. Top Magn Reson Imaging 1998; 9: 328-336.
Deoni SC, Rutt BK, Peters TM. Rapid combined T1 and T2 mapping using gradient recalled acquisition in the steady state. Magn Reson Med 2003; 49: 515-526.
Papadopoulos K, Tozer DJ, Fisniku L, et al. T1-relaxation time changes over five years in relapsing-remitting multiple sclerosis. Mult Scler 2010; 16: 427-433.
Brix G, Schad LR, Deimling M, Lorenz WJ. Fast and precise T1 imaging using a TOMROP sequence. Magn Reson Imaging 1990; 8: 351-356.
Zhu DC, Penn RD. Full-brain T1 mapping through inversion recovery fast spin echo imaging with time-efficient slice ordering. Magn Reson Med 2005; 54: 725-731.
Dharmakumar R, Arumana JM, Tang R, Harris K, Zhang Z, Li D. Assessment of regional myocardial oxygenation changes in the presence of coronary artery stenosis with balanced SSFP imaging at 3.0 T: theory and experimental evaluation in canines. J Magn Reson Imaging 2008; 27: 1037-1045.
Baxendale SA, van Paesschen W, Thompson PJ, et al. The relationship between quantitative MRI and neuropsychological functioning in temporal lobe epilepsy. Epilepsia 1998; 39: 158-166.
Detsky JS, Paul G, Dick AJ, Wright GA. Reproducible classification of infarct heterogeneity using fuzzy clustering on multicontrast delayed enhancement magnetic resonance images. IEEE Trans Med Imaging 2009; 28: 1606-1614.
Uren NG, Crake T, Lefroy DC, de Silva R, Davies GJ, Maseri A. Reduced coronary vasodilator function in infarcted and normal myocardium after myocardial infarction. N Engl J Med 1994; 331: 222-227.
Messroghli DR, Radjenovic A, Kozerke S, Higgins DM, Sivananthan MU, Ridgway JP. Modified Look-Locker inversion recovery (MOLLI) for high-resolution T1 mapping of the heart. Magn Reson Med 2004; 52: 141-146.
Runge VM, Muroff LR, Wells JW. Principles of contrast enhancement in the evaluation of brain diseases: an overview. J Magn Reson Imaging 1997; 7: 5-13.
Hennig J. Multiecho imaging sequences with low refocusing flip angles. J Magn Reson 1988; 78: 397-407.
Bitsch A, Kuhlmann T, Stadelmann C, Lassmann H, Lucchinetti C, Bruck W. A longitudinal MRI study of histopathologically defined hypointense multiple sclerosis lesions. Ann Neurol 2001; 49: 793-796.
Eckstein F, Burstein D, Link TM. Quantitative MRI of cartilage and bone: degenerative changes in osteoarthritis. NMR Biomed 2006; 19: 822-854.
Kaltwasser JP, Gottschalk R, Schalk KP, Hartl W. Non-invasive quantitation of liver iron-overload by magnetic resonance imaging. Br J Haematol 1990; 74: 360-363.
Roberts HC, Roberts TP, Brasch RC, Dillon WP. Quantitative measurement of microvascular permeability in human brain tumors achieved using dynamic contrast-enhanced MR imaging: correlation with histologic grade. AJNR Am J Neuroradiol 2000; 21: 891-899.
Messroghli DR, Greiser A, Frohlich M, Dietz R, Schulz-Menger J. Optimization and validation of a fully-integrated pulse sequence for modified look-locker inversion-recovery (MOLLI) T1 mapping of the heart. J Magn Reson Imaging 2007; 26: 1081-1086.
Cheng HL, Holowka S, Moineddin R, Odame I. Liver iron overload assessment by T2* magnetic resonance imaging in pediatric patients: an accuracy and reproducibility study. Am J Hematol 2012;87:435-437.
Reiter D, Roque R, Lin P, et al. Mapping proteoglycan-bound water in cartilage: improved specificity of matrix assessment using multiexponential transverse relaxation analysis. Magn Reson Med 2011; 65: 377-384.
Laule C, Vavasour IM, Moore GR, et al. Water content and myelin water fraction in multiple sclerosis. A T2 relaxation study. J Neurol 2004; 251: 284-293.
Zellini F, Niepel G, Tench CR, Constantinescu CS. Hypothalamic involvement assessed by T1 relaxation time in patients with relapsing-remitting multiple sclerosis. Mult Scler 2009; 15: 1442-1449.
Baudrexel S, Nurnberger L, Rub U, et al. Quantitative mapping of T1 and T2* discloses nigral and brainstem pathology in early Parkinson's disease. Neuroimage 2010; 51: 512-520.
Cheng HL, Wright GA. Rapid high-resolution T(1) mapping by variable flip angles: accurate and precise measurements in the presence of radiofrequency field inhomogeneity. Magn Reson Med 2006; 55: 566-574.
Ghugre NR, Enriquez CM, Coates TD, Nelson MD Jr, Wood JC. Improved R2* measurements in myocardial iron overload. J Magn Reson Imaging 2006; 23: 9-16.
Brittain JH, Hu BS, Wright GA, Meyer CH, Macovski A, Nishimura DG. Coronary angiography with magnetization-prepared T2 contrast. Magn Reson Med 1995; 33: 689-696.
Reimer KA, Lowe JE, Rasmussen MM, Jennings RB. The wavefront phenomenon of ischemic cell death. 1. Myocardial infarct size vs duration of coronary occlusion in dogs. Circulation 1977; 56: 786-794.
Van de Werf F, Bax J, Betriu A, et al. Management of acute myocardial infarction in patients presenting with persistent ST-segment elevation: the Task Force on the Management of ST-Segment Elevation Acute Myocardial Infarction of the European Society of Cardiology. Eur Heart J 2008; 29: 2909-2945.
Williams A, Gillis A, McKenzie C, et al. Glycosaminoglycan distribution in cartilage as determined by delayed gadolinium-enhanced MRI of cartilage (dGEMRIC): potential clinical applications. AJR Am J Roentgenol 2004; 182: 167-172.
Schein A, Enriquez C, Coates TD, Wood JC. Magnetic resonance detection of kidney iron deposition in sickle cell disease: a marker of chronic hemolysis. J Magn Reson Imaging 2008; 28: 698-704.
Cieszanowski A, Szeszkowski W, Golebiowski M, Bielecki DK, Grodzicki M, Pruszynski B. Discrimination of benign from malignant hepatic lesions based on their T2-relaxation times calculated from moderately T2-weighted turbo SE sequence. Eur Radiol 2002; 12: 2273-2279.
Deoni SC, Ward HA, Peters TM, Rutt BK. Rapid T2 estimation with phase-cycled variable nutation steady-state free precession. Magn Reson Med 2004; 52: 435-439.
Schwenzer NF, Machann J, Haap MM, et al. T2* relaxometry in liver, pancreas, and spleen in a healthy cohort of one hundred twenty-nine subjects-correlation with age, gender, and serum ferritin. Invest Radiol 2008; 43: 854-860.
Dyke JP, Panicek DM, Healey JH, et al. Osteogenic and Ewing sarcomas: estimation of necrotic fraction during induction chemotherapy with dynamic contrast-enhanced MR imaging. Radiology 2003; 228: 271-278.
Zia M, Ghugre N, Paul G, Stainsby J, et al. Characterizing myocardial edema and hemorrhage using T2, T2*, and diastolic wall thickness post acute myocardial infarction. Journal of Cardiovascular Magnetic Resonance 2010; 12(Suppl 1): P179.
Sussman MS, Vidarsson L, Pauly JM, Cheng HL. A technique for rapid single-echo spin-echo T2 mapping. Magn Reson Med 2010; 64: 536-545.
Beaumont M, Odame I, Babyn PS, Vidarsson L, Kirby-Allen M, Cheng HL. Accurate liver T2 measurement of iron overload: a simulations investigation and in vivo study. J Magn Reson Imaging 2009; 30: 313-320.
van Walderveen MA, Kamphorst W, Scheltens P, et al. Histopathologic correlate of hypointense lesions on T1-weighted spin-echo MRI in multiple sclerosis. Neurology 1998; 50: 1282-1288.
Verstraete KL, Lang P. Bone and soft tissue tumors: the role of contrast agents for MR imaging. Eur J Radiol 2000; 34: 229-246.
Vavasour IM, Whittall KP, MacKay AL, Li DK, Vorobeychik G, Paty DW. A comparison between magnetization transfer ratios and myelin water percentages in normals and multiple sclerosis patients. Magn Reson Med 1998; 40: 763-768.
Wood JC, Otto-Duessel M, Gonzalez I, et al. Deferasirox and deferiprone remove cardiac iron in the iron-overloaded gerbil. Transl Res 2006; 148: 272-280.
Mewton N, Liu CY, Croisille P, Bluemke D, Lima JA. Assessment of myocardial fibrosis with cardiovascular magnetic resonance. J Am Coll Cardiol 2011; 57: 891-903.
Blumenkrantz G, Majumdar S. Quantitative magnetic resonance imaging of articular cartilage in osteoarthritis. Eur Cell Mater 2007; 13: 76-86.
Yan AT, Shayne AJ, Brown KA, et al. Characterization of the peri-infarct zone by contrast-enhanced cardiac magnetic resonance imaging is a powerful predictor of post-myocardial infarction mortality. Circulation 2006; 114: 32-39.
Gochberg DF, Gore JC. Quantitative magnetization transfer imaging via
2010; 12
1991; 18
2010; 16
2006; 30
2010; 13
2002; 12
2004; 23
2006; 36
1995; 33
2005; 64
1988; 78
2011; 57
2001; 49
1999; 41
2011; 56
2010; 182
1997; 7
1998; 16
2009; 11
2006; 23
2006; 24
2000; 12
1986; 3
2008; 29
2006; 27
1986; 4
2008; 27
2005; 105
2008; 28
2005; 106
2011; 64
2011; 66
2003; 49
2011; 65
2007; 64
2009; 19
2011; 123
2009; 15
2007; 17
2004; 43
1989; 62
2009; 62
2006; 56
1987; 50
2006; 55
1988; 169
1997; 27
2001; 22
2008; 51
2007; 13
1993; 189
2006; 114
1990; 20
2004; 52
2004; 50
2003; 228
1957; 61
1988; 29
1997; 37
1995; 45
2002; 122
2008; 43
2005; 16
1990; 8
2010; 51
1998; 9
1994; 331
2011; 711
2000; 215
2000; 43
2011; 11
2005; 21
1998; 40
2011; 18
2005; 23
2007; 37
2010; 64
1990; 137
2004; 251
2006; 240
2002; 106
1994; 36
1999; 10
1998; 50
1998; 121
2001; 14
2008; 60
2011; 29
2007; 26
64
1994; 31
1990; 74
1948; 73
1995; 91
2006; 12
2012
2011
1994; 191
1995; 13
2000; 21
2008; 16
2004; 182
2005; 1054
2007
2006; 19
2005
2007; 57
1987; 18
2009; 29
2009; 28
1999; 9
1988; 2
2007; 115
2007; 357
1998; 39
2009; 30
2000; 34
2004; 17
2010; 257
2005; 53
2005; 54
1970; 41
1977; 56
2006; 148
1994; 4
e_1_2_8_49_2
e_1_2_8_45_2
e_1_2_8_26_2
e_1_2_8_68_2
e_1_2_8_9_2
e_1_2_8_132_2
e_1_2_8_5_2
e_1_2_8_41_2
e_1_2_8_87_2
e_1_2_8_22_2
e_1_2_8_64_2
e_1_2_8_117_2
e_1_2_8_136_2
e_1_2_8_60_2
e_1_2_8_113_2
e_1_2_8_38_2
Tofts P (e_1_2_8_8_2) 2005
e_1_2_8_19_2
e_1_2_8_109_2
e_1_2_8_34_2
e_1_2_8_57_2
e_1_2_8_91_2
e_1_2_8_143_2
e_1_2_8_95_2
e_1_2_8_76_2
e_1_2_8_105_2
e_1_2_8_11_2
e_1_2_8_53_2
e_1_2_8_128_2
de Miguel MH (e_1_2_8_58_2) 1994; 4
e_1_2_8_72_2
e_1_2_8_101_2
e_1_2_8_124_2
e_1_2_8_29_2
Garcia‐Dorado D (e_1_2_8_83_2) 1990; 137
e_1_2_8_25_2
e_1_2_8_48_2
e_1_2_8_67_2
e_1_2_8_2_2
e_1_2_8_110_2
e_1_2_8_6_2
e_1_2_8_21_2
e_1_2_8_44_2
e_1_2_8_63_2
e_1_2_8_86_2
e_1_2_8_118_2
e_1_2_8_137_2
e_1_2_8_40_2
e_1_2_8_82_2
e_1_2_8_114_2
e_1_2_8_133_2
e_1_2_8_18_2
e_1_2_8_14_2
e_1_2_8_37_2
e_1_2_8_56_2
e_1_2_8_79_2
e_1_2_8_90_2
e_1_2_8_94_2
e_1_2_8_121_2
e_1_2_8_140_2
Lebel RM (e_1_2_8_119_2); 64
e_1_2_8_98_2
e_1_2_8_10_2
e_1_2_8_52_2
e_1_2_8_75_2
e_1_2_8_106_2
e_1_2_8_129_2
Lansberg MG (e_1_2_8_33_2) 2001; 22
e_1_2_8_71_2
e_1_2_8_102_2
e_1_2_8_125_2
e_1_2_8_144_2
e_1_2_8_28_2
e_1_2_8_24_2
Tardif CL (e_1_2_8_17_2) 2010; 13
e_1_2_8_47_2
e_1_2_8_89_2
e_1_2_8_3_2
e_1_2_8_130_2
e_1_2_8_7_2
e_1_2_8_20_2
e_1_2_8_66_2
e_1_2_8_115_2
e_1_2_8_43_2
e_1_2_8_85_2
e_1_2_8_138_2
e_1_2_8_62_2
e_1_2_8_111_2
e_1_2_8_81_2
e_1_2_8_134_2
e_1_2_8_13_2
e_1_2_8_59_2
e_1_2_8_36_2
e_1_2_8_78_2
Aherne T (e_1_2_8_99_2) 1988; 29
e_1_2_8_141_2
e_1_2_8_97_2
e_1_2_8_55_2
e_1_2_8_126_2
e_1_2_8_32_2
e_1_2_8_74_2
e_1_2_8_107_2
e_1_2_8_51_2
e_1_2_8_122_2
e_1_2_8_93_2
e_1_2_8_70_2
e_1_2_8_103_2
e_1_2_8_27_2
e_1_2_8_23_2
e_1_2_8_46_2
e_1_2_8_69_2
e_1_2_8_80_2
e_1_2_8_131_2
e_1_2_8_4_2
e_1_2_8_42_2
e_1_2_8_65_2
e_1_2_8_88_2
e_1_2_8_116_2
Prasloski T (e_1_2_8_120_2) 2011
e_1_2_8_139_2
e_1_2_8_61_2
e_1_2_8_84_2
e_1_2_8_112_2
e_1_2_8_135_2
e_1_2_8_16_2
e_1_2_8_39_2
e_1_2_8_12_2
e_1_2_8_35_2
e_1_2_8_108_2
e_1_2_8_142_2
e_1_2_8_96_2
e_1_2_8_31_2
e_1_2_8_54_2
e_1_2_8_77_2
e_1_2_8_104_2
e_1_2_8_127_2
e_1_2_8_50_2
e_1_2_8_73_2
e_1_2_8_100_2
e_1_2_8_123_2
Roberts HC (e_1_2_8_30_2) 2000; 21
van Walderveen MA (e_1_2_8_15_2) 1998; 50
e_1_2_8_92_2
References_xml – reference: Gochberg DF, Gore JC. Quantitative magnetization transfer imaging via selective inversion recovery with short repetition times. Magn Reson Med 2007; 57: 437-441.
– reference: Johnson K, Davis PJ, Foster JK, McDonagh JE, Ryder CA, Southwood TR. Imaging of muscle disorders in children. Pediatr Radiol 2006; 36: 1005-1018.
– reference: Tofts PS, Brix G, Buckley DL, et al. Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging 1999; 10: 223-232.
– reference: MacKay AL, Vavasour IM, Rauscher A, et al. MR relaxation in multiple sclerosis. Neuroimaging Clin N Am 2009; 19: 1-26.
– reference: MacKay A, Whittall K, Adler J, Li D, Paty D, Graeb D. In vivo visualization of myelin water in brain by magnetic resonance. Magn Reson Med 1994; 31: 673-677.
– reference: Deoni SC, Rutt BK, Peters TM. Rapid combined T1 and T2 mapping using gradient recalled acquisition in the steady state. Magn Reson Med 2003; 49: 515-526.
– reference: Levesque I, Sled JG, Narayanan S, et al. The role of edema and demyelination in chronic T1 black holes: a quantitative magnetization transfer study. J Magn Reson Imaging 2005; 21: 103-110.
– reference: Anderson LJ, Holden S, Davis B, et al. Cardiovascular T2-star (T2*) magnetic resonance for the early diagnosis of myocardial iron overload. Eur Heart J 2001; 22: 2171-2179.
– reference: St Pierre TG, Clark PR, Chua-anusorn W, et al. Noninvasive measurement and imaging of liver iron concentrations using proton magnetic resonance. Blood 2005; 105: 855-861.
– reference: Gambarota G, Veltien A, van Laarhoven H, et al. Measurements of T1 and T2 relaxation times of colon cancer metastases in rat liver at 7 T. Magma 2004; 17: 281-287.
– reference: Andersson T, Ericsson A, Eriksson B, et al. Relative proton density and relaxation times in liver metastases during interferon treatment. Br J Radiol 1989; 62: 433-437.
– reference: Oh J, Han ET, Pelletier D, Nelson SJ. Measurement of in vivo multi-component T2 relaxation times for brain tissue using multi-slice T2 prep at 1.5 and 3 T. Magn Reson Imaging 2006; 24: 33-43.
– reference: Deoni SC, Rutt BK, Arun T, Pierpaoli C, Jones DK. Gleaning multicomponent T1 and T2 information from steady-state imaging data. Magn Reson Med 2008; 60: 1372-1387.
– reference: Prasloski T, Madler B, Xiang QS, Mackay A, Jones C. Applications of stimulated echo correction to multicomponent T(2) analysis. Magn Reson Med 2011 doi:101002/mrm23157 2011 [Epub ahead of print].
– reference: Whittall KP, MacKay AL, Graeb DA, Nugent RA, Li DK, Paty DW. In vivo measurement of T2 distributions and water contents in normal human brain. Magn Reson Med 1997; 37: 34-43.
– reference: Rieke V, Butts Pauly K. MR thermometry. J Magn Reson Imaging 2008; 27: 376-390.
– reference: Lansberg MG, Thijs VN, O'Brien MW, et al. Evolution of apparent diffusion coefficient, diffusion-weighted, and T2-weighted signal intensity of acute stroke. AJNR Am J Neuroradiol 2001; 22: 637-644.
– reference: Bernarding J, Braun J, Hohmann J, et al. Histogram-based characterization of healthy and ischemic brain tissues using multiparametric MR imaging including apparent diffusion coefficient maps and relaxometry. Magn Reson Med 2000; 43: 52-61.
– reference: Schwenzer NF, Machann J, Haap MM, et al. T2* relaxometry in liver, pancreas, and spleen in a healthy cohort of one hundred twenty-nine subjects-correlation with age, gender, and serum ferritin. Invest Radiol 2008; 43: 854-860.
– reference: Stikov N, Keenan KE, Pauly JM, Smith RL, Dougherty RF, Gold GE. Cross-relaxation imaging of human articular cartilage. Magn Reson Med 2011; 66: 725-734.
– reference: Verstraete KL, Lang P. Bone and soft tissue tumors: the role of contrast agents for MR imaging. Eur J Radiol 2000; 34: 229-246.
– reference: Just M, Thelen M. Tissue characterization with T1, T2, and proton density values: results in 160 patients with brain tumors. Radiology 1988; 169: 779-785.
– reference: van Walderveen MA, Kamphorst W, Scheltens P, et al. Histopathologic correlate of hypointense lesions on T1-weighted spin-echo MRI in multiple sclerosis. Neurology 1998; 50: 1282-1288.
– reference: Detsky JS, Paul G, Dick AJ, Wright GA. Reproducible classification of infarct heterogeneity using fuzzy clustering on multicontrast delayed enhancement magnetic resonance images. IEEE Trans Med Imaging 2009; 28: 1606-1614.
– reference: McDonald WI, Miller DH, Thompson AJ. Are magnetic resonance findings predictive of clinical outcome in therapeutic trials in multiple sclerosis? The dilemma of interferon-beta. Ann Neurol 1994; 36: 14-18.
– reference: Rugg-Gunn FJ, Boulby PA, Symms MR, Barker GJ, Duncan JS. Whole-brain T2 mapping demonstrates occult abnormalities in focal epilepsy. Neurology 2005; 64: 318-325.
– reference: Kurki T, Komu M. Spin-lattice relaxation and magnetization transfer in intracranial tumors in vivo: effects of Gd-DTPA on relaxation parameters. Magn Reson Imaging 1995; 13: 379-385.
– reference: Cheng HL, Holowka S, Moineddin R, Odame I. Liver iron overload assessment by T2* magnetic resonance imaging in pediatric patients: an accuracy and reproducibility study. Am J Hematol 2012;87:435-437.
– reference: de Miguel MH, Yeung HN, Goyal M, et al. Evaluation of quantitative magnetic resonance imaging as a noninvasive technique for measuring renal scarring in a rabbit model of antiglomerular basement membrane disease. J Am Soc Nephrol 1994; 4: 1861-1868.
– reference: Wood JC, Otto-Duessel M, Gonzalez I, et al. Deferasirox and deferiprone remove cardiac iron in the iron-overloaded gerbil. Transl Res 2006; 148: 272-280.
– reference: Sourbron S, Ingrisch M, Siefert A, Reiser M, Herrmann K. Quantification of cerebral blood flow, cerebral blood volume, and blood-brain-barrier leakage with DCE-MRI. Magn Reson Med 2009; 62: 205-217.
– reference: Brix G, Schad LR, Deimling M, Lorenz WJ. Fast and precise T1 imaging using a TOMROP sequence. Magn Reson Imaging 1990; 8: 351-356.
– reference: Wood JC, Enriquez C, Ghugre N, et al. Physiology and pathophysiology of iron cardiomyopathy in thalassemia. Ann N Y Acad Sci 2005; 1054: 386-395.
– reference: Ghugre NR, Ramanan V, Pop M, et al. Quantitative tracking of edema, hemorrhage, and microvascular obstruction in subacute myocardial infarction in a porcine model by MRI. Magn Reson Med 2011; 66: 1129-1141.
– reference: Cheng HL, Wright GA. Rapid high-resolution T(1) mapping by variable flip angles: accurate and precise measurements in the presence of radiofrequency field inhomogeneity. Magn Reson Med 2006; 55: 566-574.
– reference: Koenig SH, Brown RD III, Gibson JF, Ward RJ, Peters TJ. Relaxometry of ferritin solutions and the influence of the Fe3+ core ions. Magn Reson Med 1986; 3: 755-767.
– reference: Papadopoulos K, Tozer DJ, Fisniku L, et al. T1-relaxation time changes over five years in relapsing-remitting multiple sclerosis. Mult Scler 2010; 16: 427-433.
– reference: Van Paesschen W, Sisodiya S, Connelly A, et al. Quantitative hippocampal MRI and intractable temporal lobe epilepsy. Neurology 1995; 45: 2233-2240.
– reference: Papakonstantinou O, Alexopoulou E, Economopoulos N, et al. Assessment of iron distribution between liver, spleen, pancreas, bone marrow, and myocardium by means of R2 relaxometry with MRI in patients with beta-thalassemia major. J Magn Reson Imaging 2009; 29: 853-859.
– reference: Townsend TN, Bernasconi N, Pike GB, Bernasconi A. Quantitative analysis of temporal lobe white matter T2 relaxation time in temporal lobe epilepsy. Neuroimage 2004; 23: 318-324.
– reference: Krasin MJ, Xiong X, Reddick WE, et al. A model for quantitative changes in the magnetic resonance parameters of muscle in children after therapeutic irradiation. Magn Reson Imaging 2006; 24: 1319-1324.
– reference: Schein A, Enriquez C, Coates TD, Wood JC. Magnetic resonance detection of kidney iron deposition in sickle cell disease: a marker of chronic hemolysis. J Magn Reson Imaging 2008; 28: 698-704.
– reference: Potter HG, Chong le R, Sneag DB. Magnetic resonance imaging of cartilage repair. Sports Med Arthrosc 2008; 16: 236-245.
– reference: Bloembergen N, Purcell EM, Pound RV. Relaxation effects in nuclear magnetic resonance absorbtion. Phys Rev 1948; 73: 679.
– reference: Gowland PA, Leach MO. A simple method for the restoration of signal polarity in multi-image inversion recovery sequences for measuring T1. Magn Reson Med 1991; 18: 224-231.
– reference: Garcia-Dorado D, Theroux P, Solares J, et al. Determinants of hemorrhagic infarcts. Histologic observations from experiments involving coronary occlusion, coronary reperfusion, and reocclusion. Am J Pathol 1990; 137: 301-311.
– reference: Zia M, Ghugre N, Paul G, Stainsby J, et al. Characterizing myocardial edema and hemorrhage using T2, T2*, and diastolic wall thickness post acute myocardial infarction. Journal of Cardiovascular Magnetic Resonance 2010; 12(Suppl 1): P179.
– reference: Bitsch A, Kuhlmann T, Stadelmann C, Lassmann H, Lucchinetti C, Bruck W. A longitudinal MRI study of histopathologically defined hypointense multiple sclerosis lesions. Ann Neurol 2001; 49: 793-796.
– reference: Wu Y, Alexander AL, Fleming JO, Duncan ID, Field AS. Myelin water fraction in human cervical spinal cord in vivo. J Comput Assist Tomogr 2006; 30: 304-306.
– reference: Williams A, Gillis A, McKenzie C, et al. Glycosaminoglycan distribution in cartilage as determined by delayed gadolinium-enhanced MRI of cartilage (dGEMRIC): potential clinical applications. AJR Am J Roentgenol 2004; 182: 167-172.
– reference: Ropele S, Langkammer C, Enzinger C, Fuchs S, Fazekas F. Relaxation time mapping in multiple sclerosis. Expert Rev Neurother 2011; 11: 441-450.
– reference: Wacker CM, Bock M, Hartlep AW, et al. Changes in myocardial oxygenation and perfusion under pharmacological stress with dipyridamole: assessment using T*2 and T1 measurements. Magn Reson Med 1999; 41: 686-695.
– reference: Abdel-Aty H, Simonetti O, Friedrich MG. T2-weighted cardiovascular magnetic resonance imaging. J Magn Reson Imaging 2007; 26: 452-459.
– reference: Schmidt A, Azevedo CF, Cheng A, et al. Infarct tissue heterogeneity by magnetic resonance imaging identifies enhanced cardiac arrhythmia susceptibility in patients with left ventricular dysfunction. Circulation 2007; 115: 2006-2014.
– reference: Cieszanowski A, Szeszkowski W, Golebiowski M, Bielecki DK, Grodzicki M, Pruszynski B. Discrimination of benign from malignant hepatic lesions based on their T2-relaxation times calculated from moderately T2-weighted turbo SE sequence. Eur Radiol 2002; 12: 2273-2279.
– reference: Recht MP, Resnick D. Magnetic resonance imaging of articular cartilage: an overview. Top Magn Reson Imaging 1998; 9: 328-336.
– reference: Leung G, Moody AR. MR imaging depicts oxidative stress induced by methemoglobin. Radiology 2010; 257: 470-476.
– reference: Uren NG, Crake T, Lefroy DC, de Silva R, Davies GJ, Maseri A. Reduced coronary vasodilator function in infarcted and normal myocardium after myocardial infarction. N Engl J Med 1994; 331: 222-227.
– reference: Lebel RM, Wilman AH. Transverse relaxometry with stimulated echo compensation. Magn Reson Med; 64: 1005-1014.
– reference: Haacke EM, Cheng NY, House MJ, et al. Imaging iron stores in the brain using magnetic resonance imaging. Magn Reson Imaging 2005; 23: 1-25.
– reference: Vavasour IM, Whittall KP, MacKay AL, Li DK, Vorobeychik G, Paty DW. A comparison between magnetization transfer ratios and myelin water percentages in normals and multiple sclerosis patients. Magn Reson Med 1998; 40: 763-768.
– reference: Mewton N, Liu CY, Croisille P, Bluemke D, Lima JA. Assessment of myocardial fibrosis with cardiovascular magnetic resonance. J Am Coll Cardiol 2011; 57: 891-903.
– reference: Bernasconi A, Bernasconi N, Caramanos Z, et al. T2 relaxometry can lateralize mesial temporal lobe epilepsy in patients with normal MRI. Neuroimage 2000; 12: 739-746.
– reference: Kornreich L, Horev G, Yaniv I, Stein J, Grunebaum M, Zaizov R. Iron overload following bone marrow transplantation in children: MR findings. Pediatr Radiol 1997; 27: 869-872.
– reference: Vrenken H, Geurts JJ, Knol DL, et al. Whole-brain T1 mapping in multiple sclerosis: global changes of normal-appearing gray and white matter. Radiology 2006; 240: 811-820.
– reference: Foltz WD, Huang H, Fort S, Wright GA. Vasodilator response assessment in porcine myocardium with magnetic resonance relaxometry. Circulation 2002; 106: 2714-2719.
– reference: Waller C, Kahler E, Hiller KH, et al. Myocardial perfusion and intracapillary blood volume in rats at rest and with coronary dilatation: MR imaging in vivo with use of a spin-labeling technique. Radiology 2000; 215: 189-197.
– reference: Lotan CS, Miller SK, Bouchard A, et al. Detection of intramyocardial hemorrhage using high-field proton (1H) nuclear magnetic resonance imaging. Cathet Cardiovasc Diagn 1990; 20: 205-211.
– reference: Deoni S. Magnetic resonance relaxation and quantitative measurements in the brain. Methods Mol Biol 2011; 711: 65-108.
– reference: Hennig J. Multiecho imaging sequences with low refocusing flip angles. J Magn Reson 1988; 78: 397-407.
– reference: Conlon P, Trimble MR, Rogers D, Callicott C. Magnetic resonance imaging in epilepsy: a controlled study. Epilepsy Res 1988; 2: 37-43.
– reference: Winter JD, Akens MK, Cheng HL. Quantitative MRI assessment of VX2 tumour oxygenation changes in response to hyperoxia and hypercapnia. Phys Med Biol 2011; 56: 1225-1242.
– reference: Ghugre NR, Ramanan V, Pop M, et al. Myocardial BOLD imaging at 3 T using quantitative T2: application in a myocardial infarct model. Magn Reson Med 2011; 66: 1739-1747.
– reference: Chai JW, Lin YC, Chen JH, et al. In vivo magnetic resonance (MR) study of fatty liver: importance of intracellular ultrastructural alteration for MR tissue parameters change. J Magn Reson Imaging 2001; 14: 35-41.
– reference: Jackowski C, Christe A, Sonnenschein M, Aghayev E, Thali MJ. Postmortem unenhanced magnetic resonance imaging of myocardial infarction in correlation to histological infarction age characterization. Eur Heart J 2006; 27: 2459-2467.
– reference: Kershaw LE, Cheng HL. A general dual-bolus approach for quantitative DCE-MRI. Magn Reson Imaging 2011; 29: 160-166.
– reference: Laule C, Vavasour IM, Moore GR, et al. Water content and myelin water fraction in multiple sclerosis. A T2 relaxation study. J Neurol 2004; 251: 284-293.
– reference: Roberts HC, Roberts TP, Brasch RC, Dillon WP. Quantitative measurement of microvascular permeability in human brain tumors achieved using dynamic contrast-enhanced MR imaging: correlation with histologic grade. AJNR Am J Neuroradiol 2000; 21: 891-899.
– reference: Runge VM, Muroff LR, Wells JW. Principles of contrast enhancement in the evaluation of brain diseases: an overview. J Magn Reson Imaging 1997; 7: 5-13.
– reference: Foltz WD, Yang Y, Graham JJ, Detsky JS, Wright GA, Dick AJ. MRI relaxation fluctuations in acute reperfused hemorrhagic infarction. Magn Reson Med 2006; 56: 1311-1319.
– reference: Sussman MS, Vidarsson L, Pauly JM, Cheng HL. A technique for rapid single-echo spin-echo T2 mapping. Magn Reson Med 2010; 64: 536-545.
– reference: Rhee TK, Larson AC, Prasad PV, et al. Feasibility of blood oxygenation level-dependent MR imaging to monitor hepatic transcatheter arterial embolization in rabbits. J Vasc Interv Radiol 2005; 16: 1523-1528.
– reference: Beaumont M, Odame I, Babyn PS, Vidarsson L, Kirby-Allen M, Cheng HL. Accurate liver T2 measurement of iron overload: a simulations investigation and in vivo study. J Magn Reson Imaging 2009; 30: 313-320.
– reference: Reiter D, Roque R, Lin P, et al. Mapping proteoglycan-bound water in cartilage: improved specificity of matrix assessment using multiexponential transverse relaxation analysis. Magn Reson Med 2011; 65: 377-384.
– reference: Yellon DM, Hausenloy DJ. Myocardial reperfusion injury. N Engl J Med 2007; 357: 1121-1135.
– reference: Erkinjuntti T, Ketonen L, Sulkava R, Sipponen J, Vuorialho M, Iivanainen M. Do white matter changes on MRI and CT differentiate vascular dementia from Alzheimer's disease? J Neurol Neurosurg Psychiatry 1987; 50: 37-42.
– reference: Ganame J, Messalli G, Dymarkowski S, et al. Impact of myocardial haemorrhage on left ventricular function and remodelling in patients with reperfused acute myocardial infarction. Eur Heart J 2009; 30: 1440-1449.
– reference: Manfredonia F, Ciccarelli O, Khaleeli Z, Tozer DJ, Sastre-Garriga J, Miller DH, Thompson AJ. Normal-appearing brain t1 relaxation time predicts disability in early primary progressive multiple sclerosis. Arch Neurol 2007; 64: 411-415.
– reference: Maillard SM, Jones R, Owens C, et al. Quantitative assessment of MRI T2 relaxation time of thigh muscles in juvenile dermatomyositis. Rheumatology (Oxford) 2004; 43: 603-608.
– reference: Laule C, Leung E, Lis DK, et al. Myelin water imaging in multiple sclerosis: quantitative correlations with histopathology. Mult Scler 2006; 12: 747-753.
– reference: Reimer KA, Lowe JE, Rasmussen MM, Jennings RB. The wavefront phenomenon of ischemic cell death. 1. Myocardial infarct size vs duration of coronary occlusion in dogs. Circulation 1977; 56: 786-794.
– reference: Dharmakumar R, Arumana JM, Tang R, Harris K, Zhang Z, Li D. Assessment of regional myocardial oxygenation changes in the presence of coronary artery stenosis with balanced SSFP imaging at 3.0 T: theory and experimental evaluation in canines. J Magn Reson Imaging 2008; 27: 1037-1045.
– reference: Blumenkrantz G, Majumdar S. Quantitative magnetic resonance imaging of articular cartilage in osteoarthritis. Eur Cell Mater 2007; 13: 76-86.
– reference: DeWitt LD, Kistler JP, Miller DC, Richardson EP Jr, Buonanno FS. NMR-neuropathologic correlation in stroke. Stroke 1987; 18: 342-351.
– reference: Cheng HL, Islam SS, Loai Y, Antoon R, Beaumont M, Farhat WA. Quantitative magnetic resonance imaging assessment of matrix development in cell-seeded natural urinary bladder smooth muscle tissue-engineered constructs. Tissue Eng Part C Methods 2010; 16: 643-651.
– reference: Aronen HJ, Gazit IE, Louis DN, et al. Cerebral blood volume maps of gliomas: comparison with tumor grade and histologic findings. Radiology 1994; 191: 41-51.
– reference: Messroghli DR, Greiser A, Frohlich M, Dietz R, Schulz-Menger J. Optimization and validation of a fully-integrated pulse sequence for modified look-locker inversion-recovery (MOLLI) T1 mapping of the heart. J Magn Reson Imaging 2007; 26: 1081-1086.
– reference: Winter JD, Estrada M, Cheng HL. Normal tissue quantitative T1 and T2* MRI relaxation time responses to hypercapnic and hyperoxic gases. Acad Radiol 2011; 18: 1159-1167.
– reference: Vignaux O, Dhote R, Duboc D, et al. Clinical significance of myocardial magnetic resonance abnormalities in patients with sarcoidosis: a 1-year follow-up study. Chest 2002; 122: 1895-1901.
– reference: Tofts P, editor. Quantitative MRI of the brain: measuring changes caused by disease. Chichester, West Sussex: Wiley; 2005.
– reference: Look DC, Locker DR. Time saving in measurement of NMR and EPR relaxation times. Rev Sci Instrum 1970; 41: 250-251.
– reference: Kingsley PB, Ogg RJ, Reddick WE, Steen RG. Correction of errors caused by imperfect inversion pulses in MR imaging measurement of T1 relaxation times. Magn Reson Imaging 1998; 16: 1049-1055.
– reference: Baxendale SA, van Paesschen W, Thompson PJ, et al. The relationship between quantitative MRI and neuropsychological functioning in temporal lobe epilepsy. Epilepsia 1998; 39: 158-166.
– reference: Friedrich MG, Abdel-Aty H, Taylor A, Schulz-Menger J, Messroghli D, Dietz R. The salvaged area at risk in reperfused acute myocardial infarction as visualized by cardiovascular magnetic resonance. J Am Coll Cardiol 2008; 51: 1581-1587.
– reference: Conrad CH, Brooks WW, Hayes JA, Sen S, Robinson KG, Bing OH. Myocardial fibrosis and stiffness with hypertrophy and heart failure in the spontaneously hypertensive rat. Circulation 1995; 91: 161-170.
– reference: Englund E, Brun A, Gyorffy-Wagner Z, Larsson E, Persson B. Relaxation times in relation to grade of malignancy and tissue necrosis in astrocytic gliomas. Magn Reson Imaging 1986; 4: 425-429.
– reference: Miller DH, Grossman RI, Reingold SC, McFarland HF. The role of magnetic resonance techniques in understanding and managing multiple sclerosis. Brain 1998; 121: 3-24.
– reference: Tozer DJ, Davies GR, Altmann DR, Miller DH, Tofts PS. Correlation of apparent myelin measures obtained in multiple sclerosis patients and controls from magnetization transfer and multicompartmental T2 analysis. Magn Reson Med 2005; 53: 1415-1422.
– reference: Kight AC, Dardzinski BJ, Laor T, Graham TB. Magnetic resonance imaging evaluation of the effects of juvenile rheumatoid arthritis on distal femoral weight-bearing cartilage. Arthritis Rheum 2004; 50: 901-905.
– reference: Barral JK, Gudmundson E, Stikov N, Etezadi-Amoli M, Stoica P, Nishimura DG. A robust methodology for in vivo T1 mapping. Magn Reson Med 2011; 64: 1057-1067.
– reference: Eckstein F, Burstein D, Link TM. Quantitative MRI of cartilage and bone: degenerative changes in osteoarthritis. NMR Biomed 2006; 19: 822-854.
– reference: Larsson HB, Hansen AE, Berg HK, Rostrup E, Haraldseth O. Dynamic contrast-enhanced quantitative perfusion measurement of the brain using T1-weighted MRI at 3T. J Magn Reson Imaging 2008; 27: 754-762.
– reference: Ghugre NR, Enriquez CM, Gonzalez I, Nelson MD Jr, Coates TD, Wood JC. MRI detects myocardial iron in the human heart. Magn Reson Med 2006; 56: 681-686.
– reference: Ghugre NR, Enriquez CM, Coates TD, Nelson MD Jr, Wood JC. Improved R2* measurements in myocardial iron overload. J Magn Reson Imaging 2006; 23: 9-16.
– reference: Carpenter JP, He T, Kirk P, Roughton M, et al. On T2* magnetic resonance and cardiac iron. Circulation 2011; 123: 1519-1528.
– reference: Zellini F, Niepel G, Tench CR, Constantinescu CS. Hypothalamic involvement assessed by T1 relaxation time in patients with relapsing-remitting multiple sclerosis. Mult Scler 2009; 15: 1442-1449.
– reference: Van de Werf F, Bax J, Betriu A, et al. Management of acute myocardial infarction in patients presenting with persistent ST-segment elevation: the Task Force on the Management of ST-Segment Elevation Acute Myocardial Infarction of the European Society of Cardiology. Eur Heart J 2008; 29: 2909-2945.
– reference: Brittain JH, Hu BS, Wright GA, Meyer CH, Macovski A, Nishimura DG. Coronary angiography with magnetization-prepared T2 contrast. Magn Reson Med 1995; 33: 689-696.
– reference: Tardif CL, Collins DL, Eskildsen SF, Richardson JB, Pike GB. Segmentation of cortical MS lesions on MRI using automated laminar profile shape analysis. Med Image Comput Comput Assist Interv 2010; 13( Pt 3): 181-188.
– reference: Bradley WG Jr. MR appearance of hemorrhage in the brain. Radiology 1993; 189: 15-26.
– reference: Zimmerman J, Britten W. Nuclear magnetic resonance studies in multiple phase systems: lifetimes of a water molecule in an absorbing phase silica gel. J Phys Chem 1957; 61( 1328).
– reference: Aherne T, Yee ES, Tscholakoff D, Gollin G, Higgins C, Ebert PA. Diagnosis of acute and chronic cardiac rejection by magnetic resonance imaging: a non-invasive in-vivo study. J Cardiovasc Surg (Torino) 1988; 29: 587-590.
– reference: Rakow-Penner R, Daniel B, Yu H, Sawyer-Glover A, Glover GH. Relaxation times of breast tissue at 1.5T and 3T measured using IDEAL. J Magn Reson Imaging 2006; 23: 87-91.
– reference: Wood JC, Enriquez C, Ghugre N, et al. MRI R2 and R2* mapping accurately estimates hepatic iron concentration in transfusion-dependent thalassemia and sickle cell disease patients. Blood 2005; 106: 1460-1465.
– reference: Link TM, Stahl R, Woertler K. Cartilage imaging: motivation, techniques, current and future significance. Eur Radiol 2007; 17: 1135-1146.
– reference: Ghugre NR, Coates TD, Nelson MD, Wood JC. Mechanisms of tissue-iron relaxivity: nuclear magnetic resonance studies of human liver biopsy specimens. Magn Reson Med 2005; 54: 1185-1193.
– reference: Workie DW, Graham TB, Laor T, et al. Quantitative MR characterization of disease activity in the knee in children with juvenile idiopathic arthritis: a longitudinal pilot study. Pediatr Radiol 2007; 37: 535-543.
– reference: Zhu DC, Penn RD. Full-brain T1 mapping through inversion recovery fast spin echo imaging with time-efficient slice ordering. Magn Reson Med 2005; 54: 725-731.
– reference: Yan AT, Shayne AJ, Brown KA, et al. Characterization of the peri-infarct zone by contrast-enhanced cardiac magnetic resonance imaging is a powerful predictor of post-myocardial infarction mortality. Circulation 2006; 114: 32-39.
– reference: Messroghli DR, Radjenovic A, Kozerke S, Higgins DM, Sivananthan MU, Ridgway JP. Modified Look-Locker inversion recovery (MOLLI) for high-resolution T1 mapping of the heart. Magn Reson Med 2004; 52: 141-146.
– reference: Baudrexel S, Nurnberger L, Rub U, et al. Quantitative mapping of T1 and T2* discloses nigral and brainstem pathology in early Parkinson's disease. Neuroimage 2010; 51: 512-520.
– reference: Argyropoulou MI, Kiortsis DN, Astrakas L, Metafratzi Z, Chalissos N, Efremidis SC. Liver, bone marrow, pancreas and pituitary gland iron overload in young and adult thalassemic patients: a T2 relaxometry study. Eur Radiol 2007; 17: 3025-3030.
– reference: Giri S, Chung YC, Merchant A, Mihai G, Rajagopalan S, Raman SV, Simonetti OP. T2 quantification for improved detection of myocardial edema. J Cardiovasc Magn Reson 2009; 11: 56.
– reference: Stoffner R, Schullian P, Widmann G, Bale R, Kremser C. [Magnetic resonance imaging of radiofrequency current-induced coagulation zones in the ex vivo bovine liver]. Rofo 2010; 182: 690-697.
– reference: Berdoukas V, Chouliaras G, Moraitis P, Zannikos K, Berdoussi E, Ladis V. The efficacy of iron chelator regimes in reducing cardiac and hepatic iron in patients with thalassaemia major: a clinical observational study. J Cardiovasc Magn Reson 2009; 11: 20.
– reference: Noseworthy MD, Kim JK, Stainsby JA, Stanisz GJ, Wright GA. Tracking oxygen effects on MR signal in blood and skeletal muscle during hyperoxia exposure. J Magn Reson Imaging 1999; 9: 814-820.
– reference: Kaltwasser JP, Gottschalk R, Schalk KP, Hartl W. Non-invasive quantitation of liver iron-overload by magnetic resonance imaging. Br J Haematol 1990; 74: 360-363.
– reference: Dyke JP, Panicek DM, Healey JH, et al. Osteogenic and Ewing sarcomas: estimation of necrotic fraction during induction chemotherapy with dynamic contrast-enhanced MR imaging. Radiology 2003; 228: 271-278.
– reference: Deoni SC, Ward HA, Peters TM, Rutt BK. Rapid T2 estimation with phase-cycled variable nutation steady-state free precession. Magn Reson Med 2004; 52: 435-439.
– reference: Wood JC, Aguilar M, Otto-Duessel M, Nick H, Nelson MD, Moats R. Influence of iron chelation on R1 and R2 calibration curves in gerbil liver and heart. Magn Reson Med 2008; 60: 82-89.
– reference: Ghugre NR, Wood JC. Relaxivity-iron calibration in hepatic iron overload: probing underlying biophysical mechanisms using a Monte Carlo model. Magn Reson Med 2011; 65: 837-847.
– volume: 228
  start-page: 271
  year: 2003
  end-page: 278
  article-title: Osteogenic and Ewing sarcomas: estimation of necrotic fraction during induction chemotherapy with dynamic contrast‐enhanced MR imaging
  publication-title: Radiology
– volume: 64
  start-page: 411
  year: 2007
  end-page: 415
  article-title: Normal‐appearing brain t1 relaxation time predicts disability in early primary progressive multiple sclerosis
  publication-title: Arch Neurol
– volume: 11
  start-page: 56
  year: 2009
  article-title: T2 quantification for improved detection of myocardial edema
  publication-title: J Cardiovasc Magn Reson
– volume: 121
  start-page: 3
  year: 1998
  end-page: 24
  article-title: The role of magnetic resonance techniques in understanding and managing multiple sclerosis
  publication-title: Brain
– volume: 60
  start-page: 1372
  year: 2008
  end-page: 1387
  article-title: Gleaning multicomponent T1 and T2 information from steady‐state imaging data
  publication-title: Magn Reson Med
– volume: 9
  start-page: 814
  year: 1999
  end-page: 820
  article-title: Tracking oxygen effects on MR signal in blood and skeletal muscle during hyperoxia exposure
  publication-title: J Magn Reson Imaging
– year: 2005
– volume: 16
  start-page: 427
  year: 2010
  end-page: 433
  article-title: T1‐relaxation time changes over five years in relapsing‐remitting multiple sclerosis
  publication-title: Mult Scler
– volume: 56
  start-page: 1225
  year: 2011
  end-page: 1242
  article-title: Quantitative MRI assessment of VX2 tumour oxygenation changes in response to hyperoxia and hypercapnia
  publication-title: Phys Med Biol
– volume: 17
  start-page: 3025
  year: 2007
  end-page: 3030
  article-title: Liver, bone marrow, pancreas and pituitary gland iron overload in young and adult thalassemic patients: a T2 relaxometry study
  publication-title: Eur Radiol
– volume: 10
  start-page: 223
  year: 1999
  end-page: 232
  article-title: Estimating kinetic parameters from dynamic contrast‐enhanced T(1)‐weighted MRI of a diffusable tracer: standardized quantities and symbols
  publication-title: J Magn Reson Imaging
– volume: 357
  start-page: 1121
  year: 2007
  end-page: 1135
  article-title: Myocardial reperfusion injury
  publication-title: N Engl J Med
– volume: 43
  start-page: 854
  year: 2008
  end-page: 860
  article-title: T2* relaxometry in liver, pancreas, and spleen in a healthy cohort of one hundred twenty‐nine subjects‐correlation with age, gender, and serum ferritin
  publication-title: Invest Radiol
– volume: 64
  start-page: 1057
  year: 2011
  end-page: 1067
  article-title: A robust methodology for in vivo T1 mapping
  publication-title: Magn Reson Med
– volume: 29
  start-page: 587
  year: 1988
  end-page: 590
  article-title: Diagnosis of acute and chronic cardiac rejection by magnetic resonance imaging: a non‐invasive in‐vivo study
  publication-title: J Cardiovasc Surg (Torino)
– volume: 16
  start-page: 1049
  year: 1998
  end-page: 1055
  article-title: Correction of errors caused by imperfect inversion pulses in MR imaging measurement of T1 relaxation times
  publication-title: Magn Reson Imaging
– volume: 2
  start-page: 37
  year: 1988
  end-page: 43
  article-title: Magnetic resonance imaging in epilepsy: a controlled study
  publication-title: Epilepsy Res
– volume: 50
  start-page: 37
  year: 1987
  end-page: 42
  article-title: Do white matter changes on MRI and CT differentiate vascular dementia from Alzheimer's disease?
  publication-title: J Neurol Neurosurg Psychiatry
– year: 2011
  article-title: Applications of stimulated echo correction to multicomponent T(2) analysis
  publication-title: Magn Reson Med
– volume: 169
  start-page: 779
  year: 1988
  end-page: 785
  article-title: Tissue characterization with T1, T2, and proton density values: results in 160 patients with brain tumors
  publication-title: Radiology
– volume: 43
  start-page: 52
  year: 2000
  end-page: 61
  article-title: Histogram‐based characterization of healthy and ischemic brain tissues using multiparametric MR imaging including apparent diffusion coefficient maps and relaxometry
  publication-title: Magn Reson Med
– volume: 12
  start-page: P179
  issue: Suppl 1
  year: 2010
  article-title: Characterizing myocardial edema and hemorrhage using T2, T2*, and diastolic wall thickness post acute myocardial infarction
  publication-title: Journal of Cardiovascular Magnetic Resonance
– volume: 21
  start-page: 103
  year: 2005
  end-page: 110
  article-title: The role of edema and demyelination in chronic T1 black holes: a quantitative magnetization transfer study
  publication-title: J Magn Reson Imaging
– volume: 22
  start-page: 637
  year: 2001
  end-page: 644
  article-title: Evolution of apparent diffusion coefficient, diffusion‐weighted, and T2‐weighted signal intensity of acute stroke
  publication-title: AJNR Am J Neuroradiol
– volume: 41
  start-page: 686
  year: 1999
  end-page: 695
  article-title: Changes in myocardial oxygenation and perfusion under pharmacological stress with dipyridamole: assessment using T*2 and T1 measurements
  publication-title: Magn Reson Med
– year: 2012
  article-title: Liver iron overload assessment by T2* magnetic resonance imaging in pediatric patients: an accuracy and reproducibility study
  publication-title: Am J Hematol
– volume: 29
  start-page: 853
  year: 2009
  end-page: 859
  article-title: Assessment of iron distribution between liver, spleen, pancreas, bone marrow, and myocardium by means of R2 relaxometry with MRI in patients with beta‐thalassemia major
  publication-title: J Magn Reson Imaging
– volume: 27
  start-page: 376
  year: 2008
  end-page: 390
  article-title: MR thermometry
  publication-title: J Magn Reson Imaging
– volume: 40
  start-page: 763
  year: 1998
  end-page: 768
  article-title: A comparison between magnetization transfer ratios and myelin water percentages in normals and multiple sclerosis patients
  publication-title: Magn Reson Med
– volume: 37
  start-page: 535
  year: 2007
  end-page: 543
  article-title: Quantitative MR characterization of disease activity in the knee in children with juvenile idiopathic arthritis: a longitudinal pilot study
  publication-title: Pediatr Radiol
– volume: 137
  start-page: 301
  year: 1990
  end-page: 311
  article-title: Determinants of hemorrhagic infarcts. Histologic observations from experiments involving coronary occlusion, coronary reperfusion, and reocclusion
  publication-title: Am J Pathol
– volume: 115
  start-page: 2006
  year: 2007
  end-page: 2014
  article-title: Infarct tissue heterogeneity by magnetic resonance imaging identifies enhanced cardiac arrhythmia susceptibility in patients with left ventricular dysfunction
  publication-title: Circulation
– volume: 30
  start-page: 313
  year: 2009
  end-page: 320
  article-title: Accurate liver T2 measurement of iron overload: a simulations investigation and in vivo study
  publication-title: J Magn Reson Imaging
– volume: 23
  start-page: 1
  year: 2005
  end-page: 25
  article-title: Imaging iron stores in the brain using magnetic resonance imaging
  publication-title: Magn Reson Imaging
– volume: 56
  start-page: 681
  year: 2006
  end-page: 686
  article-title: MRI detects myocardial iron in the human heart
  publication-title: Magn Reson Med
– volume: 1054
  start-page: 386
  year: 2005
  end-page: 395
  article-title: Physiology and pathophysiology of iron cardiomyopathy in thalassemia
  publication-title: Ann N Y Acad Sci
– volume: 17
  start-page: 281
  year: 2004
  end-page: 287
  article-title: Measurements of T1 and T2 relaxation times of colon cancer metastases in rat liver at 7 T
  publication-title: Magma
– volume: 50
  start-page: 1282
  year: 1998
  end-page: 1288
  article-title: Histopathologic correlate of hypointense lesions on T1‐weighted spin‐echo MRI in multiple sclerosis
  publication-title: Neurology
– volume: 74
  start-page: 360
  year: 1990
  end-page: 363
  article-title: Non‐invasive quantitation of liver iron‐overload by magnetic resonance imaging
  publication-title: Br J Haematol
– volume: 189
  start-page: 15
  year: 1993
  end-page: 26
  article-title: MR appearance of hemorrhage in the brain
  publication-title: Radiology
– volume: 711
  start-page: 65
  year: 2011
  end-page: 108
  article-title: Magnetic resonance relaxation and quantitative measurements in the brain
  publication-title: Methods Mol Biol
– volume: 28
  start-page: 1606
  year: 2009
  end-page: 1614
  article-title: Reproducible classification of infarct heterogeneity using fuzzy clustering on multicontrast delayed enhancement magnetic resonance images
  publication-title: IEEE Trans Med Imaging
– volume: 8
  start-page: 351
  year: 1990
  end-page: 356
  article-title: Fast and precise T1 imaging using a TOMROP sequence
  publication-title: Magn Reson Imaging
– volume: 17
  start-page: 1135
  year: 2007
  end-page: 1146
  article-title: Cartilage imaging: motivation, techniques, current and future significance
  publication-title: Eur Radiol
– volume: 19
  start-page: 822
  year: 2006
  end-page: 854
  article-title: Quantitative MRI of cartilage and bone: degenerative changes in osteoarthritis
  publication-title: NMR Biomed
– volume: 18
  start-page: 1159
  year: 2011
  end-page: 1167
  article-title: Normal tissue quantitative T1 and T2* MRI relaxation time responses to hypercapnic and hyperoxic gases
  publication-title: Acad Radiol
– volume: 50
  start-page: 901
  year: 2004
  end-page: 905
  article-title: Magnetic resonance imaging evaluation of the effects of juvenile rheumatoid arthritis on distal femoral weight‐bearing cartilage
  publication-title: Arthritis Rheum
– volume: 13
  start-page: 379
  year: 1995
  end-page: 385
  article-title: Spin‐lattice relaxation and magnetization transfer in intracranial tumors in vivo: effects of Gd‐DTPA on relaxation parameters
  publication-title: Magn Reson Imaging
– volume: 53
  start-page: 1415
  year: 2005
  end-page: 1422
  article-title: Correlation of apparent myelin measures obtained in multiple sclerosis patients and controls from magnetization transfer and multicompartmental T2 analysis
  publication-title: Magn Reson Med
– volume: 257
  start-page: 470
  year: 2010
  end-page: 476
  article-title: MR imaging depicts oxidative stress induced by methemoglobin
  publication-title: Radiology
– volume: 27
  start-page: 1037
  year: 2008
  end-page: 1045
  article-title: Assessment of regional myocardial oxygenation changes in the presence of coronary artery stenosis with balanced SSFP imaging at 3.0 T: theory and experimental evaluation in canines
  publication-title: J Magn Reson Imaging
– year: 2007
– volume: 331
  start-page: 222
  year: 1994
  end-page: 227
  article-title: Reduced coronary vasodilator function in infarcted and normal myocardium after myocardial infarction
  publication-title: N Engl J Med
– volume: 18
  start-page: 224
  year: 1991
  end-page: 231
  article-title: A simple method for the restoration of signal polarity in multi‐image inversion recovery sequences for measuring T1
  publication-title: Magn Reson Med
– volume: 57
  start-page: 437
  year: 2007
  end-page: 441
  article-title: Quantitative magnetization transfer imaging via selective inversion recovery with short repetition times
  publication-title: Magn Reson Med
– volume: 22
  start-page: 2171
  year: 2001
  end-page: 2179
  article-title: Cardiovascular T2‐star (T2*) magnetic resonance for the early diagnosis of myocardial iron overload
  publication-title: Eur Heart J
– volume: 51
  start-page: 512
  year: 2010
  end-page: 520
  article-title: Quantitative mapping of T1 and T2* discloses nigral and brainstem pathology in early Parkinson's disease
  publication-title: Neuroimage
– volume: 182
  start-page: 690
  year: 2010
  end-page: 697
  article-title: [Magnetic resonance imaging of radiofrequency current‐induced coagulation zones in the ex vivo bovine liver]
  publication-title: Rofo
– volume: 56
  start-page: 1311
  year: 2006
  end-page: 1319
  article-title: MRI relaxation fluctuations in acute reperfused hemorrhagic infarction
  publication-title: Magn Reson Med
– volume: 106
  start-page: 2714
  year: 2002
  end-page: 2719
  article-title: Vasodilator response assessment in porcine myocardium with magnetic resonance relaxometry
  publication-title: Circulation
– volume: 23
  start-page: 318
  year: 2004
  end-page: 324
  article-title: Quantitative analysis of temporal lobe white matter T2 relaxation time in temporal lobe epilepsy
  publication-title: Neuroimage
– volume: 28
  start-page: 698
  year: 2008
  end-page: 704
  article-title: Magnetic resonance detection of kidney iron deposition in sickle cell disease: a marker of chronic hemolysis
  publication-title: J Magn Reson Imaging
– volume: 148
  start-page: 272
  year: 2006
  end-page: 280
  article-title: Deferasirox and deferiprone remove cardiac iron in the iron‐overloaded gerbil
  publication-title: Transl Res
– volume: 215
  start-page: 189
  year: 2000
  end-page: 197
  article-title: Myocardial perfusion and intracapillary blood volume in rats at rest and with coronary dilatation: MR imaging in vivo with use of a spin‐labeling technique
  publication-title: Radiology
– volume: 65
  start-page: 837
  year: 2011
  end-page: 847
  article-title: Relaxivity‐iron calibration in hepatic iron overload: probing underlying biophysical mechanisms using a Monte Carlo model
  publication-title: Magn Reson Med
– volume: 23
  start-page: 87
  year: 2006
  end-page: 91
  article-title: Relaxation times of breast tissue at 1.5T and 3T measured using IDEAL
  publication-title: J Magn Reson Imaging
– volume: 62
  start-page: 205
  year: 2009
  end-page: 217
  article-title: Quantification of cerebral blood flow, cerebral blood volume, and blood‐brain‐barrier leakage with DCE‐MRI
  publication-title: Magn Reson Med
– volume: 43
  start-page: 603
  year: 2004
  end-page: 608
  article-title: Quantitative assessment of MRI T2 relaxation time of thigh muscles in juvenile dermatomyositis
  publication-title: Rheumatology (Oxford)
– volume: 12
  start-page: 747
  year: 2006
  end-page: 753
  article-title: Myelin water imaging in multiple sclerosis: quantitative correlations with histopathology
  publication-title: Mult Scler
– volume: 24
  start-page: 1319
  year: 2006
  end-page: 1324
  article-title: A model for quantitative changes in the magnetic resonance parameters of muscle in children after therapeutic irradiation
  publication-title: Magn Reson Imaging
– volume: 13
  start-page: 76
  year: 2007
  end-page: 86
  article-title: Quantitative magnetic resonance imaging of articular cartilage in osteoarthritis
  publication-title: Eur Cell Mater
– volume: 60
  start-page: 82
  year: 2008
  end-page: 89
  article-title: Influence of iron chelation on R1 and R2 calibration curves in gerbil liver and heart
  publication-title: Magn Reson Med
– volume: 36
  start-page: 1005
  year: 2006
  end-page: 1018
  article-title: Imaging of muscle disorders in children
  publication-title: Pediatr Radiol
– volume: 26
  start-page: 452
  year: 2007
  end-page: 459
  article-title: T2‐weighted cardiovascular magnetic resonance imaging
  publication-title: J Magn Reson Imaging
– volume: 78
  start-page: 397
  year: 1988
  end-page: 407
  article-title: Multiecho imaging sequences with low refocusing flip angles
  publication-title: J Magn Reson
– volume: 27
  start-page: 754
  year: 2008
  end-page: 762
  article-title: Dynamic contrast‐enhanced quantitative perfusion measurement of the brain using T1‐weighted MRI at 3T
  publication-title: J Magn Reson Imaging
– volume: 27
  start-page: 2459
  year: 2006
  end-page: 2467
  article-title: Postmortem unenhanced magnetic resonance imaging of myocardial infarction in correlation to histological infarction age characterization
  publication-title: Eur Heart J
– volume: 52
  start-page: 435
  year: 2004
  end-page: 439
  article-title: Rapid T2 estimation with phase‐cycled variable nutation steady‐state free precession
  publication-title: Magn Reson Med
– volume: 56
  start-page: 786
  year: 1977
  end-page: 794
  article-title: The wavefront phenomenon of ischemic cell death. 1. Myocardial infarct size vs duration of coronary occlusion in dogs
  publication-title: Circulation
– volume: 18
  start-page: 342
  year: 1987
  end-page: 351
  article-title: NMR‐neuropathologic correlation in stroke
  publication-title: Stroke
– volume: 4
  start-page: 1861
  year: 1994
  end-page: 1868
  article-title: Evaluation of quantitative magnetic resonance imaging as a noninvasive technique for measuring renal scarring in a rabbit model of antiglomerular basement membrane disease
  publication-title: J Am Soc Nephrol
– volume: 61
  start-page: 1328
  year: 1957
  article-title: Nuclear magnetic resonance studies in multiple phase systems: lifetimes of a water molecule in an absorbing phase silica gel
  publication-title: J Phys Chem
– volume: 114
  start-page: 32
  year: 2006
  end-page: 39
  article-title: Characterization of the peri‐infarct zone by contrast‐enhanced cardiac magnetic resonance imaging is a powerful predictor of post‐myocardial infarction mortality
  publication-title: Circulation
– volume: 26
  start-page: 1081
  year: 2007
  end-page: 1086
  article-title: Optimization and validation of a fully‐integrated pulse sequence for modified look‐locker inversion‐recovery (MOLLI) T1 mapping of the heart
  publication-title: J Magn Reson Imaging
– volume: 15
  start-page: 1442
  year: 2009
  end-page: 1449
  article-title: Hypothalamic involvement assessed by T1 relaxation time in patients with relapsing‐remitting multiple sclerosis
  publication-title: Mult Scler
– volume: 41
  start-page: 250
  year: 1970
  end-page: 251
  article-title: Time saving in measurement of NMR and EPR relaxation times
  publication-title: Rev Sci Instrum
– volume: 64
  start-page: 318
  year: 2005
  end-page: 325
  article-title: Whole‐brain T2 mapping demonstrates occult abnormalities in focal epilepsy
  publication-title: Neurology
– volume: 16
  start-page: 1523
  year: 2005
  end-page: 1528
  article-title: Feasibility of blood oxygenation level‐dependent MR imaging to monitor hepatic transcatheter arterial embolization in rabbits
  publication-title: J Vasc Interv Radiol
– volume: 29
  start-page: 2909
  year: 2008
  end-page: 2945
  article-title: Management of acute myocardial infarction in patients presenting with persistent ST‐segment elevation: the Task Force on the Management of ST‐Segment Elevation Acute Myocardial Infarction of the European Society of Cardiology
  publication-title: Eur Heart J
– volume: 106
  start-page: 1460
  year: 2005
  end-page: 1465
  article-title: MRI R2 and R2* mapping accurately estimates hepatic iron concentration in transfusion‐dependent thalassemia and sickle cell disease patients
  publication-title: Blood
– volume: 51
  start-page: 1581
  year: 2008
  end-page: 1587
  article-title: The salvaged area at risk in reperfused acute myocardial infarction as visualized by cardiovascular magnetic resonance
  publication-title: J Am Coll Cardiol
– volume: 105
  start-page: 855
  year: 2005
  end-page: 861
  article-title: Noninvasive measurement and imaging of liver iron concentrations using proton magnetic resonance
  publication-title: Blood
– volume: 64
  start-page: 1005
  end-page: 1014
  article-title: Transverse relaxometry with stimulated echo compensation
  publication-title: Magn Reson Med
– volume: 33
  start-page: 689
  year: 1995
  end-page: 696
  article-title: Coronary angiography with magnetization‐prepared T2 contrast
  publication-title: Magn Reson Med
– volume: 9
  start-page: 328
  year: 1998
  end-page: 336
  article-title: Magnetic resonance imaging of articular cartilage: an overview
  publication-title: Top Magn Reson Imaging
– volume: 24
  start-page: 33
  year: 2006
  end-page: 43
  article-title: Measurement of in vivo multi‐component T2 relaxation times for brain tissue using multi‐slice T2 prep at 1.5 and 3 T
  publication-title: Magn Reson Imaging
– volume: 29
  start-page: 160
  year: 2011
  end-page: 166
  article-title: A general dual‐bolus approach for quantitative DCE‐MRI
  publication-title: Magn Reson Imaging
– volume: 11
  start-page: 441
  year: 2011
  end-page: 450
  article-title: Relaxation time mapping in multiple sclerosis
  publication-title: Expert Rev Neurother
– volume: 62
  start-page: 433
  year: 1989
  end-page: 437
  article-title: Relative proton density and relaxation times in liver metastases during interferon treatment
  publication-title: Br J Radiol
– volume: 49
  start-page: 515
  year: 2003
  end-page: 526
  article-title: Rapid combined T1 and T2 mapping using gradient recalled acquisition in the steady state
  publication-title: Magn Reson Med
– volume: 3
  start-page: 755
  year: 1986
  end-page: 767
  article-title: Relaxometry of ferritin solutions and the influence of the Fe3+ core ions
  publication-title: Magn Reson Med
– volume: 16
  start-page: 236
  year: 2008
  end-page: 245
  article-title: Magnetic resonance imaging of cartilage repair
  publication-title: Sports Med Arthrosc
– volume: 12
  start-page: 2273
  year: 2002
  end-page: 2279
  article-title: Discrimination of benign from malignant hepatic lesions based on their T2‐relaxation times calculated from moderately T2‐weighted turbo SE sequence
  publication-title: Eur Radiol
– volume: 39
  start-page: 158
  year: 1998
  end-page: 166
  article-title: The relationship between quantitative MRI and neuropsychological functioning in temporal lobe epilepsy
  publication-title: Epilepsia
– volume: 14
  start-page: 35
  year: 2001
  end-page: 41
  article-title: In vivo magnetic resonance (MR) study of fatty liver: importance of intracellular ultrastructural alteration for MR tissue parameters change
  publication-title: J Magn Reson Imaging
– volume: 19
  start-page: 1
  year: 2009
  end-page: 26
  article-title: MR relaxation in multiple sclerosis
  publication-title: Neuroimaging Clin N Am
– volume: 30
  start-page: 304
  year: 2006
  end-page: 306
  article-title: Myelin water fraction in human cervical spinal cord in vivo
  publication-title: J Comput Assist Tomogr
– volume: 16
  start-page: 643
  year: 2010
  end-page: 651
  article-title: Quantitative magnetic resonance imaging assessment of matrix development in cell‐seeded natural urinary bladder smooth muscle tissue‐engineered constructs
  publication-title: Tissue Eng Part C Methods
– volume: 12
  start-page: 739
  year: 2000
  end-page: 746
  article-title: T2 relaxometry can lateralize mesial temporal lobe epilepsy in patients with normal MRI
  publication-title: Neuroimage
– volume: 54
  start-page: 725
  year: 2005
  end-page: 731
  article-title: Full‐brain T1 mapping through inversion recovery fast spin echo imaging with time‐efficient slice ordering
  publication-title: Magn Reson Med
– volume: 251
  start-page: 284
  year: 2004
  end-page: 293
  article-title: Water content and myelin water fraction in multiple sclerosis. A T2 relaxation study
  publication-title: J Neurol
– volume: 34
  start-page: 229
  year: 2000
  end-page: 246
  article-title: Bone and soft tissue tumors: the role of contrast agents for MR imaging
  publication-title: Eur J Radiol
– volume: 66
  start-page: 1739
  year: 2011
  end-page: 1747
  article-title: Myocardial BOLD imaging at 3 T using quantitative T2: application in a myocardial infarct model
  publication-title: Magn Reson Med
– volume: 91
  start-page: 161
  year: 1995
  end-page: 170
  article-title: Myocardial fibrosis and stiffness with hypertrophy and heart failure in the spontaneously hypertensive rat
  publication-title: Circulation
– volume: 21
  start-page: 891
  year: 2000
  end-page: 899
  article-title: Quantitative measurement of microvascular permeability in human brain tumors achieved using dynamic contrast‐enhanced MR imaging: correlation with histologic grade
  publication-title: AJNR Am J Neuroradiol
– volume: 36
  start-page: 14
  year: 1994
  end-page: 18
  article-title: Are magnetic resonance findings predictive of clinical outcome in therapeutic trials in multiple sclerosis? The dilemma of interferon‐beta
  publication-title: Ann Neurol
– volume: 65
  start-page: 377
  year: 2011
  end-page: 384
  article-title: Mapping proteoglycan‐bound water in cartilage: improved specificity of matrix assessment using multiexponential transverse relaxation analysis
  publication-title: Magn Reson Med
– volume: 49
  start-page: 793
  year: 2001
  end-page: 796
  article-title: A longitudinal MRI study of histopathologically defined hypointense multiple sclerosis lesions
  publication-title: Ann Neurol
– volume: 64
  start-page: 536
  year: 2010
  end-page: 545
  article-title: A technique for rapid single‐echo spin‐echo T2 mapping
  publication-title: Magn Reson Med
– volume: 52
  start-page: 141
  year: 2004
  end-page: 146
  article-title: Modified Look‐Locker inversion recovery (MOLLI) for high‐resolution T1 mapping of the heart
  publication-title: Magn Reson Med
– volume: 23
  start-page: 9
  year: 2006
  end-page: 16
  article-title: Improved R2* measurements in myocardial iron overload
  publication-title: J Magn Reson Imaging
– volume: 182
  start-page: 167
  year: 2004
  end-page: 172
  article-title: Glycosaminoglycan distribution in cartilage as determined by delayed gadolinium‐enhanced MRI of cartilage (dGEMRIC): potential clinical applications
  publication-title: AJR Am J Roentgenol
– volume: 4
  start-page: 425
  year: 1986
  end-page: 429
  article-title: Relaxation times in relation to grade of malignancy and tissue necrosis in astrocytic gliomas
  publication-title: Magn Reson Imaging
– volume: 66
  start-page: 725
  year: 2011
  end-page: 734
  article-title: Cross‐relaxation imaging of human articular cartilage
  publication-title: Magn Reson Med
– volume: 30
  start-page: 1440
  year: 2009
  end-page: 1449
  article-title: Impact of myocardial haemorrhage on left ventricular function and remodelling in patients with reperfused acute myocardial infarction
  publication-title: Eur Heart J
– volume: 20
  start-page: 205
  year: 1990
  end-page: 211
  article-title: Detection of intramyocardial hemorrhage using high‐field proton (1H) nuclear magnetic resonance imaging
  publication-title: Cathet Cardiovasc Diagn
– volume: 191
  start-page: 41
  year: 1994
  end-page: 51
  article-title: Cerebral blood volume maps of gliomas: comparison with tumor grade and histologic findings
  publication-title: Radiology
– volume: 31
  start-page: 673
  year: 1994
  end-page: 677
  article-title: In vivo visualization of myelin water in brain by magnetic resonance
  publication-title: Magn Reson Med
– volume: 123
  start-page: 1519
  year: 2011
  end-page: 1528
  article-title: On T2* magnetic resonance and cardiac iron
  publication-title: Circulation
– volume: 7
  start-page: 5
  year: 1997
  end-page: 13
  article-title: Principles of contrast enhancement in the evaluation of brain diseases: an overview
  publication-title: J Magn Reson Imaging
– volume: 73
  start-page: 679
  year: 1948
  article-title: Relaxation effects in nuclear magnetic resonance absorbtion
  publication-title: Phys Rev
– volume: 122
  start-page: 1895
  year: 2002
  end-page: 1901
  article-title: Clinical significance of myocardial magnetic resonance abnormalities in patients with sarcoidosis: a 1‐year follow‐up study
  publication-title: Chest
– volume: 57
  start-page: 891
  year: 2011
  end-page: 903
  article-title: Assessment of myocardial fibrosis with cardiovascular magnetic resonance
  publication-title: J Am Coll Cardiol
– volume: 66
  start-page: 1129
  year: 2011
  end-page: 1141
  article-title: Quantitative tracking of edema, hemorrhage, and microvascular obstruction in subacute myocardial infarction in a porcine model by MRI
  publication-title: Magn Reson Med
– volume: 55
  start-page: 566
  year: 2006
  end-page: 574
  article-title: Rapid high‐resolution T(1) mapping by variable flip angles: accurate and precise measurements in the presence of radiofrequency field inhomogeneity
  publication-title: Magn Reson Med
– volume: 45
  start-page: 2233
  year: 1995
  end-page: 2240
  article-title: Quantitative hippocampal MRI and intractable temporal lobe epilepsy
  publication-title: Neurology
– volume: 13
  start-page: 181
  issue: Pt 3
  year: 2010
  end-page: 188
  article-title: Segmentation of cortical MS lesions on MRI using automated laminar profile shape analysis
  publication-title: Med Image Comput Comput Assist Interv
– volume: 37
  start-page: 34
  year: 1997
  end-page: 43
  article-title: In vivo measurement of T2 distributions and water contents in normal human brain
  publication-title: Magn Reson Med
– volume: 54
  start-page: 1185
  year: 2005
  end-page: 1193
  article-title: Mechanisms of tissue‐iron relaxivity: nuclear magnetic resonance studies of human liver biopsy specimens
  publication-title: Magn Reson Med
– volume: 11
  start-page: 20
  year: 2009
  article-title: The efficacy of iron chelator regimes in reducing cardiac and hepatic iron in patients with thalassaemia major: a clinical observational study
  publication-title: J Cardiovasc Magn Reson
– volume: 240
  start-page: 811
  year: 2006
  end-page: 820
  article-title: Whole‐brain T1 mapping in multiple sclerosis: global changes of normal‐appearing gray and white matter
  publication-title: Radiology
– volume: 27
  start-page: 869
  year: 1997
  end-page: 872
  article-title: Iron overload following bone marrow transplantation in children: MR findings
  publication-title: Pediatr Radiol
– ident: e_1_2_8_112_2
  doi: 10.1002/jmri.22660
– ident: e_1_2_8_121_2
  doi: 10.1016/S0730-725X(98)00112-X
– ident: e_1_2_8_14_2
  doi: 10.1002/ana.1053
– ident: e_1_2_8_59_2
  doi: 10.1007/s00247-006-0166-6
– ident: e_1_2_8_11_2
  doi: 10.1148/radiol.2403050569
– ident: e_1_2_8_23_2
  doi: 10.1016/0730-725X(86)90051-2
– ident: e_1_2_8_82_2
  doi: 10.1093/eurheartj/ehp093
– ident: e_1_2_8_131_2
  doi: 10.1002/mrm.20479
– ident: e_1_2_8_98_2
  doi: 10.1002/jmri.21028
– ident: e_1_2_8_67_2
  doi: 10.1097/01.RVI.0000182179.87340.D7
– ident: e_1_2_8_66_2
  doi: 10.1016/j.acra.2011.04.016
– ident: e_1_2_8_55_2
  doi: 10.1002/mrm.22865
– ident: e_1_2_8_69_2
  doi: 10.1016/j.mri.2006.08.004
– ident: e_1_2_8_130_2
  doi: 10.1002/mrm.21704
– ident: e_1_2_8_54_2
  doi: 10.1089/ten.tec.2009.0099
– ident: e_1_2_8_101_2
  doi: 10.1016/j.jacc.2010.11.013
– ident: e_1_2_8_135_2
  doi: 10.1016/j.mri.2005.10.016
– ident: e_1_2_8_7_2
  doi: 10.1016/j.mri.2004.10.001
– volume: 4
  start-page: 1861
  year: 1994
  ident: e_1_2_8_58_2
  article-title: Evaluation of quantitative magnetic resonance imaging as a noninvasive technique for measuring renal scarring in a rabbit model of antiglomerular basement membrane disease
  publication-title: J Am Soc Nephrol
  doi: 10.1681/ASN.V4111861
– ident: e_1_2_8_63_2
  doi: 10.1007/s10334-004-0068-2
– ident: e_1_2_8_22_2
  doi: 10.1586/ern.10.129
– ident: e_1_2_8_106_2
  doi: 10.1002/mrm.20110
– ident: e_1_2_8_27_2
  doi: 10.1002/mrm.22005
– ident: e_1_2_8_48_2
  doi: 10.1097/00002142-199812000-00002
– ident: e_1_2_8_2_2
  doi: 10.1103/PhysRev.73.679
– ident: e_1_2_8_43_2
  doi: 10.1196/annals.1345.047
– ident: e_1_2_8_29_2
  doi: 10.1148/radiology.191.1.8134596
– ident: e_1_2_8_89_2
  doi: 10.1161/01.CIR.0000039475.66067.DC
– ident: e_1_2_8_5_2
  doi: 10.1136/jnnp.50.1.37
– ident: e_1_2_8_9_2
  doi: 10.1093/brain/121.1.3
– ident: e_1_2_8_42_2
  doi: 10.1182/blood-2004-01-0177
– ident: e_1_2_8_139_2
  doi: 10.1002/ajh.23114
– ident: e_1_2_8_103_2
  doi: 10.1002/mrm.20602
– ident: e_1_2_8_78_2
  doi: 10.1148/radiology.189.1.8372185
– ident: e_1_2_8_46_2
  doi: 10.1002/jmri.21490
– ident: e_1_2_8_68_2
  doi: 10.1148/radiol.2281011651
– ident: e_1_2_8_73_2
  doi: 10.1161/CIRCULATIONAHA.110.007641
– ident: e_1_2_8_28_2
  doi: 10.1002/jmri.1880070103
– ident: e_1_2_8_72_2
  doi: 10.1053/euhj.2001.2822
– ident: e_1_2_8_111_2
  doi: 10.1088/0031-9155/56/5/001
– ident: e_1_2_8_45_2
  doi: 10.1097/RLI.0b013e3181862413
– ident: e_1_2_8_52_2
  doi: 10.1002/nbm.1063
– volume: 22
  start-page: 637
  year: 2001
  ident: e_1_2_8_33_2
  article-title: Evolution of apparent diffusion coefficient, diffusion‐weighted, and T2‐weighted signal intensity of acute stroke
  publication-title: AJNR Am J Neuroradiol
– ident: e_1_2_8_110_2
  doi: 10.1016/j.mri.2010.08.009
– ident: e_1_2_8_37_2
  doi: 10.1016/j.neuroimage.2004.06.009
– ident: e_1_2_8_127_2
  doi: 10.1002/mrm.20697
– ident: e_1_2_8_95_2
  doi: 10.1093/eurheartj/ehl255
– ident: e_1_2_8_47_2
  doi: 10.1186/1532-429X-11-20
– ident: e_1_2_8_102_2
  doi: 10.1002/mrm.22497
– ident: e_1_2_8_26_2
  doi: 10.1002/(SICI)1522-2586(199909)10:3<223::AID-JMRI2>3.0.CO;2-S
– ident: e_1_2_8_20_2
  doi: 10.1177/1352458506070928
– ident: e_1_2_8_53_2
  doi: 10.1002/art.20062
– ident: e_1_2_8_141_2
  doi: 10.1002/mrm.22657
– ident: e_1_2_8_71_2
  doi: 10.1055/s-0029-1245373
– ident: e_1_2_8_24_2
  doi: 10.1016/0730-725X(94)00126-N
– ident: e_1_2_8_84_2
  doi: 10.1002/ccd.1810200313
– ident: e_1_2_8_18_2
  doi: 10.1177/1352458509350306
– ident: e_1_2_8_125_2
  doi: 10.1002/jmri.20467
– ident: e_1_2_8_61_2
  doi: 10.1007/s00247-007-0449-6
– ident: e_1_2_8_16_2
  doi: 10.1016/0730-725X(90)90041-Y
– ident: e_1_2_8_142_2
  doi: 10.1161/01.CIR.56.5.786
– ident: e_1_2_8_50_2
  doi: 10.22203/eCM.v013a08
– ident: e_1_2_8_12_2
  doi: 10.1001/archneur.64.3.411
– volume: 137
  start-page: 301
  year: 1990
  ident: e_1_2_8_83_2
  article-title: Determinants of hemorrhagic infarcts. Histologic observations from experiments involving coronary occlusion, coronary reperfusion, and reocclusion
  publication-title: Am J Pathol
– ident: e_1_2_8_117_2
  doi: 10.1186/1532-429X-12-S1-P179
– ident: e_1_2_8_21_2
  doi: 10.1016/j.nic.2008.09.007
– ident: e_1_2_8_39_2
  doi: 10.1212/WNL.45.12.2233
– ident: e_1_2_8_13_2
  doi: 10.1177/1352458509359924
– ident: e_1_2_8_93_2
  doi: 10.1002/jmri.21119
– year: 2011
  ident: e_1_2_8_120_2
  article-title: Applications of stimulated echo correction to multicomponent T(2) analysis
  publication-title: Magn Reson Med
– ident: e_1_2_8_94_2
  doi: 10.1109/TMI.2009.2023515
– ident: e_1_2_8_143_2
  doi: 10.1056/NEJMra071667
– ident: e_1_2_8_65_2
  doi: 10.1002/jmri.21265
– ident: e_1_2_8_97_2
  doi: 10.1378/chest.122.6.1895
– volume: 50
  start-page: 1282
  year: 1998
  ident: e_1_2_8_15_2
  article-title: Histopathologic correlate of hypointense lesions on T1‐weighted spin‐echo MRI in multiple sclerosis
  publication-title: Neurology
  doi: 10.1212/WNL.50.5.1282
– ident: e_1_2_8_25_2
  doi: 10.1148/radiology.169.3.3187000
– volume: 21
  start-page: 891
  year: 2000
  ident: e_1_2_8_30_2
  article-title: Quantitative measurement of microvascular permeability in human brain tumors achieved using dynamic contrast‐enhanced MR imaging: correlation with histologic grade
  publication-title: AJNR Am J Neuroradiol
– ident: e_1_2_8_77_2
  doi: 10.1093/eurheartj/ehn416
– ident: e_1_2_8_56_2
  doi: 10.1097/JSA.0b013e31818cdcaf
– ident: e_1_2_8_62_2
  doi: 10.1016/S0720-048X(00)00202-3
– ident: e_1_2_8_60_2
  doi: 10.1093/rheumatology/keh130
– volume: 29
  start-page: 587
  year: 1988
  ident: e_1_2_8_99_2
  article-title: Diagnosis of acute and chronic cardiac rejection by magnetic resonance imaging: a non‐invasive in‐vivo study
  publication-title: J Cardiovasc Surg (Torino)
– ident: e_1_2_8_3_2
  doi: 10.1002/mrm.1910030511
– ident: e_1_2_8_41_2
  doi: 10.1111/j.1365-2141.1990.tb02596.x
– ident: e_1_2_8_88_2
  doi: 10.1002/(SICI)1522-2594(199904)41:4<686::AID-MRM6>3.0.CO;2-9
– ident: e_1_2_8_31_2
  doi: 10.1161/01.STR.18.2.342
– ident: e_1_2_8_32_2
  doi: 10.1002/(SICI)1522-2594(200001)43:1<52::AID-MRM7>3.0.CO;2-5
– ident: e_1_2_8_4_2
  doi: 10.1007/978-1-61737-992-5_4
– ident: e_1_2_8_122_2
  doi: 10.1002/jmri.20469
– ident: e_1_2_8_92_2
  doi: 10.1161/CIRCULATIONAHA.106.653568
– ident: e_1_2_8_133_2
  doi: 10.1007/s00415-004-0306-6
– volume: 64
  start-page: 1005
  ident: e_1_2_8_119_2
  article-title: Transverse relaxometry with stimulated echo compensation
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.22487
– ident: e_1_2_8_80_2
  doi: 10.1186/1532-429X-11-56
– ident: e_1_2_8_74_2
  doi: 10.1002/mrm.20981
– ident: e_1_2_8_116_2
  doi: 10.1002/mrm.1910330515
– ident: e_1_2_8_134_2
  doi: 10.1097/00004728-200603000-00026
– ident: e_1_2_8_19_2
  doi: 10.1002/mrm.1910310614
– ident: e_1_2_8_144_2
  doi: 10.1002/jmri.21345
– ident: e_1_2_8_115_2
  doi: 10.1002/mrm.20159
– ident: e_1_2_8_64_2
  doi: 10.1007/s00330-002-1366-6
– ident: e_1_2_8_108_2
  doi: 10.1002/mrm.10407
– ident: e_1_2_8_123_2
  doi: 10.1002/mrm.21143
– ident: e_1_2_8_10_2
  doi: 10.1002/ana.410360106
– ident: e_1_2_8_100_2
  doi: 10.1161/01.CIR.91.1.161
– ident: e_1_2_8_129_2
  doi: 10.1021/j150556a015
– ident: e_1_2_8_107_2
– ident: e_1_2_8_124_2
  doi: 10.1002/jmri.21835
– ident: e_1_2_8_105_2
  doi: 10.1063/1.1684482
– ident: e_1_2_8_86_2
  doi: 10.1002/mrm.21079
– ident: e_1_2_8_128_2
  doi: 10.1002/(SICI)1522-2586(199906)9:6<814::AID-JMRI8>3.0.CO;2-5
– ident: e_1_2_8_36_2
  doi: 10.1212/01.WNL.0000149642.93493.F4
– volume: 13
  start-page: 181
  issue: 3
  year: 2010
  ident: e_1_2_8_17_2
  article-title: Segmentation of cortical MS lesions on MRI using automated laminar profile shape analysis
  publication-title: Med Image Comput Comput Assist Interv
– ident: e_1_2_8_113_2
  doi: 10.1002/mrm.1910370107
– ident: e_1_2_8_96_2
  doi: 10.1148/radiology.215.1.r00ap07189
– ident: e_1_2_8_118_2
  doi: 10.1016/0022-2364(88)90128-X
– ident: e_1_2_8_51_2
  doi: 10.2214/ajr.182.1.1820167
– ident: e_1_2_8_91_2
  doi: 10.1161/CIRCULATIONAHA.106.613414
– ident: e_1_2_8_81_2
  doi: 10.1002/mrm.22855
– ident: e_1_2_8_75_2
  doi: 10.1016/j.trsl.2006.05.005
– volume-title: Quantitative MRI of the brain: measuring changes caused by disease
  year: 2005
  ident: e_1_2_8_8_2
– ident: e_1_2_8_40_2
  doi: 10.1006/nimg.2000.0724
– ident: e_1_2_8_85_2
  doi: 10.1148/radiol.10100416
– ident: e_1_2_8_126_2
  doi: 10.1002/mrm.22673
– ident: e_1_2_8_132_2
  doi: 10.1002/mrm.1910400518
– ident: e_1_2_8_137_2
  doi: 10.1182/blood-2004-10-3982
– ident: e_1_2_8_34_2
  doi: 10.1002/jmri.21328
– ident: e_1_2_8_57_2
  doi: 10.1002/jmri.1148
– ident: e_1_2_8_87_2
  doi: 10.1056/NEJM199407283310402
– ident: e_1_2_8_136_2
  doi: 10.1002/jmri.20231
– ident: e_1_2_8_138_2
  doi: 10.1007/s00330-007-0683-1
– ident: e_1_2_8_79_2
  doi: 10.1016/j.jacc.2008.01.019
– ident: e_1_2_8_35_2
  doi: 10.1016/0920-1211(88)90008-3
– ident: e_1_2_8_90_2
  doi: 10.1002/mrm.22972
– ident: e_1_2_8_140_2
  doi: 10.1007/s002470050259
– ident: e_1_2_8_109_2
  doi: 10.1002/mrm.20791
– ident: e_1_2_8_76_2
  doi: 10.1002/mrm.21660
– ident: e_1_2_8_70_2
  doi: 10.1259/0007-1285-62-737-433
– ident: e_1_2_8_114_2
  doi: 10.1002/mrm.22454
– ident: e_1_2_8_104_2
  doi: 10.1002/mrm.1910180123
– ident: e_1_2_8_6_2
  doi: 10.1016/j.neuroimage.2010.03.005
– ident: e_1_2_8_49_2
  doi: 10.1007/s00330-006-0453-5
– ident: e_1_2_8_44_2
  doi: 10.1002/jmri.21707
– ident: e_1_2_8_38_2
  doi: 10.1111/j.1528-1157.1998.tb01353.x
SSID ssj0009945
Score 2.4756503
SecondaryResourceType review_article
Snippet Conventional MR images are qualitative, and their signal intensity is dependent on several complementary contrast mechanisms that are manipulated by the MR...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 805
SubjectTerms Humans
Image Enhancement - methods
iron overload
Magnetic Resonance Imaging - methods
multiple sclerosis
myocardial infarction
relaxation
T1 relaxation
T2 relaxation
Title Practical medical applications of quantitative MR relaxometry
URI https://api.istex.fr/ark:/67375/WNG-JQJKMNT0-D/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjmri.23718
https://www.ncbi.nlm.nih.gov/pubmed/22987758
https://www.proquest.com/docview/1041141660
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS9xAEB9EofTF2g812paUFkEhZ5LN3mahfSh-1F7JgYeiL7LsJ1S9nJ53YPvXdz_ucioi2Lc8TJbNzO7sbzMzvwH4wrkiWaZwgmlmkoKWKhGlJolRmRYl0RIVrlC46rYPjovOKT6dg6_TWpjAD9H8cHM7w_trt8G5uNmekYae94e_WzmyvtU6YJes5RBRb8YdRanvUGzxA0qyMiUNN2m-PXv13mm04BR7-xjUvI9c_dGz_wrOppMOGScXrfFItOTfB3yO__tVS7A4waTx97CIXsOcrt_Ai2oSdX8L3wKpkbVm3A9xnfhu3DsemPh6zGtfrmadZ1z1Ylciczvo69Hwzzs43t872jlIJm0XEunaSSa5lCjTPDNthQvOU4QFNUILKpXCUhZUYG2sgWVBEEoNMVoqx7In05IKZChahvl6UOtViJErq00lJsbCCKOwsPiGYguRVJEbe_GJYHOqfiYnnOSuNcYlC2zKOXP6YF4fEXxuZK8CE8ejUhveio0IH1643DWC2Un3B-scdn5V3aOU7UbwaWpmZneUC5PwWg_GN3bEwl4Ss3Y7jWAl2L8ZLc9pSewVK4Itb8UnZsI6Ve-nf1p7jvA6vLSYLA_5gu9hfjQc6w8W94zER7--_wGtjP3o
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED_BJgEvG9-EzyAQEkjpkjiu4wceEGN03VKJqtP2ZsVfEoymo2ulsb8en52lDE1I8JaHi5Xcne2ffXe_A3hd15plmaYJ5ZlNCl7qRJaGJVZnRpbMKFJgoXA16g8OiuERPWpzc7AWJvBDdBduODP8eo0THC-kt1asod-m86-9nLjF9TqsY0tvpM7fHq_Yozj3PYodgiBJVqasYyfNt1bvXtqP1lG1Z1eBzcvY1W8-O5uhw-qp5yzEnJPj3nIhe-r8D0bH__6v27DRwtL4Q_CjO3DNNHfhRtUG3u_B-8Br5AwaT0NoJ_499B3PbPxjWTe-Ys2tn3E1jrFK5mw2NYv5z_twsPNp8nGQtJ0XEoUdJZNcKZKZOrN9TYu6TgmV3EojudKaKlVwSY11NlYFIyS1zBqlkWhPpSWXxHLyANaaWWMeQUywsjZVlFmHJKym0kEcTh1K0kVu3dkngrcX-heqpSXH7hjfRSBUzgXqQ3h9RPCqkz0JZBxXSr3xZuxE6vkxpq8xKg5Hn8Xwy3CvGk1SsR3Byws7CzepMFJSN2a2PHUjFu6cmPX7aQQPgwN0o-U5L5k7ZUXwzpvxL18ihtV41z89_hfhF3BzMKn2xf7uaO8J3HIQLQ_pg09hbTFfmmcOBi3kc-_svwCG6QIT
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NTZp44WN8BQbLBEICKV0S23EswQNa6baOVFBtYi_Iir8kGE1H10qDvx5_tClDExJ7y8PFcu7s8-9yvt8BvKhrRbNMkYSwzCSYlSoRpaaJUZkWJdUSYVcoXA2K_WPcPyEnK_BmUQsT-CHaH25uZ3h_7Tb4mTI7S9LQb6PJ106OrG-9AWu4SJlr3NAdLsmjGPMtii2AQElWprQlJ813lu9eOo7WnGYvrsKal6GrP3t6t-HLYtbhyslpZzYVHfnrL0LH637WHbg1B6Xxu7CK7sKKbjZgvZqn3e_B28BqZM0Zj0JiJ_4z8R2PTfxjVje-Xs16z7gaxq5G5mI80tPJz_tw3Ht_tLufzPsuJNL1k0xyKVGm68wUiuC6ThERzAgtmFSKSImZINpYC0tMEUoNNVoqR7Mn05IJZBh6AKvNuNGPIEaurjaVhBqLI4wiwgIcRixGUjg3NvKJ4NVC_VzOScldb4zvPNAp59zpg3t9RPC8lT0LVBxXSr30VmxF6smpu7xGCf882OP9T_3DanCU8m4E2wszc7ulXJ6kbvR4dm5HxDZKzIoijeBhsH87Wp6zktoYK4LX3or_mAnvV8MD__T4f4S3YP1jt8c_HAwOn8BNi8_ycHdwE1ank5l-ajHQVDzzS_03hHMAwg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Practical+medical+applications+of+quantitative+MR+relaxometry&rft.jtitle=Journal+of+magnetic+resonance+imaging&rft.au=Cheng%2C+Hai-Ling+Margaret&rft.au=Stikov%2C+Nikola&rft.au=Ghugre%2C+Nilesh+R&rft.au=Wright%2C+Graham+A&rft.date=2012-10-01&rft.issn=1522-2586&rft.eissn=1522-2586&rft.volume=36&rft.issue=4&rft.spage=805&rft_id=info:doi/10.1002%2Fjmri.23718&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-1807&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-1807&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-1807&client=summon