Fibrin Stiffness Regulates Phenotypic Plasticity of Metastatic Breast Cancer Cells
The extracellular matrix (ECM)‐regulated phenotypic plasticity is crucial for metastatic progression of triple negative breast cancer (TNBC). While ECM faithful cell‐based models are available for in situ and invasive tumors, such as cell aggregate cultures in reconstituted basement membrane and in...
Saved in:
Published in | Advanced healthcare materials Vol. 12; no. 31; pp. e2301137 - n/a |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.12.2023
John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The extracellular matrix (ECM)‐regulated phenotypic plasticity is crucial for metastatic progression of triple negative breast cancer (TNBC). While ECM faithful cell‐based models are available for in situ and invasive tumors, such as cell aggregate cultures in reconstituted basement membrane and in collagenous gels, there are no ECM faithful models for metastatic circulating tumor cells (CTCs). Such models are essential to represent the stage of metastasis where clinical relevance and therapeutic opportunities are significant. Here, CTC‐like DU4475 TNBC cells are cultured in mechanically tunable 3D fibrin hydrogels. This is motivated, as in circulation fibrin aids CTC survival by forming a protective coating reducing shear stress and immune cell‐mediated cytotoxicity and promotes several stages of late metastatic processes at the interface between circulation and tissue. This work shows that fibrin hydrogels support DU4475 cell growth, resulting in spheroid formation. Furthermore, increasing fibrin stiffness from 57 to 175 Pa leads to highly motile, actin and tubulin containing cellular protrusions, which are associated with specific cell morphology and gene expression patterns that markedly differ from basement membrane or suspension cultures. Thus, mechanically tunable fibrin gels reveal specific matrix‐based regulation of TNBC cell phenotype and offer scaffolds for CTC‐like cells with better mechano‐biological properties than liquid.
3D fibrin gels are used to model the phenotypic plasticity of circulating tumor cells (CTCs) ‐like breast cancer cells. Compared with standard 3D culture conditions, cells in fibrin gels show unique gene expression signatures. The cell phenotype is subject to regulation by matrix mechanical properties, with stiff fibrin inducing dynamic cell protrusions that resemble prometastatic structures. |
---|---|
AbstractList | The extracellular matrix (ECM)-regulated phenotypic plasticity is crucial for metastatic progression of triple negative breast cancer (TNBC). While ECM faithful cell-based models are available for in situ and invasive tumors, such as cell aggregate cultures in reconstituted basement membrane and in collagenous gels, there are no ECM faithful models for metastatic circulating tumor cells (CTCs). Such models are essential to represent the stage of metastasis where clinical relevance and therapeutic opportunities are significant. Here, CTC-like DU4475 TNBC cells are cultured in mechanically tunable 3D fibrin hydrogels. This is motivated, as in circulation fibrin aids CTC survival by forming a protective coating reducing shear stress and immune cell-mediated cytotoxicity and promotes several stages of late metastatic processes at the interface between circulation and tissue. This work shows that fibrin hydrogels support DU4475 cell growth, resulting in spheroid formation. Furthermore, increasing fibrin stiffness from 57 to 175 Pa leads to highly motile, actin and tubulin containing cellular protrusions, which are associated with specific cell morphology and gene expression patterns that markedly differ from basement membrane or suspension cultures. Thus, mechanically tunable fibrin gels reveal specific matrix-based regulation of TNBC cell phenotype and offer scaffolds for CTC-like cells with better mechano-biological properties than liquid. The extracellular matrix (ECM)‐regulated phenotypic plasticity is crucial for metastatic progression of triple negative breast cancer (TNBC). While ECM faithful cell‐based models are available for in situ and invasive tumors, such as cell aggregate cultures in reconstituted basement membrane and in collagenous gels, there are no ECM faithful models for metastatic circulating tumor cells (CTCs). Such models are essential to represent the stage of metastasis where clinical relevance and therapeutic opportunities are significant. Here, CTC‐like DU4475 TNBC cells are cultured in mechanically tunable 3D fibrin hydrogels. This is motivated, as in circulation fibrin aids CTC survival by forming a protective coating reducing shear stress and immune cell‐mediated cytotoxicity and promotes several stages of late metastatic processes at the interface between circulation and tissue. This work shows that fibrin hydrogels support DU4475 cell growth, resulting in spheroid formation. Furthermore, increasing fibrin stiffness from 57 to 175 Pa leads to highly motile, actin and tubulin containing cellular protrusions, which are associated with specific cell morphology and gene expression patterns that markedly differ from basement membrane or suspension cultures. Thus, mechanically tunable fibrin gels reveal specific matrix‐based regulation of TNBC cell phenotype and offer scaffolds for CTC‐like cells with better mechano‐biological properties than liquid. The extracellular matrix (ECM)‐regulated phenotypic plasticity is crucial for metastatic progression of triple negative breast cancer (TNBC). While ECM faithful cell‐based models are available for in situ and invasive tumors, such as cell aggregate cultures in reconstituted basement membrane and in collagenous gels, there are no ECM faithful models for metastatic circulating tumor cells (CTCs). Such models are essential to represent the stage of metastasis where clinical relevance and therapeutic opportunities are significant. Here, CTC‐like DU4475 TNBC cells are cultured in mechanically tunable 3D fibrin hydrogels. This is motivated, as in circulation fibrin aids CTC survival by forming a protective coating reducing shear stress and immune cell‐mediated cytotoxicity and promotes several stages of late metastatic processes at the interface between circulation and tissue. This work shows that fibrin hydrogels support DU4475 cell growth, resulting in spheroid formation. Furthermore, increasing fibrin stiffness from 57 to 175 Pa leads to highly motile, actin and tubulin containing cellular protrusions, which are associated with specific cell morphology and gene expression patterns that markedly differ from basement membrane or suspension cultures. Thus, mechanically tunable fibrin gels reveal specific matrix‐based regulation of TNBC cell phenotype and offer scaffolds for CTC‐like cells with better mechano‐biological properties than liquid. 3D fibrin gels are used to model the phenotypic plasticity of circulating tumor cells (CTCs) ‐like breast cancer cells. Compared with standard 3D culture conditions, cells in fibrin gels show unique gene expression signatures. The cell phenotype is subject to regulation by matrix mechanical properties, with stiff fibrin inducing dynamic cell protrusions that resemble prometastatic structures. The extracellular matrix (ECM)-regulated phenotypic plasticity is crucial for metastatic progression of triple negative breast cancer (TNBC). While ECM faithful cell-based models are available for in situ and invasive tumors, such as cell aggregate cultures in reconstituted basement membrane and in collagenous gels, there are no ECM faithful models for metastatic circulating tumor cells (CTCs). Such models are essential to represent the stage of metastasis where clinical relevance and therapeutic opportunities are significant. Here, CTC-like DU4475 TNBC cells are cultured in mechanically tunable 3D fibrin hydrogels. This is motivated, as in circulation fibrin aids CTC survival by forming a protective coating reducing shear stress and immune cell-mediated cytotoxicity and promotes several stages of late metastatic processes at the interface between circulation and tissue. This work shows that fibrin hydrogels support DU4475 cell growth, resulting in spheroid formation. Furthermore, increasing fibrin stiffness from 57 to 175 Pa leads to highly motile, actin and tubulin containing cellular protrusions, which are associated with specific cell morphology and gene expression patterns that markedly differ from basement membrane or suspension cultures. Thus, mechanically tunable fibrin gels reveal specific matrix-based regulation of TNBC cell phenotype and offer scaffolds for CTC-like cells with better mechano-biological properties than liquid.The extracellular matrix (ECM)-regulated phenotypic plasticity is crucial for metastatic progression of triple negative breast cancer (TNBC). While ECM faithful cell-based models are available for in situ and invasive tumors, such as cell aggregate cultures in reconstituted basement membrane and in collagenous gels, there are no ECM faithful models for metastatic circulating tumor cells (CTCs). Such models are essential to represent the stage of metastasis where clinical relevance and therapeutic opportunities are significant. Here, CTC-like DU4475 TNBC cells are cultured in mechanically tunable 3D fibrin hydrogels. This is motivated, as in circulation fibrin aids CTC survival by forming a protective coating reducing shear stress and immune cell-mediated cytotoxicity and promotes several stages of late metastatic processes at the interface between circulation and tissue. This work shows that fibrin hydrogels support DU4475 cell growth, resulting in spheroid formation. Furthermore, increasing fibrin stiffness from 57 to 175 Pa leads to highly motile, actin and tubulin containing cellular protrusions, which are associated with specific cell morphology and gene expression patterns that markedly differ from basement membrane or suspension cultures. Thus, mechanically tunable fibrin gels reveal specific matrix-based regulation of TNBC cell phenotype and offer scaffolds for CTC-like cells with better mechano-biological properties than liquid. |
Author | Pokki, Juho Ikkala, Olli Nonappa Heilala, Maria Arasalo, Ossi Peura, Aino Klefström, Juha Lehtonen, Arttu Munne, Pauliina M. |
AuthorAffiliation | 1 Department of Applied Physics Aalto University P.O. Box 15100 Aalto Espoo FI‐00076 Finland 2 Department of Electrical Engineering and Automation Aalto University P.O. Box 12200 Aalto Espoo FI‐00076 Finland 4 Faculty of Engineering and Natural Sciences Tampere University P.O. Box 541 Tampere FI‐33720 Finland 3 Finnish Cancer Institute and FICAN South Helsinki University Hospital & Cancer Cell Circuitry Laboratory Translational Cancer Medicine Medical Faculty University of Helsinki P.O. Box 63 (Haartmaninkatu 8) Helsinki 00014 Finland |
AuthorAffiliation_xml | – name: 2 Department of Electrical Engineering and Automation Aalto University P.O. Box 12200 Aalto Espoo FI‐00076 Finland – name: 1 Department of Applied Physics Aalto University P.O. Box 15100 Aalto Espoo FI‐00076 Finland – name: 3 Finnish Cancer Institute and FICAN South Helsinki University Hospital & Cancer Cell Circuitry Laboratory Translational Cancer Medicine Medical Faculty University of Helsinki P.O. Box 63 (Haartmaninkatu 8) Helsinki 00014 Finland – name: 4 Faculty of Engineering and Natural Sciences Tampere University P.O. Box 541 Tampere FI‐33720 Finland |
Author_xml | – sequence: 1 givenname: Maria orcidid: 0000-0002-4237-4081 surname: Heilala fullname: Heilala, Maria organization: Aalto University – sequence: 2 givenname: Arttu surname: Lehtonen fullname: Lehtonen, Arttu organization: Aalto University – sequence: 3 givenname: Ossi surname: Arasalo fullname: Arasalo, Ossi organization: Aalto University – sequence: 4 givenname: Aino surname: Peura fullname: Peura, Aino organization: University of Helsinki – sequence: 5 givenname: Juho surname: Pokki fullname: Pokki, Juho organization: Aalto University – sequence: 6 givenname: Olli surname: Ikkala fullname: Ikkala, Olli organization: Aalto University – sequence: 7 surname: Nonappa fullname: Nonappa email: nonappa@tuni.fi organization: Tampere University – sequence: 8 givenname: Juha surname: Klefström fullname: Klefström, Juha organization: University of Helsinki – sequence: 9 givenname: Pauliina M. orcidid: 0000-0002-9720-9964 surname: Munne fullname: Munne, Pauliina M. email: pauliina.munne@helsinki.fi organization: University of Helsinki |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37671812$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUUFvFCEYJaaNrbVXj4bEi5dd-RiGGU6mrtaatLGpeiYM89GlmYUVZjT772WzdbVNjFz4gPce7_veM3IQYkBCXgCbA2P8jemXqzlnvGIAVfOEHHNQfMZlrQ72tWBH5DTnO1aWrEG28JQcVY1soAV-TG7OfZd8oF9G71zAnOkN3k6DGTHT6yWGOG7W3tLrweTRWz9uaHT0CsdyNOWCvktYSrowwWKiCxyG_JwcOjNkPL3fT8i38w9fFxezy88fPy3OLmdWSNXMUPC-rRw3jROuVkZK6ARvZW9li50SjLnKVtJURvbIuqYzbS2EUT04Bawy1Ql5u9NdT90Ke4thTGbQ6-RXJm10NF4_fAl-qW_jDw1QDHDFi8Lre4UUv0-YR73y2ZYeTMA4ZV3cgBQ156JAXz2C3sUphdKf5opBUzecQ0G9_NvS3svveRfAfAewKeac0O0hwPQ2U73NVO8zLQTxiFBCKJOP25b88G-a2tF--gE3__lEn72_uPrD_QXaKLXs |
CitedBy_id | crossref_primary_10_1021_acsbiomaterials_4c01319 crossref_primary_10_1007_s42247_024_00762_6 |
Cites_doi | 10.1038/s41416-021-01328-7 10.1073/pnas.0506580102 10.1002/jbm.a.37191 10.1016/j.jbiosc.2008.12.013 10.1016/j.celrep.2019.12.056 10.21873/anticanres.13290 10.1007/s10555-008-9169-0 10.1016/j.ceb.2020.08.012 10.1186/s12885-016-2766-3 10.1016/j.cell.2011.06.010 10.1103/PhysRevE.61.5646 10.1083/jcb.200802081 10.1038/s41419-019-1730-y 10.1038/nature03521 10.1097/01.LAB.0000017371.72714.C5 10.1371/journal.pone.0012905 10.1021/acs.nanolett.9b01597 10.3390/cells10051201 10.1007/s12079-021-00643-1 10.1038/ncb1019 10.1016/j.biomaterials.2006.08.027 10.1158/1078-0432.CCR-05-2821 10.1089/ten.2006.12.1587 10.1371/journal.pone.0085264 10.1038/s41592-018-0015-1 10.1016/j.biomaterials.2019.119739 10.1021/acssuschemeng.8b00915 10.1016/j.humpath.2011.12.004 10.3390/molecules23051045 10.1038/nrm2453 10.1101/gad.5.11.2117 10.1038/s41598-023-35657-9 10.1016/j.ceb.2015.06.007 10.1038/nmat3361 10.1083/jcb.140.3.627 10.1371/journal.pone.0020201 10.1038/nature11839 10.1016/j.ejcb.2014.07.003 10.1038/sj.bjc.6600069 10.1016/j.matbio.2016.08.003 10.1126/science.1228522 10.1182/blood-2004-06-2272 10.1038/s41392-020-0134-x 10.1158/2159-8290.CD-21-1059 10.1073/pnas.0604460103 10.1186/s13000-016-0491-5 10.1242/jcs.236778 10.1083/jcb.201406102 10.2217/fon-2017-0384 10.1021/acs.nanolett.2c01327 10.1007/s11060-017-2717-0 10.1172/JCI45014 10.1038/s41467-018-06641-z 10.1016/j.ymthe.2021.07.003 10.1083/jcb.201201124 10.1016/j.annonc.2020.09.010 10.1242/dev.033902 10.1021/acsmacrolett.9b00258 10.3322/caac.21590 10.1186/1471-2407-14-882 10.1016/j.yexcr.2013.06.019 10.1083/jcb.200209006 10.1182/blood.V96.10.3302 10.1089/ten.tea.2008.0319 10.1016/j.semcancer.2005.05.004 10.1016/j.bcp.2016.06.014 10.1098/rsif.2008.0327 10.1016/S1567-5769(02)00058-9 10.1038/s41419-020-02963-3 10.1038/s41467-018-05729-w 10.1038/bjc.2011.405 10.21873/anticanres.12952 10.1002/elps.1150190231 10.1038/s41467-021-27220-9 10.1182/blood.V62.1.14.14 10.1038/s41556-022-01045-0 10.1073/pnas.1322291111 10.1007/s12094-019-02197-6 10.1016/j.isci.2020.101372 10.1093/bioinformatics/btp616 10.1177/1758834010378414 10.1042/BJ20091122 10.1039/B610522J 10.3322/caac.21660 10.1016/j.cub.2006.05.065 10.1371/journal.pbio.1001231 10.1158/1541-7786.MCR-16-0260 10.1016/j.devcel.2021.11.006 10.1016/j.yexcr.2013.05.017 10.1007/s10544-021-00547-2 10.3816/CBC.2009.s.008 10.1016/j.stem.2018.11.011 10.2478/raon-2021-0033 10.1371/journal.pone.0217227 10.1016/j.mrrev.2012.08.001 10.1038/s41592-022-01643-8 10.1371/journal.pone.0013984 10.1007/978-3-319-49674-0_13 10.1007/s10549-021-06213-8 10.3389/fonc.2021.652253 10.1371/journal.pone.0025332 10.1371/journal.pone.0006382 10.1042/BSR20130057 10.3389/fonc.2014.00285 10.1038/s41586-018-0040-3 10.1083/jcb.200602085 10.1186/s12885-016-2406-y 10.1158/0008-5472.CAN-04-2078 10.1016/j.biomaterials.2014.11.011 10.1038/onc.2012.390 10.1002/jbm.a.34946 10.1016/j.canlet.2012.02.019 10.1038/s41598-017-06570-9 10.1038/nature03550 10.1158/1541-7786.MCR-10-0490 10.1016/j.cels.2021.04.007 |
ContentType | Journal Article |
Copyright | 2023 The Authors. Advanced Healthcare Materials published by Wiley‐VCH GmbH 2023 The Authors. Advanced Healthcare Materials published by Wiley-VCH GmbH. 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023 The Authors. Advanced Healthcare Materials published by Wiley‐VCH GmbH – notice: 2023 The Authors. Advanced Healthcare Materials published by Wiley-VCH GmbH. – notice: 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION NPM 7QF 7QP 7QQ 7SC 7SE 7SP 7SR 7T5 7TA 7TB 7TM 7TO 7U5 8BQ 8FD F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D 7X8 5PM |
DOI | 10.1002/adhm.202301137 |
DatabaseName | Wiley Online Library Open Access CrossRef PubMed Aluminium Industry Abstracts Calcium & Calcified Tissue Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Immunology Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Materials Research Database Oncogenes and Growth Factors Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Materials Business File Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts AIDS and Cancer Research Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts METADEX Computer and Information Systems Abstracts Professional Immunology Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef Materials Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2192-2659 |
EndPage | n/a |
ExternalDocumentID | PMC11469292 37671812 10_1002_adhm_202301137 ADHM202301137 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Cancer Foundation Finland – fundername: Business Finland funderid: 2489/31/2017 – fundername: Sigrid Juselius Foundation – fundername: Academy of Finland funderid: 318890; 318891; 346108; 352900; 320167 – fundername: European Research Council funderid: 680083 – fundername: European Research Council grantid: 680083 |
GroupedDBID | 05W 0R~ 1OC 24P 33P 53G 8-0 8-1 AAESR AAHQN AAIHA AAIPD AAMMB AAMNL AANLZ AAXRX AAYCA AAZKR ABCUV ABLJU ABQWH ABXGK ACAHQ ACCZN ACGFS ACGOF ACIWK ACPOU ACPRK ACXBN ACXQS ADBBV ADBTR ADKYN ADMGS ADMLS ADOZA ADXAS ADZMN AEFGJ AEIGN AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AHMBA AIACR AIDQK AIDYY AITYG AIURR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI D-A D-B DCZOG DRFUL DRMAN DRSTM EBD EBS EMOBN G-S HGLYW HZ~ KBYEO LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MXFUL MXMAN MXSTM MY. MY~ O9- OVD P2W PQQKQ ROL SUPJJ SV3 TEORI WBKPD WOHZO WXSBR ZZTAW 31~ AAHHS AANHP AASGY AAYXX ACBWZ ACCFJ ACRPL ACYXJ ADNMO ADZOD AEEZP AEQDE AGQPQ AIWBW AJBDE ASPBG AVWKF AZFZN C45 CITATION EJD GODZA NPM 7QF 7QP 7QQ 7SC 7SE 7SP 7SR 7T5 7TA 7TB 7TM 7TO 7U5 8BQ 8FD F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D 7X8 5PM |
ID | FETCH-LOGICAL-c4697-e42d83f2a7f4f59a661b4286dc68eb9400f3c36a3a6de0b7ba8544a9d1f9103a3 |
IEDL.DBID | 24P |
ISSN | 2192-2640 2192-2659 |
IngestDate | Thu Aug 21 18:35:05 EDT 2025 Fri Jul 11 15:22:36 EDT 2025 Fri Jul 25 12:06:07 EDT 2025 Mon Jul 21 06:01:09 EDT 2025 Thu Apr 24 23:06:33 EDT 2025 Tue Jul 01 05:07:08 EDT 2025 Sun Jul 06 04:45:38 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 31 |
Keywords | fibrin hydrogels 3D cell culture phenotypic plasticity triple negative breast cancer circulating tumor cells metastasis |
Language | English |
License | Attribution 2023 The Authors. Advanced Healthcare Materials published by Wiley-VCH GmbH. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4697-e42d83f2a7f4f59a661b4286dc68eb9400f3c36a3a6de0b7ba8544a9d1f9103a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-4237-4081 0000-0002-9720-9964 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadhm.202301137 |
PMID | 37671812 |
PQID | 2901757221 |
PQPubID | 2032434 |
PageCount | 17 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_11469292 proquest_miscellaneous_2861645224 proquest_journals_2901757221 pubmed_primary_37671812 crossref_primary_10_1002_adhm_202301137 crossref_citationtrail_10_1002_adhm_202301137 wiley_primary_10_1002_adhm_202301137_ADHM202301137 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-12-01 |
PublicationDateYYYYMMDD | 2023-12-01 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim – name: Hoboken |
PublicationTitle | Advanced healthcare materials |
PublicationTitleAlternate | Adv Healthc Mater |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc John Wiley and Sons Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: John Wiley and Sons Inc |
References | 1979; 39 2021; 68 2017; 82 2019; 10 2019; 14 2019; 19 2006; 175 2020; 11 2022; 22 2021; 71 2012; 11 2012; 10 2018; 6 2018; 9 1998; 19 2010; 26 2002; 86 2005; 102 2019; 24 2000; 96 2005; 105 2013; 752 2003; 160 2014; 14 2022; 30 2007; 3 2010; 2 2010; 5 2014; 93 2018; 38 2009; 15 2011; 121 2019; 8 2017; 60 2019; 39 2002; 2 2002; 82 2018; 23 2016; 16 2011; 6 2016; 11 2011; 9 2012; 197 2021; 56 2021; 55 2020; 31 2020; 30 2013; 339 2022; 12 2020; 23 2020; 22 2005; 15 2009; 107 2012; 43 2011; 145 1998; 140 2018; 15 2018; 14 2006; 103 2022; 19 2017; 7 2004; 64 2015; 36 2021; 23 2012; 321 2021; 125 2008; 9 2007; 28 2020; 5 2014; 4 2023; 25 2014; 2 2017; 37 2015; 40 2013; 319 2018; 137 2000; 61 1983; 62 2003; 5 2020; 133 2014; 9 2021; 109 2023; 13 2006; 12 2006; 16 2005; 435 2016; 122 2015; 208 2021; 187 2014; 111 2009; 136 1991; 5 2009; 28 2011; 105 2008; 181 2021; 16 2021; 10 2021; 12 2021; 11 2013; 33 2017; 15 2013; 32 2018; 556 2022 2020; 70 1970; 45 2009; 9 2013; 493 2009; 6 2020; 232 2009; 4 2009; 425 2014; 102 e_1_2_9_75_1 e_1_2_9_98_1 e_1_2_9_52_1 e_1_2_9_79_1 e_1_2_9_94_1 e_1_2_9_56_1 e_1_2_9_33_1 e_1_2_9_90_1 e_1_2_9_71_1 e_1_2_9_103_1 e_1_2_9_107_1 e_1_2_9_122_1 e_1_2_9_14_1 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_87_1 Aoun L. (e_1_2_9_113_1) 2019; 14 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_83_1 e_1_2_9_6_1 e_1_2_9_119_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_111_1 e_1_2_9_115_1 e_1_2_9_26_1 e_1_2_9_49_1 Fidler I. J. (e_1_2_9_17_1) 1970; 45 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_99_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_95_1 e_1_2_9_76_1 e_1_2_9_91_1 e_1_2_9_102_1 e_1_2_9_106_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_121_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_88_1 e_1_2_9_61_1 e_1_2_9_84_1 e_1_2_9_23_1 e_1_2_9_65_1 e_1_2_9_80_1 e_1_2_9_5_1 e_1_2_9_1_1 e_1_2_9_114_1 e_1_2_9_118_1 e_1_2_9_9_1 e_1_2_9_27_1 e_1_2_9_69_1 e_1_2_9_110_1 e_1_2_9_31_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_35_1 e_1_2_9_77_1 e_1_2_9_96_1 e_1_2_9_12_1 e_1_2_9_54_1 e_1_2_9_92_1 e_1_2_9_109_1 Barriere G. (e_1_2_9_46_1) 2014; 2 e_1_2_9_101_1 e_1_2_9_105_1 e_1_2_9_39_1 e_1_2_9_120_1 e_1_2_9_16_1 e_1_2_9_58_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_89_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_85_1 e_1_2_9_8_1 e_1_2_9_81_1 e_1_2_9_4_1 e_1_2_9_117_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_78_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_97_1 e_1_2_9_93_1 e_1_2_9_108_1 e_1_2_9_70_1 Timmer M. (e_1_2_9_10_1) 2017; 37 e_1_2_9_100_1 e_1_2_9_123_1 e_1_2_9_104_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_67_1 e_1_2_9_44_1 e_1_2_9_86_1 e_1_2_9_7_1 e_1_2_9_82_1 e_1_2_9_3_1 e_1_2_9_112_1 e_1_2_9_116_1 e_1_2_9_25_1 e_1_2_9_48_1 e_1_2_9_29_1 |
References_xml | – volume: 86 start-page: 389 year: 2002 publication-title: Br. J. Cancer – volume: 39 start-page: 10 year: 1979 – volume: 14 year: 2019 publication-title: PLoS One – volume: 102 start-page: 2776 year: 2014 publication-title: J. Biomed. Mater. Res., Part A – volume: 45 start-page: 773 year: 1970 publication-title: JNCI, J. Natl. Cancer Inst. – volume: 8 start-page: 670 year: 2019 publication-title: ACS Macro Lett. – volume: 321 start-page: 89 year: 2012 publication-title: Cancer Lett – volume: 125 start-page: 164 year: 2021 publication-title: Br. J. Cancer – volume: 197 start-page: 439 year: 2012 publication-title: J. Cell Biol. – volume: 145 start-page: 1012 year: 2011 publication-title: Cell – volume: 5 start-page: 711 year: 2003 publication-title: Nat. Cell Biol. – volume: 133 year: 2020 publication-title: J. Cell Sci. – volume: 37 start-page: 4859 year: 2017 publication-title: Anticancer Res. – volume: 10 start-page: 1 year: 2019 publication-title: Cell Death Dis. – volume: 435 start-page: 365 year: 2005 publication-title: Nature – volume: 22 start-page: 7742 year: 2022 publication-title: Nano Lett. – volume: 32 start-page: 3886 year: 2013 publication-title: Oncogene – volume: 16 start-page: 433 year: 2016 publication-title: BMC Cancer – volume: 187 start-page: 349 year: 2021 publication-title: Breast Cancer Res. Treat. – volume: 10 year: 2012 publication-title: PLoS Biol. – volume: 493 start-page: 651 year: 2013 publication-title: Nature – volume: 19 start-page: 5949 year: 2019 publication-title: Nano Lett. – volume: 15 start-page: 1865 year: 2009 publication-title: Tissue Eng. Part A – volume: 9 start-page: 997 year: 2011 publication-title: Mol. Cancer Res. – year: 2022 – volume: 31 start-page: 1623 year: 2020 publication-title: Ann. Oncol. – volume: 3 start-page: 299 year: 2007 publication-title: Soft Matter – volume: 11 start-page: 734 year: 2012 publication-title: Nat. Mater. – volume: 40 start-page: 61 year: 2015 publication-title: Biomaterials – volume: 4 start-page: 285 year: 2014 publication-title: Front. Oncol. – volume: 15 start-page: 15 year: 2017 publication-title: Mol. Cancer Res. – volume: 28 start-page: 55 year: 2007 publication-title: Biomaterials – volume: 4 year: 2009 publication-title: PLoS One – volume: 103 year: 2006 publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 96 start-page: 3302 year: 2000 publication-title: Blood – volume: 38 start-page: 6023 year: 2018 publication-title: Anticancer Res. – volume: 12 start-page: 6967 year: 2021 publication-title: Nat. Commun. – volume: 105 start-page: 178 year: 2005 publication-title: Blood – volume: 60 start-page: 110 year: 2017 publication-title: Matrix Biol. – volume: 14 start-page: 849 year: 2018 publication-title: Future Oncol. – volume: 136 start-page: 3531 year: 2009 publication-title: Development – volume: 105 start-page: 1338 year: 2011 publication-title: Br. J. Cancer – volume: 5 start-page: 28 year: 2020 publication-title: Signal Transduction Targeted Ther. – volume: 19 start-page: 1449 year: 2022 publication-title: Nat. Methods – volume: 70 start-page: 7 year: 2020 publication-title: Ca‐Cancer J. Clin. – volume: 12 start-page: 1587 year: 2006 publication-title: Tissue Eng. – volume: 15 start-page: 491 year: 2018 publication-title: Nat. Methods – volume: 6 start-page: 7826 year: 2018 publication-title: ACS Sustainable Chem. Eng. – volume: 11 year: 2021 publication-title: Front. Oncol. – volume: 55 start-page: 292 year: 2021 publication-title: Radiol Oncol – volume: 752 start-page: 10 year: 2013 publication-title: Mutat. Res. Rev. Mutat. Res. – volume: 435 start-page: 191 year: 2005 publication-title: Nature – volume: 109 start-page: 1990 year: 2021 publication-title: J. Biomed. Mater. Res., Part A – volume: 339 start-page: 580 year: 2013 publication-title: Science – volume: 28 start-page: 15 year: 2009 publication-title: Cancer Metastasis Rev. – volume: 140 start-page: 627 year: 1998 publication-title: J. Cell Biol. – volume: 9 year: 2014 publication-title: PLoS One – volume: 11 start-page: 41 year: 2016 publication-title: Diagn. Pathol. – volume: 232 year: 2020 publication-title: Biomaterials – volume: 14 start-page: 882 year: 2014 publication-title: BMC Cancer – volume: 102 year: 2005 publication-title: Proc. Natl. Acad. Sci. USA – volume: 82 start-page: 405 year: 2017 publication-title: Subcell Biochem. – volume: 16 start-page: 1515 year: 2006 publication-title: Curr. Biol. – volume: 175 start-page: 477 year: 2006 publication-title: J. Cell Biol. – volume: 64 start-page: 8613 year: 2004 publication-title: Cancer Res. – volume: 137 start-page: 295 year: 2018 publication-title: J. Neurooncol. – volume: 208 start-page: 443 year: 2015 publication-title: J. Cell Biol. – volume: 9 start-page: 730 year: 2008 publication-title: Nat. Rev. Mol. Cell Biol. – volume: 111 year: 2014 publication-title: Proc. Natl. Acad. Sci. USA – volume: 23 start-page: 27 year: 2021 publication-title: Biomed. Microdevices – volume: 56 start-page: 3203 year: 2021 publication-title: Dev. Cell – volume: 33 start-page: 701 year: 2013 publication-title: Biosci. Rep. – volume: 12 start-page: 31 year: 2022 publication-title: Cancer Discov. – volume: 2 start-page: 109 year: 2014 publication-title: Ann. Transl. Med. – volume: 30 start-page: 755 year: 2020 publication-title: Cell Rep. – volume: 107 start-page: 447 year: 2009 publication-title: J. Biosci. Bioeng. – volume: 36 start-page: 23 year: 2015 publication-title: Curr. Opin. Cell Biol. – volume: 15 start-page: 378 year: 2005 publication-title: Semin. Cancer Biol. – volume: 82 start-page: 737 year: 2002 publication-title: Lab Invest. – volume: 61 start-page: 5646 year: 2000 publication-title: Phys. Rev. E – volume: 121 start-page: 2750 year: 2011 publication-title: J. Clin. Invest. – volume: 319 start-page: 2447 year: 2013 publication-title: Exp. Cell Res. – volume: 12 start-page: 457 year: 2021 publication-title: Cell Syst – volume: 122 start-page: 1 year: 2016 publication-title: Biochem. Pharmacol. – volume: 2 start-page: 351 year: 2010 publication-title: Ther. Adv. Med. Oncol. – volume: 9 start-page: 3815 year: 2018 publication-title: Nat. Commun. – volume: 23 year: 2020 publication-title: iScience – volume: 26 start-page: 139 year: 2010 publication-title: Bioinformatics – volume: 25 start-page: 145 year: 2023 publication-title: Nat. Cell Biol. – volume: 556 start-page: 463 year: 2018 publication-title: Nature – volume: 319 start-page: 2481 year: 2013 publication-title: Exp. Cell Res. – volume: 5 year: 2010 publication-title: PLoS One – volume: 16 start-page: 734 year: 2016 publication-title: BMC Cancer – volume: 16 start-page: 621 year: 2021 publication-title: J. Cell Commun. Signal – volume: 9 start-page: S73 year: 2009 publication-title: Clin. Breast Cancer – volume: 22 start-page: 870 year: 2020 publication-title: Clin. Transl. Oncol. – volume: 71 start-page: 209 year: 2021 publication-title: Ca‐Cancer J. Clin. – volume: 93 start-page: 438 year: 2014 publication-title: Eur. J. Cell Biol. – volume: 19 start-page: 333 year: 1998 publication-title: Electrophoresis – volume: 181 start-page: 879 year: 2008 publication-title: J. Cell Biol. – volume: 62 start-page: 14 year: 1983 publication-title: Blood – volume: 425 start-page: 179 year: 2009 publication-title: Biochem. J. – volume: 10 start-page: 1201 year: 2021 publication-title: Cells – volume: 7 start-page: 6250 year: 2017 publication-title: Sci. Rep. – volume: 160 start-page: 267 year: 2003 publication-title: J. Cell Biol. – volume: 2 start-page: 1509 year: 2002 publication-title: Int. Immunopharmacol. – volume: 39 start-page: 1829 year: 2019 publication-title: Anticancer Res. – volume: 11 start-page: 757 year: 2020 publication-title: Cell Death Dis. – volume: 9 start-page: 4144 year: 2018 publication-title: Nat. Commun. – volume: 5 start-page: 2117 year: 1991 publication-title: Genes. Dev. – volume: 6 year: 2011 publication-title: PLoS One – volume: 24 start-page: 65 year: 2019 publication-title: Cell Stem Cell – volume: 6 start-page: 0327 year: 2009 publication-title: J. R. Soc. Interface – volume: 68 start-page: 37 year: 2021 publication-title: Curr. Opin. Cell Biol. – volume: 30 start-page: 672 year: 2022 publication-title: Mol. Ther. – volume: 13 year: 2023 publication-title: Sci. Rep. – volume: 43 start-page: 1638 year: 2012 publication-title: Hum. Pathol. – volume: 23 start-page: 1045 year: 2018 publication-title: Molecules – volume: 12 start-page: 4218 year: 2006 publication-title: Clin. Cancer Res. – ident: e_1_2_9_4_1 doi: 10.1038/s41416-021-01328-7 – ident: e_1_2_9_52_1 doi: 10.1073/pnas.0506580102 – ident: e_1_2_9_51_1 doi: 10.1002/jbm.a.37191 – ident: e_1_2_9_85_1 doi: 10.1016/j.jbiosc.2008.12.013 – ident: e_1_2_9_76_1 doi: 10.1016/j.celrep.2019.12.056 – ident: e_1_2_9_14_1 doi: 10.21873/anticanres.13290 – ident: e_1_2_9_62_1 doi: 10.1007/s10555-008-9169-0 – ident: e_1_2_9_112_1 doi: 10.1016/j.ceb.2020.08.012 – ident: e_1_2_9_5_1 doi: 10.1186/s12885-016-2766-3 – ident: e_1_2_9_90_1 doi: 10.1016/j.cell.2011.06.010 – ident: e_1_2_9_43_1 doi: 10.1103/PhysRevE.61.5646 – ident: e_1_2_9_97_1 doi: 10.1083/jcb.200802081 – ident: e_1_2_9_89_1 doi: 10.1038/s41419-019-1730-y – ident: e_1_2_9_32_1 doi: 10.1038/nature03521 – ident: e_1_2_9_79_1 doi: 10.1097/01.LAB.0000017371.72714.C5 – ident: e_1_2_9_50_1 doi: 10.1371/journal.pone.0012905 – ident: e_1_2_9_95_1 doi: 10.1021/acs.nanolett.9b01597 – ident: e_1_2_9_87_1 doi: 10.3390/cells10051201 – ident: e_1_2_9_69_1 doi: 10.1007/s12079-021-00643-1 – ident: e_1_2_9_96_1 doi: 10.1038/ncb1019 – ident: e_1_2_9_26_1 doi: 10.1016/j.biomaterials.2006.08.027 – ident: e_1_2_9_13_1 doi: 10.1158/1078-0432.CCR-05-2821 – ident: e_1_2_9_28_1 doi: 10.1089/ten.2006.12.1587 – ident: e_1_2_9_101_1 doi: 10.1371/journal.pone.0085264 – volume: 2 start-page: 109 year: 2014 ident: e_1_2_9_46_1 publication-title: Ann. Transl. Med. – ident: e_1_2_9_41_1 doi: 10.1038/s41592-018-0015-1 – ident: e_1_2_9_104_1 doi: 10.1016/j.biomaterials.2019.119739 – ident: e_1_2_9_39_1 doi: 10.1021/acssuschemeng.8b00915 – ident: e_1_2_9_74_1 doi: 10.1016/j.humpath.2011.12.004 – ident: e_1_2_9_56_1 doi: 10.3390/molecules23051045 – ident: e_1_2_9_65_1 doi: 10.1038/nrm2453 – ident: e_1_2_9_57_1 doi: 10.1101/gad.5.11.2117 – ident: e_1_2_9_105_1 doi: 10.1038/s41598-023-35657-9 – ident: e_1_2_9_119_1 – ident: e_1_2_9_92_1 doi: 10.1016/j.ceb.2015.06.007 – ident: e_1_2_9_88_1 doi: 10.1038/nmat3361 – ident: e_1_2_9_116_1 doi: 10.1083/jcb.140.3.627 – ident: e_1_2_9_42_1 doi: 10.1371/journal.pone.0020201 – ident: e_1_2_9_35_1 doi: 10.1038/nature11839 – ident: e_1_2_9_110_1 doi: 10.1016/j.ejcb.2014.07.003 – ident: e_1_2_9_22_1 doi: 10.1038/sj.bjc.6600069 – ident: e_1_2_9_36_1 doi: 10.1016/j.matbio.2016.08.003 – ident: e_1_2_9_82_1 doi: 10.1126/science.1228522 – ident: e_1_2_9_23_1 doi: 10.1182/blood-2004-06-2272 – ident: e_1_2_9_11_1 doi: 10.1038/s41392-020-0134-x – ident: e_1_2_9_70_1 doi: 10.1158/2159-8290.CD-21-1059 – ident: e_1_2_9_49_1 doi: 10.1073/pnas.0604460103 – ident: e_1_2_9_75_1 doi: 10.1186/s13000-016-0491-5 – ident: e_1_2_9_99_1 doi: 10.1242/jcs.236778 – ident: e_1_2_9_91_1 doi: 10.1083/jcb.201406102 – ident: e_1_2_9_8_1 doi: 10.2217/fon-2017-0384 – ident: e_1_2_9_103_1 doi: 10.1126/science.1228522 – ident: e_1_2_9_123_1 doi: 10.1021/acs.nanolett.2c01327 – ident: e_1_2_9_7_1 doi: 10.1007/s11060-017-2717-0 – ident: e_1_2_9_55_1 doi: 10.1172/JCI45014 – ident: e_1_2_9_111_1 doi: 10.1038/s41467-018-06641-z – ident: e_1_2_9_53_1 doi: 10.1016/j.ymthe.2021.07.003 – ident: e_1_2_9_94_1 doi: 10.1083/jcb.201201124 – ident: e_1_2_9_3_1 doi: 10.1016/j.annonc.2020.09.010 – ident: e_1_2_9_78_1 doi: 10.1242/dev.033902 – ident: e_1_2_9_34_1 doi: 10.1021/acsmacrolett.9b00258 – ident: e_1_2_9_2_1 doi: 10.3322/caac.21590 – ident: e_1_2_9_117_1 doi: 10.1186/1471-2407-14-882 – ident: e_1_2_9_66_1 doi: 10.1016/j.yexcr.2013.06.019 – ident: e_1_2_9_93_1 doi: 10.1083/jcb.200209006 – ident: e_1_2_9_18_1 doi: 10.1182/blood.V96.10.3302 – ident: e_1_2_9_30_1 doi: 10.1089/ten.tea.2008.0319 – ident: e_1_2_9_47_1 doi: 10.1016/j.semcancer.2005.05.004 – ident: e_1_2_9_72_1 doi: 10.1016/j.bcp.2016.06.014 – ident: e_1_2_9_29_1 doi: 10.1098/rsif.2008.0327 – ident: e_1_2_9_59_1 doi: 10.1016/S1567-5769(02)00058-9 – ident: e_1_2_9_61_1 doi: 10.1038/s41419-020-02963-3 – ident: e_1_2_9_73_1 doi: 10.1038/s41467-018-05729-w – ident: e_1_2_9_80_1 doi: 10.1038/bjc.2011.405 – ident: e_1_2_9_9_1 doi: 10.21873/anticanres.12952 – ident: e_1_2_9_38_1 – ident: e_1_2_9_44_1 doi: 10.1002/elps.1150190231 – ident: e_1_2_9_60_1 doi: 10.1038/s41467-021-27220-9 – ident: e_1_2_9_21_1 doi: 10.1182/blood.V62.1.14.14 – ident: e_1_2_9_81_1 doi: 10.1038/s41556-022-01045-0 – ident: e_1_2_9_98_1 doi: 10.1073/pnas.1322291111 – ident: e_1_2_9_68_1 doi: 10.1007/s12094-019-02197-6 – ident: e_1_2_9_107_1 doi: 10.1016/j.isci.2020.101372 – ident: e_1_2_9_121_1 doi: 10.1093/bioinformatics/btp616 – ident: e_1_2_9_15_1 doi: 10.1177/1758834010378414 – ident: e_1_2_9_63_1 doi: 10.1042/BJ20091122 – ident: e_1_2_9_31_1 doi: 10.1039/B610522J – ident: e_1_2_9_1_1 doi: 10.3322/caac.21660 – ident: e_1_2_9_109_1 doi: 10.1016/j.cub.2006.05.065 – ident: e_1_2_9_86_1 doi: 10.1371/journal.pbio.1001231 – ident: e_1_2_9_48_1 doi: 10.1158/1541-7786.MCR-16-0260 – ident: e_1_2_9_83_1 doi: 10.1016/j.devcel.2021.11.006 – ident: e_1_2_9_120_1 – volume: 37 start-page: 4859 year: 2017 ident: e_1_2_9_10_1 publication-title: Anticancer Res. – ident: e_1_2_9_33_1 doi: 10.1016/j.yexcr.2013.05.017 – ident: e_1_2_9_40_1 doi: 10.1007/s10544-021-00547-2 – ident: e_1_2_9_6_1 doi: 10.3816/CBC.2009.s.008 – ident: e_1_2_9_71_1 doi: 10.1016/j.stem.2018.11.011 – ident: e_1_2_9_100_1 doi: 10.2478/raon-2021-0033 – volume: 14 year: 2019 ident: e_1_2_9_113_1 publication-title: PLoS One doi: 10.1371/journal.pone.0217227 – ident: e_1_2_9_16_1 doi: 10.1016/j.mrrev.2012.08.001 – ident: e_1_2_9_106_1 doi: 10.1038/s41592-022-01643-8 – ident: e_1_2_9_122_1 doi: 10.1371/journal.pone.0013984 – ident: e_1_2_9_19_1 doi: 10.1007/978-3-319-49674-0_13 – ident: e_1_2_9_54_1 doi: 10.1007/s10549-021-06213-8 – ident: e_1_2_9_67_1 doi: 10.3389/fonc.2021.652253 – ident: e_1_2_9_64_1 doi: 10.1371/journal.pone.0025332 – ident: e_1_2_9_37_1 doi: 10.1371/journal.pone.0006382 – ident: e_1_2_9_20_1 doi: 10.1042/BSR20130057 – ident: e_1_2_9_58_1 doi: 10.3389/fonc.2014.00285 – ident: e_1_2_9_102_1 doi: 10.1038/s41586-018-0040-3 – ident: e_1_2_9_115_1 doi: 10.1083/jcb.200602085 – volume: 45 start-page: 773 year: 1970 ident: e_1_2_9_17_1 publication-title: JNCI, J. Natl. Cancer Inst. – ident: e_1_2_9_12_1 doi: 10.1186/s12885-016-2406-y – ident: e_1_2_9_24_1 doi: 10.1158/0008-5472.CAN-04-2078 – ident: e_1_2_9_25_1 doi: 10.1016/j.biomaterials.2014.11.011 – ident: e_1_2_9_77_1 doi: 10.1038/onc.2012.390 – ident: e_1_2_9_108_1 doi: 10.1002/jbm.a.34946 – ident: e_1_2_9_45_1 doi: 10.1016/j.canlet.2012.02.019 – ident: e_1_2_9_27_1 doi: 10.1038/s41598-017-06570-9 – ident: e_1_2_9_114_1 doi: 10.1038/nature03550 – ident: e_1_2_9_84_1 doi: 10.1158/1541-7786.MCR-10-0490 – ident: e_1_2_9_118_1 doi: 10.1016/j.cels.2021.04.007 |
SSID | ssj0000651681 |
Score | 2.382237 |
Snippet | The extracellular matrix (ECM)‐regulated phenotypic plasticity is crucial for metastatic progression of triple negative breast cancer (TNBC). While ECM... The extracellular matrix (ECM)-regulated phenotypic plasticity is crucial for metastatic progression of triple negative breast cancer (TNBC). While ECM... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2301137 |
SubjectTerms | 3D cell culture Actin Basements Biological properties Breast cancer Cell culture circulating tumor cells Cytology Cytotoxicity Extracellular matrix Fibrin fibrin hydrogels Gene expression Hydrogels Immune system Membranes Metastases Metastasis Phenotypes Phenotypic plasticity Plastic properties Protective coatings Shear stress Stiffness triple negative breast cancer Tubulin Tumor cells Tumors |
Title | Fibrin Stiffness Regulates Phenotypic Plasticity of Metastatic Breast Cancer Cells |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadhm.202301137 https://www.ncbi.nlm.nih.gov/pubmed/37671812 https://www.proquest.com/docview/2901757221 https://www.proquest.com/docview/2861645224 https://pubmed.ncbi.nlm.nih.gov/PMC11469292 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEB7S5NIeSpO-1CZhA4WcRKyVtJKOrhNjQhxMHpCbGK1mscHIIVYO-fedkWzVJpRCbhK7K4mdGc23uzPfAPzKyjQVFhA_i1zmM_5HPyMyfuKs09gjaxqe2fG1Gd1Hlw_xw0YWf8sP0W24iWU0_2sxcCyWZ39JQ7GcSia5Fg0Nk3ewJ_m1wp6vo0m3y8IONjBNpVK2TC3hXL01c2NPn20_YtszvYKbr6MmN9Fs446Gn-DjCkeqfiv4fdih6gA-bLALfoaboYTzV-q2njknfzR10xaep6WaTKla1C-PM6smjJ8ltLp-UQunxlSjJBlxw2-JV6_VQPTiSQ1oPl9-gfvhxd1g5K9KKPiW172JT5Eu05BnPXGRizNkb1zwgsOU1qRUSFF0F9rQYIimpF6RFJjGUYRZGTjGESGGX2G3WlT0HZRFl5VaI4W8wiJMUltiERTEiC9GlrgH_nr6crviF5cyF_O8ZUbWuUx33k23B6dd_8eWWeOfPQ_X0shXFrbM5fw3iROtAw9Ouma2DTnwwIoWz9wnNYEc3OrIg2-t8LpXCYuNoBsP0i2xdh2Ed3u7pZpNG_5tUTRGlTxUNxrwn8_P--ejcXf34y2DfsJ7uW7DaA5ht356piMGQ3Vx3Oj7Mez1z8dXt38AImwC_Q |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED9t7GHjAcHGR4AxT5q0p4jGcZzkEQpVYRRVDKS9RY5zVitVaUXDA_89d0kbqBBC2mPij0S-O_tn--53AL_SIkmYBcRPlUt9wv_GTxG1HzvrpOmg1TXP7OBa9-_U5b9o6U3IsTANP0R74MaWUc_XbOB8IH38zBpqihGHkktW0TD-CJ8U9cu2KdWwPWahFTbQdapSMk3J_lydJXVjRx6vdrG6NL3Cm6_dJl_C2Xo96m3CxgJIipNG8lvwAcuvsP6CXvAb3PTYn78Uf6uxczyliZsm8zzOxXCE5bR6nI2tGBKAZt_q6lFMnRhgZTjKiApO2WG9El1WjHvRxclkvg13vfPbbt9f5FDwLW18Yx-VLJKQhj12ykWpoeU4px2HLqxOMOes6C60oTah0QV28jg3SaSUSYvAEZAITbgDa-W0xD0Q1ri0kNJgSFssNHFiC5MHORLkiwyJ3AN_OXyZXRCMc56LSdZQI8uMhztrh9uD3239WUOt8WbNw6U0soWJzTO-AI6jWMrAg59tMRkH33iYEqcPVCfRAd_cSuXBbiO89lNMY8PwxoNkRaxtBSbeXi0px6OagJsjuQlWUlNZa8A7v5-dnPUH7dP-_zT6AZ_7t4Or7Ori-s8BfOH3jU_NIaxV9w_4nZBRlR_Vuv8E-YAE1Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9swED62Dsb2ULqua931hwqDPZnGsi3bj13akHVLCd0KfTOydCKB4ITEfeh_vzs7cRNKGfTRlmQb3Z31SXf3HcC3zKYps4D4WeQyn_C_9jNE5SfOOKk7aFTNMzu4Uf276Po-vl_L4m_4IdoDN7aM-n_NBj6z7vyJNFTbEWeSS9bQMHkL72qPH3M7R8P2lIUW2EDVlUrJMiWHc3VWzI0deb75iM2V6RncfB41uY5m6-WotwPbSxwpLhrBf4I3WO7CxzV2wc9w2-Nw_lL8qcbO8R9N3DaF53EhhiMsp9XjbGzEkPAzh1ZXj2LqxAArzUlG1PCD49Ur0WW9mIsuTiaLPbjrXf3t9v1lCQXf0L438TGSNg1p1hMXuTjTtBoXtOFQ1qgUCy6K7kITKh1qZbFTJIVO4yjSmQ0c4YhQh19gq5yWeADCaJdZKTWGtMNCnaTG6iIokBBfrEniHvir6cvNkl-cy1xM8oYZWeY83Xk73R58b_vPGmaNF3seraSRLy1skbP_N4kTKQMPztpmsg12eOgSpw_UJ1UBO25l5MF-I7z2Vcxiw-jGg3RDrG0H5t3ebCnHo5p_mxO5CVXSUFlrwH8-P7-47A_aq8PXDDqF98PLXv77582vr_CBbzcRNUewVc0f8JhwUVWc1Kr_D2yaBAc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fibrin+Stiffness+Regulates+Phenotypic+Plasticity+of+Metastatic+Breast+Cancer+Cells&rft.jtitle=Advanced+healthcare+materials&rft.au=Heilala%2C+Maria&rft.au=Lehtonen%2C+Arttu&rft.au=Arasalo%2C+Ossi&rft.au=Peura%2C+Aino&rft.date=2023-12-01&rft.pub=John+Wiley+and+Sons+Inc&rft.issn=2192-2640&rft.eissn=2192-2659&rft.volume=12&rft.issue=31&rft_id=info:doi/10.1002%2Fadhm.202301137&rft_id=info%3Apmid%2F37671812&rft.externalDocID=PMC11469292 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2192-2640&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2192-2640&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2192-2640&client=summon |