Fibrin Stiffness Regulates Phenotypic Plasticity of Metastatic Breast Cancer Cells

The extracellular matrix (ECM)‐regulated phenotypic plasticity is crucial for metastatic progression of triple negative breast cancer (TNBC). While ECM faithful cell‐based models are available for in situ and invasive tumors, such as cell aggregate cultures in reconstituted basement membrane and in...

Full description

Saved in:
Bibliographic Details
Published inAdvanced healthcare materials Vol. 12; no. 31; pp. e2301137 - n/a
Main Authors Heilala, Maria, Lehtonen, Arttu, Arasalo, Ossi, Peura, Aino, Pokki, Juho, Ikkala, Olli, Nonappa, Klefström, Juha, Munne, Pauliina M.
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.12.2023
John Wiley and Sons Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The extracellular matrix (ECM)‐regulated phenotypic plasticity is crucial for metastatic progression of triple negative breast cancer (TNBC). While ECM faithful cell‐based models are available for in situ and invasive tumors, such as cell aggregate cultures in reconstituted basement membrane and in collagenous gels, there are no ECM faithful models for metastatic circulating tumor cells (CTCs). Such models are essential to represent the stage of metastasis where clinical relevance and therapeutic opportunities are significant. Here, CTC‐like DU4475 TNBC cells are cultured in mechanically tunable 3D fibrin hydrogels. This is motivated, as in circulation fibrin aids CTC survival by forming a protective coating reducing shear stress and immune cell‐mediated cytotoxicity and promotes several stages of late metastatic processes at the interface between circulation and tissue. This work shows that fibrin hydrogels support DU4475 cell growth, resulting in spheroid formation. Furthermore, increasing fibrin stiffness from 57 to 175 Pa leads to highly motile, actin and tubulin containing cellular protrusions, which are associated with specific cell morphology and gene expression patterns that markedly differ from basement membrane or suspension cultures. Thus, mechanically tunable fibrin gels reveal specific matrix‐based regulation of TNBC cell phenotype and offer scaffolds for CTC‐like cells with better mechano‐biological properties than liquid. 3D fibrin gels are used to model the phenotypic plasticity of circulating tumor cells (CTCs) ‐like breast cancer cells. Compared with standard 3D culture conditions, cells in fibrin gels show unique gene expression signatures. The cell phenotype is subject to regulation by matrix mechanical properties, with stiff fibrin inducing dynamic cell protrusions that resemble prometastatic structures.
AbstractList The extracellular matrix (ECM)-regulated phenotypic plasticity is crucial for metastatic progression of triple negative breast cancer (TNBC). While ECM faithful cell-based models are available for in situ and invasive tumors, such as cell aggregate cultures in reconstituted basement membrane and in collagenous gels, there are no ECM faithful models for metastatic circulating tumor cells (CTCs). Such models are essential to represent the stage of metastasis where clinical relevance and therapeutic opportunities are significant. Here, CTC-like DU4475 TNBC cells are cultured in mechanically tunable 3D fibrin hydrogels. This is motivated, as in circulation fibrin aids CTC survival by forming a protective coating reducing shear stress and immune cell-mediated cytotoxicity and promotes several stages of late metastatic processes at the interface between circulation and tissue. This work shows that fibrin hydrogels support DU4475 cell growth, resulting in spheroid formation. Furthermore, increasing fibrin stiffness from 57 to 175 Pa leads to highly motile, actin and tubulin containing cellular protrusions, which are associated with specific cell morphology and gene expression patterns that markedly differ from basement membrane or suspension cultures. Thus, mechanically tunable fibrin gels reveal specific matrix-based regulation of TNBC cell phenotype and offer scaffolds for CTC-like cells with better mechano-biological properties than liquid.
The extracellular matrix (ECM)‐regulated phenotypic plasticity is crucial for metastatic progression of triple negative breast cancer (TNBC). While ECM faithful cell‐based models are available for in situ and invasive tumors, such as cell aggregate cultures in reconstituted basement membrane and in collagenous gels, there are no ECM faithful models for metastatic circulating tumor cells (CTCs). Such models are essential to represent the stage of metastasis where clinical relevance and therapeutic opportunities are significant. Here, CTC‐like DU4475 TNBC cells are cultured in mechanically tunable 3D fibrin hydrogels. This is motivated, as in circulation fibrin aids CTC survival by forming a protective coating reducing shear stress and immune cell‐mediated cytotoxicity and promotes several stages of late metastatic processes at the interface between circulation and tissue. This work shows that fibrin hydrogels support DU4475 cell growth, resulting in spheroid formation. Furthermore, increasing fibrin stiffness from 57 to 175 Pa leads to highly motile, actin and tubulin containing cellular protrusions, which are associated with specific cell morphology and gene expression patterns that markedly differ from basement membrane or suspension cultures. Thus, mechanically tunable fibrin gels reveal specific matrix‐based regulation of TNBC cell phenotype and offer scaffolds for CTC‐like cells with better mechano‐biological properties than liquid.
The extracellular matrix (ECM)‐regulated phenotypic plasticity is crucial for metastatic progression of triple negative breast cancer (TNBC). While ECM faithful cell‐based models are available for in situ and invasive tumors, such as cell aggregate cultures in reconstituted basement membrane and in collagenous gels, there are no ECM faithful models for metastatic circulating tumor cells (CTCs). Such models are essential to represent the stage of metastasis where clinical relevance and therapeutic opportunities are significant. Here, CTC‐like DU4475 TNBC cells are cultured in mechanically tunable 3D fibrin hydrogels. This is motivated, as in circulation fibrin aids CTC survival by forming a protective coating reducing shear stress and immune cell‐mediated cytotoxicity and promotes several stages of late metastatic processes at the interface between circulation and tissue. This work shows that fibrin hydrogels support DU4475 cell growth, resulting in spheroid formation. Furthermore, increasing fibrin stiffness from 57 to 175 Pa leads to highly motile, actin and tubulin containing cellular protrusions, which are associated with specific cell morphology and gene expression patterns that markedly differ from basement membrane or suspension cultures. Thus, mechanically tunable fibrin gels reveal specific matrix‐based regulation of TNBC cell phenotype and offer scaffolds for CTC‐like cells with better mechano‐biological properties than liquid. 3D fibrin gels are used to model the phenotypic plasticity of circulating tumor cells (CTCs) ‐like breast cancer cells. Compared with standard 3D culture conditions, cells in fibrin gels show unique gene expression signatures. The cell phenotype is subject to regulation by matrix mechanical properties, with stiff fibrin inducing dynamic cell protrusions that resemble prometastatic structures.
The extracellular matrix (ECM)-regulated phenotypic plasticity is crucial for metastatic progression of triple negative breast cancer (TNBC). While ECM faithful cell-based models are available for in situ and invasive tumors, such as cell aggregate cultures in reconstituted basement membrane and in collagenous gels, there are no ECM faithful models for metastatic circulating tumor cells (CTCs). Such models are essential to represent the stage of metastasis where clinical relevance and therapeutic opportunities are significant. Here, CTC-like DU4475 TNBC cells are cultured in mechanically tunable 3D fibrin hydrogels. This is motivated, as in circulation fibrin aids CTC survival by forming a protective coating reducing shear stress and immune cell-mediated cytotoxicity and promotes several stages of late metastatic processes at the interface between circulation and tissue. This work shows that fibrin hydrogels support DU4475 cell growth, resulting in spheroid formation. Furthermore, increasing fibrin stiffness from 57 to 175 Pa leads to highly motile, actin and tubulin containing cellular protrusions, which are associated with specific cell morphology and gene expression patterns that markedly differ from basement membrane or suspension cultures. Thus, mechanically tunable fibrin gels reveal specific matrix-based regulation of TNBC cell phenotype and offer scaffolds for CTC-like cells with better mechano-biological properties than liquid.The extracellular matrix (ECM)-regulated phenotypic plasticity is crucial for metastatic progression of triple negative breast cancer (TNBC). While ECM faithful cell-based models are available for in situ and invasive tumors, such as cell aggregate cultures in reconstituted basement membrane and in collagenous gels, there are no ECM faithful models for metastatic circulating tumor cells (CTCs). Such models are essential to represent the stage of metastasis where clinical relevance and therapeutic opportunities are significant. Here, CTC-like DU4475 TNBC cells are cultured in mechanically tunable 3D fibrin hydrogels. This is motivated, as in circulation fibrin aids CTC survival by forming a protective coating reducing shear stress and immune cell-mediated cytotoxicity and promotes several stages of late metastatic processes at the interface between circulation and tissue. This work shows that fibrin hydrogels support DU4475 cell growth, resulting in spheroid formation. Furthermore, increasing fibrin stiffness from 57 to 175 Pa leads to highly motile, actin and tubulin containing cellular protrusions, which are associated with specific cell morphology and gene expression patterns that markedly differ from basement membrane or suspension cultures. Thus, mechanically tunable fibrin gels reveal specific matrix-based regulation of TNBC cell phenotype and offer scaffolds for CTC-like cells with better mechano-biological properties than liquid.
Author Pokki, Juho
Ikkala, Olli
Nonappa
Heilala, Maria
Arasalo, Ossi
Peura, Aino
Klefström, Juha
Lehtonen, Arttu
Munne, Pauliina M.
AuthorAffiliation 1 Department of Applied Physics Aalto University P.O. Box 15100 Aalto Espoo FI‐00076 Finland
2 Department of Electrical Engineering and Automation Aalto University P.O. Box 12200 Aalto Espoo FI‐00076 Finland
4 Faculty of Engineering and Natural Sciences Tampere University P.O. Box 541 Tampere FI‐33720 Finland
3 Finnish Cancer Institute and FICAN South Helsinki University Hospital & Cancer Cell Circuitry Laboratory Translational Cancer Medicine Medical Faculty University of Helsinki P.O. Box 63 (Haartmaninkatu 8) Helsinki 00014 Finland
AuthorAffiliation_xml – name: 2 Department of Electrical Engineering and Automation Aalto University P.O. Box 12200 Aalto Espoo FI‐00076 Finland
– name: 1 Department of Applied Physics Aalto University P.O. Box 15100 Aalto Espoo FI‐00076 Finland
– name: 3 Finnish Cancer Institute and FICAN South Helsinki University Hospital & Cancer Cell Circuitry Laboratory Translational Cancer Medicine Medical Faculty University of Helsinki P.O. Box 63 (Haartmaninkatu 8) Helsinki 00014 Finland
– name: 4 Faculty of Engineering and Natural Sciences Tampere University P.O. Box 541 Tampere FI‐33720 Finland
Author_xml – sequence: 1
  givenname: Maria
  orcidid: 0000-0002-4237-4081
  surname: Heilala
  fullname: Heilala, Maria
  organization: Aalto University
– sequence: 2
  givenname: Arttu
  surname: Lehtonen
  fullname: Lehtonen, Arttu
  organization: Aalto University
– sequence: 3
  givenname: Ossi
  surname: Arasalo
  fullname: Arasalo, Ossi
  organization: Aalto University
– sequence: 4
  givenname: Aino
  surname: Peura
  fullname: Peura, Aino
  organization: University of Helsinki
– sequence: 5
  givenname: Juho
  surname: Pokki
  fullname: Pokki, Juho
  organization: Aalto University
– sequence: 6
  givenname: Olli
  surname: Ikkala
  fullname: Ikkala, Olli
  organization: Aalto University
– sequence: 7
  surname: Nonappa
  fullname: Nonappa
  email: nonappa@tuni.fi
  organization: Tampere University
– sequence: 8
  givenname: Juha
  surname: Klefström
  fullname: Klefström, Juha
  organization: University of Helsinki
– sequence: 9
  givenname: Pauliina M.
  orcidid: 0000-0002-9720-9964
  surname: Munne
  fullname: Munne, Pauliina M.
  email: pauliina.munne@helsinki.fi
  organization: University of Helsinki
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37671812$$D View this record in MEDLINE/PubMed
BookMark eNqFUUFvFCEYJaaNrbVXj4bEi5dd-RiGGU6mrtaatLGpeiYM89GlmYUVZjT772WzdbVNjFz4gPce7_veM3IQYkBCXgCbA2P8jemXqzlnvGIAVfOEHHNQfMZlrQ72tWBH5DTnO1aWrEG28JQcVY1soAV-TG7OfZd8oF9G71zAnOkN3k6DGTHT6yWGOG7W3tLrweTRWz9uaHT0CsdyNOWCvktYSrowwWKiCxyG_JwcOjNkPL3fT8i38w9fFxezy88fPy3OLmdWSNXMUPC-rRw3jROuVkZK6ARvZW9li50SjLnKVtJURvbIuqYzbS2EUT04Bawy1Ql5u9NdT90Ke4thTGbQ6-RXJm10NF4_fAl-qW_jDw1QDHDFi8Lre4UUv0-YR73y2ZYeTMA4ZV3cgBQ156JAXz2C3sUphdKf5opBUzecQ0G9_NvS3svveRfAfAewKeac0O0hwPQ2U73NVO8zLQTxiFBCKJOP25b88G-a2tF--gE3__lEn72_uPrD_QXaKLXs
CitedBy_id crossref_primary_10_1021_acsbiomaterials_4c01319
crossref_primary_10_1007_s42247_024_00762_6
Cites_doi 10.1038/s41416-021-01328-7
10.1073/pnas.0506580102
10.1002/jbm.a.37191
10.1016/j.jbiosc.2008.12.013
10.1016/j.celrep.2019.12.056
10.21873/anticanres.13290
10.1007/s10555-008-9169-0
10.1016/j.ceb.2020.08.012
10.1186/s12885-016-2766-3
10.1016/j.cell.2011.06.010
10.1103/PhysRevE.61.5646
10.1083/jcb.200802081
10.1038/s41419-019-1730-y
10.1038/nature03521
10.1097/01.LAB.0000017371.72714.C5
10.1371/journal.pone.0012905
10.1021/acs.nanolett.9b01597
10.3390/cells10051201
10.1007/s12079-021-00643-1
10.1038/ncb1019
10.1016/j.biomaterials.2006.08.027
10.1158/1078-0432.CCR-05-2821
10.1089/ten.2006.12.1587
10.1371/journal.pone.0085264
10.1038/s41592-018-0015-1
10.1016/j.biomaterials.2019.119739
10.1021/acssuschemeng.8b00915
10.1016/j.humpath.2011.12.004
10.3390/molecules23051045
10.1038/nrm2453
10.1101/gad.5.11.2117
10.1038/s41598-023-35657-9
10.1016/j.ceb.2015.06.007
10.1038/nmat3361
10.1083/jcb.140.3.627
10.1371/journal.pone.0020201
10.1038/nature11839
10.1016/j.ejcb.2014.07.003
10.1038/sj.bjc.6600069
10.1016/j.matbio.2016.08.003
10.1126/science.1228522
10.1182/blood-2004-06-2272
10.1038/s41392-020-0134-x
10.1158/2159-8290.CD-21-1059
10.1073/pnas.0604460103
10.1186/s13000-016-0491-5
10.1242/jcs.236778
10.1083/jcb.201406102
10.2217/fon-2017-0384
10.1021/acs.nanolett.2c01327
10.1007/s11060-017-2717-0
10.1172/JCI45014
10.1038/s41467-018-06641-z
10.1016/j.ymthe.2021.07.003
10.1083/jcb.201201124
10.1016/j.annonc.2020.09.010
10.1242/dev.033902
10.1021/acsmacrolett.9b00258
10.3322/caac.21590
10.1186/1471-2407-14-882
10.1016/j.yexcr.2013.06.019
10.1083/jcb.200209006
10.1182/blood.V96.10.3302
10.1089/ten.tea.2008.0319
10.1016/j.semcancer.2005.05.004
10.1016/j.bcp.2016.06.014
10.1098/rsif.2008.0327
10.1016/S1567-5769(02)00058-9
10.1038/s41419-020-02963-3
10.1038/s41467-018-05729-w
10.1038/bjc.2011.405
10.21873/anticanres.12952
10.1002/elps.1150190231
10.1038/s41467-021-27220-9
10.1182/blood.V62.1.14.14
10.1038/s41556-022-01045-0
10.1073/pnas.1322291111
10.1007/s12094-019-02197-6
10.1016/j.isci.2020.101372
10.1093/bioinformatics/btp616
10.1177/1758834010378414
10.1042/BJ20091122
10.1039/B610522J
10.3322/caac.21660
10.1016/j.cub.2006.05.065
10.1371/journal.pbio.1001231
10.1158/1541-7786.MCR-16-0260
10.1016/j.devcel.2021.11.006
10.1016/j.yexcr.2013.05.017
10.1007/s10544-021-00547-2
10.3816/CBC.2009.s.008
10.1016/j.stem.2018.11.011
10.2478/raon-2021-0033
10.1371/journal.pone.0217227
10.1016/j.mrrev.2012.08.001
10.1038/s41592-022-01643-8
10.1371/journal.pone.0013984
10.1007/978-3-319-49674-0_13
10.1007/s10549-021-06213-8
10.3389/fonc.2021.652253
10.1371/journal.pone.0025332
10.1371/journal.pone.0006382
10.1042/BSR20130057
10.3389/fonc.2014.00285
10.1038/s41586-018-0040-3
10.1083/jcb.200602085
10.1186/s12885-016-2406-y
10.1158/0008-5472.CAN-04-2078
10.1016/j.biomaterials.2014.11.011
10.1038/onc.2012.390
10.1002/jbm.a.34946
10.1016/j.canlet.2012.02.019
10.1038/s41598-017-06570-9
10.1038/nature03550
10.1158/1541-7786.MCR-10-0490
10.1016/j.cels.2021.04.007
ContentType Journal Article
Copyright 2023 The Authors. Advanced Healthcare Materials published by Wiley‐VCH GmbH
2023 The Authors. Advanced Healthcare Materials published by Wiley-VCH GmbH.
2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 The Authors. Advanced Healthcare Materials published by Wiley‐VCH GmbH
– notice: 2023 The Authors. Advanced Healthcare Materials published by Wiley-VCH GmbH.
– notice: 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
NPM
7QF
7QP
7QQ
7SC
7SE
7SP
7SR
7T5
7TA
7TB
7TM
7TO
7U5
8BQ
8FD
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
7X8
5PM
DOI 10.1002/adhm.202301137
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
Aluminium Industry Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Immunology Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Materials Research Database
Oncogenes and Growth Factors Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
AIDS and Cancer Research Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Computer and Information Systems Abstracts Professional
Immunology Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList PubMed
CrossRef
Materials Research Database

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2192-2659
EndPage n/a
ExternalDocumentID PMC11469292
37671812
10_1002_adhm_202301137
ADHM202301137
Genre article
Journal Article
GrantInformation_xml – fundername: Cancer Foundation Finland
– fundername: Business Finland
  funderid: 2489/31/2017
– fundername: Sigrid Juselius Foundation
– fundername: Academy of Finland
  funderid: 318890; 318891; 346108; 352900; 320167
– fundername: European Research Council
  funderid: 680083
– fundername: European Research Council
  grantid: 680083
GroupedDBID 05W
0R~
1OC
24P
33P
53G
8-0
8-1
AAESR
AAHQN
AAIHA
AAIPD
AAMMB
AAMNL
AANLZ
AAXRX
AAYCA
AAZKR
ABCUV
ABLJU
ABQWH
ABXGK
ACAHQ
ACCZN
ACGFS
ACGOF
ACIWK
ACPOU
ACPRK
ACXBN
ACXQS
ADBBV
ADBTR
ADKYN
ADMGS
ADMLS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AHMBA
AIACR
AIDQK
AIDYY
AITYG
AIURR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
D-A
D-B
DCZOG
DRFUL
DRMAN
DRSTM
EBD
EBS
EMOBN
G-S
HGLYW
HZ~
KBYEO
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MXFUL
MXMAN
MXSTM
MY.
MY~
O9-
OVD
P2W
PQQKQ
ROL
SUPJJ
SV3
TEORI
WBKPD
WOHZO
WXSBR
ZZTAW
31~
AAHHS
AANHP
AASGY
AAYXX
ACBWZ
ACCFJ
ACRPL
ACYXJ
ADNMO
ADZOD
AEEZP
AEQDE
AGQPQ
AIWBW
AJBDE
ASPBG
AVWKF
AZFZN
C45
CITATION
EJD
GODZA
NPM
7QF
7QP
7QQ
7SC
7SE
7SP
7SR
7T5
7TA
7TB
7TM
7TO
7U5
8BQ
8FD
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
7X8
5PM
ID FETCH-LOGICAL-c4697-e42d83f2a7f4f59a661b4286dc68eb9400f3c36a3a6de0b7ba8544a9d1f9103a3
IEDL.DBID 24P
ISSN 2192-2640
2192-2659
IngestDate Thu Aug 21 18:35:05 EDT 2025
Fri Jul 11 15:22:36 EDT 2025
Fri Jul 25 12:06:07 EDT 2025
Mon Jul 21 06:01:09 EDT 2025
Thu Apr 24 23:06:33 EDT 2025
Tue Jul 01 05:07:08 EDT 2025
Sun Jul 06 04:45:38 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 31
Keywords fibrin hydrogels
3D cell culture
phenotypic plasticity
triple negative breast cancer
circulating tumor cells
metastasis
Language English
License Attribution
2023 The Authors. Advanced Healthcare Materials published by Wiley-VCH GmbH.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4697-e42d83f2a7f4f59a661b4286dc68eb9400f3c36a3a6de0b7ba8544a9d1f9103a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4237-4081
0000-0002-9720-9964
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadhm.202301137
PMID 37671812
PQID 2901757221
PQPubID 2032434
PageCount 17
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11469292
proquest_miscellaneous_2861645224
proquest_journals_2901757221
pubmed_primary_37671812
crossref_primary_10_1002_adhm_202301137
crossref_citationtrail_10_1002_adhm_202301137
wiley_primary_10_1002_adhm_202301137_ADHM202301137
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
– name: Hoboken
PublicationTitle Advanced healthcare materials
PublicationTitleAlternate Adv Healthc Mater
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
John Wiley and Sons Inc
Publisher_xml – name: Wiley Subscription Services, Inc
– name: John Wiley and Sons Inc
References 1979; 39
2021; 68
2017; 82
2019; 10
2019; 14
2019; 19
2006; 175
2020; 11
2022; 22
2021; 71
2012; 11
2012; 10
2018; 6
2018; 9
1998; 19
2010; 26
2002; 86
2005; 102
2019; 24
2000; 96
2005; 105
2013; 752
2003; 160
2014; 14
2022; 30
2007; 3
2010; 2
2010; 5
2014; 93
2018; 38
2009; 15
2011; 121
2019; 8
2017; 60
2019; 39
2002; 2
2002; 82
2018; 23
2016; 16
2011; 6
2016; 11
2011; 9
2012; 197
2021; 56
2021; 55
2020; 31
2020; 30
2013; 339
2022; 12
2020; 23
2020; 22
2005; 15
2009; 107
2012; 43
2011; 145
1998; 140
2018; 15
2018; 14
2006; 103
2022; 19
2017; 7
2004; 64
2015; 36
2021; 23
2012; 321
2021; 125
2008; 9
2007; 28
2020; 5
2014; 4
2023; 25
2014; 2
2017; 37
2015; 40
2013; 319
2018; 137
2000; 61
1983; 62
2003; 5
2020; 133
2014; 9
2021; 109
2023; 13
2006; 12
2006; 16
2005; 435
2016; 122
2015; 208
2021; 187
2014; 111
2009; 136
1991; 5
2009; 28
2011; 105
2008; 181
2021; 16
2021; 10
2021; 12
2021; 11
2013; 33
2017; 15
2013; 32
2018; 556
2022
2020; 70
1970; 45
2009; 9
2013; 493
2009; 6
2020; 232
2009; 4
2009; 425
2014; 102
e_1_2_9_75_1
e_1_2_9_98_1
e_1_2_9_52_1
e_1_2_9_79_1
e_1_2_9_94_1
e_1_2_9_56_1
e_1_2_9_33_1
e_1_2_9_90_1
e_1_2_9_71_1
e_1_2_9_103_1
e_1_2_9_107_1
e_1_2_9_122_1
e_1_2_9_14_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_87_1
Aoun L. (e_1_2_9_113_1) 2019; 14
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_83_1
e_1_2_9_6_1
e_1_2_9_119_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_111_1
e_1_2_9_115_1
e_1_2_9_26_1
e_1_2_9_49_1
Fidler I. J. (e_1_2_9_17_1) 1970; 45
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_99_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_95_1
e_1_2_9_76_1
e_1_2_9_91_1
e_1_2_9_102_1
e_1_2_9_106_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_121_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_88_1
e_1_2_9_61_1
e_1_2_9_84_1
e_1_2_9_23_1
e_1_2_9_65_1
e_1_2_9_80_1
e_1_2_9_5_1
e_1_2_9_1_1
e_1_2_9_114_1
e_1_2_9_118_1
e_1_2_9_9_1
e_1_2_9_27_1
e_1_2_9_69_1
e_1_2_9_110_1
e_1_2_9_31_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_35_1
e_1_2_9_77_1
e_1_2_9_96_1
e_1_2_9_12_1
e_1_2_9_54_1
e_1_2_9_92_1
e_1_2_9_109_1
Barriere G. (e_1_2_9_46_1) 2014; 2
e_1_2_9_101_1
e_1_2_9_105_1
e_1_2_9_39_1
e_1_2_9_120_1
e_1_2_9_16_1
e_1_2_9_58_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_89_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_85_1
e_1_2_9_8_1
e_1_2_9_81_1
e_1_2_9_4_1
e_1_2_9_117_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_78_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_97_1
e_1_2_9_93_1
e_1_2_9_108_1
e_1_2_9_70_1
Timmer M. (e_1_2_9_10_1) 2017; 37
e_1_2_9_100_1
e_1_2_9_123_1
e_1_2_9_104_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_67_1
e_1_2_9_44_1
e_1_2_9_86_1
e_1_2_9_7_1
e_1_2_9_82_1
e_1_2_9_3_1
e_1_2_9_112_1
e_1_2_9_116_1
e_1_2_9_25_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 86
  start-page: 389
  year: 2002
  publication-title: Br. J. Cancer
– volume: 39
  start-page: 10
  year: 1979
– volume: 14
  year: 2019
  publication-title: PLoS One
– volume: 102
  start-page: 2776
  year: 2014
  publication-title: J. Biomed. Mater. Res., Part A
– volume: 45
  start-page: 773
  year: 1970
  publication-title: JNCI, J. Natl. Cancer Inst.
– volume: 8
  start-page: 670
  year: 2019
  publication-title: ACS Macro Lett.
– volume: 321
  start-page: 89
  year: 2012
  publication-title: Cancer Lett
– volume: 125
  start-page: 164
  year: 2021
  publication-title: Br. J. Cancer
– volume: 197
  start-page: 439
  year: 2012
  publication-title: J. Cell Biol.
– volume: 145
  start-page: 1012
  year: 2011
  publication-title: Cell
– volume: 5
  start-page: 711
  year: 2003
  publication-title: Nat. Cell Biol.
– volume: 133
  year: 2020
  publication-title: J. Cell Sci.
– volume: 37
  start-page: 4859
  year: 2017
  publication-title: Anticancer Res.
– volume: 10
  start-page: 1
  year: 2019
  publication-title: Cell Death Dis.
– volume: 435
  start-page: 365
  year: 2005
  publication-title: Nature
– volume: 22
  start-page: 7742
  year: 2022
  publication-title: Nano Lett.
– volume: 32
  start-page: 3886
  year: 2013
  publication-title: Oncogene
– volume: 16
  start-page: 433
  year: 2016
  publication-title: BMC Cancer
– volume: 187
  start-page: 349
  year: 2021
  publication-title: Breast Cancer Res. Treat.
– volume: 10
  year: 2012
  publication-title: PLoS Biol.
– volume: 493
  start-page: 651
  year: 2013
  publication-title: Nature
– volume: 19
  start-page: 5949
  year: 2019
  publication-title: Nano Lett.
– volume: 15
  start-page: 1865
  year: 2009
  publication-title: Tissue Eng. Part A
– volume: 9
  start-page: 997
  year: 2011
  publication-title: Mol. Cancer Res.
– year: 2022
– volume: 31
  start-page: 1623
  year: 2020
  publication-title: Ann. Oncol.
– volume: 3
  start-page: 299
  year: 2007
  publication-title: Soft Matter
– volume: 11
  start-page: 734
  year: 2012
  publication-title: Nat. Mater.
– volume: 40
  start-page: 61
  year: 2015
  publication-title: Biomaterials
– volume: 4
  start-page: 285
  year: 2014
  publication-title: Front. Oncol.
– volume: 15
  start-page: 15
  year: 2017
  publication-title: Mol. Cancer Res.
– volume: 28
  start-page: 55
  year: 2007
  publication-title: Biomaterials
– volume: 4
  year: 2009
  publication-title: PLoS One
– volume: 103
  year: 2006
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 96
  start-page: 3302
  year: 2000
  publication-title: Blood
– volume: 38
  start-page: 6023
  year: 2018
  publication-title: Anticancer Res.
– volume: 12
  start-page: 6967
  year: 2021
  publication-title: Nat. Commun.
– volume: 105
  start-page: 178
  year: 2005
  publication-title: Blood
– volume: 60
  start-page: 110
  year: 2017
  publication-title: Matrix Biol.
– volume: 14
  start-page: 849
  year: 2018
  publication-title: Future Oncol.
– volume: 136
  start-page: 3531
  year: 2009
  publication-title: Development
– volume: 105
  start-page: 1338
  year: 2011
  publication-title: Br. J. Cancer
– volume: 5
  start-page: 28
  year: 2020
  publication-title: Signal Transduction Targeted Ther.
– volume: 19
  start-page: 1449
  year: 2022
  publication-title: Nat. Methods
– volume: 70
  start-page: 7
  year: 2020
  publication-title: Ca‐Cancer J. Clin.
– volume: 12
  start-page: 1587
  year: 2006
  publication-title: Tissue Eng.
– volume: 15
  start-page: 491
  year: 2018
  publication-title: Nat. Methods
– volume: 6
  start-page: 7826
  year: 2018
  publication-title: ACS Sustainable Chem. Eng.
– volume: 11
  year: 2021
  publication-title: Front. Oncol.
– volume: 55
  start-page: 292
  year: 2021
  publication-title: Radiol Oncol
– volume: 752
  start-page: 10
  year: 2013
  publication-title: Mutat. Res. Rev. Mutat. Res.
– volume: 435
  start-page: 191
  year: 2005
  publication-title: Nature
– volume: 109
  start-page: 1990
  year: 2021
  publication-title: J. Biomed. Mater. Res., Part A
– volume: 339
  start-page: 580
  year: 2013
  publication-title: Science
– volume: 28
  start-page: 15
  year: 2009
  publication-title: Cancer Metastasis Rev.
– volume: 140
  start-page: 627
  year: 1998
  publication-title: J. Cell Biol.
– volume: 9
  year: 2014
  publication-title: PLoS One
– volume: 11
  start-page: 41
  year: 2016
  publication-title: Diagn. Pathol.
– volume: 232
  year: 2020
  publication-title: Biomaterials
– volume: 14
  start-page: 882
  year: 2014
  publication-title: BMC Cancer
– volume: 102
  year: 2005
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 82
  start-page: 405
  year: 2017
  publication-title: Subcell Biochem.
– volume: 16
  start-page: 1515
  year: 2006
  publication-title: Curr. Biol.
– volume: 175
  start-page: 477
  year: 2006
  publication-title: J. Cell Biol.
– volume: 64
  start-page: 8613
  year: 2004
  publication-title: Cancer Res.
– volume: 137
  start-page: 295
  year: 2018
  publication-title: J. Neurooncol.
– volume: 208
  start-page: 443
  year: 2015
  publication-title: J. Cell Biol.
– volume: 9
  start-page: 730
  year: 2008
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 111
  year: 2014
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 23
  start-page: 27
  year: 2021
  publication-title: Biomed. Microdevices
– volume: 56
  start-page: 3203
  year: 2021
  publication-title: Dev. Cell
– volume: 33
  start-page: 701
  year: 2013
  publication-title: Biosci. Rep.
– volume: 12
  start-page: 31
  year: 2022
  publication-title: Cancer Discov.
– volume: 2
  start-page: 109
  year: 2014
  publication-title: Ann. Transl. Med.
– volume: 30
  start-page: 755
  year: 2020
  publication-title: Cell Rep.
– volume: 107
  start-page: 447
  year: 2009
  publication-title: J. Biosci. Bioeng.
– volume: 36
  start-page: 23
  year: 2015
  publication-title: Curr. Opin. Cell Biol.
– volume: 15
  start-page: 378
  year: 2005
  publication-title: Semin. Cancer Biol.
– volume: 82
  start-page: 737
  year: 2002
  publication-title: Lab Invest.
– volume: 61
  start-page: 5646
  year: 2000
  publication-title: Phys. Rev. E
– volume: 121
  start-page: 2750
  year: 2011
  publication-title: J. Clin. Invest.
– volume: 319
  start-page: 2447
  year: 2013
  publication-title: Exp. Cell Res.
– volume: 12
  start-page: 457
  year: 2021
  publication-title: Cell Syst
– volume: 122
  start-page: 1
  year: 2016
  publication-title: Biochem. Pharmacol.
– volume: 2
  start-page: 351
  year: 2010
  publication-title: Ther. Adv. Med. Oncol.
– volume: 9
  start-page: 3815
  year: 2018
  publication-title: Nat. Commun.
– volume: 23
  year: 2020
  publication-title: iScience
– volume: 26
  start-page: 139
  year: 2010
  publication-title: Bioinformatics
– volume: 25
  start-page: 145
  year: 2023
  publication-title: Nat. Cell Biol.
– volume: 556
  start-page: 463
  year: 2018
  publication-title: Nature
– volume: 319
  start-page: 2481
  year: 2013
  publication-title: Exp. Cell Res.
– volume: 5
  year: 2010
  publication-title: PLoS One
– volume: 16
  start-page: 734
  year: 2016
  publication-title: BMC Cancer
– volume: 16
  start-page: 621
  year: 2021
  publication-title: J. Cell Commun. Signal
– volume: 9
  start-page: S73
  year: 2009
  publication-title: Clin. Breast Cancer
– volume: 22
  start-page: 870
  year: 2020
  publication-title: Clin. Transl. Oncol.
– volume: 71
  start-page: 209
  year: 2021
  publication-title: Ca‐Cancer J. Clin.
– volume: 93
  start-page: 438
  year: 2014
  publication-title: Eur. J. Cell Biol.
– volume: 19
  start-page: 333
  year: 1998
  publication-title: Electrophoresis
– volume: 181
  start-page: 879
  year: 2008
  publication-title: J. Cell Biol.
– volume: 62
  start-page: 14
  year: 1983
  publication-title: Blood
– volume: 425
  start-page: 179
  year: 2009
  publication-title: Biochem. J.
– volume: 10
  start-page: 1201
  year: 2021
  publication-title: Cells
– volume: 7
  start-page: 6250
  year: 2017
  publication-title: Sci. Rep.
– volume: 160
  start-page: 267
  year: 2003
  publication-title: J. Cell Biol.
– volume: 2
  start-page: 1509
  year: 2002
  publication-title: Int. Immunopharmacol.
– volume: 39
  start-page: 1829
  year: 2019
  publication-title: Anticancer Res.
– volume: 11
  start-page: 757
  year: 2020
  publication-title: Cell Death Dis.
– volume: 9
  start-page: 4144
  year: 2018
  publication-title: Nat. Commun.
– volume: 5
  start-page: 2117
  year: 1991
  publication-title: Genes. Dev.
– volume: 6
  year: 2011
  publication-title: PLoS One
– volume: 24
  start-page: 65
  year: 2019
  publication-title: Cell Stem Cell
– volume: 6
  start-page: 0327
  year: 2009
  publication-title: J. R. Soc. Interface
– volume: 68
  start-page: 37
  year: 2021
  publication-title: Curr. Opin. Cell Biol.
– volume: 30
  start-page: 672
  year: 2022
  publication-title: Mol. Ther.
– volume: 13
  year: 2023
  publication-title: Sci. Rep.
– volume: 43
  start-page: 1638
  year: 2012
  publication-title: Hum. Pathol.
– volume: 23
  start-page: 1045
  year: 2018
  publication-title: Molecules
– volume: 12
  start-page: 4218
  year: 2006
  publication-title: Clin. Cancer Res.
– ident: e_1_2_9_4_1
  doi: 10.1038/s41416-021-01328-7
– ident: e_1_2_9_52_1
  doi: 10.1073/pnas.0506580102
– ident: e_1_2_9_51_1
  doi: 10.1002/jbm.a.37191
– ident: e_1_2_9_85_1
  doi: 10.1016/j.jbiosc.2008.12.013
– ident: e_1_2_9_76_1
  doi: 10.1016/j.celrep.2019.12.056
– ident: e_1_2_9_14_1
  doi: 10.21873/anticanres.13290
– ident: e_1_2_9_62_1
  doi: 10.1007/s10555-008-9169-0
– ident: e_1_2_9_112_1
  doi: 10.1016/j.ceb.2020.08.012
– ident: e_1_2_9_5_1
  doi: 10.1186/s12885-016-2766-3
– ident: e_1_2_9_90_1
  doi: 10.1016/j.cell.2011.06.010
– ident: e_1_2_9_43_1
  doi: 10.1103/PhysRevE.61.5646
– ident: e_1_2_9_97_1
  doi: 10.1083/jcb.200802081
– ident: e_1_2_9_89_1
  doi: 10.1038/s41419-019-1730-y
– ident: e_1_2_9_32_1
  doi: 10.1038/nature03521
– ident: e_1_2_9_79_1
  doi: 10.1097/01.LAB.0000017371.72714.C5
– ident: e_1_2_9_50_1
  doi: 10.1371/journal.pone.0012905
– ident: e_1_2_9_95_1
  doi: 10.1021/acs.nanolett.9b01597
– ident: e_1_2_9_87_1
  doi: 10.3390/cells10051201
– ident: e_1_2_9_69_1
  doi: 10.1007/s12079-021-00643-1
– ident: e_1_2_9_96_1
  doi: 10.1038/ncb1019
– ident: e_1_2_9_26_1
  doi: 10.1016/j.biomaterials.2006.08.027
– ident: e_1_2_9_13_1
  doi: 10.1158/1078-0432.CCR-05-2821
– ident: e_1_2_9_28_1
  doi: 10.1089/ten.2006.12.1587
– ident: e_1_2_9_101_1
  doi: 10.1371/journal.pone.0085264
– volume: 2
  start-page: 109
  year: 2014
  ident: e_1_2_9_46_1
  publication-title: Ann. Transl. Med.
– ident: e_1_2_9_41_1
  doi: 10.1038/s41592-018-0015-1
– ident: e_1_2_9_104_1
  doi: 10.1016/j.biomaterials.2019.119739
– ident: e_1_2_9_39_1
  doi: 10.1021/acssuschemeng.8b00915
– ident: e_1_2_9_74_1
  doi: 10.1016/j.humpath.2011.12.004
– ident: e_1_2_9_56_1
  doi: 10.3390/molecules23051045
– ident: e_1_2_9_65_1
  doi: 10.1038/nrm2453
– ident: e_1_2_9_57_1
  doi: 10.1101/gad.5.11.2117
– ident: e_1_2_9_105_1
  doi: 10.1038/s41598-023-35657-9
– ident: e_1_2_9_119_1
– ident: e_1_2_9_92_1
  doi: 10.1016/j.ceb.2015.06.007
– ident: e_1_2_9_88_1
  doi: 10.1038/nmat3361
– ident: e_1_2_9_116_1
  doi: 10.1083/jcb.140.3.627
– ident: e_1_2_9_42_1
  doi: 10.1371/journal.pone.0020201
– ident: e_1_2_9_35_1
  doi: 10.1038/nature11839
– ident: e_1_2_9_110_1
  doi: 10.1016/j.ejcb.2014.07.003
– ident: e_1_2_9_22_1
  doi: 10.1038/sj.bjc.6600069
– ident: e_1_2_9_36_1
  doi: 10.1016/j.matbio.2016.08.003
– ident: e_1_2_9_82_1
  doi: 10.1126/science.1228522
– ident: e_1_2_9_23_1
  doi: 10.1182/blood-2004-06-2272
– ident: e_1_2_9_11_1
  doi: 10.1038/s41392-020-0134-x
– ident: e_1_2_9_70_1
  doi: 10.1158/2159-8290.CD-21-1059
– ident: e_1_2_9_49_1
  doi: 10.1073/pnas.0604460103
– ident: e_1_2_9_75_1
  doi: 10.1186/s13000-016-0491-5
– ident: e_1_2_9_99_1
  doi: 10.1242/jcs.236778
– ident: e_1_2_9_91_1
  doi: 10.1083/jcb.201406102
– ident: e_1_2_9_8_1
  doi: 10.2217/fon-2017-0384
– ident: e_1_2_9_103_1
  doi: 10.1126/science.1228522
– ident: e_1_2_9_123_1
  doi: 10.1021/acs.nanolett.2c01327
– ident: e_1_2_9_7_1
  doi: 10.1007/s11060-017-2717-0
– ident: e_1_2_9_55_1
  doi: 10.1172/JCI45014
– ident: e_1_2_9_111_1
  doi: 10.1038/s41467-018-06641-z
– ident: e_1_2_9_53_1
  doi: 10.1016/j.ymthe.2021.07.003
– ident: e_1_2_9_94_1
  doi: 10.1083/jcb.201201124
– ident: e_1_2_9_3_1
  doi: 10.1016/j.annonc.2020.09.010
– ident: e_1_2_9_78_1
  doi: 10.1242/dev.033902
– ident: e_1_2_9_34_1
  doi: 10.1021/acsmacrolett.9b00258
– ident: e_1_2_9_2_1
  doi: 10.3322/caac.21590
– ident: e_1_2_9_117_1
  doi: 10.1186/1471-2407-14-882
– ident: e_1_2_9_66_1
  doi: 10.1016/j.yexcr.2013.06.019
– ident: e_1_2_9_93_1
  doi: 10.1083/jcb.200209006
– ident: e_1_2_9_18_1
  doi: 10.1182/blood.V96.10.3302
– ident: e_1_2_9_30_1
  doi: 10.1089/ten.tea.2008.0319
– ident: e_1_2_9_47_1
  doi: 10.1016/j.semcancer.2005.05.004
– ident: e_1_2_9_72_1
  doi: 10.1016/j.bcp.2016.06.014
– ident: e_1_2_9_29_1
  doi: 10.1098/rsif.2008.0327
– ident: e_1_2_9_59_1
  doi: 10.1016/S1567-5769(02)00058-9
– ident: e_1_2_9_61_1
  doi: 10.1038/s41419-020-02963-3
– ident: e_1_2_9_73_1
  doi: 10.1038/s41467-018-05729-w
– ident: e_1_2_9_80_1
  doi: 10.1038/bjc.2011.405
– ident: e_1_2_9_9_1
  doi: 10.21873/anticanres.12952
– ident: e_1_2_9_38_1
– ident: e_1_2_9_44_1
  doi: 10.1002/elps.1150190231
– ident: e_1_2_9_60_1
  doi: 10.1038/s41467-021-27220-9
– ident: e_1_2_9_21_1
  doi: 10.1182/blood.V62.1.14.14
– ident: e_1_2_9_81_1
  doi: 10.1038/s41556-022-01045-0
– ident: e_1_2_9_98_1
  doi: 10.1073/pnas.1322291111
– ident: e_1_2_9_68_1
  doi: 10.1007/s12094-019-02197-6
– ident: e_1_2_9_107_1
  doi: 10.1016/j.isci.2020.101372
– ident: e_1_2_9_121_1
  doi: 10.1093/bioinformatics/btp616
– ident: e_1_2_9_15_1
  doi: 10.1177/1758834010378414
– ident: e_1_2_9_63_1
  doi: 10.1042/BJ20091122
– ident: e_1_2_9_31_1
  doi: 10.1039/B610522J
– ident: e_1_2_9_1_1
  doi: 10.3322/caac.21660
– ident: e_1_2_9_109_1
  doi: 10.1016/j.cub.2006.05.065
– ident: e_1_2_9_86_1
  doi: 10.1371/journal.pbio.1001231
– ident: e_1_2_9_48_1
  doi: 10.1158/1541-7786.MCR-16-0260
– ident: e_1_2_9_83_1
  doi: 10.1016/j.devcel.2021.11.006
– ident: e_1_2_9_120_1
– volume: 37
  start-page: 4859
  year: 2017
  ident: e_1_2_9_10_1
  publication-title: Anticancer Res.
– ident: e_1_2_9_33_1
  doi: 10.1016/j.yexcr.2013.05.017
– ident: e_1_2_9_40_1
  doi: 10.1007/s10544-021-00547-2
– ident: e_1_2_9_6_1
  doi: 10.3816/CBC.2009.s.008
– ident: e_1_2_9_71_1
  doi: 10.1016/j.stem.2018.11.011
– ident: e_1_2_9_100_1
  doi: 10.2478/raon-2021-0033
– volume: 14
  year: 2019
  ident: e_1_2_9_113_1
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0217227
– ident: e_1_2_9_16_1
  doi: 10.1016/j.mrrev.2012.08.001
– ident: e_1_2_9_106_1
  doi: 10.1038/s41592-022-01643-8
– ident: e_1_2_9_122_1
  doi: 10.1371/journal.pone.0013984
– ident: e_1_2_9_19_1
  doi: 10.1007/978-3-319-49674-0_13
– ident: e_1_2_9_54_1
  doi: 10.1007/s10549-021-06213-8
– ident: e_1_2_9_67_1
  doi: 10.3389/fonc.2021.652253
– ident: e_1_2_9_64_1
  doi: 10.1371/journal.pone.0025332
– ident: e_1_2_9_37_1
  doi: 10.1371/journal.pone.0006382
– ident: e_1_2_9_20_1
  doi: 10.1042/BSR20130057
– ident: e_1_2_9_58_1
  doi: 10.3389/fonc.2014.00285
– ident: e_1_2_9_102_1
  doi: 10.1038/s41586-018-0040-3
– ident: e_1_2_9_115_1
  doi: 10.1083/jcb.200602085
– volume: 45
  start-page: 773
  year: 1970
  ident: e_1_2_9_17_1
  publication-title: JNCI, J. Natl. Cancer Inst.
– ident: e_1_2_9_12_1
  doi: 10.1186/s12885-016-2406-y
– ident: e_1_2_9_24_1
  doi: 10.1158/0008-5472.CAN-04-2078
– ident: e_1_2_9_25_1
  doi: 10.1016/j.biomaterials.2014.11.011
– ident: e_1_2_9_77_1
  doi: 10.1038/onc.2012.390
– ident: e_1_2_9_108_1
  doi: 10.1002/jbm.a.34946
– ident: e_1_2_9_45_1
  doi: 10.1016/j.canlet.2012.02.019
– ident: e_1_2_9_27_1
  doi: 10.1038/s41598-017-06570-9
– ident: e_1_2_9_114_1
  doi: 10.1038/nature03550
– ident: e_1_2_9_84_1
  doi: 10.1158/1541-7786.MCR-10-0490
– ident: e_1_2_9_118_1
  doi: 10.1016/j.cels.2021.04.007
SSID ssj0000651681
Score 2.382237
Snippet The extracellular matrix (ECM)‐regulated phenotypic plasticity is crucial for metastatic progression of triple negative breast cancer (TNBC). While ECM...
The extracellular matrix (ECM)-regulated phenotypic plasticity is crucial for metastatic progression of triple negative breast cancer (TNBC). While ECM...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2301137
SubjectTerms 3D cell culture
Actin
Basements
Biological properties
Breast cancer
Cell culture
circulating tumor cells
Cytology
Cytotoxicity
Extracellular matrix
Fibrin
fibrin hydrogels
Gene expression
Hydrogels
Immune system
Membranes
Metastases
Metastasis
Phenotypes
Phenotypic plasticity
Plastic properties
Protective coatings
Shear stress
Stiffness
triple negative breast cancer
Tubulin
Tumor cells
Tumors
Title Fibrin Stiffness Regulates Phenotypic Plasticity of Metastatic Breast Cancer Cells
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadhm.202301137
https://www.ncbi.nlm.nih.gov/pubmed/37671812
https://www.proquest.com/docview/2901757221
https://www.proquest.com/docview/2861645224
https://pubmed.ncbi.nlm.nih.gov/PMC11469292
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEB7S5NIeSpO-1CZhA4WcRKyVtJKOrhNjQhxMHpCbGK1mscHIIVYO-fedkWzVJpRCbhK7K4mdGc23uzPfAPzKyjQVFhA_i1zmM_5HPyMyfuKs09gjaxqe2fG1Gd1Hlw_xw0YWf8sP0W24iWU0_2sxcCyWZ39JQ7GcSia5Fg0Nk3ewJ_m1wp6vo0m3y8IONjBNpVK2TC3hXL01c2NPn20_YtszvYKbr6MmN9Fs446Gn-DjCkeqfiv4fdih6gA-bLALfoaboYTzV-q2njknfzR10xaep6WaTKla1C-PM6smjJ8ltLp-UQunxlSjJBlxw2-JV6_VQPTiSQ1oPl9-gfvhxd1g5K9KKPiW172JT5Eu05BnPXGRizNkb1zwgsOU1qRUSFF0F9rQYIimpF6RFJjGUYRZGTjGESGGX2G3WlT0HZRFl5VaI4W8wiJMUltiERTEiC9GlrgH_nr6crviF5cyF_O8ZUbWuUx33k23B6dd_8eWWeOfPQ_X0shXFrbM5fw3iROtAw9Ouma2DTnwwIoWz9wnNYEc3OrIg2-t8LpXCYuNoBsP0i2xdh2Ed3u7pZpNG_5tUTRGlTxUNxrwn8_P--ejcXf34y2DfsJ7uW7DaA5ht356piMGQ3Vx3Oj7Mez1z8dXt38AImwC_Q
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED9t7GHjAcHGR4AxT5q0p4jGcZzkEQpVYRRVDKS9RY5zVitVaUXDA_89d0kbqBBC2mPij0S-O_tn--53AL_SIkmYBcRPlUt9wv_GTxG1HzvrpOmg1TXP7OBa9-_U5b9o6U3IsTANP0R74MaWUc_XbOB8IH38zBpqihGHkktW0TD-CJ8U9cu2KdWwPWahFTbQdapSMk3J_lydJXVjRx6vdrG6NL3Cm6_dJl_C2Xo96m3CxgJIipNG8lvwAcuvsP6CXvAb3PTYn78Uf6uxczyliZsm8zzOxXCE5bR6nI2tGBKAZt_q6lFMnRhgZTjKiApO2WG9El1WjHvRxclkvg13vfPbbt9f5FDwLW18Yx-VLJKQhj12ykWpoeU4px2HLqxOMOes6C60oTah0QV28jg3SaSUSYvAEZAITbgDa-W0xD0Q1ri0kNJgSFssNHFiC5MHORLkiwyJ3AN_OXyZXRCMc56LSdZQI8uMhztrh9uD3239WUOt8WbNw6U0soWJzTO-AI6jWMrAg59tMRkH33iYEqcPVCfRAd_cSuXBbiO89lNMY8PwxoNkRaxtBSbeXi0px6OagJsjuQlWUlNZa8A7v5-dnPUH7dP-_zT6AZ_7t4Or7Ori-s8BfOH3jU_NIaxV9w_4nZBRlR_Vuv8E-YAE1Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9swED62Dsb2ULqua931hwqDPZnGsi3bj13akHVLCd0KfTOydCKB4ITEfeh_vzs7cRNKGfTRlmQb3Z31SXf3HcC3zKYps4D4WeQyn_C_9jNE5SfOOKk7aFTNMzu4Uf276Po-vl_L4m_4IdoDN7aM-n_NBj6z7vyJNFTbEWeSS9bQMHkL72qPH3M7R8P2lIUW2EDVlUrJMiWHc3VWzI0deb75iM2V6RncfB41uY5m6-WotwPbSxwpLhrBf4I3WO7CxzV2wc9w2-Nw_lL8qcbO8R9N3DaF53EhhiMsp9XjbGzEkPAzh1ZXj2LqxAArzUlG1PCD49Ur0WW9mIsuTiaLPbjrXf3t9v1lCQXf0L438TGSNg1p1hMXuTjTtBoXtOFQ1qgUCy6K7kITKh1qZbFTJIVO4yjSmQ0c4YhQh19gq5yWeADCaJdZKTWGtMNCnaTG6iIokBBfrEniHvir6cvNkl-cy1xM8oYZWeY83Xk73R58b_vPGmaNF3seraSRLy1skbP_N4kTKQMPztpmsg12eOgSpw_UJ1UBO25l5MF-I7z2Vcxiw-jGg3RDrG0H5t3ebCnHo5p_mxO5CVXSUFlrwH8-P7-47A_aq8PXDDqF98PLXv77582vr_CBbzcRNUewVc0f8JhwUVWc1Kr_D2yaBAc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fibrin+Stiffness+Regulates+Phenotypic+Plasticity+of+Metastatic+Breast+Cancer+Cells&rft.jtitle=Advanced+healthcare+materials&rft.au=Heilala%2C+Maria&rft.au=Lehtonen%2C+Arttu&rft.au=Arasalo%2C+Ossi&rft.au=Peura%2C+Aino&rft.date=2023-12-01&rft.pub=John+Wiley+and+Sons+Inc&rft.issn=2192-2640&rft.eissn=2192-2659&rft.volume=12&rft.issue=31&rft_id=info:doi/10.1002%2Fadhm.202301137&rft_id=info%3Apmid%2F37671812&rft.externalDocID=PMC11469292
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2192-2640&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2192-2640&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2192-2640&client=summon