Practical medical applications of quantitative MR relaxometry
Conventional MR images are qualitative, and their signal intensity is dependent on several complementary contrast mechanisms that are manipulated by the MR hardware and software. In the absence of a quantitative metric for absolute interpretation of pixel signal intensities, one that is independent...
Saved in:
Published in | Journal of magnetic resonance imaging Vol. 36; no. 4; pp. 805 - 824 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01.10.2012
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Conventional MR images are qualitative, and their signal intensity is dependent on several complementary contrast mechanisms that are manipulated by the MR hardware and software. In the absence of a quantitative metric for absolute interpretation of pixel signal intensities, one that is independent of scanner hardware and sequences, it is difficult to perform comparisons of MR images across subjects or longitudinally in the same subject. Quantitative relaxometry isolates the contributions of individual MR contrast mechanisms (T1, T2, T2*) and provides maps, which are independent of the MR protocol and have a physical interpretation often expressed in absolute units. In addition to providing an unbiased metric for comparing MR scans, quantitative relaxometry uses the relationship between MR maps and physiology to provide a noninvasive surrogate for biopsy and histology. This study provides an overview of some promising clinical applications of quantitative relaxometry, followed by a description of the methods and challenges of acquiring accurate and precise quantitative MR maps. It concludes with three case studies of quantitative relaxometry applied to studying multiple sclerosis, liver iron, and acute myocardial infarction. J. Magn. Reson. Imaging 2012;36:805–824. © 2012 Wiley Periodicals, Inc. |
---|---|
AbstractList | Conventional MR images are qualitative, and their signal intensity is dependent on several complementary contrast mechanisms that are manipulated by the MR hardware and software. In the absence of a quantitative metric for absolute interpretation of pixel signal intensities, one that is independent of scanner hardware and sequences, it is difficult to perform comparisons of MR images across subjects or longitudinally in the same subject. Quantitative relaxometry isolates the contributions of individual MR contrast mechanisms (T1, T2, T2) and provides maps, which are independent of the MR protocol and have a physical interpretation often expressed in absolute units. In addition to providing an unbiased metric for comparing MR scans, quantitative relaxometry uses the relationship between MR maps and physiology to provide a noninvasive surrogate for biopsy and histology. This study provides an overview of some promising clinical applications of quantitative relaxometry, followed by a description of the methods and challenges of acquiring accurate and precise quantitative MR maps. It concludes with three case studies of quantitative relaxometry applied to studying multiple sclerosis, liver iron, and acute myocardial infarction.Conventional MR images are qualitative, and their signal intensity is dependent on several complementary contrast mechanisms that are manipulated by the MR hardware and software. In the absence of a quantitative metric for absolute interpretation of pixel signal intensities, one that is independent of scanner hardware and sequences, it is difficult to perform comparisons of MR images across subjects or longitudinally in the same subject. Quantitative relaxometry isolates the contributions of individual MR contrast mechanisms (T1, T2, T2) and provides maps, which are independent of the MR protocol and have a physical interpretation often expressed in absolute units. In addition to providing an unbiased metric for comparing MR scans, quantitative relaxometry uses the relationship between MR maps and physiology to provide a noninvasive surrogate for biopsy and histology. This study provides an overview of some promising clinical applications of quantitative relaxometry, followed by a description of the methods and challenges of acquiring accurate and precise quantitative MR maps. It concludes with three case studies of quantitative relaxometry applied to studying multiple sclerosis, liver iron, and acute myocardial infarction. Conventional MR images are qualitative, and their signal intensity is dependent on several complementary contrast mechanisms that are manipulated by the MR hardware and software. In the absence of a quantitative metric for absolute interpretation of pixel signal intensities, one that is independent of scanner hardware and sequences, it is difficult to perform comparisons of MR images across subjects or longitudinally in the same subject. Quantitative relaxometry isolates the contributions of individual MR contrast mechanisms (T1, T2, T2*) and provides maps, which are independent of the MR protocol and have a physical interpretation often expressed in absolute units. In addition to providing an unbiased metric for comparing MR scans, quantitative relaxometry uses the relationship between MR maps and physiology to provide a noninvasive surrogate for biopsy and histology. This study provides an overview of some promising clinical applications of quantitative relaxometry, followed by a description of the methods and challenges of acquiring accurate and precise quantitative MR maps. It concludes with three case studies of quantitative relaxometry applied to studying multiple sclerosis, liver iron, and acute myocardial infarction. J. Magn. Reson. Imaging 2012;36:805–824. © 2012 Wiley Periodicals, Inc. Conventional MR images are qualitative, and their signal intensity is dependent on several complementary contrast mechanisms that are manipulated by the MR hardware and software. In the absence of a quantitative metric for absolute interpretation of pixel signal intensities, one that is independent of scanner hardware and sequences, it is difficult to perform comparisons of MR images across subjects or longitudinally in the same subject. Quantitative relaxometry isolates the contributions of individual MR contrast mechanisms (T1, T2, T2) and provides maps, which are independent of the MR protocol and have a physical interpretation often expressed in absolute units. In addition to providing an unbiased metric for comparing MR scans, quantitative relaxometry uses the relationship between MR maps and physiology to provide a noninvasive surrogate for biopsy and histology. This study provides an overview of some promising clinical applications of quantitative relaxometry, followed by a description of the methods and challenges of acquiring accurate and precise quantitative MR maps. It concludes with three case studies of quantitative relaxometry applied to studying multiple sclerosis, liver iron, and acute myocardial infarction. |
Author | Margaret Cheng, Hai-Ling Wright, Graham A. Ghugre, Nilesh R. Stikov, Nikola |
Author_xml | – sequence: 1 givenname: Hai-Ling surname: Margaret Cheng fullname: Margaret Cheng, Hai-Ling organization: Physiology and Experimental Medicine, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada – sequence: 2 givenname: Nikola surname: Stikov fullname: Stikov, Nikola organization: McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada – sequence: 3 givenname: Nilesh R. surname: Ghugre fullname: Ghugre, Nilesh R. organization: Imaging Research, Sunnybrook Research Institute, Toronto, ON, Canada – sequence: 4 givenname: Graham A. surname: Wright fullname: Wright, Graham A. email: gawright@sri.utoronto.ca organization: Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22987758$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kMtKxDAUhoMoXkY3PoB0KULHpGmaZuFCxtuMjjcUlyFNE4im7ZikOvP21qm6EHF1fg7fd-D8W2C1bmoFwC6CQwRhcvhcOTNMMEX5CthEJEnihOTZapchwTHKId0AW94_QwgZS8k62EgSllNK8k1wdOuEDEYKG1WqXE4xm9kuBNPUPmp09NqKOpjQLd5UNL2PnLJi3lQquMU2WNPCerXzNQfg8ez0YXQRX92cj0fHV7FMM5bHiZQYKYF0VpJUCIhJwXShCibLkkiZsoIoTRGSKcUYaqqVLCnDVMKcFVgzPAD7_d2Za15b5QOvjJfKWlGrpvUcwRShFGUZ7NC9L7Qtuo_4zJlKuAX_frkDDnpAusZ7p_QPgiD_7JN_9smXfXYw_AXLZRNNHZww9m8F9cq7sWrxz3E-md6Pv524d4wPav7jCPfCM4op4U_X53xyN7mcXj9AfoI_AFh2l8g |
CitedBy_id | crossref_primary_10_1007_s00062_015_0433_8 crossref_primary_10_1002_jmri_25972 crossref_primary_10_1002_mrm_30388 crossref_primary_10_1002_mrm_27491 crossref_primary_10_1002_nbm_5300 crossref_primary_10_1002_nbm_3482 crossref_primary_10_1002_mrm_29715 crossref_primary_10_1016_j_jmr_2021_107042 crossref_primary_10_2337_db22_0912 crossref_primary_10_1016_j_zemedi_2014_06_008 crossref_primary_10_1088_1361_6560_ac9e3e crossref_primary_10_1016_j_mri_2020_08_007 crossref_primary_10_1186_s41747_020_00154_5 crossref_primary_10_1177_0271678X241270198 crossref_primary_10_1002_mrm_26726 crossref_primary_10_33549_physiolres_935250 crossref_primary_10_3348_kjr_2018_19_4_783 crossref_primary_10_1097_MOG_0000000000000727 crossref_primary_10_1016_j_compmedimag_2023_102240 crossref_primary_10_1002_mrm_30493 crossref_primary_10_1002_mp_17353 crossref_primary_10_1002_jor_24684 crossref_primary_10_1038_s41598_023_33618_w crossref_primary_10_1016_j_jmr_2014_09_025 crossref_primary_10_1002_mrm_25583 crossref_primary_10_3389_fphys_2023_1281147 crossref_primary_10_3390_cancers14225606 crossref_primary_10_1002_ima_22768 crossref_primary_10_1021_acsomega_2c03549 crossref_primary_10_1088_1361_6560_ad5bb8 crossref_primary_10_1177_19714009231173100 crossref_primary_10_1002_mrm_26717 crossref_primary_10_1016_j_mri_2021_08_011 crossref_primary_10_1016_j_jvir_2022_10_006 crossref_primary_10_3390_tomography7040047 crossref_primary_10_1111_jog_14157 crossref_primary_10_3389_fnagi_2014_00240 crossref_primary_10_1002_mrm_28762 crossref_primary_10_1126_scitranslmed_aau1749 crossref_primary_10_1002_acn3_52176 crossref_primary_10_1002_mp_17268 crossref_primary_10_1002_adma_202407262 crossref_primary_10_1002_mp_14710 crossref_primary_10_1002_mrm_25135 crossref_primary_10_1002_mrm_27556 crossref_primary_10_1007_s00393_015_0011_0 crossref_primary_10_1002_mrm_27797 crossref_primary_10_5662_wjm_v7_i3_101 crossref_primary_10_1161_STROKEAHA_123_044606 crossref_primary_10_1002_mrm_28192 crossref_primary_10_1002_hbm_24510 crossref_primary_10_2463_mrms_cr_2016_0137 crossref_primary_10_1007_s00234_024_03400_4 crossref_primary_10_1002_mrm_30433 crossref_primary_10_1016_j_mric_2020_04_001 crossref_primary_10_1002_mrm_26173 crossref_primary_10_1007_s11547_017_0757_3 crossref_primary_10_1002_mrm_28878 crossref_primary_10_1162_imag_a_00470 crossref_primary_10_1016_j_neuroimage_2021_117976 crossref_primary_10_1148_rg_2019180123 crossref_primary_10_1155_2018_2560964 crossref_primary_10_1002_mrm_27421 crossref_primary_10_1007_s11707_022_1007_0 crossref_primary_10_1109_TMI_2019_2954751 crossref_primary_10_1109_TMI_2021_3102852 crossref_primary_10_1371_journal_pntd_0004036 crossref_primary_10_3348_kjr_2014_15_4_411 crossref_primary_10_1177_0284185115617345 crossref_primary_10_1002_jsp2_1060 crossref_primary_10_1177_0284185119874476 crossref_primary_10_1016_j_ejrad_2021_109900 crossref_primary_10_1007_s00330_016_4245_2 crossref_primary_10_1007_s10334_024_01166_7 crossref_primary_10_1002_nbm_4531 crossref_primary_10_3390_jof10080593 crossref_primary_10_1109_TMI_2016_2614967 crossref_primary_10_1002_mrm_26800 crossref_primary_10_1002_mrm_24986 crossref_primary_10_1002_nbm_4416 crossref_primary_10_1016_j_neuroimage_2021_118116 crossref_primary_10_1016_j_neuroimage_2021_118237 crossref_primary_10_1038_s41598_023_28265_0 crossref_primary_10_1093_brain_awy242 crossref_primary_10_1148_ryai_210294 crossref_primary_10_3390_cancers15123252 crossref_primary_10_1109_MSP_2023_3236483 crossref_primary_10_1523_JNEUROSCI_2619_16_2016 crossref_primary_10_1093_brain_awac436 crossref_primary_10_1007_s00395_020_0782_6 crossref_primary_10_1016_j_media_2024_103148 crossref_primary_10_1002_mrm_25559 crossref_primary_10_1016_j_mri_2015_06_013 crossref_primary_10_3390_s19245371 crossref_primary_10_1186_s12880_022_00960_w crossref_primary_10_1002_jmri_27547 crossref_primary_10_1002_mp_15130 crossref_primary_10_1016_j_mri_2017_10_015 crossref_primary_10_1002_jmri_26057 crossref_primary_10_1016_j_compbiomed_2024_108753 crossref_primary_10_1002_mrm_27442 crossref_primary_10_1002_mrm_28497 crossref_primary_10_1016_j_ejrad_2023_110748 crossref_primary_10_13104_jksmrm_2014_18_1_1 crossref_primary_10_1002_mrm_29065 crossref_primary_10_1007_s00330_017_4891_z crossref_primary_10_1007_s00723_017_0964_z crossref_primary_10_1016_j_mri_2020_09_021 crossref_primary_10_1016_j_neuroimage_2022_118989 crossref_primary_10_3389_fvets_2022_802272 crossref_primary_10_1016_j_mri_2016_09_004 crossref_primary_10_1016_j_jmr_2021_107110 crossref_primary_10_1148_radiol_2019190911 crossref_primary_10_1002_mrm_27205 crossref_primary_10_1186_s41747_017_0024_3 crossref_primary_10_3390_s22031260 crossref_primary_10_1007_s00117_013_2496_3 crossref_primary_10_1109_TBME_2017_2661840 crossref_primary_10_3390_cancers14112651 crossref_primary_10_1016_j_rpor_2018_09_007 crossref_primary_10_1148_radiol_2020200425 crossref_primary_10_1016_j_media_2021_102220 crossref_primary_10_1259_bjr_20220675 crossref_primary_10_1002_jmri_29511 crossref_primary_10_1109_TBME_2022_3200626 crossref_primary_10_1002_mrm_28283 crossref_primary_10_3390_biomedicines12061376 crossref_primary_10_1002_mrm_28206 crossref_primary_10_1109_TMI_2014_2333370 crossref_primary_10_1002_mrm_27994 crossref_primary_10_1002_mrm_28962 crossref_primary_10_1016_j_nano_2024_102765 crossref_primary_10_1002_jmri_28662 crossref_primary_10_2463_mrms_tn_2018_0027 crossref_primary_10_1590_2446_4740_00916 crossref_primary_10_1002_mrm_27638 crossref_primary_10_1016_j_neuroimage_2024_120800 crossref_primary_10_1016_j_softx_2019_100369 crossref_primary_10_1016_j_micinf_2023_105127 crossref_primary_10_3345_cep_2023_00514 crossref_primary_10_1016_j_expneurol_2021_113868 crossref_primary_10_1002_jmri_27844 crossref_primary_10_1002_mrm_28391 crossref_primary_10_3390_cancers14246222 crossref_primary_10_1007_s00062_017_0633_5 crossref_primary_10_1016_j_neuroimage_2017_01_025 crossref_primary_10_31348_2023_10 crossref_primary_10_1016_j_acra_2023_05_012 crossref_primary_10_1038_s41467_023_44561_9 crossref_primary_10_1002_mrm_27860 crossref_primary_10_1002_mrm_27981 crossref_primary_10_1097_RLI_0000000000001084 crossref_primary_10_1002_mp_16884 crossref_primary_10_1016_j_mri_2019_01_011 crossref_primary_10_3390_tomography9060161 crossref_primary_10_1002_mrm_26490 crossref_primary_10_1007_s00330_015_3913_y crossref_primary_10_3390_biomedicines11020364 crossref_primary_10_1002_jmri_26759 crossref_primary_10_3390_diagnostics13020201 crossref_primary_10_1016_j_jor_2019_04_002 crossref_primary_10_1109_TMI_2014_2322815 crossref_primary_10_1016_j_nicl_2024_103647 crossref_primary_10_1140_epjp_s13360_021_01145_0 crossref_primary_10_1002_mrm_29128 crossref_primary_10_1002_mrm_28158 crossref_primary_10_1016_j_crad_2022_08_124 crossref_primary_10_3390_nu15173727 crossref_primary_10_1148_radiol_2019182360 crossref_primary_10_3390_cancers14153624 crossref_primary_10_1097_MOG_0000000000000719 |
Cites_doi | 10.1002/jmri.22660 10.1016/S0730-725X(98)00112-X 10.1002/ana.1053 10.1007/s00247-006-0166-6 10.1148/radiol.2403050569 10.1016/0730-725X(86)90051-2 10.1093/eurheartj/ehp093 10.1002/mrm.20479 10.1002/jmri.21028 10.1097/01.RVI.0000182179.87340.D7 10.1016/j.acra.2011.04.016 10.1002/mrm.22865 10.1016/j.mri.2006.08.004 10.1002/mrm.21704 10.1089/ten.tec.2009.0099 10.1016/j.jacc.2010.11.013 10.1016/j.mri.2005.10.016 10.1016/j.mri.2004.10.001 10.1681/ASN.V4111861 10.1007/s10334-004-0068-2 10.1586/ern.10.129 10.1002/mrm.20110 10.1002/mrm.22005 10.1097/00002142-199812000-00002 10.1103/PhysRev.73.679 10.1196/annals.1345.047 10.1148/radiology.191.1.8134596 10.1161/01.CIR.0000039475.66067.DC 10.1136/jnnp.50.1.37 10.1093/brain/121.1.3 10.1182/blood-2004-01-0177 10.1002/ajh.23114 10.1002/mrm.20602 10.1148/radiology.189.1.8372185 10.1002/jmri.21490 10.1148/radiol.2281011651 10.1161/CIRCULATIONAHA.110.007641 10.1002/jmri.1880070103 10.1053/euhj.2001.2822 10.1088/0031-9155/56/5/001 10.1097/RLI.0b013e3181862413 10.1002/nbm.1063 10.1016/j.mri.2010.08.009 10.1016/j.neuroimage.2004.06.009 10.1002/mrm.20697 10.1093/eurheartj/ehl255 10.1186/1532-429X-11-20 10.1002/mrm.22497 10.1002/(SICI)1522-2586(199909)10:3<223::AID-JMRI2>3.0.CO;2-S 10.1177/1352458506070928 10.1002/art.20062 10.1002/mrm.22657 10.1055/s-0029-1245373 10.1016/0730-725X(94)00126-N 10.1002/ccd.1810200313 10.1177/1352458509350306 10.1002/jmri.20467 10.1007/s00247-007-0449-6 10.1016/0730-725X(90)90041-Y 10.1161/01.CIR.56.5.786 10.22203/eCM.v013a08 10.1001/archneur.64.3.411 10.1186/1532-429X-12-S1-P179 10.1016/j.nic.2008.09.007 10.1212/WNL.45.12.2233 10.1177/1352458509359924 10.1002/jmri.21119 10.1109/TMI.2009.2023515 10.1056/NEJMra071667 10.1002/jmri.21265 10.1378/chest.122.6.1895 10.1212/WNL.50.5.1282 10.1148/radiology.169.3.3187000 10.1093/eurheartj/ehn416 10.1097/JSA.0b013e31818cdcaf 10.1016/S0720-048X(00)00202-3 10.1093/rheumatology/keh130 10.1002/mrm.1910030511 10.1111/j.1365-2141.1990.tb02596.x 10.1002/(SICI)1522-2594(199904)41:4<686::AID-MRM6>3.0.CO;2-9 10.1161/01.STR.18.2.342 10.1002/(SICI)1522-2594(200001)43:1<52::AID-MRM7>3.0.CO;2-5 10.1007/978-1-61737-992-5_4 10.1002/jmri.20469 10.1161/CIRCULATIONAHA.106.653568 10.1007/s00415-004-0306-6 10.1002/mrm.22487 10.1186/1532-429X-11-56 10.1002/mrm.20981 10.1002/mrm.1910330515 10.1097/00004728-200603000-00026 10.1002/mrm.1910310614 10.1002/jmri.21345 10.1002/mrm.20159 10.1007/s00330-002-1366-6 10.1002/mrm.10407 10.1002/mrm.21143 10.1002/ana.410360106 10.1161/01.CIR.91.1.161 10.1021/j150556a015 10.1002/jmri.21835 10.1063/1.1684482 10.1002/mrm.21079 10.1002/(SICI)1522-2586(199906)9:6<814::AID-JMRI8>3.0.CO;2-5 10.1212/01.WNL.0000149642.93493.F4 10.1002/mrm.1910370107 10.1148/radiology.215.1.r00ap07189 10.1016/0022-2364(88)90128-X 10.2214/ajr.182.1.1820167 10.1161/CIRCULATIONAHA.106.613414 10.1002/mrm.22855 10.1016/j.trsl.2006.05.005 10.1006/nimg.2000.0724 10.1148/radiol.10100416 10.1002/mrm.22673 10.1002/mrm.1910400518 10.1182/blood-2004-10-3982 10.1002/jmri.21328 10.1002/jmri.1148 10.1056/NEJM199407283310402 10.1002/jmri.20231 10.1007/s00330-007-0683-1 10.1016/j.jacc.2008.01.019 10.1016/0920-1211(88)90008-3 10.1002/mrm.22972 10.1007/s002470050259 10.1002/mrm.20791 10.1002/mrm.21660 10.1259/0007-1285-62-737-433 10.1002/mrm.22454 10.1002/mrm.1910180123 10.1016/j.neuroimage.2010.03.005 10.1007/s00330-006-0453-5 10.1002/jmri.21707 10.1111/j.1528-1157.1998.tb01353.x |
ContentType | Journal Article |
Copyright | Copyright © 2012 Wiley Periodicals, Inc. |
Copyright_xml | – notice: Copyright © 2012 Wiley Periodicals, Inc. |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1002/jmri.23718 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1522-2586 |
EndPage | 824 |
ExternalDocumentID | 22987758 10_1002_jmri_23718 JMRI23718 ark_67375_WNG_JQJKMNT0_D |
Genre | reviewArticle Journal Article Review |
GroupedDBID | --- -DZ .3N .GA .GJ .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAWTL AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABLJU ABOCM ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RGB RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ SV3 TEORI TWZ UB1 V2E V8K V9Y W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WRC WUP WVDHM WXI WXSBR XG1 XV2 ZXP ZZTAW ~IA ~WT AAHQN AAIPD AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 7X8 AAMMB AEFGJ AGXDD AIDQK AIDYY |
ID | FETCH-LOGICAL-c4698-2cc31ea1f6d54aa035b9fbeb9cdd5cc49b5ef711c47330f7fecd7937c089b3f93 |
IEDL.DBID | DR2 |
ISSN | 1053-1807 1522-2586 |
IngestDate | Fri Jul 11 05:31:29 EDT 2025 Thu Apr 03 06:59:55 EDT 2025 Tue Jul 01 03:56:26 EDT 2025 Thu Apr 24 23:06:35 EDT 2025 Wed Jan 22 17:02:04 EST 2025 Wed Oct 30 09:52:00 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor Copyright © 2012 Wiley Periodicals, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4698-2cc31ea1f6d54aa035b9fbeb9cdd5cc49b5ef711c47330f7fecd7937c089b3f93 |
Notes | ArticleID:JMRI23718 istex:5F45D7423FFBF746DF8F4B2DACA270F88C40892A ark:/67375/WNG-JQJKMNT0-D ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/jmri.23718 |
PMID | 22987758 |
PQID | 1041141660 |
PQPubID | 23479 |
PageCount | 20 |
ParticipantIDs | proquest_miscellaneous_1041141660 pubmed_primary_22987758 crossref_primary_10_1002_jmri_23718 crossref_citationtrail_10_1002_jmri_23718 wiley_primary_10_1002_jmri_23718_JMRI23718 istex_primary_ark_67375_WNG_JQJKMNT0_D |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2012 |
PublicationDateYYYYMMDD | 2012-10-01 |
PublicationDate_xml | – month: 10 year: 2012 text: October 2012 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken – name: United States |
PublicationTitle | Journal of magnetic resonance imaging |
PublicationTitleAlternate | J. Magn. Reson. Imaging |
PublicationYear | 2012 |
Publisher | Wiley Subscription Services, Inc., A Wiley Company |
Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company |
References | Laule C, Leung E, Lis DK, et al. Myelin water imaging in multiple sclerosis: quantitative correlations with histopathology. Mult Scler 2006; 12: 747-753. Schmidt A, Azevedo CF, Cheng A, et al. Infarct tissue heterogeneity by magnetic resonance imaging identifies enhanced cardiac arrhythmia susceptibility in patients with left ventricular dysfunction. Circulation 2007; 115: 2006-2014. Argyropoulou MI, Kiortsis DN, Astrakas L, Metafratzi Z, Chalissos N, Efremidis SC. Liver, bone marrow, pancreas and pituitary gland iron overload in young and adult thalassemic patients: a T2 relaxometry study. Eur Radiol 2007; 17: 3025-3030. Tardif CL, Collins DL, Eskildsen SF, Richardson JB, Pike GB. Segmentation of cortical MS lesions on MRI using automated laminar profile shape analysis. Med Image Comput Comput Assist Interv 2010; 13( Pt 3): 181-188. Ghugre NR, Enriquez CM, Gonzalez I, Nelson MD Jr, Coates TD, Wood JC. MRI detects myocardial iron in the human heart. Magn Reson Med 2006; 56: 681-686. Yellon DM, Hausenloy DJ. Myocardial reperfusion injury. N Engl J Med 2007; 357: 1121-1135. Garcia-Dorado D, Theroux P, Solares J, et al. Determinants of hemorrhagic infarcts. Histologic observations from experiments involving coronary occlusion, coronary reperfusion, and reocclusion. Am J Pathol 1990; 137: 301-311. Wood JC, Enriquez C, Ghugre N, et al. MRI R2 and R2* mapping accurately estimates hepatic iron concentration in transfusion-dependent thalassemia and sickle cell disease patients. Blood 2005; 106: 1460-1465. Ghugre NR, Ramanan V, Pop M, et al. Myocardial BOLD imaging at 3 T using quantitative T2: application in a myocardial infarct model. Magn Reson Med 2011; 66: 1739-1747. Kornreich L, Horev G, Yaniv I, Stein J, Grunebaum M, Zaizov R. Iron overload following bone marrow transplantation in children: MR findings. Pediatr Radiol 1997; 27: 869-872. Recht MP, Resnick D. Magnetic resonance imaging of articular cartilage: an overview. Top Magn Reson Imaging 1998; 9: 328-336. Deoni SC, Rutt BK, Peters TM. Rapid combined T1 and T2 mapping using gradient recalled acquisition in the steady state. Magn Reson Med 2003; 49: 515-526. Papadopoulos K, Tozer DJ, Fisniku L, et al. T1-relaxation time changes over five years in relapsing-remitting multiple sclerosis. Mult Scler 2010; 16: 427-433. Brix G, Schad LR, Deimling M, Lorenz WJ. Fast and precise T1 imaging using a TOMROP sequence. Magn Reson Imaging 1990; 8: 351-356. Zhu DC, Penn RD. Full-brain T1 mapping through inversion recovery fast spin echo imaging with time-efficient slice ordering. Magn Reson Med 2005; 54: 725-731. Dharmakumar R, Arumana JM, Tang R, Harris K, Zhang Z, Li D. Assessment of regional myocardial oxygenation changes in the presence of coronary artery stenosis with balanced SSFP imaging at 3.0 T: theory and experimental evaluation in canines. J Magn Reson Imaging 2008; 27: 1037-1045. Baxendale SA, van Paesschen W, Thompson PJ, et al. The relationship between quantitative MRI and neuropsychological functioning in temporal lobe epilepsy. Epilepsia 1998; 39: 158-166. Detsky JS, Paul G, Dick AJ, Wright GA. Reproducible classification of infarct heterogeneity using fuzzy clustering on multicontrast delayed enhancement magnetic resonance images. IEEE Trans Med Imaging 2009; 28: 1606-1614. Uren NG, Crake T, Lefroy DC, de Silva R, Davies GJ, Maseri A. Reduced coronary vasodilator function in infarcted and normal myocardium after myocardial infarction. N Engl J Med 1994; 331: 222-227. Messroghli DR, Radjenovic A, Kozerke S, Higgins DM, Sivananthan MU, Ridgway JP. Modified Look-Locker inversion recovery (MOLLI) for high-resolution T1 mapping of the heart. Magn Reson Med 2004; 52: 141-146. Runge VM, Muroff LR, Wells JW. Principles of contrast enhancement in the evaluation of brain diseases: an overview. J Magn Reson Imaging 1997; 7: 5-13. Hennig J. Multiecho imaging sequences with low refocusing flip angles. J Magn Reson 1988; 78: 397-407. Bitsch A, Kuhlmann T, Stadelmann C, Lassmann H, Lucchinetti C, Bruck W. A longitudinal MRI study of histopathologically defined hypointense multiple sclerosis lesions. Ann Neurol 2001; 49: 793-796. Eckstein F, Burstein D, Link TM. Quantitative MRI of cartilage and bone: degenerative changes in osteoarthritis. NMR Biomed 2006; 19: 822-854. Kaltwasser JP, Gottschalk R, Schalk KP, Hartl W. Non-invasive quantitation of liver iron-overload by magnetic resonance imaging. Br J Haematol 1990; 74: 360-363. Roberts HC, Roberts TP, Brasch RC, Dillon WP. Quantitative measurement of microvascular permeability in human brain tumors achieved using dynamic contrast-enhanced MR imaging: correlation with histologic grade. AJNR Am J Neuroradiol 2000; 21: 891-899. Messroghli DR, Greiser A, Frohlich M, Dietz R, Schulz-Menger J. Optimization and validation of a fully-integrated pulse sequence for modified look-locker inversion-recovery (MOLLI) T1 mapping of the heart. J Magn Reson Imaging 2007; 26: 1081-1086. Cheng HL, Holowka S, Moineddin R, Odame I. Liver iron overload assessment by T2* magnetic resonance imaging in pediatric patients: an accuracy and reproducibility study. Am J Hematol 2012;87:435-437. Reiter D, Roque R, Lin P, et al. Mapping proteoglycan-bound water in cartilage: improved specificity of matrix assessment using multiexponential transverse relaxation analysis. Magn Reson Med 2011; 65: 377-384. Laule C, Vavasour IM, Moore GR, et al. Water content and myelin water fraction in multiple sclerosis. A T2 relaxation study. J Neurol 2004; 251: 284-293. Zellini F, Niepel G, Tench CR, Constantinescu CS. Hypothalamic involvement assessed by T1 relaxation time in patients with relapsing-remitting multiple sclerosis. Mult Scler 2009; 15: 1442-1449. Baudrexel S, Nurnberger L, Rub U, et al. Quantitative mapping of T1 and T2* discloses nigral and brainstem pathology in early Parkinson's disease. Neuroimage 2010; 51: 512-520. Cheng HL, Wright GA. Rapid high-resolution T(1) mapping by variable flip angles: accurate and precise measurements in the presence of radiofrequency field inhomogeneity. Magn Reson Med 2006; 55: 566-574. Ghugre NR, Enriquez CM, Coates TD, Nelson MD Jr, Wood JC. Improved R2* measurements in myocardial iron overload. J Magn Reson Imaging 2006; 23: 9-16. Brittain JH, Hu BS, Wright GA, Meyer CH, Macovski A, Nishimura DG. Coronary angiography with magnetization-prepared T2 contrast. Magn Reson Med 1995; 33: 689-696. Reimer KA, Lowe JE, Rasmussen MM, Jennings RB. The wavefront phenomenon of ischemic cell death. 1. Myocardial infarct size vs duration of coronary occlusion in dogs. Circulation 1977; 56: 786-794. Van de Werf F, Bax J, Betriu A, et al. Management of acute myocardial infarction in patients presenting with persistent ST-segment elevation: the Task Force on the Management of ST-Segment Elevation Acute Myocardial Infarction of the European Society of Cardiology. Eur Heart J 2008; 29: 2909-2945. Williams A, Gillis A, McKenzie C, et al. Glycosaminoglycan distribution in cartilage as determined by delayed gadolinium-enhanced MRI of cartilage (dGEMRIC): potential clinical applications. AJR Am J Roentgenol 2004; 182: 167-172. Schein A, Enriquez C, Coates TD, Wood JC. Magnetic resonance detection of kidney iron deposition in sickle cell disease: a marker of chronic hemolysis. J Magn Reson Imaging 2008; 28: 698-704. Cieszanowski A, Szeszkowski W, Golebiowski M, Bielecki DK, Grodzicki M, Pruszynski B. Discrimination of benign from malignant hepatic lesions based on their T2-relaxation times calculated from moderately T2-weighted turbo SE sequence. Eur Radiol 2002; 12: 2273-2279. Deoni SC, Ward HA, Peters TM, Rutt BK. Rapid T2 estimation with phase-cycled variable nutation steady-state free precession. Magn Reson Med 2004; 52: 435-439. Schwenzer NF, Machann J, Haap MM, et al. T2* relaxometry in liver, pancreas, and spleen in a healthy cohort of one hundred twenty-nine subjects-correlation with age, gender, and serum ferritin. Invest Radiol 2008; 43: 854-860. Dyke JP, Panicek DM, Healey JH, et al. Osteogenic and Ewing sarcomas: estimation of necrotic fraction during induction chemotherapy with dynamic contrast-enhanced MR imaging. Radiology 2003; 228: 271-278. Zia M, Ghugre N, Paul G, Stainsby J, et al. Characterizing myocardial edema and hemorrhage using T2, T2*, and diastolic wall thickness post acute myocardial infarction. Journal of Cardiovascular Magnetic Resonance 2010; 12(Suppl 1): P179. Sussman MS, Vidarsson L, Pauly JM, Cheng HL. A technique for rapid single-echo spin-echo T2 mapping. Magn Reson Med 2010; 64: 536-545. Beaumont M, Odame I, Babyn PS, Vidarsson L, Kirby-Allen M, Cheng HL. Accurate liver T2 measurement of iron overload: a simulations investigation and in vivo study. J Magn Reson Imaging 2009; 30: 313-320. van Walderveen MA, Kamphorst W, Scheltens P, et al. Histopathologic correlate of hypointense lesions on T1-weighted spin-echo MRI in multiple sclerosis. Neurology 1998; 50: 1282-1288. Verstraete KL, Lang P. Bone and soft tissue tumors: the role of contrast agents for MR imaging. Eur J Radiol 2000; 34: 229-246. Vavasour IM, Whittall KP, MacKay AL, Li DK, Vorobeychik G, Paty DW. A comparison between magnetization transfer ratios and myelin water percentages in normals and multiple sclerosis patients. Magn Reson Med 1998; 40: 763-768. Wood JC, Otto-Duessel M, Gonzalez I, et al. Deferasirox and deferiprone remove cardiac iron in the iron-overloaded gerbil. Transl Res 2006; 148: 272-280. Mewton N, Liu CY, Croisille P, Bluemke D, Lima JA. Assessment of myocardial fibrosis with cardiovascular magnetic resonance. J Am Coll Cardiol 2011; 57: 891-903. Blumenkrantz G, Majumdar S. Quantitative magnetic resonance imaging of articular cartilage in osteoarthritis. Eur Cell Mater 2007; 13: 76-86. Yan AT, Shayne AJ, Brown KA, et al. Characterization of the peri-infarct zone by contrast-enhanced cardiac magnetic resonance imaging is a powerful predictor of post-myocardial infarction mortality. Circulation 2006; 114: 32-39. Gochberg DF, Gore JC. Quantitative magnetization transfer imaging via 2010; 12 1991; 18 2010; 16 2006; 30 2010; 13 2002; 12 2004; 23 2006; 36 1995; 33 2005; 64 1988; 78 2011; 57 2001; 49 1999; 41 2011; 56 2010; 182 1997; 7 1998; 16 2009; 11 2006; 23 2006; 24 2000; 12 1986; 3 2008; 29 2006; 27 1986; 4 2008; 27 2005; 105 2008; 28 2005; 106 2011; 64 2011; 66 2003; 49 2011; 65 2007; 64 2009; 19 2011; 123 2009; 15 2007; 17 2004; 43 1989; 62 2009; 62 2006; 56 1987; 50 2006; 55 1988; 169 1997; 27 2001; 22 2008; 51 2007; 13 1993; 189 2006; 114 1990; 20 2004; 52 2004; 50 2003; 228 1957; 61 1988; 29 1997; 37 1995; 45 2002; 122 2008; 43 2005; 16 1990; 8 2010; 51 1998; 9 1994; 331 2011; 711 2000; 215 2000; 43 2011; 11 2005; 21 1998; 40 2011; 18 2005; 23 2007; 37 2010; 64 1990; 137 2004; 251 2006; 240 2002; 106 1994; 36 1999; 10 1998; 50 1998; 121 2001; 14 2008; 60 2011; 29 2007; 26 64 1994; 31 1990; 74 1948; 73 1995; 91 2006; 12 2012 2011 1994; 191 1995; 13 2000; 21 2008; 16 2004; 182 2005; 1054 2007 2006; 19 2005 2007; 57 1987; 18 2009; 29 2009; 28 1999; 9 1988; 2 2007; 115 2007; 357 1998; 39 2009; 30 2000; 34 2004; 17 2010; 257 2005; 53 2005; 54 1970; 41 1977; 56 2006; 148 1994; 4 e_1_2_8_49_2 e_1_2_8_45_2 e_1_2_8_26_2 e_1_2_8_68_2 e_1_2_8_9_2 e_1_2_8_132_2 e_1_2_8_5_2 e_1_2_8_41_2 e_1_2_8_87_2 e_1_2_8_22_2 e_1_2_8_64_2 e_1_2_8_117_2 e_1_2_8_136_2 e_1_2_8_60_2 e_1_2_8_113_2 e_1_2_8_38_2 Tofts P (e_1_2_8_8_2) 2005 e_1_2_8_19_2 e_1_2_8_109_2 e_1_2_8_34_2 e_1_2_8_57_2 e_1_2_8_91_2 e_1_2_8_143_2 e_1_2_8_95_2 e_1_2_8_76_2 e_1_2_8_105_2 e_1_2_8_11_2 e_1_2_8_53_2 e_1_2_8_128_2 de Miguel MH (e_1_2_8_58_2) 1994; 4 e_1_2_8_72_2 e_1_2_8_101_2 e_1_2_8_124_2 e_1_2_8_29_2 Garcia‐Dorado D (e_1_2_8_83_2) 1990; 137 e_1_2_8_25_2 e_1_2_8_48_2 e_1_2_8_67_2 e_1_2_8_2_2 e_1_2_8_110_2 e_1_2_8_6_2 e_1_2_8_21_2 e_1_2_8_44_2 e_1_2_8_63_2 e_1_2_8_86_2 e_1_2_8_118_2 e_1_2_8_137_2 e_1_2_8_40_2 e_1_2_8_82_2 e_1_2_8_114_2 e_1_2_8_133_2 e_1_2_8_18_2 e_1_2_8_14_2 e_1_2_8_37_2 e_1_2_8_56_2 e_1_2_8_79_2 e_1_2_8_90_2 e_1_2_8_94_2 e_1_2_8_121_2 e_1_2_8_140_2 Lebel RM (e_1_2_8_119_2); 64 e_1_2_8_98_2 e_1_2_8_10_2 e_1_2_8_52_2 e_1_2_8_75_2 e_1_2_8_106_2 e_1_2_8_129_2 Lansberg MG (e_1_2_8_33_2) 2001; 22 e_1_2_8_71_2 e_1_2_8_102_2 e_1_2_8_125_2 e_1_2_8_144_2 e_1_2_8_28_2 e_1_2_8_24_2 Tardif CL (e_1_2_8_17_2) 2010; 13 e_1_2_8_47_2 e_1_2_8_89_2 e_1_2_8_3_2 e_1_2_8_130_2 e_1_2_8_7_2 e_1_2_8_20_2 e_1_2_8_66_2 e_1_2_8_115_2 e_1_2_8_43_2 e_1_2_8_85_2 e_1_2_8_138_2 e_1_2_8_62_2 e_1_2_8_111_2 e_1_2_8_81_2 e_1_2_8_134_2 e_1_2_8_13_2 e_1_2_8_59_2 e_1_2_8_36_2 e_1_2_8_78_2 Aherne T (e_1_2_8_99_2) 1988; 29 e_1_2_8_141_2 e_1_2_8_97_2 e_1_2_8_55_2 e_1_2_8_126_2 e_1_2_8_32_2 e_1_2_8_74_2 e_1_2_8_107_2 e_1_2_8_51_2 e_1_2_8_122_2 e_1_2_8_93_2 e_1_2_8_70_2 e_1_2_8_103_2 e_1_2_8_27_2 e_1_2_8_23_2 e_1_2_8_46_2 e_1_2_8_69_2 e_1_2_8_80_2 e_1_2_8_131_2 e_1_2_8_4_2 e_1_2_8_42_2 e_1_2_8_65_2 e_1_2_8_88_2 e_1_2_8_116_2 Prasloski T (e_1_2_8_120_2) 2011 e_1_2_8_139_2 e_1_2_8_61_2 e_1_2_8_84_2 e_1_2_8_112_2 e_1_2_8_135_2 e_1_2_8_16_2 e_1_2_8_39_2 e_1_2_8_12_2 e_1_2_8_35_2 e_1_2_8_108_2 e_1_2_8_142_2 e_1_2_8_96_2 e_1_2_8_31_2 e_1_2_8_54_2 e_1_2_8_77_2 e_1_2_8_104_2 e_1_2_8_127_2 e_1_2_8_50_2 e_1_2_8_73_2 e_1_2_8_100_2 e_1_2_8_123_2 Roberts HC (e_1_2_8_30_2) 2000; 21 van Walderveen MA (e_1_2_8_15_2) 1998; 50 e_1_2_8_92_2 |
References_xml | – reference: Gochberg DF, Gore JC. Quantitative magnetization transfer imaging via selective inversion recovery with short repetition times. Magn Reson Med 2007; 57: 437-441. – reference: Johnson K, Davis PJ, Foster JK, McDonagh JE, Ryder CA, Southwood TR. Imaging of muscle disorders in children. Pediatr Radiol 2006; 36: 1005-1018. – reference: Tofts PS, Brix G, Buckley DL, et al. Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging 1999; 10: 223-232. – reference: MacKay AL, Vavasour IM, Rauscher A, et al. MR relaxation in multiple sclerosis. Neuroimaging Clin N Am 2009; 19: 1-26. – reference: MacKay A, Whittall K, Adler J, Li D, Paty D, Graeb D. In vivo visualization of myelin water in brain by magnetic resonance. Magn Reson Med 1994; 31: 673-677. – reference: Deoni SC, Rutt BK, Peters TM. Rapid combined T1 and T2 mapping using gradient recalled acquisition in the steady state. Magn Reson Med 2003; 49: 515-526. – reference: Levesque I, Sled JG, Narayanan S, et al. The role of edema and demyelination in chronic T1 black holes: a quantitative magnetization transfer study. J Magn Reson Imaging 2005; 21: 103-110. – reference: Anderson LJ, Holden S, Davis B, et al. Cardiovascular T2-star (T2*) magnetic resonance for the early diagnosis of myocardial iron overload. Eur Heart J 2001; 22: 2171-2179. – reference: St Pierre TG, Clark PR, Chua-anusorn W, et al. Noninvasive measurement and imaging of liver iron concentrations using proton magnetic resonance. Blood 2005; 105: 855-861. – reference: Gambarota G, Veltien A, van Laarhoven H, et al. Measurements of T1 and T2 relaxation times of colon cancer metastases in rat liver at 7 T. Magma 2004; 17: 281-287. – reference: Andersson T, Ericsson A, Eriksson B, et al. Relative proton density and relaxation times in liver metastases during interferon treatment. Br J Radiol 1989; 62: 433-437. – reference: Oh J, Han ET, Pelletier D, Nelson SJ. Measurement of in vivo multi-component T2 relaxation times for brain tissue using multi-slice T2 prep at 1.5 and 3 T. Magn Reson Imaging 2006; 24: 33-43. – reference: Deoni SC, Rutt BK, Arun T, Pierpaoli C, Jones DK. Gleaning multicomponent T1 and T2 information from steady-state imaging data. Magn Reson Med 2008; 60: 1372-1387. – reference: Prasloski T, Madler B, Xiang QS, Mackay A, Jones C. Applications of stimulated echo correction to multicomponent T(2) analysis. Magn Reson Med 2011 doi:101002/mrm23157 2011 [Epub ahead of print]. – reference: Whittall KP, MacKay AL, Graeb DA, Nugent RA, Li DK, Paty DW. In vivo measurement of T2 distributions and water contents in normal human brain. Magn Reson Med 1997; 37: 34-43. – reference: Rieke V, Butts Pauly K. MR thermometry. J Magn Reson Imaging 2008; 27: 376-390. – reference: Lansberg MG, Thijs VN, O'Brien MW, et al. Evolution of apparent diffusion coefficient, diffusion-weighted, and T2-weighted signal intensity of acute stroke. AJNR Am J Neuroradiol 2001; 22: 637-644. – reference: Bernarding J, Braun J, Hohmann J, et al. Histogram-based characterization of healthy and ischemic brain tissues using multiparametric MR imaging including apparent diffusion coefficient maps and relaxometry. Magn Reson Med 2000; 43: 52-61. – reference: Schwenzer NF, Machann J, Haap MM, et al. T2* relaxometry in liver, pancreas, and spleen in a healthy cohort of one hundred twenty-nine subjects-correlation with age, gender, and serum ferritin. Invest Radiol 2008; 43: 854-860. – reference: Stikov N, Keenan KE, Pauly JM, Smith RL, Dougherty RF, Gold GE. Cross-relaxation imaging of human articular cartilage. Magn Reson Med 2011; 66: 725-734. – reference: Verstraete KL, Lang P. Bone and soft tissue tumors: the role of contrast agents for MR imaging. Eur J Radiol 2000; 34: 229-246. – reference: Just M, Thelen M. Tissue characterization with T1, T2, and proton density values: results in 160 patients with brain tumors. Radiology 1988; 169: 779-785. – reference: van Walderveen MA, Kamphorst W, Scheltens P, et al. Histopathologic correlate of hypointense lesions on T1-weighted spin-echo MRI in multiple sclerosis. Neurology 1998; 50: 1282-1288. – reference: Detsky JS, Paul G, Dick AJ, Wright GA. Reproducible classification of infarct heterogeneity using fuzzy clustering on multicontrast delayed enhancement magnetic resonance images. IEEE Trans Med Imaging 2009; 28: 1606-1614. – reference: McDonald WI, Miller DH, Thompson AJ. Are magnetic resonance findings predictive of clinical outcome in therapeutic trials in multiple sclerosis? The dilemma of interferon-beta. Ann Neurol 1994; 36: 14-18. – reference: Rugg-Gunn FJ, Boulby PA, Symms MR, Barker GJ, Duncan JS. Whole-brain T2 mapping demonstrates occult abnormalities in focal epilepsy. Neurology 2005; 64: 318-325. – reference: Kurki T, Komu M. Spin-lattice relaxation and magnetization transfer in intracranial tumors in vivo: effects of Gd-DTPA on relaxation parameters. Magn Reson Imaging 1995; 13: 379-385. – reference: Cheng HL, Holowka S, Moineddin R, Odame I. Liver iron overload assessment by T2* magnetic resonance imaging in pediatric patients: an accuracy and reproducibility study. Am J Hematol 2012;87:435-437. – reference: de Miguel MH, Yeung HN, Goyal M, et al. Evaluation of quantitative magnetic resonance imaging as a noninvasive technique for measuring renal scarring in a rabbit model of antiglomerular basement membrane disease. J Am Soc Nephrol 1994; 4: 1861-1868. – reference: Wood JC, Otto-Duessel M, Gonzalez I, et al. Deferasirox and deferiprone remove cardiac iron in the iron-overloaded gerbil. Transl Res 2006; 148: 272-280. – reference: Sourbron S, Ingrisch M, Siefert A, Reiser M, Herrmann K. Quantification of cerebral blood flow, cerebral blood volume, and blood-brain-barrier leakage with DCE-MRI. Magn Reson Med 2009; 62: 205-217. – reference: Brix G, Schad LR, Deimling M, Lorenz WJ. Fast and precise T1 imaging using a TOMROP sequence. Magn Reson Imaging 1990; 8: 351-356. – reference: Wood JC, Enriquez C, Ghugre N, et al. Physiology and pathophysiology of iron cardiomyopathy in thalassemia. Ann N Y Acad Sci 2005; 1054: 386-395. – reference: Ghugre NR, Ramanan V, Pop M, et al. Quantitative tracking of edema, hemorrhage, and microvascular obstruction in subacute myocardial infarction in a porcine model by MRI. Magn Reson Med 2011; 66: 1129-1141. – reference: Cheng HL, Wright GA. Rapid high-resolution T(1) mapping by variable flip angles: accurate and precise measurements in the presence of radiofrequency field inhomogeneity. Magn Reson Med 2006; 55: 566-574. – reference: Koenig SH, Brown RD III, Gibson JF, Ward RJ, Peters TJ. Relaxometry of ferritin solutions and the influence of the Fe3+ core ions. Magn Reson Med 1986; 3: 755-767. – reference: Papadopoulos K, Tozer DJ, Fisniku L, et al. T1-relaxation time changes over five years in relapsing-remitting multiple sclerosis. Mult Scler 2010; 16: 427-433. – reference: Van Paesschen W, Sisodiya S, Connelly A, et al. Quantitative hippocampal MRI and intractable temporal lobe epilepsy. Neurology 1995; 45: 2233-2240. – reference: Papakonstantinou O, Alexopoulou E, Economopoulos N, et al. Assessment of iron distribution between liver, spleen, pancreas, bone marrow, and myocardium by means of R2 relaxometry with MRI in patients with beta-thalassemia major. J Magn Reson Imaging 2009; 29: 853-859. – reference: Townsend TN, Bernasconi N, Pike GB, Bernasconi A. Quantitative analysis of temporal lobe white matter T2 relaxation time in temporal lobe epilepsy. Neuroimage 2004; 23: 318-324. – reference: Krasin MJ, Xiong X, Reddick WE, et al. A model for quantitative changes in the magnetic resonance parameters of muscle in children after therapeutic irradiation. Magn Reson Imaging 2006; 24: 1319-1324. – reference: Schein A, Enriquez C, Coates TD, Wood JC. Magnetic resonance detection of kidney iron deposition in sickle cell disease: a marker of chronic hemolysis. J Magn Reson Imaging 2008; 28: 698-704. – reference: Potter HG, Chong le R, Sneag DB. Magnetic resonance imaging of cartilage repair. Sports Med Arthrosc 2008; 16: 236-245. – reference: Bloembergen N, Purcell EM, Pound RV. Relaxation effects in nuclear magnetic resonance absorbtion. Phys Rev 1948; 73: 679. – reference: Gowland PA, Leach MO. A simple method for the restoration of signal polarity in multi-image inversion recovery sequences for measuring T1. Magn Reson Med 1991; 18: 224-231. – reference: Garcia-Dorado D, Theroux P, Solares J, et al. Determinants of hemorrhagic infarcts. Histologic observations from experiments involving coronary occlusion, coronary reperfusion, and reocclusion. Am J Pathol 1990; 137: 301-311. – reference: Zia M, Ghugre N, Paul G, Stainsby J, et al. Characterizing myocardial edema and hemorrhage using T2, T2*, and diastolic wall thickness post acute myocardial infarction. Journal of Cardiovascular Magnetic Resonance 2010; 12(Suppl 1): P179. – reference: Bitsch A, Kuhlmann T, Stadelmann C, Lassmann H, Lucchinetti C, Bruck W. A longitudinal MRI study of histopathologically defined hypointense multiple sclerosis lesions. Ann Neurol 2001; 49: 793-796. – reference: Wu Y, Alexander AL, Fleming JO, Duncan ID, Field AS. Myelin water fraction in human cervical spinal cord in vivo. J Comput Assist Tomogr 2006; 30: 304-306. – reference: Williams A, Gillis A, McKenzie C, et al. Glycosaminoglycan distribution in cartilage as determined by delayed gadolinium-enhanced MRI of cartilage (dGEMRIC): potential clinical applications. AJR Am J Roentgenol 2004; 182: 167-172. – reference: Ropele S, Langkammer C, Enzinger C, Fuchs S, Fazekas F. Relaxation time mapping in multiple sclerosis. Expert Rev Neurother 2011; 11: 441-450. – reference: Wacker CM, Bock M, Hartlep AW, et al. Changes in myocardial oxygenation and perfusion under pharmacological stress with dipyridamole: assessment using T*2 and T1 measurements. Magn Reson Med 1999; 41: 686-695. – reference: Abdel-Aty H, Simonetti O, Friedrich MG. T2-weighted cardiovascular magnetic resonance imaging. J Magn Reson Imaging 2007; 26: 452-459. – reference: Schmidt A, Azevedo CF, Cheng A, et al. Infarct tissue heterogeneity by magnetic resonance imaging identifies enhanced cardiac arrhythmia susceptibility in patients with left ventricular dysfunction. Circulation 2007; 115: 2006-2014. – reference: Cieszanowski A, Szeszkowski W, Golebiowski M, Bielecki DK, Grodzicki M, Pruszynski B. Discrimination of benign from malignant hepatic lesions based on their T2-relaxation times calculated from moderately T2-weighted turbo SE sequence. Eur Radiol 2002; 12: 2273-2279. – reference: Recht MP, Resnick D. Magnetic resonance imaging of articular cartilage: an overview. Top Magn Reson Imaging 1998; 9: 328-336. – reference: Leung G, Moody AR. MR imaging depicts oxidative stress induced by methemoglobin. Radiology 2010; 257: 470-476. – reference: Uren NG, Crake T, Lefroy DC, de Silva R, Davies GJ, Maseri A. Reduced coronary vasodilator function in infarcted and normal myocardium after myocardial infarction. N Engl J Med 1994; 331: 222-227. – reference: Lebel RM, Wilman AH. Transverse relaxometry with stimulated echo compensation. Magn Reson Med; 64: 1005-1014. – reference: Haacke EM, Cheng NY, House MJ, et al. Imaging iron stores in the brain using magnetic resonance imaging. Magn Reson Imaging 2005; 23: 1-25. – reference: Vavasour IM, Whittall KP, MacKay AL, Li DK, Vorobeychik G, Paty DW. A comparison between magnetization transfer ratios and myelin water percentages in normals and multiple sclerosis patients. Magn Reson Med 1998; 40: 763-768. – reference: Mewton N, Liu CY, Croisille P, Bluemke D, Lima JA. Assessment of myocardial fibrosis with cardiovascular magnetic resonance. J Am Coll Cardiol 2011; 57: 891-903. – reference: Bernasconi A, Bernasconi N, Caramanos Z, et al. T2 relaxometry can lateralize mesial temporal lobe epilepsy in patients with normal MRI. Neuroimage 2000; 12: 739-746. – reference: Kornreich L, Horev G, Yaniv I, Stein J, Grunebaum M, Zaizov R. Iron overload following bone marrow transplantation in children: MR findings. Pediatr Radiol 1997; 27: 869-872. – reference: Vrenken H, Geurts JJ, Knol DL, et al. Whole-brain T1 mapping in multiple sclerosis: global changes of normal-appearing gray and white matter. Radiology 2006; 240: 811-820. – reference: Foltz WD, Huang H, Fort S, Wright GA. Vasodilator response assessment in porcine myocardium with magnetic resonance relaxometry. Circulation 2002; 106: 2714-2719. – reference: Waller C, Kahler E, Hiller KH, et al. Myocardial perfusion and intracapillary blood volume in rats at rest and with coronary dilatation: MR imaging in vivo with use of a spin-labeling technique. Radiology 2000; 215: 189-197. – reference: Lotan CS, Miller SK, Bouchard A, et al. Detection of intramyocardial hemorrhage using high-field proton (1H) nuclear magnetic resonance imaging. Cathet Cardiovasc Diagn 1990; 20: 205-211. – reference: Deoni S. Magnetic resonance relaxation and quantitative measurements in the brain. Methods Mol Biol 2011; 711: 65-108. – reference: Hennig J. Multiecho imaging sequences with low refocusing flip angles. J Magn Reson 1988; 78: 397-407. – reference: Conlon P, Trimble MR, Rogers D, Callicott C. Magnetic resonance imaging in epilepsy: a controlled study. Epilepsy Res 1988; 2: 37-43. – reference: Winter JD, Akens MK, Cheng HL. Quantitative MRI assessment of VX2 tumour oxygenation changes in response to hyperoxia and hypercapnia. Phys Med Biol 2011; 56: 1225-1242. – reference: Ghugre NR, Ramanan V, Pop M, et al. Myocardial BOLD imaging at 3 T using quantitative T2: application in a myocardial infarct model. Magn Reson Med 2011; 66: 1739-1747. – reference: Chai JW, Lin YC, Chen JH, et al. In vivo magnetic resonance (MR) study of fatty liver: importance of intracellular ultrastructural alteration for MR tissue parameters change. J Magn Reson Imaging 2001; 14: 35-41. – reference: Jackowski C, Christe A, Sonnenschein M, Aghayev E, Thali MJ. Postmortem unenhanced magnetic resonance imaging of myocardial infarction in correlation to histological infarction age characterization. Eur Heart J 2006; 27: 2459-2467. – reference: Kershaw LE, Cheng HL. A general dual-bolus approach for quantitative DCE-MRI. Magn Reson Imaging 2011; 29: 160-166. – reference: Laule C, Vavasour IM, Moore GR, et al. Water content and myelin water fraction in multiple sclerosis. A T2 relaxation study. J Neurol 2004; 251: 284-293. – reference: Roberts HC, Roberts TP, Brasch RC, Dillon WP. Quantitative measurement of microvascular permeability in human brain tumors achieved using dynamic contrast-enhanced MR imaging: correlation with histologic grade. AJNR Am J Neuroradiol 2000; 21: 891-899. – reference: Runge VM, Muroff LR, Wells JW. Principles of contrast enhancement in the evaluation of brain diseases: an overview. J Magn Reson Imaging 1997; 7: 5-13. – reference: Foltz WD, Yang Y, Graham JJ, Detsky JS, Wright GA, Dick AJ. MRI relaxation fluctuations in acute reperfused hemorrhagic infarction. Magn Reson Med 2006; 56: 1311-1319. – reference: Sussman MS, Vidarsson L, Pauly JM, Cheng HL. A technique for rapid single-echo spin-echo T2 mapping. Magn Reson Med 2010; 64: 536-545. – reference: Rhee TK, Larson AC, Prasad PV, et al. Feasibility of blood oxygenation level-dependent MR imaging to monitor hepatic transcatheter arterial embolization in rabbits. J Vasc Interv Radiol 2005; 16: 1523-1528. – reference: Beaumont M, Odame I, Babyn PS, Vidarsson L, Kirby-Allen M, Cheng HL. Accurate liver T2 measurement of iron overload: a simulations investigation and in vivo study. J Magn Reson Imaging 2009; 30: 313-320. – reference: Reiter D, Roque R, Lin P, et al. Mapping proteoglycan-bound water in cartilage: improved specificity of matrix assessment using multiexponential transverse relaxation analysis. Magn Reson Med 2011; 65: 377-384. – reference: Yellon DM, Hausenloy DJ. Myocardial reperfusion injury. N Engl J Med 2007; 357: 1121-1135. – reference: Erkinjuntti T, Ketonen L, Sulkava R, Sipponen J, Vuorialho M, Iivanainen M. Do white matter changes on MRI and CT differentiate vascular dementia from Alzheimer's disease? J Neurol Neurosurg Psychiatry 1987; 50: 37-42. – reference: Ganame J, Messalli G, Dymarkowski S, et al. Impact of myocardial haemorrhage on left ventricular function and remodelling in patients with reperfused acute myocardial infarction. Eur Heart J 2009; 30: 1440-1449. – reference: Manfredonia F, Ciccarelli O, Khaleeli Z, Tozer DJ, Sastre-Garriga J, Miller DH, Thompson AJ. Normal-appearing brain t1 relaxation time predicts disability in early primary progressive multiple sclerosis. Arch Neurol 2007; 64: 411-415. – reference: Maillard SM, Jones R, Owens C, et al. Quantitative assessment of MRI T2 relaxation time of thigh muscles in juvenile dermatomyositis. Rheumatology (Oxford) 2004; 43: 603-608. – reference: Laule C, Leung E, Lis DK, et al. Myelin water imaging in multiple sclerosis: quantitative correlations with histopathology. Mult Scler 2006; 12: 747-753. – reference: Reimer KA, Lowe JE, Rasmussen MM, Jennings RB. The wavefront phenomenon of ischemic cell death. 1. Myocardial infarct size vs duration of coronary occlusion in dogs. Circulation 1977; 56: 786-794. – reference: Dharmakumar R, Arumana JM, Tang R, Harris K, Zhang Z, Li D. Assessment of regional myocardial oxygenation changes in the presence of coronary artery stenosis with balanced SSFP imaging at 3.0 T: theory and experimental evaluation in canines. J Magn Reson Imaging 2008; 27: 1037-1045. – reference: Blumenkrantz G, Majumdar S. Quantitative magnetic resonance imaging of articular cartilage in osteoarthritis. Eur Cell Mater 2007; 13: 76-86. – reference: DeWitt LD, Kistler JP, Miller DC, Richardson EP Jr, Buonanno FS. NMR-neuropathologic correlation in stroke. Stroke 1987; 18: 342-351. – reference: Cheng HL, Islam SS, Loai Y, Antoon R, Beaumont M, Farhat WA. Quantitative magnetic resonance imaging assessment of matrix development in cell-seeded natural urinary bladder smooth muscle tissue-engineered constructs. Tissue Eng Part C Methods 2010; 16: 643-651. – reference: Aronen HJ, Gazit IE, Louis DN, et al. Cerebral blood volume maps of gliomas: comparison with tumor grade and histologic findings. Radiology 1994; 191: 41-51. – reference: Messroghli DR, Greiser A, Frohlich M, Dietz R, Schulz-Menger J. Optimization and validation of a fully-integrated pulse sequence for modified look-locker inversion-recovery (MOLLI) T1 mapping of the heart. J Magn Reson Imaging 2007; 26: 1081-1086. – reference: Winter JD, Estrada M, Cheng HL. Normal tissue quantitative T1 and T2* MRI relaxation time responses to hypercapnic and hyperoxic gases. Acad Radiol 2011; 18: 1159-1167. – reference: Vignaux O, Dhote R, Duboc D, et al. Clinical significance of myocardial magnetic resonance abnormalities in patients with sarcoidosis: a 1-year follow-up study. Chest 2002; 122: 1895-1901. – reference: Tofts P, editor. Quantitative MRI of the brain: measuring changes caused by disease. Chichester, West Sussex: Wiley; 2005. – reference: Look DC, Locker DR. Time saving in measurement of NMR and EPR relaxation times. Rev Sci Instrum 1970; 41: 250-251. – reference: Kingsley PB, Ogg RJ, Reddick WE, Steen RG. Correction of errors caused by imperfect inversion pulses in MR imaging measurement of T1 relaxation times. Magn Reson Imaging 1998; 16: 1049-1055. – reference: Baxendale SA, van Paesschen W, Thompson PJ, et al. The relationship between quantitative MRI and neuropsychological functioning in temporal lobe epilepsy. Epilepsia 1998; 39: 158-166. – reference: Friedrich MG, Abdel-Aty H, Taylor A, Schulz-Menger J, Messroghli D, Dietz R. The salvaged area at risk in reperfused acute myocardial infarction as visualized by cardiovascular magnetic resonance. J Am Coll Cardiol 2008; 51: 1581-1587. – reference: Conrad CH, Brooks WW, Hayes JA, Sen S, Robinson KG, Bing OH. Myocardial fibrosis and stiffness with hypertrophy and heart failure in the spontaneously hypertensive rat. Circulation 1995; 91: 161-170. – reference: Englund E, Brun A, Gyorffy-Wagner Z, Larsson E, Persson B. Relaxation times in relation to grade of malignancy and tissue necrosis in astrocytic gliomas. Magn Reson Imaging 1986; 4: 425-429. – reference: Miller DH, Grossman RI, Reingold SC, McFarland HF. The role of magnetic resonance techniques in understanding and managing multiple sclerosis. Brain 1998; 121: 3-24. – reference: Tozer DJ, Davies GR, Altmann DR, Miller DH, Tofts PS. Correlation of apparent myelin measures obtained in multiple sclerosis patients and controls from magnetization transfer and multicompartmental T2 analysis. Magn Reson Med 2005; 53: 1415-1422. – reference: Kight AC, Dardzinski BJ, Laor T, Graham TB. Magnetic resonance imaging evaluation of the effects of juvenile rheumatoid arthritis on distal femoral weight-bearing cartilage. Arthritis Rheum 2004; 50: 901-905. – reference: Barral JK, Gudmundson E, Stikov N, Etezadi-Amoli M, Stoica P, Nishimura DG. A robust methodology for in vivo T1 mapping. Magn Reson Med 2011; 64: 1057-1067. – reference: Eckstein F, Burstein D, Link TM. Quantitative MRI of cartilage and bone: degenerative changes in osteoarthritis. NMR Biomed 2006; 19: 822-854. – reference: Larsson HB, Hansen AE, Berg HK, Rostrup E, Haraldseth O. Dynamic contrast-enhanced quantitative perfusion measurement of the brain using T1-weighted MRI at 3T. J Magn Reson Imaging 2008; 27: 754-762. – reference: Ghugre NR, Enriquez CM, Gonzalez I, Nelson MD Jr, Coates TD, Wood JC. MRI detects myocardial iron in the human heart. Magn Reson Med 2006; 56: 681-686. – reference: Ghugre NR, Enriquez CM, Coates TD, Nelson MD Jr, Wood JC. Improved R2* measurements in myocardial iron overload. J Magn Reson Imaging 2006; 23: 9-16. – reference: Carpenter JP, He T, Kirk P, Roughton M, et al. On T2* magnetic resonance and cardiac iron. Circulation 2011; 123: 1519-1528. – reference: Zellini F, Niepel G, Tench CR, Constantinescu CS. Hypothalamic involvement assessed by T1 relaxation time in patients with relapsing-remitting multiple sclerosis. Mult Scler 2009; 15: 1442-1449. – reference: Van de Werf F, Bax J, Betriu A, et al. Management of acute myocardial infarction in patients presenting with persistent ST-segment elevation: the Task Force on the Management of ST-Segment Elevation Acute Myocardial Infarction of the European Society of Cardiology. Eur Heart J 2008; 29: 2909-2945. – reference: Brittain JH, Hu BS, Wright GA, Meyer CH, Macovski A, Nishimura DG. Coronary angiography with magnetization-prepared T2 contrast. Magn Reson Med 1995; 33: 689-696. – reference: Tardif CL, Collins DL, Eskildsen SF, Richardson JB, Pike GB. Segmentation of cortical MS lesions on MRI using automated laminar profile shape analysis. Med Image Comput Comput Assist Interv 2010; 13( Pt 3): 181-188. – reference: Bradley WG Jr. MR appearance of hemorrhage in the brain. Radiology 1993; 189: 15-26. – reference: Zimmerman J, Britten W. Nuclear magnetic resonance studies in multiple phase systems: lifetimes of a water molecule in an absorbing phase silica gel. J Phys Chem 1957; 61( 1328). – reference: Aherne T, Yee ES, Tscholakoff D, Gollin G, Higgins C, Ebert PA. Diagnosis of acute and chronic cardiac rejection by magnetic resonance imaging: a non-invasive in-vivo study. J Cardiovasc Surg (Torino) 1988; 29: 587-590. – reference: Rakow-Penner R, Daniel B, Yu H, Sawyer-Glover A, Glover GH. Relaxation times of breast tissue at 1.5T and 3T measured using IDEAL. J Magn Reson Imaging 2006; 23: 87-91. – reference: Wood JC, Enriquez C, Ghugre N, et al. MRI R2 and R2* mapping accurately estimates hepatic iron concentration in transfusion-dependent thalassemia and sickle cell disease patients. Blood 2005; 106: 1460-1465. – reference: Link TM, Stahl R, Woertler K. Cartilage imaging: motivation, techniques, current and future significance. Eur Radiol 2007; 17: 1135-1146. – reference: Ghugre NR, Coates TD, Nelson MD, Wood JC. Mechanisms of tissue-iron relaxivity: nuclear magnetic resonance studies of human liver biopsy specimens. Magn Reson Med 2005; 54: 1185-1193. – reference: Workie DW, Graham TB, Laor T, et al. Quantitative MR characterization of disease activity in the knee in children with juvenile idiopathic arthritis: a longitudinal pilot study. Pediatr Radiol 2007; 37: 535-543. – reference: Zhu DC, Penn RD. Full-brain T1 mapping through inversion recovery fast spin echo imaging with time-efficient slice ordering. Magn Reson Med 2005; 54: 725-731. – reference: Yan AT, Shayne AJ, Brown KA, et al. Characterization of the peri-infarct zone by contrast-enhanced cardiac magnetic resonance imaging is a powerful predictor of post-myocardial infarction mortality. Circulation 2006; 114: 32-39. – reference: Messroghli DR, Radjenovic A, Kozerke S, Higgins DM, Sivananthan MU, Ridgway JP. Modified Look-Locker inversion recovery (MOLLI) for high-resolution T1 mapping of the heart. Magn Reson Med 2004; 52: 141-146. – reference: Baudrexel S, Nurnberger L, Rub U, et al. Quantitative mapping of T1 and T2* discloses nigral and brainstem pathology in early Parkinson's disease. Neuroimage 2010; 51: 512-520. – reference: Argyropoulou MI, Kiortsis DN, Astrakas L, Metafratzi Z, Chalissos N, Efremidis SC. Liver, bone marrow, pancreas and pituitary gland iron overload in young and adult thalassemic patients: a T2 relaxometry study. Eur Radiol 2007; 17: 3025-3030. – reference: Giri S, Chung YC, Merchant A, Mihai G, Rajagopalan S, Raman SV, Simonetti OP. T2 quantification for improved detection of myocardial edema. J Cardiovasc Magn Reson 2009; 11: 56. – reference: Stoffner R, Schullian P, Widmann G, Bale R, Kremser C. [Magnetic resonance imaging of radiofrequency current-induced coagulation zones in the ex vivo bovine liver]. Rofo 2010; 182: 690-697. – reference: Berdoukas V, Chouliaras G, Moraitis P, Zannikos K, Berdoussi E, Ladis V. The efficacy of iron chelator regimes in reducing cardiac and hepatic iron in patients with thalassaemia major: a clinical observational study. J Cardiovasc Magn Reson 2009; 11: 20. – reference: Noseworthy MD, Kim JK, Stainsby JA, Stanisz GJ, Wright GA. Tracking oxygen effects on MR signal in blood and skeletal muscle during hyperoxia exposure. J Magn Reson Imaging 1999; 9: 814-820. – reference: Kaltwasser JP, Gottschalk R, Schalk KP, Hartl W. Non-invasive quantitation of liver iron-overload by magnetic resonance imaging. Br J Haematol 1990; 74: 360-363. – reference: Dyke JP, Panicek DM, Healey JH, et al. Osteogenic and Ewing sarcomas: estimation of necrotic fraction during induction chemotherapy with dynamic contrast-enhanced MR imaging. Radiology 2003; 228: 271-278. – reference: Deoni SC, Ward HA, Peters TM, Rutt BK. Rapid T2 estimation with phase-cycled variable nutation steady-state free precession. Magn Reson Med 2004; 52: 435-439. – reference: Wood JC, Aguilar M, Otto-Duessel M, Nick H, Nelson MD, Moats R. Influence of iron chelation on R1 and R2 calibration curves in gerbil liver and heart. Magn Reson Med 2008; 60: 82-89. – reference: Ghugre NR, Wood JC. Relaxivity-iron calibration in hepatic iron overload: probing underlying biophysical mechanisms using a Monte Carlo model. Magn Reson Med 2011; 65: 837-847. – volume: 228 start-page: 271 year: 2003 end-page: 278 article-title: Osteogenic and Ewing sarcomas: estimation of necrotic fraction during induction chemotherapy with dynamic contrast‐enhanced MR imaging publication-title: Radiology – volume: 64 start-page: 411 year: 2007 end-page: 415 article-title: Normal‐appearing brain t1 relaxation time predicts disability in early primary progressive multiple sclerosis publication-title: Arch Neurol – volume: 11 start-page: 56 year: 2009 article-title: T2 quantification for improved detection of myocardial edema publication-title: J Cardiovasc Magn Reson – volume: 121 start-page: 3 year: 1998 end-page: 24 article-title: The role of magnetic resonance techniques in understanding and managing multiple sclerosis publication-title: Brain – volume: 60 start-page: 1372 year: 2008 end-page: 1387 article-title: Gleaning multicomponent T1 and T2 information from steady‐state imaging data publication-title: Magn Reson Med – volume: 9 start-page: 814 year: 1999 end-page: 820 article-title: Tracking oxygen effects on MR signal in blood and skeletal muscle during hyperoxia exposure publication-title: J Magn Reson Imaging – year: 2005 – volume: 16 start-page: 427 year: 2010 end-page: 433 article-title: T1‐relaxation time changes over five years in relapsing‐remitting multiple sclerosis publication-title: Mult Scler – volume: 56 start-page: 1225 year: 2011 end-page: 1242 article-title: Quantitative MRI assessment of VX2 tumour oxygenation changes in response to hyperoxia and hypercapnia publication-title: Phys Med Biol – volume: 17 start-page: 3025 year: 2007 end-page: 3030 article-title: Liver, bone marrow, pancreas and pituitary gland iron overload in young and adult thalassemic patients: a T2 relaxometry study publication-title: Eur Radiol – volume: 10 start-page: 223 year: 1999 end-page: 232 article-title: Estimating kinetic parameters from dynamic contrast‐enhanced T(1)‐weighted MRI of a diffusable tracer: standardized quantities and symbols publication-title: J Magn Reson Imaging – volume: 357 start-page: 1121 year: 2007 end-page: 1135 article-title: Myocardial reperfusion injury publication-title: N Engl J Med – volume: 43 start-page: 854 year: 2008 end-page: 860 article-title: T2* relaxometry in liver, pancreas, and spleen in a healthy cohort of one hundred twenty‐nine subjects‐correlation with age, gender, and serum ferritin publication-title: Invest Radiol – volume: 64 start-page: 1057 year: 2011 end-page: 1067 article-title: A robust methodology for in vivo T1 mapping publication-title: Magn Reson Med – volume: 29 start-page: 587 year: 1988 end-page: 590 article-title: Diagnosis of acute and chronic cardiac rejection by magnetic resonance imaging: a non‐invasive in‐vivo study publication-title: J Cardiovasc Surg (Torino) – volume: 16 start-page: 1049 year: 1998 end-page: 1055 article-title: Correction of errors caused by imperfect inversion pulses in MR imaging measurement of T1 relaxation times publication-title: Magn Reson Imaging – volume: 2 start-page: 37 year: 1988 end-page: 43 article-title: Magnetic resonance imaging in epilepsy: a controlled study publication-title: Epilepsy Res – volume: 50 start-page: 37 year: 1987 end-page: 42 article-title: Do white matter changes on MRI and CT differentiate vascular dementia from Alzheimer's disease? publication-title: J Neurol Neurosurg Psychiatry – year: 2011 article-title: Applications of stimulated echo correction to multicomponent T(2) analysis publication-title: Magn Reson Med – volume: 169 start-page: 779 year: 1988 end-page: 785 article-title: Tissue characterization with T1, T2, and proton density values: results in 160 patients with brain tumors publication-title: Radiology – volume: 43 start-page: 52 year: 2000 end-page: 61 article-title: Histogram‐based characterization of healthy and ischemic brain tissues using multiparametric MR imaging including apparent diffusion coefficient maps and relaxometry publication-title: Magn Reson Med – volume: 12 start-page: P179 issue: Suppl 1 year: 2010 article-title: Characterizing myocardial edema and hemorrhage using T2, T2*, and diastolic wall thickness post acute myocardial infarction publication-title: Journal of Cardiovascular Magnetic Resonance – volume: 21 start-page: 103 year: 2005 end-page: 110 article-title: The role of edema and demyelination in chronic T1 black holes: a quantitative magnetization transfer study publication-title: J Magn Reson Imaging – volume: 22 start-page: 637 year: 2001 end-page: 644 article-title: Evolution of apparent diffusion coefficient, diffusion‐weighted, and T2‐weighted signal intensity of acute stroke publication-title: AJNR Am J Neuroradiol – volume: 41 start-page: 686 year: 1999 end-page: 695 article-title: Changes in myocardial oxygenation and perfusion under pharmacological stress with dipyridamole: assessment using T*2 and T1 measurements publication-title: Magn Reson Med – year: 2012 article-title: Liver iron overload assessment by T2* magnetic resonance imaging in pediatric patients: an accuracy and reproducibility study publication-title: Am J Hematol – volume: 29 start-page: 853 year: 2009 end-page: 859 article-title: Assessment of iron distribution between liver, spleen, pancreas, bone marrow, and myocardium by means of R2 relaxometry with MRI in patients with beta‐thalassemia major publication-title: J Magn Reson Imaging – volume: 27 start-page: 376 year: 2008 end-page: 390 article-title: MR thermometry publication-title: J Magn Reson Imaging – volume: 40 start-page: 763 year: 1998 end-page: 768 article-title: A comparison between magnetization transfer ratios and myelin water percentages in normals and multiple sclerosis patients publication-title: Magn Reson Med – volume: 37 start-page: 535 year: 2007 end-page: 543 article-title: Quantitative MR characterization of disease activity in the knee in children with juvenile idiopathic arthritis: a longitudinal pilot study publication-title: Pediatr Radiol – volume: 137 start-page: 301 year: 1990 end-page: 311 article-title: Determinants of hemorrhagic infarcts. Histologic observations from experiments involving coronary occlusion, coronary reperfusion, and reocclusion publication-title: Am J Pathol – volume: 115 start-page: 2006 year: 2007 end-page: 2014 article-title: Infarct tissue heterogeneity by magnetic resonance imaging identifies enhanced cardiac arrhythmia susceptibility in patients with left ventricular dysfunction publication-title: Circulation – volume: 30 start-page: 313 year: 2009 end-page: 320 article-title: Accurate liver T2 measurement of iron overload: a simulations investigation and in vivo study publication-title: J Magn Reson Imaging – volume: 23 start-page: 1 year: 2005 end-page: 25 article-title: Imaging iron stores in the brain using magnetic resonance imaging publication-title: Magn Reson Imaging – volume: 56 start-page: 681 year: 2006 end-page: 686 article-title: MRI detects myocardial iron in the human heart publication-title: Magn Reson Med – volume: 1054 start-page: 386 year: 2005 end-page: 395 article-title: Physiology and pathophysiology of iron cardiomyopathy in thalassemia publication-title: Ann N Y Acad Sci – volume: 17 start-page: 281 year: 2004 end-page: 287 article-title: Measurements of T1 and T2 relaxation times of colon cancer metastases in rat liver at 7 T publication-title: Magma – volume: 50 start-page: 1282 year: 1998 end-page: 1288 article-title: Histopathologic correlate of hypointense lesions on T1‐weighted spin‐echo MRI in multiple sclerosis publication-title: Neurology – volume: 74 start-page: 360 year: 1990 end-page: 363 article-title: Non‐invasive quantitation of liver iron‐overload by magnetic resonance imaging publication-title: Br J Haematol – volume: 189 start-page: 15 year: 1993 end-page: 26 article-title: MR appearance of hemorrhage in the brain publication-title: Radiology – volume: 711 start-page: 65 year: 2011 end-page: 108 article-title: Magnetic resonance relaxation and quantitative measurements in the brain publication-title: Methods Mol Biol – volume: 28 start-page: 1606 year: 2009 end-page: 1614 article-title: Reproducible classification of infarct heterogeneity using fuzzy clustering on multicontrast delayed enhancement magnetic resonance images publication-title: IEEE Trans Med Imaging – volume: 8 start-page: 351 year: 1990 end-page: 356 article-title: Fast and precise T1 imaging using a TOMROP sequence publication-title: Magn Reson Imaging – volume: 17 start-page: 1135 year: 2007 end-page: 1146 article-title: Cartilage imaging: motivation, techniques, current and future significance publication-title: Eur Radiol – volume: 19 start-page: 822 year: 2006 end-page: 854 article-title: Quantitative MRI of cartilage and bone: degenerative changes in osteoarthritis publication-title: NMR Biomed – volume: 18 start-page: 1159 year: 2011 end-page: 1167 article-title: Normal tissue quantitative T1 and T2* MRI relaxation time responses to hypercapnic and hyperoxic gases publication-title: Acad Radiol – volume: 50 start-page: 901 year: 2004 end-page: 905 article-title: Magnetic resonance imaging evaluation of the effects of juvenile rheumatoid arthritis on distal femoral weight‐bearing cartilage publication-title: Arthritis Rheum – volume: 13 start-page: 379 year: 1995 end-page: 385 article-title: Spin‐lattice relaxation and magnetization transfer in intracranial tumors in vivo: effects of Gd‐DTPA on relaxation parameters publication-title: Magn Reson Imaging – volume: 53 start-page: 1415 year: 2005 end-page: 1422 article-title: Correlation of apparent myelin measures obtained in multiple sclerosis patients and controls from magnetization transfer and multicompartmental T2 analysis publication-title: Magn Reson Med – volume: 257 start-page: 470 year: 2010 end-page: 476 article-title: MR imaging depicts oxidative stress induced by methemoglobin publication-title: Radiology – volume: 27 start-page: 1037 year: 2008 end-page: 1045 article-title: Assessment of regional myocardial oxygenation changes in the presence of coronary artery stenosis with balanced SSFP imaging at 3.0 T: theory and experimental evaluation in canines publication-title: J Magn Reson Imaging – year: 2007 – volume: 331 start-page: 222 year: 1994 end-page: 227 article-title: Reduced coronary vasodilator function in infarcted and normal myocardium after myocardial infarction publication-title: N Engl J Med – volume: 18 start-page: 224 year: 1991 end-page: 231 article-title: A simple method for the restoration of signal polarity in multi‐image inversion recovery sequences for measuring T1 publication-title: Magn Reson Med – volume: 57 start-page: 437 year: 2007 end-page: 441 article-title: Quantitative magnetization transfer imaging via selective inversion recovery with short repetition times publication-title: Magn Reson Med – volume: 22 start-page: 2171 year: 2001 end-page: 2179 article-title: Cardiovascular T2‐star (T2*) magnetic resonance for the early diagnosis of myocardial iron overload publication-title: Eur Heart J – volume: 51 start-page: 512 year: 2010 end-page: 520 article-title: Quantitative mapping of T1 and T2* discloses nigral and brainstem pathology in early Parkinson's disease publication-title: Neuroimage – volume: 182 start-page: 690 year: 2010 end-page: 697 article-title: [Magnetic resonance imaging of radiofrequency current‐induced coagulation zones in the ex vivo bovine liver] publication-title: Rofo – volume: 56 start-page: 1311 year: 2006 end-page: 1319 article-title: MRI relaxation fluctuations in acute reperfused hemorrhagic infarction publication-title: Magn Reson Med – volume: 106 start-page: 2714 year: 2002 end-page: 2719 article-title: Vasodilator response assessment in porcine myocardium with magnetic resonance relaxometry publication-title: Circulation – volume: 23 start-page: 318 year: 2004 end-page: 324 article-title: Quantitative analysis of temporal lobe white matter T2 relaxation time in temporal lobe epilepsy publication-title: Neuroimage – volume: 28 start-page: 698 year: 2008 end-page: 704 article-title: Magnetic resonance detection of kidney iron deposition in sickle cell disease: a marker of chronic hemolysis publication-title: J Magn Reson Imaging – volume: 148 start-page: 272 year: 2006 end-page: 280 article-title: Deferasirox and deferiprone remove cardiac iron in the iron‐overloaded gerbil publication-title: Transl Res – volume: 215 start-page: 189 year: 2000 end-page: 197 article-title: Myocardial perfusion and intracapillary blood volume in rats at rest and with coronary dilatation: MR imaging in vivo with use of a spin‐labeling technique publication-title: Radiology – volume: 65 start-page: 837 year: 2011 end-page: 847 article-title: Relaxivity‐iron calibration in hepatic iron overload: probing underlying biophysical mechanisms using a Monte Carlo model publication-title: Magn Reson Med – volume: 23 start-page: 87 year: 2006 end-page: 91 article-title: Relaxation times of breast tissue at 1.5T and 3T measured using IDEAL publication-title: J Magn Reson Imaging – volume: 62 start-page: 205 year: 2009 end-page: 217 article-title: Quantification of cerebral blood flow, cerebral blood volume, and blood‐brain‐barrier leakage with DCE‐MRI publication-title: Magn Reson Med – volume: 43 start-page: 603 year: 2004 end-page: 608 article-title: Quantitative assessment of MRI T2 relaxation time of thigh muscles in juvenile dermatomyositis publication-title: Rheumatology (Oxford) – volume: 12 start-page: 747 year: 2006 end-page: 753 article-title: Myelin water imaging in multiple sclerosis: quantitative correlations with histopathology publication-title: Mult Scler – volume: 24 start-page: 1319 year: 2006 end-page: 1324 article-title: A model for quantitative changes in the magnetic resonance parameters of muscle in children after therapeutic irradiation publication-title: Magn Reson Imaging – volume: 13 start-page: 76 year: 2007 end-page: 86 article-title: Quantitative magnetic resonance imaging of articular cartilage in osteoarthritis publication-title: Eur Cell Mater – volume: 60 start-page: 82 year: 2008 end-page: 89 article-title: Influence of iron chelation on R1 and R2 calibration curves in gerbil liver and heart publication-title: Magn Reson Med – volume: 36 start-page: 1005 year: 2006 end-page: 1018 article-title: Imaging of muscle disorders in children publication-title: Pediatr Radiol – volume: 26 start-page: 452 year: 2007 end-page: 459 article-title: T2‐weighted cardiovascular magnetic resonance imaging publication-title: J Magn Reson Imaging – volume: 78 start-page: 397 year: 1988 end-page: 407 article-title: Multiecho imaging sequences with low refocusing flip angles publication-title: J Magn Reson – volume: 27 start-page: 754 year: 2008 end-page: 762 article-title: Dynamic contrast‐enhanced quantitative perfusion measurement of the brain using T1‐weighted MRI at 3T publication-title: J Magn Reson Imaging – volume: 27 start-page: 2459 year: 2006 end-page: 2467 article-title: Postmortem unenhanced magnetic resonance imaging of myocardial infarction in correlation to histological infarction age characterization publication-title: Eur Heart J – volume: 52 start-page: 435 year: 2004 end-page: 439 article-title: Rapid T2 estimation with phase‐cycled variable nutation steady‐state free precession publication-title: Magn Reson Med – volume: 56 start-page: 786 year: 1977 end-page: 794 article-title: The wavefront phenomenon of ischemic cell death. 1. Myocardial infarct size vs duration of coronary occlusion in dogs publication-title: Circulation – volume: 18 start-page: 342 year: 1987 end-page: 351 article-title: NMR‐neuropathologic correlation in stroke publication-title: Stroke – volume: 4 start-page: 1861 year: 1994 end-page: 1868 article-title: Evaluation of quantitative magnetic resonance imaging as a noninvasive technique for measuring renal scarring in a rabbit model of antiglomerular basement membrane disease publication-title: J Am Soc Nephrol – volume: 61 start-page: 1328 year: 1957 article-title: Nuclear magnetic resonance studies in multiple phase systems: lifetimes of a water molecule in an absorbing phase silica gel publication-title: J Phys Chem – volume: 114 start-page: 32 year: 2006 end-page: 39 article-title: Characterization of the peri‐infarct zone by contrast‐enhanced cardiac magnetic resonance imaging is a powerful predictor of post‐myocardial infarction mortality publication-title: Circulation – volume: 26 start-page: 1081 year: 2007 end-page: 1086 article-title: Optimization and validation of a fully‐integrated pulse sequence for modified look‐locker inversion‐recovery (MOLLI) T1 mapping of the heart publication-title: J Magn Reson Imaging – volume: 15 start-page: 1442 year: 2009 end-page: 1449 article-title: Hypothalamic involvement assessed by T1 relaxation time in patients with relapsing‐remitting multiple sclerosis publication-title: Mult Scler – volume: 41 start-page: 250 year: 1970 end-page: 251 article-title: Time saving in measurement of NMR and EPR relaxation times publication-title: Rev Sci Instrum – volume: 64 start-page: 318 year: 2005 end-page: 325 article-title: Whole‐brain T2 mapping demonstrates occult abnormalities in focal epilepsy publication-title: Neurology – volume: 16 start-page: 1523 year: 2005 end-page: 1528 article-title: Feasibility of blood oxygenation level‐dependent MR imaging to monitor hepatic transcatheter arterial embolization in rabbits publication-title: J Vasc Interv Radiol – volume: 29 start-page: 2909 year: 2008 end-page: 2945 article-title: Management of acute myocardial infarction in patients presenting with persistent ST‐segment elevation: the Task Force on the Management of ST‐Segment Elevation Acute Myocardial Infarction of the European Society of Cardiology publication-title: Eur Heart J – volume: 106 start-page: 1460 year: 2005 end-page: 1465 article-title: MRI R2 and R2* mapping accurately estimates hepatic iron concentration in transfusion‐dependent thalassemia and sickle cell disease patients publication-title: Blood – volume: 51 start-page: 1581 year: 2008 end-page: 1587 article-title: The salvaged area at risk in reperfused acute myocardial infarction as visualized by cardiovascular magnetic resonance publication-title: J Am Coll Cardiol – volume: 105 start-page: 855 year: 2005 end-page: 861 article-title: Noninvasive measurement and imaging of liver iron concentrations using proton magnetic resonance publication-title: Blood – volume: 64 start-page: 1005 end-page: 1014 article-title: Transverse relaxometry with stimulated echo compensation publication-title: Magn Reson Med – volume: 33 start-page: 689 year: 1995 end-page: 696 article-title: Coronary angiography with magnetization‐prepared T2 contrast publication-title: Magn Reson Med – volume: 9 start-page: 328 year: 1998 end-page: 336 article-title: Magnetic resonance imaging of articular cartilage: an overview publication-title: Top Magn Reson Imaging – volume: 24 start-page: 33 year: 2006 end-page: 43 article-title: Measurement of in vivo multi‐component T2 relaxation times for brain tissue using multi‐slice T2 prep at 1.5 and 3 T publication-title: Magn Reson Imaging – volume: 29 start-page: 160 year: 2011 end-page: 166 article-title: A general dual‐bolus approach for quantitative DCE‐MRI publication-title: Magn Reson Imaging – volume: 11 start-page: 441 year: 2011 end-page: 450 article-title: Relaxation time mapping in multiple sclerosis publication-title: Expert Rev Neurother – volume: 62 start-page: 433 year: 1989 end-page: 437 article-title: Relative proton density and relaxation times in liver metastases during interferon treatment publication-title: Br J Radiol – volume: 49 start-page: 515 year: 2003 end-page: 526 article-title: Rapid combined T1 and T2 mapping using gradient recalled acquisition in the steady state publication-title: Magn Reson Med – volume: 3 start-page: 755 year: 1986 end-page: 767 article-title: Relaxometry of ferritin solutions and the influence of the Fe3+ core ions publication-title: Magn Reson Med – volume: 16 start-page: 236 year: 2008 end-page: 245 article-title: Magnetic resonance imaging of cartilage repair publication-title: Sports Med Arthrosc – volume: 12 start-page: 2273 year: 2002 end-page: 2279 article-title: Discrimination of benign from malignant hepatic lesions based on their T2‐relaxation times calculated from moderately T2‐weighted turbo SE sequence publication-title: Eur Radiol – volume: 39 start-page: 158 year: 1998 end-page: 166 article-title: The relationship between quantitative MRI and neuropsychological functioning in temporal lobe epilepsy publication-title: Epilepsia – volume: 14 start-page: 35 year: 2001 end-page: 41 article-title: In vivo magnetic resonance (MR) study of fatty liver: importance of intracellular ultrastructural alteration for MR tissue parameters change publication-title: J Magn Reson Imaging – volume: 19 start-page: 1 year: 2009 end-page: 26 article-title: MR relaxation in multiple sclerosis publication-title: Neuroimaging Clin N Am – volume: 30 start-page: 304 year: 2006 end-page: 306 article-title: Myelin water fraction in human cervical spinal cord in vivo publication-title: J Comput Assist Tomogr – volume: 16 start-page: 643 year: 2010 end-page: 651 article-title: Quantitative magnetic resonance imaging assessment of matrix development in cell‐seeded natural urinary bladder smooth muscle tissue‐engineered constructs publication-title: Tissue Eng Part C Methods – volume: 12 start-page: 739 year: 2000 end-page: 746 article-title: T2 relaxometry can lateralize mesial temporal lobe epilepsy in patients with normal MRI publication-title: Neuroimage – volume: 54 start-page: 725 year: 2005 end-page: 731 article-title: Full‐brain T1 mapping through inversion recovery fast spin echo imaging with time‐efficient slice ordering publication-title: Magn Reson Med – volume: 251 start-page: 284 year: 2004 end-page: 293 article-title: Water content and myelin water fraction in multiple sclerosis. A T2 relaxation study publication-title: J Neurol – volume: 34 start-page: 229 year: 2000 end-page: 246 article-title: Bone and soft tissue tumors: the role of contrast agents for MR imaging publication-title: Eur J Radiol – volume: 66 start-page: 1739 year: 2011 end-page: 1747 article-title: Myocardial BOLD imaging at 3 T using quantitative T2: application in a myocardial infarct model publication-title: Magn Reson Med – volume: 91 start-page: 161 year: 1995 end-page: 170 article-title: Myocardial fibrosis and stiffness with hypertrophy and heart failure in the spontaneously hypertensive rat publication-title: Circulation – volume: 21 start-page: 891 year: 2000 end-page: 899 article-title: Quantitative measurement of microvascular permeability in human brain tumors achieved using dynamic contrast‐enhanced MR imaging: correlation with histologic grade publication-title: AJNR Am J Neuroradiol – volume: 36 start-page: 14 year: 1994 end-page: 18 article-title: Are magnetic resonance findings predictive of clinical outcome in therapeutic trials in multiple sclerosis? The dilemma of interferon‐beta publication-title: Ann Neurol – volume: 65 start-page: 377 year: 2011 end-page: 384 article-title: Mapping proteoglycan‐bound water in cartilage: improved specificity of matrix assessment using multiexponential transverse relaxation analysis publication-title: Magn Reson Med – volume: 49 start-page: 793 year: 2001 end-page: 796 article-title: A longitudinal MRI study of histopathologically defined hypointense multiple sclerosis lesions publication-title: Ann Neurol – volume: 64 start-page: 536 year: 2010 end-page: 545 article-title: A technique for rapid single‐echo spin‐echo T2 mapping publication-title: Magn Reson Med – volume: 52 start-page: 141 year: 2004 end-page: 146 article-title: Modified Look‐Locker inversion recovery (MOLLI) for high‐resolution T1 mapping of the heart publication-title: Magn Reson Med – volume: 23 start-page: 9 year: 2006 end-page: 16 article-title: Improved R2* measurements in myocardial iron overload publication-title: J Magn Reson Imaging – volume: 182 start-page: 167 year: 2004 end-page: 172 article-title: Glycosaminoglycan distribution in cartilage as determined by delayed gadolinium‐enhanced MRI of cartilage (dGEMRIC): potential clinical applications publication-title: AJR Am J Roentgenol – volume: 4 start-page: 425 year: 1986 end-page: 429 article-title: Relaxation times in relation to grade of malignancy and tissue necrosis in astrocytic gliomas publication-title: Magn Reson Imaging – volume: 66 start-page: 725 year: 2011 end-page: 734 article-title: Cross‐relaxation imaging of human articular cartilage publication-title: Magn Reson Med – volume: 30 start-page: 1440 year: 2009 end-page: 1449 article-title: Impact of myocardial haemorrhage on left ventricular function and remodelling in patients with reperfused acute myocardial infarction publication-title: Eur Heart J – volume: 20 start-page: 205 year: 1990 end-page: 211 article-title: Detection of intramyocardial hemorrhage using high‐field proton (1H) nuclear magnetic resonance imaging publication-title: Cathet Cardiovasc Diagn – volume: 191 start-page: 41 year: 1994 end-page: 51 article-title: Cerebral blood volume maps of gliomas: comparison with tumor grade and histologic findings publication-title: Radiology – volume: 31 start-page: 673 year: 1994 end-page: 677 article-title: In vivo visualization of myelin water in brain by magnetic resonance publication-title: Magn Reson Med – volume: 123 start-page: 1519 year: 2011 end-page: 1528 article-title: On T2* magnetic resonance and cardiac iron publication-title: Circulation – volume: 7 start-page: 5 year: 1997 end-page: 13 article-title: Principles of contrast enhancement in the evaluation of brain diseases: an overview publication-title: J Magn Reson Imaging – volume: 73 start-page: 679 year: 1948 article-title: Relaxation effects in nuclear magnetic resonance absorbtion publication-title: Phys Rev – volume: 122 start-page: 1895 year: 2002 end-page: 1901 article-title: Clinical significance of myocardial magnetic resonance abnormalities in patients with sarcoidosis: a 1‐year follow‐up study publication-title: Chest – volume: 57 start-page: 891 year: 2011 end-page: 903 article-title: Assessment of myocardial fibrosis with cardiovascular magnetic resonance publication-title: J Am Coll Cardiol – volume: 66 start-page: 1129 year: 2011 end-page: 1141 article-title: Quantitative tracking of edema, hemorrhage, and microvascular obstruction in subacute myocardial infarction in a porcine model by MRI publication-title: Magn Reson Med – volume: 55 start-page: 566 year: 2006 end-page: 574 article-title: Rapid high‐resolution T(1) mapping by variable flip angles: accurate and precise measurements in the presence of radiofrequency field inhomogeneity publication-title: Magn Reson Med – volume: 45 start-page: 2233 year: 1995 end-page: 2240 article-title: Quantitative hippocampal MRI and intractable temporal lobe epilepsy publication-title: Neurology – volume: 13 start-page: 181 issue: Pt 3 year: 2010 end-page: 188 article-title: Segmentation of cortical MS lesions on MRI using automated laminar profile shape analysis publication-title: Med Image Comput Comput Assist Interv – volume: 37 start-page: 34 year: 1997 end-page: 43 article-title: In vivo measurement of T2 distributions and water contents in normal human brain publication-title: Magn Reson Med – volume: 54 start-page: 1185 year: 2005 end-page: 1193 article-title: Mechanisms of tissue‐iron relaxivity: nuclear magnetic resonance studies of human liver biopsy specimens publication-title: Magn Reson Med – volume: 11 start-page: 20 year: 2009 article-title: The efficacy of iron chelator regimes in reducing cardiac and hepatic iron in patients with thalassaemia major: a clinical observational study publication-title: J Cardiovasc Magn Reson – volume: 240 start-page: 811 year: 2006 end-page: 820 article-title: Whole‐brain T1 mapping in multiple sclerosis: global changes of normal‐appearing gray and white matter publication-title: Radiology – volume: 27 start-page: 869 year: 1997 end-page: 872 article-title: Iron overload following bone marrow transplantation in children: MR findings publication-title: Pediatr Radiol – ident: e_1_2_8_112_2 doi: 10.1002/jmri.22660 – ident: e_1_2_8_121_2 doi: 10.1016/S0730-725X(98)00112-X – ident: e_1_2_8_14_2 doi: 10.1002/ana.1053 – ident: e_1_2_8_59_2 doi: 10.1007/s00247-006-0166-6 – ident: e_1_2_8_11_2 doi: 10.1148/radiol.2403050569 – ident: e_1_2_8_23_2 doi: 10.1016/0730-725X(86)90051-2 – ident: e_1_2_8_82_2 doi: 10.1093/eurheartj/ehp093 – ident: e_1_2_8_131_2 doi: 10.1002/mrm.20479 – ident: e_1_2_8_98_2 doi: 10.1002/jmri.21028 – ident: e_1_2_8_67_2 doi: 10.1097/01.RVI.0000182179.87340.D7 – ident: e_1_2_8_66_2 doi: 10.1016/j.acra.2011.04.016 – ident: e_1_2_8_55_2 doi: 10.1002/mrm.22865 – ident: e_1_2_8_69_2 doi: 10.1016/j.mri.2006.08.004 – ident: e_1_2_8_130_2 doi: 10.1002/mrm.21704 – ident: e_1_2_8_54_2 doi: 10.1089/ten.tec.2009.0099 – ident: e_1_2_8_101_2 doi: 10.1016/j.jacc.2010.11.013 – ident: e_1_2_8_135_2 doi: 10.1016/j.mri.2005.10.016 – ident: e_1_2_8_7_2 doi: 10.1016/j.mri.2004.10.001 – volume: 4 start-page: 1861 year: 1994 ident: e_1_2_8_58_2 article-title: Evaluation of quantitative magnetic resonance imaging as a noninvasive technique for measuring renal scarring in a rabbit model of antiglomerular basement membrane disease publication-title: J Am Soc Nephrol doi: 10.1681/ASN.V4111861 – ident: e_1_2_8_63_2 doi: 10.1007/s10334-004-0068-2 – ident: e_1_2_8_22_2 doi: 10.1586/ern.10.129 – ident: e_1_2_8_106_2 doi: 10.1002/mrm.20110 – ident: e_1_2_8_27_2 doi: 10.1002/mrm.22005 – ident: e_1_2_8_48_2 doi: 10.1097/00002142-199812000-00002 – ident: e_1_2_8_2_2 doi: 10.1103/PhysRev.73.679 – ident: e_1_2_8_43_2 doi: 10.1196/annals.1345.047 – ident: e_1_2_8_29_2 doi: 10.1148/radiology.191.1.8134596 – ident: e_1_2_8_89_2 doi: 10.1161/01.CIR.0000039475.66067.DC – ident: e_1_2_8_5_2 doi: 10.1136/jnnp.50.1.37 – ident: e_1_2_8_9_2 doi: 10.1093/brain/121.1.3 – ident: e_1_2_8_42_2 doi: 10.1182/blood-2004-01-0177 – ident: e_1_2_8_139_2 doi: 10.1002/ajh.23114 – ident: e_1_2_8_103_2 doi: 10.1002/mrm.20602 – ident: e_1_2_8_78_2 doi: 10.1148/radiology.189.1.8372185 – ident: e_1_2_8_46_2 doi: 10.1002/jmri.21490 – ident: e_1_2_8_68_2 doi: 10.1148/radiol.2281011651 – ident: e_1_2_8_73_2 doi: 10.1161/CIRCULATIONAHA.110.007641 – ident: e_1_2_8_28_2 doi: 10.1002/jmri.1880070103 – ident: e_1_2_8_72_2 doi: 10.1053/euhj.2001.2822 – ident: e_1_2_8_111_2 doi: 10.1088/0031-9155/56/5/001 – ident: e_1_2_8_45_2 doi: 10.1097/RLI.0b013e3181862413 – ident: e_1_2_8_52_2 doi: 10.1002/nbm.1063 – volume: 22 start-page: 637 year: 2001 ident: e_1_2_8_33_2 article-title: Evolution of apparent diffusion coefficient, diffusion‐weighted, and T2‐weighted signal intensity of acute stroke publication-title: AJNR Am J Neuroradiol – ident: e_1_2_8_110_2 doi: 10.1016/j.mri.2010.08.009 – ident: e_1_2_8_37_2 doi: 10.1016/j.neuroimage.2004.06.009 – ident: e_1_2_8_127_2 doi: 10.1002/mrm.20697 – ident: e_1_2_8_95_2 doi: 10.1093/eurheartj/ehl255 – ident: e_1_2_8_47_2 doi: 10.1186/1532-429X-11-20 – ident: e_1_2_8_102_2 doi: 10.1002/mrm.22497 – ident: e_1_2_8_26_2 doi: 10.1002/(SICI)1522-2586(199909)10:3<223::AID-JMRI2>3.0.CO;2-S – ident: e_1_2_8_20_2 doi: 10.1177/1352458506070928 – ident: e_1_2_8_53_2 doi: 10.1002/art.20062 – ident: e_1_2_8_141_2 doi: 10.1002/mrm.22657 – ident: e_1_2_8_71_2 doi: 10.1055/s-0029-1245373 – ident: e_1_2_8_24_2 doi: 10.1016/0730-725X(94)00126-N – ident: e_1_2_8_84_2 doi: 10.1002/ccd.1810200313 – ident: e_1_2_8_18_2 doi: 10.1177/1352458509350306 – ident: e_1_2_8_125_2 doi: 10.1002/jmri.20467 – ident: e_1_2_8_61_2 doi: 10.1007/s00247-007-0449-6 – ident: e_1_2_8_16_2 doi: 10.1016/0730-725X(90)90041-Y – ident: e_1_2_8_142_2 doi: 10.1161/01.CIR.56.5.786 – ident: e_1_2_8_50_2 doi: 10.22203/eCM.v013a08 – ident: e_1_2_8_12_2 doi: 10.1001/archneur.64.3.411 – volume: 137 start-page: 301 year: 1990 ident: e_1_2_8_83_2 article-title: Determinants of hemorrhagic infarcts. Histologic observations from experiments involving coronary occlusion, coronary reperfusion, and reocclusion publication-title: Am J Pathol – ident: e_1_2_8_117_2 doi: 10.1186/1532-429X-12-S1-P179 – ident: e_1_2_8_21_2 doi: 10.1016/j.nic.2008.09.007 – ident: e_1_2_8_39_2 doi: 10.1212/WNL.45.12.2233 – ident: e_1_2_8_13_2 doi: 10.1177/1352458509359924 – ident: e_1_2_8_93_2 doi: 10.1002/jmri.21119 – year: 2011 ident: e_1_2_8_120_2 article-title: Applications of stimulated echo correction to multicomponent T(2) analysis publication-title: Magn Reson Med – ident: e_1_2_8_94_2 doi: 10.1109/TMI.2009.2023515 – ident: e_1_2_8_143_2 doi: 10.1056/NEJMra071667 – ident: e_1_2_8_65_2 doi: 10.1002/jmri.21265 – ident: e_1_2_8_97_2 doi: 10.1378/chest.122.6.1895 – volume: 50 start-page: 1282 year: 1998 ident: e_1_2_8_15_2 article-title: Histopathologic correlate of hypointense lesions on T1‐weighted spin‐echo MRI in multiple sclerosis publication-title: Neurology doi: 10.1212/WNL.50.5.1282 – ident: e_1_2_8_25_2 doi: 10.1148/radiology.169.3.3187000 – volume: 21 start-page: 891 year: 2000 ident: e_1_2_8_30_2 article-title: Quantitative measurement of microvascular permeability in human brain tumors achieved using dynamic contrast‐enhanced MR imaging: correlation with histologic grade publication-title: AJNR Am J Neuroradiol – ident: e_1_2_8_77_2 doi: 10.1093/eurheartj/ehn416 – ident: e_1_2_8_56_2 doi: 10.1097/JSA.0b013e31818cdcaf – ident: e_1_2_8_62_2 doi: 10.1016/S0720-048X(00)00202-3 – ident: e_1_2_8_60_2 doi: 10.1093/rheumatology/keh130 – volume: 29 start-page: 587 year: 1988 ident: e_1_2_8_99_2 article-title: Diagnosis of acute and chronic cardiac rejection by magnetic resonance imaging: a non‐invasive in‐vivo study publication-title: J Cardiovasc Surg (Torino) – ident: e_1_2_8_3_2 doi: 10.1002/mrm.1910030511 – ident: e_1_2_8_41_2 doi: 10.1111/j.1365-2141.1990.tb02596.x – ident: e_1_2_8_88_2 doi: 10.1002/(SICI)1522-2594(199904)41:4<686::AID-MRM6>3.0.CO;2-9 – ident: e_1_2_8_31_2 doi: 10.1161/01.STR.18.2.342 – ident: e_1_2_8_32_2 doi: 10.1002/(SICI)1522-2594(200001)43:1<52::AID-MRM7>3.0.CO;2-5 – ident: e_1_2_8_4_2 doi: 10.1007/978-1-61737-992-5_4 – ident: e_1_2_8_122_2 doi: 10.1002/jmri.20469 – ident: e_1_2_8_92_2 doi: 10.1161/CIRCULATIONAHA.106.653568 – ident: e_1_2_8_133_2 doi: 10.1007/s00415-004-0306-6 – volume: 64 start-page: 1005 ident: e_1_2_8_119_2 article-title: Transverse relaxometry with stimulated echo compensation publication-title: Magn Reson Med doi: 10.1002/mrm.22487 – ident: e_1_2_8_80_2 doi: 10.1186/1532-429X-11-56 – ident: e_1_2_8_74_2 doi: 10.1002/mrm.20981 – ident: e_1_2_8_116_2 doi: 10.1002/mrm.1910330515 – ident: e_1_2_8_134_2 doi: 10.1097/00004728-200603000-00026 – ident: e_1_2_8_19_2 doi: 10.1002/mrm.1910310614 – ident: e_1_2_8_144_2 doi: 10.1002/jmri.21345 – ident: e_1_2_8_115_2 doi: 10.1002/mrm.20159 – ident: e_1_2_8_64_2 doi: 10.1007/s00330-002-1366-6 – ident: e_1_2_8_108_2 doi: 10.1002/mrm.10407 – ident: e_1_2_8_123_2 doi: 10.1002/mrm.21143 – ident: e_1_2_8_10_2 doi: 10.1002/ana.410360106 – ident: e_1_2_8_100_2 doi: 10.1161/01.CIR.91.1.161 – ident: e_1_2_8_129_2 doi: 10.1021/j150556a015 – ident: e_1_2_8_107_2 – ident: e_1_2_8_124_2 doi: 10.1002/jmri.21835 – ident: e_1_2_8_105_2 doi: 10.1063/1.1684482 – ident: e_1_2_8_86_2 doi: 10.1002/mrm.21079 – ident: e_1_2_8_128_2 doi: 10.1002/(SICI)1522-2586(199906)9:6<814::AID-JMRI8>3.0.CO;2-5 – ident: e_1_2_8_36_2 doi: 10.1212/01.WNL.0000149642.93493.F4 – volume: 13 start-page: 181 issue: 3 year: 2010 ident: e_1_2_8_17_2 article-title: Segmentation of cortical MS lesions on MRI using automated laminar profile shape analysis publication-title: Med Image Comput Comput Assist Interv – ident: e_1_2_8_113_2 doi: 10.1002/mrm.1910370107 – ident: e_1_2_8_96_2 doi: 10.1148/radiology.215.1.r00ap07189 – ident: e_1_2_8_118_2 doi: 10.1016/0022-2364(88)90128-X – ident: e_1_2_8_51_2 doi: 10.2214/ajr.182.1.1820167 – ident: e_1_2_8_91_2 doi: 10.1161/CIRCULATIONAHA.106.613414 – ident: e_1_2_8_81_2 doi: 10.1002/mrm.22855 – ident: e_1_2_8_75_2 doi: 10.1016/j.trsl.2006.05.005 – volume-title: Quantitative MRI of the brain: measuring changes caused by disease year: 2005 ident: e_1_2_8_8_2 – ident: e_1_2_8_40_2 doi: 10.1006/nimg.2000.0724 – ident: e_1_2_8_85_2 doi: 10.1148/radiol.10100416 – ident: e_1_2_8_126_2 doi: 10.1002/mrm.22673 – ident: e_1_2_8_132_2 doi: 10.1002/mrm.1910400518 – ident: e_1_2_8_137_2 doi: 10.1182/blood-2004-10-3982 – ident: e_1_2_8_34_2 doi: 10.1002/jmri.21328 – ident: e_1_2_8_57_2 doi: 10.1002/jmri.1148 – ident: e_1_2_8_87_2 doi: 10.1056/NEJM199407283310402 – ident: e_1_2_8_136_2 doi: 10.1002/jmri.20231 – ident: e_1_2_8_138_2 doi: 10.1007/s00330-007-0683-1 – ident: e_1_2_8_79_2 doi: 10.1016/j.jacc.2008.01.019 – ident: e_1_2_8_35_2 doi: 10.1016/0920-1211(88)90008-3 – ident: e_1_2_8_90_2 doi: 10.1002/mrm.22972 – ident: e_1_2_8_140_2 doi: 10.1007/s002470050259 – ident: e_1_2_8_109_2 doi: 10.1002/mrm.20791 – ident: e_1_2_8_76_2 doi: 10.1002/mrm.21660 – ident: e_1_2_8_70_2 doi: 10.1259/0007-1285-62-737-433 – ident: e_1_2_8_114_2 doi: 10.1002/mrm.22454 – ident: e_1_2_8_104_2 doi: 10.1002/mrm.1910180123 – ident: e_1_2_8_6_2 doi: 10.1016/j.neuroimage.2010.03.005 – ident: e_1_2_8_49_2 doi: 10.1007/s00330-006-0453-5 – ident: e_1_2_8_44_2 doi: 10.1002/jmri.21707 – ident: e_1_2_8_38_2 doi: 10.1111/j.1528-1157.1998.tb01353.x |
SSID | ssj0009945 |
Score | 2.4756503 |
SecondaryResourceType | review_article |
Snippet | Conventional MR images are qualitative, and their signal intensity is dependent on several complementary contrast mechanisms that are manipulated by the MR... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 805 |
SubjectTerms | Humans Image Enhancement - methods iron overload Magnetic Resonance Imaging - methods multiple sclerosis myocardial infarction relaxation T1 relaxation T2 relaxation |
Title | Practical medical applications of quantitative MR relaxometry |
URI | https://api.istex.fr/ark:/67375/WNG-JQJKMNT0-D/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjmri.23718 https://www.ncbi.nlm.nih.gov/pubmed/22987758 https://www.proquest.com/docview/1041141660 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS9xAEB9EofTF2g812paUFkEhZ5LN3mahfSh-1F7JgYeiL7LsJ1S9nJ53YPvXdz_ucioi2Lc8TJbNzO7sbzMzvwH4wrkiWaZwgmlmkoKWKhGlJolRmRYl0RIVrlC46rYPjovOKT6dg6_TWpjAD9H8cHM7w_trt8G5uNmekYae94e_WzmyvtU6YJes5RBRb8YdRanvUGzxA0qyMiUNN2m-PXv13mm04BR7-xjUvI9c_dGz_wrOppMOGScXrfFItOTfB3yO__tVS7A4waTx97CIXsOcrt_Ai2oSdX8L3wKpkbVm3A9xnfhu3DsemPh6zGtfrmadZ1z1Ylciczvo69Hwzzs43t872jlIJm0XEunaSSa5lCjTPDNthQvOU4QFNUILKpXCUhZUYG2sgWVBEEoNMVoqx7In05IKZChahvl6UOtViJErq00lJsbCCKOwsPiGYguRVJEbe_GJYHOqfiYnnOSuNcYlC2zKOXP6YF4fEXxuZK8CE8ejUhveio0IH1643DWC2Un3B-scdn5V3aOU7UbwaWpmZneUC5PwWg_GN3bEwl4Ss3Y7jWAl2L8ZLc9pSewVK4Itb8UnZsI6Ve-nf1p7jvA6vLSYLA_5gu9hfjQc6w8W94zER7--_wGtjP3o |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED_BJgEvG9-EzyAQEkjpkjiu4wceEGN03VKJqtP2ZsVfEoymo2ulsb8en52lDE1I8JaHi5Xcne2ffXe_A3hd15plmaYJ5ZlNCl7qRJaGJVZnRpbMKFJgoXA16g8OiuERPWpzc7AWJvBDdBduODP8eo0THC-kt1asod-m86-9nLjF9TqsY0tvpM7fHq_Yozj3PYodgiBJVqasYyfNt1bvXtqP1lG1Z1eBzcvY1W8-O5uhw-qp5yzEnJPj3nIhe-r8D0bH__6v27DRwtL4Q_CjO3DNNHfhRtUG3u_B-8Br5AwaT0NoJ_499B3PbPxjWTe-Ys2tn3E1jrFK5mw2NYv5z_twsPNp8nGQtJ0XEoUdJZNcKZKZOrN9TYu6TgmV3EojudKaKlVwSY11NlYFIyS1zBqlkWhPpSWXxHLyANaaWWMeQUywsjZVlFmHJKym0kEcTh1K0kVu3dkngrcX-heqpSXH7hjfRSBUzgXqQ3h9RPCqkz0JZBxXSr3xZuxE6vkxpq8xKg5Hn8Xwy3CvGk1SsR3Byws7CzepMFJSN2a2PHUjFu6cmPX7aQQPgwN0o-U5L5k7ZUXwzpvxL18ihtV41z89_hfhF3BzMKn2xf7uaO8J3HIQLQ_pg09hbTFfmmcOBi3kc-_svwCG6QIT |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NTZp44WN8BQbLBEICKV0S23EswQNa6baOVFBtYi_Iir8kGE1H10qDvx5_tClDExJ7y8PFcu7s8-9yvt8BvKhrRbNMkYSwzCSYlSoRpaaJUZkWJdUSYVcoXA2K_WPcPyEnK_BmUQsT-CHaH25uZ3h_7Tb4mTI7S9LQb6PJ106OrG-9AWu4SJlr3NAdLsmjGPMtii2AQElWprQlJ813lu9eOo7WnGYvrsKal6GrP3t6t-HLYtbhyslpZzYVHfnrL0LH637WHbg1B6Xxu7CK7sKKbjZgvZqn3e_B28BqZM0Zj0JiJ_4z8R2PTfxjVje-Xs16z7gaxq5G5mI80tPJz_tw3Ht_tLufzPsuJNL1k0xyKVGm68wUiuC6ThERzAgtmFSKSImZINpYC0tMEUoNNVoqR7Mn05IJZBh6AKvNuNGPIEaurjaVhBqLI4wiwgIcRixGUjg3NvKJ4NVC_VzOScldb4zvPNAp59zpg3t9RPC8lT0LVBxXSr30VmxF6smpu7xGCf882OP9T_3DanCU8m4E2wszc7ulXJ6kbvR4dm5HxDZKzIoijeBhsH87Wp6zktoYK4LX3or_mAnvV8MD__T4f4S3YP1jt8c_HAwOn8BNi8_ycHdwE1ank5l-ajHQVDzzS_03hHMAwg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Practical+medical+applications+of+quantitative+MR+relaxometry&rft.jtitle=Journal+of+magnetic+resonance+imaging&rft.au=Cheng%2C+Hai-Ling+Margaret&rft.au=Stikov%2C+Nikola&rft.au=Ghugre%2C+Nilesh+R&rft.au=Wright%2C+Graham+A&rft.date=2012-10-01&rft.issn=1522-2586&rft.eissn=1522-2586&rft.volume=36&rft.issue=4&rft.spage=805&rft_id=info:doi/10.1002%2Fjmri.23718&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-1807&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-1807&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-1807&client=summon |