T Cell‐Mediated Transport of Polymer Nanoparticles across the Blood–Brain Barrier

Delivery of therapeutics to the central nervous system (CNS) is challenging due to the presence of the blood–brain barrier (BBB). Amongst various approaches that have been explored to facilitate drug delivery to the CNS, the use of cells that have the intrinsic ability to cross the BBB is relatively...

Full description

Saved in:
Bibliographic Details
Published inAdvanced healthcare materials Vol. 10; no. 2; pp. e2001375 - n/a
Main Authors Ayer, Maxime, Schuster, Markus, Gruber, Isabelle, Blatti, Claudia, Kaba, Elisa, Enzmann, Gaby, Burri, Olivier, Guiet, Romain, Seitz, Arne, Engelhardt, Britta, Klok, Harm‐Anton
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.01.2021
John Wiley and Sons Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Delivery of therapeutics to the central nervous system (CNS) is challenging due to the presence of the blood–brain barrier (BBB). Amongst various approaches that have been explored to facilitate drug delivery to the CNS, the use of cells that have the intrinsic ability to cross the BBB is relatively unexplored, yet very attractive. This paper presents a first proof‐of‐concept that demonstrates the feasibility of activated effector/memory CD4+ helper T cells (CD4+ TEM cells) as carriers for the delivery of polymer nanoparticles across the BBB. This study shows that CD4+ TEM cells can be decorated with poly(ethylene glycol)‐modified polystyrene nanoparticles using thiol–maleimide coupling chemistry, resulting in the immobilization of ≈105 nanoparticles per cell as determined by confocal microscopy. The ability of these cells to serve as carriers to transport nanoparticles across the BBB is established in vitro and in vivo. Using in vitro BBB models, CD4+ TEM cells are found to be able to transport nanoparticles across the BBB both under static conditions as well as under physiological flow. Finally, upon systemic administration, nanoparticle‐modified T cells are shown to enter the brain parenchyma of mice, demonstrating the brain delivery potential of this T cell subset in allogeneic hosts. CD4+ helper T cells can be surface‐modified via thiol–maleimide chemistry with polymer nanoparticles. These modified cells can act as carriers that allow for the transport of the nanoparticle cargo across the blood–brain barrier both in vitro as well as in vivo.
AbstractList Delivery of therapeutics to the central nervous system (CNS) is challenging due to the presence of the blood-brain barrier (BBB). Amongst various approaches that have been explored to facilitate drug delivery to the CNS, the use of cells that have the intrinsic ability to cross the BBB is relatively unexplored, yet very attractive. This paper presents a first proof-of-concept that demonstrates the feasibility of activated effector/memory CD4+ helper T cells (CD4+ TEM cells) as carriers for the delivery of polymer nanoparticles across the BBB. This study shows that CD4+ TEM cells can be decorated with poly(ethylene glycol)-modified polystyrene nanoparticles using thiol-maleimide coupling chemistry, resulting in the immobilization of ≈105 nanoparticles per cell as determined by confocal microscopy. The ability of these cells to serve as carriers to transport nanoparticles across the BBB is established in vitro and in vivo. Using in vitro BBB models, CD4+ TEM cells are found to be able to transport nanoparticles across the BBB both under static conditions as well as under physiological flow. Finally, upon systemic administration, nanoparticle-modified T cells are shown to enter the brain parenchyma of mice, demonstrating the brain delivery potential of this T cell subset in allogeneic hosts.Delivery of therapeutics to the central nervous system (CNS) is challenging due to the presence of the blood-brain barrier (BBB). Amongst various approaches that have been explored to facilitate drug delivery to the CNS, the use of cells that have the intrinsic ability to cross the BBB is relatively unexplored, yet very attractive. This paper presents a first proof-of-concept that demonstrates the feasibility of activated effector/memory CD4+ helper T cells (CD4+ TEM cells) as carriers for the delivery of polymer nanoparticles across the BBB. This study shows that CD4+ TEM cells can be decorated with poly(ethylene glycol)-modified polystyrene nanoparticles using thiol-maleimide coupling chemistry, resulting in the immobilization of ≈105 nanoparticles per cell as determined by confocal microscopy. The ability of these cells to serve as carriers to transport nanoparticles across the BBB is established in vitro and in vivo. Using in vitro BBB models, CD4+ TEM cells are found to be able to transport nanoparticles across the BBB both under static conditions as well as under physiological flow. Finally, upon systemic administration, nanoparticle-modified T cells are shown to enter the brain parenchyma of mice, demonstrating the brain delivery potential of this T cell subset in allogeneic hosts.
Delivery of therapeutics to the central nervous system (CNS) is challenging due to the presence of the blood–brain barrier (BBB). Amongst various approaches that have been explored to facilitate drug delivery to the CNS, the use of cells that have the intrinsic ability to cross the BBB is relatively unexplored, yet very attractive. This paper presents a first proof‐of‐concept that demonstrates the feasibility of activated effector/memory CD4 + helper T cells (CD4 + T EM cells) as carriers for the delivery of polymer nanoparticles across the BBB. This study shows that CD4 + T EM cells can be decorated with poly(ethylene glycol)‐modified polystyrene nanoparticles using thiol–maleimide coupling chemistry, resulting in the immobilization of ≈105 nanoparticles per cell as determined by confocal microscopy. The ability of these cells to serve as carriers to transport nanoparticles across the BBB is established in vitro and in vivo. Using in vitro BBB models, CD4 + T EM cells are found to be able to transport nanoparticles across the BBB both under static conditions as well as under physiological flow. Finally, upon systemic administration, nanoparticle‐modified T cells are shown to enter the brain parenchyma of mice, demonstrating the brain delivery potential of this T cell subset in allogeneic hosts. CD4 + helper T cells can be surface‐modified via thiol–maleimide chemistry with polymer nanoparticles. These modified cells can act as carriers that allow for the transport of the nanoparticle cargo across the blood–brain barrier both in vitro as well as in vivo.
Delivery of therapeutics to the central nervous system (CNS) is challenging due to the presence of the blood–brain barrier (BBB). Amongst various approaches that have been explored to facilitate drug delivery to the CNS, the use of cells that have the intrinsic ability to cross the BBB is relatively unexplored, yet very attractive. This paper presents a first proof‐of‐concept that demonstrates the feasibility of activated effector/memory CD4+ helper T cells (CD4+ TEM cells) as carriers for the delivery of polymer nanoparticles across the BBB. This study shows that CD4+ TEM cells can be decorated with poly(ethylene glycol)‐modified polystyrene nanoparticles using thiol–maleimide coupling chemistry, resulting in the immobilization of ≈105 nanoparticles per cell as determined by confocal microscopy. The ability of these cells to serve as carriers to transport nanoparticles across the BBB is established in vitro and in vivo. Using in vitro BBB models, CD4+ TEM cells are found to be able to transport nanoparticles across the BBB both under static conditions as well as under physiological flow. Finally, upon systemic administration, nanoparticle‐modified T cells are shown to enter the brain parenchyma of mice, demonstrating the brain delivery potential of this T cell subset in allogeneic hosts. CD4+ helper T cells can be surface‐modified via thiol–maleimide chemistry with polymer nanoparticles. These modified cells can act as carriers that allow for the transport of the nanoparticle cargo across the blood–brain barrier both in vitro as well as in vivo.
Delivery of therapeutics to the central nervous system (CNS) is challenging due to the presence of the blood-brain barrier (BBB). Amongst various approaches that have been explored to facilitate drug delivery to the CNS, the use of cells that have the intrinsic ability to cross the BBB is relatively unexplored, yet very attractive. This paper presents a first proof-of-concept that demonstrates the feasibility of activated effector/memory CD4 helper T cells (CD4 T cells) as carriers for the delivery of polymer nanoparticles across the BBB. This study shows that CD4 T cells can be decorated with poly(ethylene glycol)-modified polystyrene nanoparticles using thiol-maleimide coupling chemistry, resulting in the immobilization of ≈105 nanoparticles per cell as determined by confocal microscopy. The ability of these cells to serve as carriers to transport nanoparticles across the BBB is established in vitro and in vivo. Using in vitro BBB models, CD4 T cells are found to be able to transport nanoparticles across the BBB both under static conditions as well as under physiological flow. Finally, upon systemic administration, nanoparticle-modified T cells are shown to enter the brain parenchyma of mice, demonstrating the brain delivery potential of this T cell subset in allogeneic hosts.
Delivery of therapeutics to the central nervous system (CNS) is challenging due to the presence of the blood–brain barrier (BBB). Amongst various approaches that have been explored to facilitate drug delivery to the CNS, the use of cells that have the intrinsic ability to cross the BBB is relatively unexplored, yet very attractive. This paper presents a first proof‐of‐concept that demonstrates the feasibility of activated effector/memory CD4 + helper T cells (CD4 + T EM cells) as carriers for the delivery of polymer nanoparticles across the BBB. This study shows that CD4 + T EM cells can be decorated with poly(ethylene glycol)‐modified polystyrene nanoparticles using thiol–maleimide coupling chemistry, resulting in the immobilization of ≈105 nanoparticles per cell as determined by confocal microscopy. The ability of these cells to serve as carriers to transport nanoparticles across the BBB is established in vitro and in vivo. Using in vitro BBB models, CD4 + T EM cells are found to be able to transport nanoparticles across the BBB both under static conditions as well as under physiological flow. Finally, upon systemic administration, nanoparticle‐modified T cells are shown to enter the brain parenchyma of mice, demonstrating the brain delivery potential of this T cell subset in allogeneic hosts.
Delivery of therapeutics to the central nervous system (CNS) is challenging due to the presence of the blood–brain barrier (BBB). Amongst various approaches that have been explored to facilitate drug delivery to the CNS, the use of cells that have the intrinsic ability to cross the BBB is relatively unexplored, yet very attractive. This paper presents a first proof‐of‐concept that demonstrates the feasibility of activated effector/memory CD4+ helper T cells (CD4+ TEM cells) as carriers for the delivery of polymer nanoparticles across the BBB. This study shows that CD4+ TEM cells can be decorated with poly(ethylene glycol)‐modified polystyrene nanoparticles using thiol–maleimide coupling chemistry, resulting in the immobilization of ≈105 nanoparticles per cell as determined by confocal microscopy. The ability of these cells to serve as carriers to transport nanoparticles across the BBB is established in vitro and in vivo. Using in vitro BBB models, CD4+ TEM cells are found to be able to transport nanoparticles across the BBB both under static conditions as well as under physiological flow. Finally, upon systemic administration, nanoparticle‐modified T cells are shown to enter the brain parenchyma of mice, demonstrating the brain delivery potential of this T cell subset in allogeneic hosts.
Author Seitz, Arne
Kaba, Elisa
Ayer, Maxime
Gruber, Isabelle
Blatti, Claudia
Burri, Olivier
Schuster, Markus
Enzmann, Gaby
Engelhardt, Britta
Guiet, Romain
Klok, Harm‐Anton
AuthorAffiliation 1 École Polytechnique Fédérale de Lausanne (EPFL) Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques Laboratoire des Polymères Bâtiment MXD Station 12 Lausanne CH‐1015 Switzerland
2 Theodor Kocher Institute University of Bern Freiestrasse 1 Bern CH‐3012 Switzerland
3 École Polytechnique Fédérale de Lausanne (EPFL) Faculté des sciences de la vie Bioimaging and Optics Platform Bâtiment AI, Station 15 Lausanne CH‐1015 Switzerland
AuthorAffiliation_xml – name: 2 Theodor Kocher Institute University of Bern Freiestrasse 1 Bern CH‐3012 Switzerland
– name: 3 École Polytechnique Fédérale de Lausanne (EPFL) Faculté des sciences de la vie Bioimaging and Optics Platform Bâtiment AI, Station 15 Lausanne CH‐1015 Switzerland
– name: 1 École Polytechnique Fédérale de Lausanne (EPFL) Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques Laboratoire des Polymères Bâtiment MXD Station 12 Lausanne CH‐1015 Switzerland
Author_xml – sequence: 1
  givenname: Maxime
  surname: Ayer
  fullname: Ayer, Maxime
  organization: Bâtiment MXD
– sequence: 2
  givenname: Markus
  surname: Schuster
  fullname: Schuster, Markus
  organization: Bâtiment MXD
– sequence: 3
  givenname: Isabelle
  surname: Gruber
  fullname: Gruber, Isabelle
  organization: University of Bern
– sequence: 4
  givenname: Claudia
  surname: Blatti
  fullname: Blatti, Claudia
  organization: University of Bern
– sequence: 5
  givenname: Elisa
  surname: Kaba
  fullname: Kaba, Elisa
  organization: University of Bern
– sequence: 6
  givenname: Gaby
  surname: Enzmann
  fullname: Enzmann, Gaby
  organization: University of Bern
– sequence: 7
  givenname: Olivier
  surname: Burri
  fullname: Burri, Olivier
  organization: Bioimaging and Optics Platform
– sequence: 8
  givenname: Romain
  surname: Guiet
  fullname: Guiet, Romain
  organization: Bioimaging and Optics Platform
– sequence: 9
  givenname: Arne
  surname: Seitz
  fullname: Seitz, Arne
  organization: Bioimaging and Optics Platform
– sequence: 10
  givenname: Britta
  surname: Engelhardt
  fullname: Engelhardt, Britta
  email: bengel@tki.unibe.ch
  organization: University of Bern
– sequence: 11
  givenname: Harm‐Anton
  orcidid: 0000-0003-3365-6543
  surname: Klok
  fullname: Klok, Harm‐Anton
  email: harm-anton.klok@epfl.ch
  organization: Bâtiment MXD
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33241667$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1uEzEUhS1UREvpliWyxKabBNvj8YxXqAnQIrXAIl1bNx6buPLYwZ6AsusjIPGGfZI6pE2hEsJe2NL9zv059znaCzEYhF5SMqaEsDfQLfoxI4wQWjX1E3TAqGQjJmq5t_tzso-Ocr4i5YiaipY-Q_tVxTgVojlAlzM8Nd7fXP-8MJ2DwXR4liDkZUwDjhZ_iX7dm4Q_QYhLSIPT3mQMOsWc8bAweOJj7G6uf00SuIAnkJIz6QV6asFnc3T3HqLLD-9n07PR-efTj9OT85HmQtajTs7nVgBveQ111VnLpa06o1sNDISBpraN5vWcS6opAWK4aEHYzrISqQRUh-jtNu9yNe9Np00YEni1TK6HtFYRnPo7EtxCfY3fFaWlgeJByXB8lyHFbyuTB9W7rIsjEExcZcW44IKUKwv6-hF6FVcplPkK1bSSU1K1hXr1Z0u7Xu4tL8B4C_z2MBm7QyhRm7WqzVrVbq1FwB8JtBtgcHEzkvP_lsmt7IfzZv2fIurk3dnFg_YWq7y5jA
CitedBy_id crossref_primary_10_1021_acsabm_0c01619
crossref_primary_10_1021_acs_biomac_1c00488
crossref_primary_10_1039_D1CS00574J
crossref_primary_10_1002_adhm_202100812
crossref_primary_10_1016_j_bbi_2023_11_004
crossref_primary_10_1002_adma_202304963
crossref_primary_10_1016_j_bbcan_2022_188703
crossref_primary_10_1016_j_addr_2021_113832
crossref_primary_10_1016_j_ejpb_2024_114446
crossref_primary_10_1016_j_lfs_2021_120108
crossref_primary_10_1021_acs_molpharmaceut_3c01167
crossref_primary_10_1039_D4NR02636E
crossref_primary_10_1021_acs_bioconjchem_1c00026
crossref_primary_10_1039_D3NR04241C
crossref_primary_10_1039_D1TB02015C
crossref_primary_10_1186_s12951_021_01002_3
crossref_primary_10_1016_j_jconrel_2022_09_065
crossref_primary_10_1002_adfm_202409522
crossref_primary_10_1021_acsnano_3c10674
crossref_primary_10_1016_j_colsurfb_2022_112999
crossref_primary_10_1016_j_colsurfb_2025_114499
crossref_primary_10_1002_adfm_202206346
crossref_primary_10_1021_acsnano_2c02850
crossref_primary_10_2147_IJN_S457393
crossref_primary_10_1016_j_jconrel_2024_05_044
crossref_primary_10_3390_pharmaceutics16121611
crossref_primary_10_3389_fbioe_2022_984424
crossref_primary_10_1016_j_jddst_2023_105050
crossref_primary_10_1038_s41551_024_01230_6
crossref_primary_10_1007_s11064_025_04333_x
crossref_primary_10_1021_acsnano_3c11464
crossref_primary_10_3390_pharmaceutics13070948
crossref_primary_10_1002_wnan_1853
crossref_primary_10_1016_j_addr_2022_114415
crossref_primary_10_1016_j_cclet_2022_05_032
crossref_primary_10_1002_adbi_202101293
crossref_primary_10_1002_adfm_202214842
crossref_primary_10_1080_1061186X_2022_2104299
crossref_primary_10_1126_scitranslmed_adh1150
crossref_primary_10_1080_08982104_2023_2270060
crossref_primary_10_1186_s12951_022_01479_6
crossref_primary_10_1021_acs_molpharmaceut_4c00447
crossref_primary_10_3897_pharmacia_70_e98838
crossref_primary_10_3390_pharmaceutics15041257
crossref_primary_10_1021_acs_chemrev_3c00062
Cites_doi 10.1517/17425247.2011.559457
10.1097/00004647-200109000-00009
10.1016/j.jconrel.2016.05.044
10.1038/ni.3423
10.1016/j.jconrel.2017.01.048
10.1038/nature08478
10.4049/jimmunol.0903732
10.1021/bc700184b
10.1038/ni.3666
10.1073/pnas.97.23.12846
10.1016/j.jconrel.2014.03.050
10.1016/j.it.2012.07.004
10.1021/ab500179h
10.2217/nnm.10.7
10.2217/fon.13.217
10.1038/nrm2680
10.1007/s11095-010-0291-7
10.2217/nnm.11.32
10.1016/j.nbd.2009.07.030
10.1016/j.brainres.2009.08.076
10.1016/j.jconrel.2012.04.044
10.1111/j.1600-065X.2012.01140.x
10.1016/j.biomaterials.2012.04.029
10.1186/2045-8118-10-7
10.2217/nnm.11.156
10.1172/JCI12440
10.1038/nm.2198
10.1038/nnano.2017.54
10.1038/jcbfm.2010.96
10.1016/S1773-2247(13)50061-X
10.1002/(SICI)1521-4141(199810)28:10<3086::AID-IMMU3086>3.0.CO;2-Z
10.1038/nature16939
10.1038/jcbfm.2012.126
ContentType Journal Article
Copyright 2020 The Authors. Published by Wiley‐VCH GmbH
2020 The Authors. Published by Wiley-VCH GmbH.
2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020 The Authors. Published by Wiley‐VCH GmbH
– notice: 2020 The Authors. Published by Wiley-VCH GmbH.
– notice: 2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QP
7QQ
7SC
7SE
7SP
7SR
7T5
7TA
7TB
7TM
7TO
7U5
8BQ
8FD
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
7X8
5PM
DOI 10.1002/adhm.202001375
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Immunology Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Oncogenes and Growth Factors Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
AIDS and Cancer Research Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Computer and Information Systems Abstracts Professional
Immunology Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


MEDLINE
CrossRef
Materials Research Database
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access (WRLC)
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2192-2659
EndPage n/a
ExternalDocumentID PMC11469241
33241667
10_1002_adhm_202001375
ADHM202001375
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Swiss National Science Foundation
– fundername: Horizon 2020 Framework Programme
– fundername: Flow Cytometry Core Facility
– fundername: European Union Horizon 2020
  funderid: MSCA‐ITN‐215 675619
– fundername: European Union Horizon 2020
  grantid: MSCA‐ITN‐215 675619
GroupedDBID 05W
0R~
1OC
24P
33P
53G
8-0
8-1
A00
AAESR
AAHHS
AAHQN
AAIHA
AAIPD
AAMNL
AANLZ
AAXRX
AAYCA
AAZKR
ABCUV
ABLJU
ABQWH
ABXGK
ACAHQ
ACCFJ
ACCZN
ACGFS
ACGOF
ACIWK
ACPOU
ACPRK
ACXBN
ACXQS
ADBBV
ADBTR
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
D-A
D-B
DCZOG
DRFUL
DRMAN
DRSTM
EBD
EBS
EMOBN
G-S
HGLYW
HZ~
KBYEO
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MXFUL
MXMAN
MXSTM
MY.
MY~
O9-
P2W
PQQKQ
ROL
SUPJJ
SV3
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
C45
CITATION
EJD
GODZA
OVD
TEORI
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QP
7QQ
7SC
7SE
7SP
7SR
7T5
7TA
7TB
7TM
7TO
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
7X8
5PM
ID FETCH-LOGICAL-c4695-d9bbf6a4845a53dff49f3dec8ca2a6ea75f7c45b491c10a0e468a6fdf275f36a3
IEDL.DBID 24P
ISSN 2192-2640
2192-2659
IngestDate Thu Aug 21 18:34:59 EDT 2025
Fri Jul 11 10:51:11 EDT 2025
Fri Jul 25 12:02:24 EDT 2025
Thu Apr 03 06:54:05 EDT 2025
Tue Jul 01 03:06:40 EDT 2025
Thu Apr 24 23:10:32 EDT 2025
Wed Jan 22 16:30:15 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords blood-brain barriers
nanoparticles
cell-surface modifications
nanomedicines
cell-mediated deliveries
Language English
License Attribution
2020 The Authors. Published by Wiley-VCH GmbH.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4695-d9bbf6a4845a53dff49f3dec8ca2a6ea75f7c45b491c10a0e468a6fdf275f36a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3365-6543
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadhm.202001375
PMID 33241667
PQID 2478941038
PQPubID 2032434
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11469241
proquest_miscellaneous_2464606069
proquest_journals_2478941038
pubmed_primary_33241667
crossref_primary_10_1002_adhm_202001375
crossref_citationtrail_10_1002_adhm_202001375
wiley_primary_10_1002_adhm_202001375_ADHM202001375
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
– name: Hoboken
PublicationTitle Advanced healthcare materials
PublicationTitleAlternate Adv Healthc Mater
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
John Wiley and Sons Inc
Publisher_xml – name: Wiley Subscription Services, Inc
– name: John Wiley and Sons Inc
References 2015; 1
2007; 18
2012; 164
1998; 28
2010; 16
2010; 37
2013; 23
2014; 190
2011; 31
2010; 185
2001; 108
2016; 17
2011; 6
2012; 248
2012; 33
2012; 32
2011; 8
2017; 259
2001; 21
2009; 10
2013; 10
2017; 12
2000; 97
2009; 462
2016; 530
2011; S4
2017; 18
2016; 235
2011; 28
2012; 7
2010; 5
2009; 1298
2014; 10
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_1_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_19_1
e_1_2_8_14_1
e_1_2_8_15_1
e_1_2_8_16_1
Zhao Y. (e_1_2_8_13_1) 2011; 4
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 10
  start-page: 7
  year: 2013
  publication-title: Fluids Barriers CNS
– volume: 18
  start-page: 123
  year: 2017
  publication-title: Nat. Immunol.
– volume: 259
  start-page: 92
  year: 2017
  publication-title: J. Controlled Release
– volume: 6
  start-page: 1215
  year: 2011
  publication-title: Nanomedicine
– volume: 10
  start-page: 401
  year: 2014
  publication-title: Future Oncol.
– volume: 31
  start-page: 315
  year: 2011
  publication-title: J. Cereb. Blood Flow Metab.
– volume: 37
  start-page: 13
  year: 2010
  publication-title: Neurobiol. Dis.
– volume: 28
  start-page: 456
  year: 2011
  publication-title: Pharm. Res.
– volume: 18
  start-page: 1498
  year: 2007
  publication-title: Bioconjug. Chem.
– volume: 7
  start-page: 815
  year: 2012
  publication-title: Nanomedicine
– volume: 10
  start-page: 353
  year: 2009
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 235
  start-page: 34
  year: 2016
  publication-title: J. Controlled Release
– volume: 33
  start-page: 579
  year: 2012
  publication-title: Trends Immunol.
– volume: 5
  start-page: 379
  year: 2010
  publication-title: Nanomedicine
– volume: 190
  start-page: 531
  year: 2014
  publication-title: J. Controlled Release
– volume: 164
  start-page: 145
  year: 2012
  publication-title: J. Controlled Release
– volume: 97
  year: 2000
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 185
  start-page: 4846
  year: 2010
  publication-title: J. Immunol.
– volume: S4
  start-page: 003
  year: 2011
  publication-title: J. Nanomed. Nanotechnol.
– volume: 33
  start-page: 5776
  year: 2012
  publication-title: Biomaterials
– volume: 530
  start-page: 349
  year: 2016
  publication-title: Nature
– volume: 23
  start-page: 419
  year: 2013
  publication-title: J. Drug Deliv. Sci. Technol.
– volume: 1298
  start-page: 13
  year: 2009
  publication-title: Brain Res.
– volume: 16
  start-page: 1035
  year: 2010
  publication-title: Nat. Med.
– volume: 1
  start-page: 201
  year: 2015
  publication-title: ACS Biomater. Sci. Eng.
– volume: 462
  start-page: 94
  year: 2009
  publication-title: Nature
– volume: 28
  start-page: 3086
  year: 1998
  publication-title: Eur. J. Immunol.
– volume: 32
  start-page: 1959
  year: 2012
  publication-title: J. Cereb. Blood Flow Metab.
– volume: 21
  start-page: 1115
  year: 2001
  publication-title: J. Cereb. Blood Flow Metab.
– volume: 248
  start-page: 216
  year: 2012
  publication-title: Immunol. Rev.
– volume: 108
  start-page: 557
  year: 2001
  publication-title: J. Clin. Invest.
– volume: 8
  start-page: 415
  year: 2011
  publication-title: Expert Opin. Drug Deliv.
– volume: 17
  start-page: 797
  year: 2016
  publication-title: Nat. Immunol.
– volume: 12
  start-page: 692
  year: 2017
  publication-title: Nat. Nanotechnol.
– ident: e_1_2_8_9_1
  doi: 10.1517/17425247.2011.559457
– ident: e_1_2_8_18_1
  doi: 10.1097/00004647-200109000-00009
– ident: e_1_2_8_4_1
  doi: 10.1016/j.jconrel.2016.05.044
– ident: e_1_2_8_16_1
  doi: 10.1038/ni.3423
– ident: e_1_2_8_8_1
  doi: 10.1016/j.jconrel.2017.01.048
– ident: e_1_2_8_26_1
  doi: 10.1038/nature08478
– ident: e_1_2_8_25_1
  doi: 10.4049/jimmunol.0903732
– ident: e_1_2_8_11_1
  doi: 10.1021/bc700184b
– ident: e_1_2_8_27_1
  doi: 10.1038/ni.3666
– ident: e_1_2_8_21_1
  doi: 10.1073/pnas.97.23.12846
– ident: e_1_2_8_6_1
  doi: 10.1016/j.jconrel.2014.03.050
– ident: e_1_2_8_24_1
  doi: 10.1016/j.it.2012.07.004
– ident: e_1_2_8_7_1
  doi: 10.1021/ab500179h
– ident: e_1_2_8_12_1
  doi: 10.2217/nnm.10.7
– volume: 4
  start-page: 003
  year: 2011
  ident: e_1_2_8_13_1
  publication-title: J. Nanomed. Nanotechnol.
– ident: e_1_2_8_20_1
  doi: 10.2217/fon.13.217
– ident: e_1_2_8_33_1
  doi: 10.1038/nrm2680
– ident: e_1_2_8_5_1
  doi: 10.1007/s11095-010-0291-7
– ident: e_1_2_8_15_1
  doi: 10.2217/nnm.11.32
– ident: e_1_2_8_1_1
  doi: 10.1016/j.nbd.2009.07.030
– ident: e_1_2_8_19_1
  doi: 10.1016/j.brainres.2009.08.076
– ident: e_1_2_8_2_1
  doi: 10.1016/j.jconrel.2012.04.044
– ident: e_1_2_8_23_1
  doi: 10.1111/j.1600-065X.2012.01140.x
– ident: e_1_2_8_32_1
  doi: 10.1016/j.biomaterials.2012.04.029
– ident: e_1_2_8_34_1
  doi: 10.1186/2045-8118-10-7
– ident: e_1_2_8_14_1
  doi: 10.2217/nnm.11.156
– ident: e_1_2_8_22_1
  doi: 10.1172/JCI12440
– ident: e_1_2_8_29_1
  doi: 10.1038/nm.2198
– ident: e_1_2_8_17_1
  doi: 10.1038/nnano.2017.54
– ident: e_1_2_8_31_1
  doi: 10.1038/jcbfm.2010.96
– ident: e_1_2_8_10_1
  doi: 10.1016/S1773-2247(13)50061-X
– ident: e_1_2_8_30_1
  doi: 10.1002/(SICI)1521-4141(199810)28:10<3086::AID-IMMU3086>3.0.CO;2-Z
– ident: e_1_2_8_28_1
  doi: 10.1038/nature16939
– ident: e_1_2_8_3_1
  doi: 10.1038/jcbfm.2012.126
SSID ssj0000651681
Score 2.4434254
Snippet Delivery of therapeutics to the central nervous system (CNS) is challenging due to the presence of the blood–brain barrier (BBB). Amongst various approaches...
Delivery of therapeutics to the central nervous system (CNS) is challenging due to the presence of the blood-brain barrier (BBB). Amongst various approaches...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2001375
SubjectTerms Animals
Biological Transport
Blood-Brain Barrier
blood–brain barriers
CD4 antigen
Cell culture
cell‐mediated deliveries
cell‐surface modifications
Central nervous system
Confocal microscopy
Drug delivery
Drug Delivery Systems
Immobilization
Immunological memory
Lymphocytes
Lymphocytes T
Memory cells
Mice
nanomedicines
Nanoparticles
Parenchyma
Polyethylene glycol
Polymers
Polystyrene
Polystyrene resins
T-Lymphocytes
Title T Cell‐Mediated Transport of Polymer Nanoparticles across the Blood–Brain Barrier
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadhm.202001375
https://www.ncbi.nlm.nih.gov/pubmed/33241667
https://www.proquest.com/docview/2478941038
https://www.proquest.com/docview/2464606069
https://pubmed.ncbi.nlm.nih.gov/PMC11469241
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NatwwEB7a5NIeSv_rNgkqFHoysWVJto67-WEp3RJoFnIzY1kihY23bJJDb3mEQt4wTxKN7FV3CaXQo9HYFpoZzYw08w3AJ2yUKaRqUpd5CfYWw6TeDMs0R61QVw6doXrn6Tc1mYkvZ_JsrYq_x4eIB26kGWG_JgXH5nL_D2gotudUSc4DMqZ8DNtUX0vo-VycxFMWb2BzFTqVes3klM6VrZAbM76_-YlNy_TA3XyYNbnuzQZzdPwcng1-JBv1jH8Bj2z3Ep6uoQu-gtkpO7Dz-d3N72nox2FbFqHM2cKxk8X814VdMr_B-sh5SJBjGGbHvF_IxpTUfndzO6Y2EmyMS-pu9xpmx0enB5N06KKQGh_6yrTVTeMUikpIlEXrnNCuaK2pDHJUFkvpSiNkI3Ru8gwzK1SFyrWO-5FCYfEGtrpFZ98Bk4V2ufIeJcqW7lexbDmWWVnaMtde9RNIVytYmwFinDpdzOseHJnXtOJ1XPEEPkf6nz24xl8pd1YMqQclu6y5KCstCOE9gY9x2KsH3XlgZxfXRKOEj9EypRN42_Mv_qrwzmSuVJlAtcHZSEDQ25sj3Y_zAMFNsuYj1zwBHoTgH9OvR4eTaXx6_z8vfYAnnNJpwunPDmxdLa_trveHrpq9IPJ7sD06nH79fg8vsAVV
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BOUAPFc8SKGAkJE5RE8eP-NgtVAt0qx52JW7RJLHVStss2rYHbv0JSPzD_pJ6nKzpqkJIHCNPEsvj8Tw88w3AB6xVU0hVpy7zO9hrjCb1alimORqFpnToGqp3nhyp8Ux8_S5X2YRUC9PjQ8SAG0lGOK9JwCkgvfsHNRTbEyol5wEaU96HB0JxTbLJxXEMs3gNm6vQqtSLJqd8rmwF3Zjx3fVPrKumO_bm3bTJ2-Zs0EcHj2FrMCTZXs_5J3DPdk9h8xa84DOYTdm-nc-vr35NQkMO27KIZc4Wjh0v5j_P7JL5E9a7zkOGHMMwO-YNQzairPbrq98j6iPBRrik9nbPYXbwebo_Toc2CmnjfV-ZtqaunUJRComyaJ0TxhWtbcoGOSqLWjrdCFkLkzd5hpkVqkTlWsf9SKGweAEb3aKzL4HJwrhceZMSZUsXrKhbjjrT2urceNlPIF2tYNUMGOPU6mJe9ejIvKIVr-KKJ_Ax0v_o0TX-SrmzYkg1SNl5xYUujSCI9wTex2EvH3TpgZ1dXBKNEt5Jy5RJYLvnX_xV4a3JXCmdQLnG2UhA2NvrI93pScDgpmJu77rmCfCwCf4x_Wrv03gSn179z0vv4OF4OjmsDr8cfXsNjzjl1oRQ0A5sXCwv7RtvHF3Ub8P2vwESKgct
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BkRAcEG8CBYyExClq4vgRH7stq-Wx1R66Um_RxA-10pKtlvbArT8BiX_YX4LtZM2uKoTEMfIksWY8nhl75huA99gKXXHR5q7wK9hbDJ17M8zzEpVAVTt0OtQ7T4_EZM4-n_CTjSr-Hh8iHbgFzYj7dVDwc-P2_oCGojkNleQ0ImPy23An3vgFbGc2S6cs3sCWInYq9ZpJQzpXsUZuLOje9ie2LdMNd_Nm1uSmNxvN0fghPBj8SLLfC_4R3LLdY7i_gS74BObH5MAuFtdXP6exH4c1JEGZk6Ujs-Xixze7In6D9ZHzkCBHMM6OeL-QjEJS-_XVr1FoI0FGuArd7Z7CfPzx-GCSD10Ucu1DX54b1bZOIKsZR14Z55hylbG61khRWJTcSc14y1SpywILy0SNwhlH_UglsHoGO92ysy-A8Eq5UniPErkJ3EZpKMpCSitL5VU_g3zNwUYPEOOh08Wi6cGRaRM43iSOZ_Ah0Z_34Bp_pdxdC6QZlOx7Q5msFQsI7xm8S8NePcKdB3Z2eRloBPMxWiFUBs97-aVfVd6ZLIWQGdRbkk0EAXp7e6Q7O40Q3KGW20euZQY0LoJ_TL_ZP5xM09PL_3npLdydHY6br5-OvryCezRk1sSDoF3YuVhd2tfeNbpo38TV_xuBQgZf
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=T+Cell%E2%80%90Mediated+Transport+of+Polymer+Nanoparticles+across+the+Blood%E2%80%93Brain+Barrier&rft.jtitle=Advanced+healthcare+materials&rft.au=Ayer%2C+Maxime&rft.au=Schuster%2C+Markus&rft.au=Gruber%2C+Isabelle&rft.au=Blatti%2C+Claudia&rft.date=2021-01-01&rft.issn=2192-2640&rft.eissn=2192-2659&rft.volume=10&rft.issue=2&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadhm.202001375&rft.externalDBID=10.1002%252Fadhm.202001375&rft.externalDocID=ADHM202001375
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2192-2640&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2192-2640&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2192-2640&client=summon