Effects of Epitranscriptomic RNA Modifications on the Catalytic Activity of the SARS‐CoV‐2 Replication Complex

SARS‐CoV‐2 causes individualized symptoms. Many reasons have been given. We propose that an individual's epitranscriptomic system could be responsible as well. The viral RNA genome can be subject to epitranscriptomic modifications, which can be different for different individuals, and thus epit...

Full description

Saved in:
Bibliographic Details
Published inChembiochem : a European journal of chemical biology Vol. 24; no. 8; pp. e202300095 - n/a
Main Authors Apostle, Alexander, Yin, Yipeng, Chillar, Komal, Eriyagama, Adikari M. D. N., Arneson, Reed, Burke, Emma, Fang, Shiyue, Yuan, Yinan
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 17.04.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract SARS‐CoV‐2 causes individualized symptoms. Many reasons have been given. We propose that an individual's epitranscriptomic system could be responsible as well. The viral RNA genome can be subject to epitranscriptomic modifications, which can be different for different individuals, and thus epitranscriptomics can affect many events including RNA replication differently. In this context, we studied the effects of modifications including pseudouridine (Ψ), 5‐methylcytosine (m5C), N6‐methyladenosine (m6A), N1‐methyladenosine (m1A) and N3‐methylcytosine (m3C) on the activity of SARS‐CoV‐2 replication complex (SC2RC). We found that Ψ, m5C, m6A and m3C had little effect, whereas m1A inhibited the enzyme. Both m1A and m3C disrupt canonical base pairing, but they had different effects. The fact that m1A inhibits SC2RC implies that the modification can be difficult to detect. This fact also implies that individuals with upregulated m1A including cancer, obesity and diabetes patients might have milder symptoms. However, this contradicts clinical observations. Relevant discussions are provided. The RNA modifications Ψ, m5C and m6A have little effect on the catalytic activity of SARS‐CoV‐2 RdRp. However, although both m3C and m1A disrupt canonical base pairing, m3C can be read through by the RdRp readily, while m1A severely inhibits it.
AbstractList SARS‐CoV‐2 causes individualized symptoms. Many reasons have been given. We propose that an individual's epitranscriptomic system could be responsible as well. The viral RNA genome can be subject to epitranscriptomic modifications, which can be different for different individuals, and thus epitranscriptomics can affect many events including RNA replication differently. In this context, we studied the effects of modifications including pseudouridine (Ψ), 5‐methylcytosine (m5C), N6‐methyladenosine (m6A), N1‐methyladenosine (m1A) and N3‐methylcytosine (m3C) on the activity of SARS‐CoV‐2 replication complex (SC2RC). We found that Ψ, m5C, m6A and m3C had little effect, whereas m1A inhibited the enzyme. Both m1A and m3C disrupt canonical base pairing, but they had different effects. The fact that m1A inhibits SC2RC implies that the modification can be difficult to detect. This fact also implies that individuals with upregulated m1A including cancer, obesity and diabetes patients might have milder symptoms. However, this contradicts clinical observations. Relevant discussions are provided.
SARS‐CoV‐2 causes individualized symptoms. Many reasons have been given. We propose that an individual's epitranscriptomic system could be responsible as well. The viral RNA genome can be subject to epitranscriptomic modifications, which can be different for different individuals, and thus epitranscriptomics can affect many events including RNA replication differently. In this context, we studied the effects of modifications including pseudouridine (Ψ), 5‐methylcytosine (m5C), N6‐methyladenosine (m6A), N1‐methyladenosine (m1A) and N3‐methylcytosine (m3C) on the activity of SARS‐CoV‐2 replication complex (SC2RC). We found that Ψ, m5C, m6A and m3C had little effect, whereas m1A inhibited the enzyme. Both m1A and m3C disrupt canonical base pairing, but they had different effects. The fact that m1A inhibits SC2RC implies that the modification can be difficult to detect. This fact also implies that individuals with upregulated m1A including cancer, obesity and diabetes patients might have milder symptoms. However, this contradicts clinical observations. Relevant discussions are provided. The RNA modifications Ψ, m5C and m6A have little effect on the catalytic activity of SARS‐CoV‐2 RdRp. However, although both m3C and m1A disrupt canonical base pairing, m3C can be read through by the RdRp readily, while m1A severely inhibits it.
SARS‐CoV‐2 causes individualized symptoms. Many reasons have been given. We propose that an individual's epitranscriptomic system could be responsible as well. The viral RNA genome can be subject to epitranscriptomic modifications, which can be different for different individuals, and thus epitranscriptomics can affect many events including RNA replication differently. In this context, we studied the effects of modifications including pseudouridine (Ψ), 5‐methylcytosine (m 5 C), N 6‐methyladenosine (m 6 A), N 1‐methyladenosine (m 1 A) and N 3‐methylcytosine (m 3 C) on the activity of SARS‐CoV‐2 replication complex (SC2RC). We found that Ψ, m 5 C, m 6 A and m 3 C had little effect, whereas m 1 A inhibited the enzyme. Both m 1 A and m 3 C disrupt canonical base pairing, but they had different effects. The fact that m 1 A inhibits SC2RC implies that the modification can be difficult to detect. This fact also implies that individuals with upregulated m 1 A including cancer, obesity and diabetes patients might have milder symptoms. However, this contradicts clinical observations. Relevant discussions are provided.
SARS-CoV-2 causes individualized symptoms. Many reasons have been given. We propose that an individual’s epitranscriptomic system could be responsible as well. The viral RNA genome can be subject to epitranscriptomic modifications, the modifications can be different for different individuals, and thus epitranscriptomics can affect many events including RNA replication differently. In this context, we studied the effects of modifications including pseudouridine (Ψ), 5-methylcytosine (m 5 C), N 6 -methyladenosine (m 6 A), N 1 -methyladenosine (m 1 A) and N 3 -methylcytosine (m 3 C) on the activity of SARS-CoV-2 replication complex (SC2RC). We found that Ψ, m 5 C, m 6 A and m 3 C had little effects, while m 1 A inhibited the enzyme. Both m 1 A and m 3 C disrupt canonical base-pairing, but they had different effects. The fact that m 1 A inhibits SC2RC implies that the modification can be difficult to detect. The fact also implies that individuals with upregulated m 1 A including cancer, obesity and diabetes patients may have milder symptoms. However, this contradicts clinical observations. Relevant discussions are provided.
SARS-CoV-2 causes individualized symptoms. Many reasons have been given. We propose that an individual's epitranscriptomic system could be responsible as well. The viral RNA genome can be subject to epitranscriptomic modifications, which can be different for different individuals, and thus epitranscriptomics can affect many events including RNA replication differently. In this context, we studied the effects of modifications including pseudouridine (Ψ), 5-methylcytosine (m5 C), N6-methyladenosine (m6 A), N1-methyladenosine (m1 A) and N3-methylcytosine (m3 C) on the activity of SARS-CoV-2 replication complex (SC2RC). We found that Ψ, m5 C, m6 A and m3 C had little effect, whereas m1 A inhibited the enzyme. Both m1 A and m3 C disrupt canonical base pairing, but they had different effects. The fact that m1 A inhibits SC2RC implies that the modification can be difficult to detect. This fact also implies that individuals with upregulated m1 A including cancer, obesity and diabetes patients might have milder symptoms. However, this contradicts clinical observations. Relevant discussions are provided.SARS-CoV-2 causes individualized symptoms. Many reasons have been given. We propose that an individual's epitranscriptomic system could be responsible as well. The viral RNA genome can be subject to epitranscriptomic modifications, which can be different for different individuals, and thus epitranscriptomics can affect many events including RNA replication differently. In this context, we studied the effects of modifications including pseudouridine (Ψ), 5-methylcytosine (m5 C), N6-methyladenosine (m6 A), N1-methyladenosine (m1 A) and N3-methylcytosine (m3 C) on the activity of SARS-CoV-2 replication complex (SC2RC). We found that Ψ, m5 C, m6 A and m3 C had little effect, whereas m1 A inhibited the enzyme. Both m1 A and m3 C disrupt canonical base pairing, but they had different effects. The fact that m1 A inhibits SC2RC implies that the modification can be difficult to detect. This fact also implies that individuals with upregulated m1 A including cancer, obesity and diabetes patients might have milder symptoms. However, this contradicts clinical observations. Relevant discussions are provided.
SARS-CoV-2 causes individualized symptoms. Many reasons have been given. We propose that an individual's epitranscriptomic system could be responsible as well. The viral RNA genome can be subject to epitranscriptomic modifications, which can be different for different individuals, and thus epitranscriptomics can affect many events including RNA replication differently. In this context, we studied the effects of modifications including pseudouridine (Ψ), 5-methylcytosine (m C), N6-methyladenosine (m A), N1-methyladenosine (m A) and N3-methylcytosine (m C) on the activity of SARS-CoV-2 replication complex (SC2RC). We found that Ψ, m C, m A and m C had little effect, whereas m A inhibited the enzyme. Both m A and m C disrupt canonical base pairing, but they had different effects. The fact that m A inhibits SC2RC implies that the modification can be difficult to detect. This fact also implies that individuals with upregulated m A including cancer, obesity and diabetes patients might have milder symptoms. However, this contradicts clinical observations. Relevant discussions are provided.
Author Apostle, Alexander
Burke, Emma
Fang, Shiyue
Yuan, Yinan
Chillar, Komal
Arneson, Reed
Eriyagama, Adikari M. D. N.
Yin, Yipeng
AuthorAffiliation a Department of Chemistry and Health Research Institute, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA
b College of Forest Resources and Environmental Science, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA
AuthorAffiliation_xml – name: b College of Forest Resources and Environmental Science, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA
– name: a Department of Chemistry and Health Research Institute, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA
Author_xml – sequence: 1
  givenname: Alexander
  surname: Apostle
  fullname: Apostle, Alexander
  organization: Michigan Technological University
– sequence: 2
  givenname: Yipeng
  surname: Yin
  fullname: Yin, Yipeng
  organization: Michigan Technological University
– sequence: 3
  givenname: Komal
  surname: Chillar
  fullname: Chillar, Komal
  organization: Michigan Technological University
– sequence: 4
  givenname: Adikari M. D. N.
  surname: Eriyagama
  fullname: Eriyagama, Adikari M. D. N.
  organization: Michigan Technological University
– sequence: 5
  givenname: Reed
  surname: Arneson
  fullname: Arneson, Reed
  organization: Michigan Technological University
– sequence: 6
  givenname: Emma
  surname: Burke
  fullname: Burke, Emma
  organization: Michigan Technological University
– sequence: 7
  givenname: Shiyue
  orcidid: 0000-0002-6523-7557
  surname: Fang
  fullname: Fang, Shiyue
  email: shifang@mtu.edu
  organization: Michigan Technological University
– sequence: 8
  givenname: Yinan
  surname: Yuan
  fullname: Yuan, Yinan
  email: yinyuan@mtu.edu
  organization: Michigan Technological University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36752976$$D View this record in MEDLINE/PubMed
BookMark eNqFkctu1DAUhi1URC-wZYkisWEzg2-5eIWGaAqVCkhTYGs5zgl1ldip7SnMro_AM_IkOJ1hgEqIjW3pfP9_zvF_jA6ss4DQU4LnBGP6UjdGzymmDGMs8gfoiHAmZmXB2MHuzSktD9FxCFcTUjDyCB2yosypKIsj5JddBzqGzHXZcjTRKxu0N2N0g9HZ6v0ie-da0xmtonE2YTaLl5DVKqp-ExOy0NHcmLiZDKbKxWJ18eP2e-0-p5NmKxj7nTir3TD28O0xetipPsCT3X2CPp0uP9ZvZ-cf3pzVi_OZ5oXIZ01TVRqKTnBVcdywpgENVDWYVpiWXdtQXAgADJxwLXJCu0IohgnLW1qSlrIT9GrrO66bAVoNNm3Xy9GbQfmNdMrIvyvWXMov7kYSTCgRRCSHFzsH767XEKIcTNDQ98qCWwdJy5JzIfAd-vweeuXW3qb9ZJqXVBUTBU7Usz9H2s_yK48EzLeA9i4ED90eIVhOgcspcLkPPAn4PYE28e6700qm_7dMbGVfTQ-b_zSR9euz-rf2JzNSwe0
CitedBy_id crossref_primary_10_3389_fimmu_2023_1286820
crossref_primary_10_3390_microorganisms12112373
crossref_primary_10_1261_rna_079991_124
crossref_primary_10_1134_S0006297924120149
Cites_doi 10.1038/s41467-021-24824-z
10.1016/j.diabres.2020.108347
10.1016/j.tranon.2019.06.007
10.1007/s00432-018-2796-0
10.3390/genes13050910
10.1016/0006-291X(75)90361-7
10.1038/s41421-020-00241-2
10.1021/acsomega.7b01482
10.1093/nar/30.5.1124
10.1016/j.annonc.2020.03.296
10.1021/acs.joc.9b01527
10.1016/j.biomaterials.2016.09.006
10.1128/mBio.02131-20
10.7717/peerj.10181
10.1038/s41586-020-2008-3
10.1038/s41421-021-00318-6
10.3389/fmolb.2021.692130
10.1016/j.ctrv.2020.102041
10.1016/j.jdiacomp.2020.107817
10.1186/s12920-020-00839-1
10.1093/nar/gky341
10.1126/sciadv.abd2605
10.1016/S1473-3099(22)00143-8
10.3390/v13112108
10.1038/nature24456
10.1128/mBio.01067-21
10.1007/s00706-022-02896-x
10.1038/sj.bjc.6606012
10.3762/bjoc.15.108
10.1038/s41467-019-12504-y
10.1038/s41590-021-01030-z
10.1038/nature16998
10.1111/cob.12403
10.3390/vaccines8040700
10.1073/pnas.1323705111
10.1186/s12876-022-02160-w
10.1021/acschembio.0c00735
10.1038/s41467-020-18463-z
10.1016/j.molcel.2017.10.019
10.3389/fendo.2018.00396
10.1126/science.abc1560
10.1038/cr.2014.162
10.12659/MSM.913556
10.1038/s41592-019-0550-4
10.1038/s41588-021-00903-1
10.1016/j.cell.2020.04.011
10.1002/gepi.22421
10.1186/s40246-021-00306-7
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
2023 Wiley-VCH GmbH.
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
– notice: 2023 Wiley-VCH GmbH.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QO
7TM
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
7X8
5PM
DOI 10.1002/cbic.202300095
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Biotechnology Research Abstracts
Technology Research Database
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Nucleic Acids Abstracts
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList Virology and AIDS Abstracts

CrossRef

MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1439-7633
EndPage n/a
ExternalDocumentID PMC10121919
36752976
10_1002_cbic_202300095
CBIC202300095
Genre article
Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIH
  funderid: GM109288
– fundername: NSF equipment grants
  funderid: 1048655; 9512455; 1531454
– fundername: Robert and Kathleen Lane Endowed Fellowship
– fundername: NSF
  funderid: 1954041
– fundername: NIGMS NIH HHS
  grantid: R15 GM109288
GroupedDBID ---
-DZ
-~X
05W
0R~
1L6
1OC
29B
33P
3WU
4.4
4ZD
50Y
5GY
5VS
66C
6J9
6P2
77Q
8-0
8-1
8UM
A00
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACXBN
ACXQS
ADBBV
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IH2
IX1
JPC
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MXFUL
MXSTM
MY~
NNB
O9-
OIG
P2P
P2W
P4E
PQQKQ
R.K
ROL
RWI
RX1
SUPJJ
SV3
V2E
W99
WBKPD
WH7
WJL
WOHZO
WXSBR
WYJ
XPP
XV2
Y6R
YZZ
ZZTAW
~KM
~S-
AAYXX
AEYWJ
AGHNM
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QO
7TM
7U9
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
FR3
H94
K9.
M7N
P64
7X8
5PM
ID FETCH-LOGICAL-c4695-bb88ce6f94a840b3bbece2ab028027fdb2069ee0e414c9512f69a30135d271d23
IEDL.DBID DR2
ISSN 1439-4227
1439-7633
IngestDate Thu Aug 21 18:34:11 EDT 2025
Thu Jul 10 18:22:16 EDT 2025
Fri Jul 25 12:16:32 EDT 2025
Wed Feb 19 02:09:57 EST 2025
Thu Apr 24 22:50:22 EDT 2025
Tue Jul 01 04:35:24 EDT 2025
Wed Jan 22 16:23:35 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords COVID-19
RNA modification
SARS-CoV-2
RNA-dependent RNA polymerase
epitranscriptomics
Language English
License 2023 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4695-bb88ce6f94a840b3bbece2ab028027fdb2069ee0e414c9512f69a30135d271d23
Notes .
A previous version of the manuscript has been deposited on a preprint server
https://doi.org/10.1101/10.26434/chemrxiv‐2022‐rsm6s‐v2
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6523-7557
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/10121919
PMID 36752976
PQID 2801883960
PQPubID 986344
PageCount 7
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10121919
proquest_miscellaneous_2774499019
proquest_journals_2801883960
pubmed_primary_36752976
crossref_primary_10_1002_cbic_202300095
crossref_citationtrail_10_1002_cbic_202300095
wiley_primary_10_1002_cbic_202300095_CBIC202300095
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 17, 2023
PublicationDateYYYYMMDD 2023-04-17
PublicationDate_xml – month: 04
  year: 2023
  text: April 17, 2023
  day: 17
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Chembiochem : a European journal of chemical biology
PublicationTitleAlternate Chembiochem
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 9
2021; 8
2021; 7
2022; 153
2017; 2
2021; 45
2002; 30
2016; 109
2019; 10
2020; 181
2019; 12
2017; 68
2019; 15
2022; 23
2020; 368
2019; 16
2020; 13
2020; 166
2020; 11
2022; 22
2020; 10
2017; 551
2014; 111
2019; 145
2018; 46
2020; 8
2021; 13
2021; 35
2011; 104
2021; 16
2018; 9
2021; 15
2015; 25
2021; 53
2021; 12
2019; 84
2020; 31
2022
2020
2019; 25
2022; 13
2016; 530
2020; 579
1975; 64
2022; 10
2020; 88
e_1_2_9_52_2
e_1_2_9_50_2
e_1_2_9_10_2
e_1_2_9_56_2
e_1_2_9_35_1
e_1_2_9_12_2
e_1_2_9_31_2
e_1_2_9_33_1
e_1_2_9_54_1
Ballow M. (e_1_2_9_2_1) 2021; 9
Apostle A. (e_1_2_9_17_2) 2022
Vacca D. (e_1_2_9_30_2) 2020
e_1_2_9_14_2
e_1_2_9_39_1
e_1_2_9_16_2
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_62_2
e_1_2_9_20_2
e_1_2_9_45_2
e_1_2_9_22_2
e_1_2_9_43_2
e_1_2_9_8_1
e_1_2_9_6_2
e_1_2_9_4_2
e_1_2_9_60_1
Taiaroa G. (e_1_2_9_29_2) 2020
e_1_2_9_26_1
e_1_2_9_24_2
e_1_2_9_49_2
e_1_2_9_47_1
e_1_2_9_51_2
e_1_2_9_53_1
e_1_2_9_34_1
e_1_2_9_55_2
e_1_2_9_13_1
e_1_2_9_11_2
e_1_2_9_32_2
Miladi M. (e_1_2_9_28_2) 2020
e_1_2_9_38_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_15_2
e_1_2_9_57_2
e_1_2_9_19_1
e_1_2_9_63_1
e_1_2_9_61_2
e_1_2_9_40_1
e_1_2_9_21_2
e_1_2_9_44_2
e_1_2_9_42_2
e_1_2_9_23_1
e_1_2_9_7_1
e_1_2_9_5_2
e_1_2_9_3_1
Spratt A. N. (e_1_2_9_1_1) 2022; 10
e_1_2_9_9_2
e_1_2_9_25_2
e_1_2_9_48_2
e_1_2_9_46_2
e_1_2_9_27_1
References_xml – volume: 12
  year: 2021
  publication-title: mBio
– volume: 31
  start-page: 894
  year: 2020
  end-page: 901
  publication-title: Ann. Oncol.
– volume: 166
  year: 2020
  publication-title: Diabetes Res. Clin. Pract.
– year: 2020
  publication-title: bioRxiv
– volume: 13
  start-page: 910
  year: 2022
  publication-title: Genes
– volume: 2
  start-page: 8205
  year: 2017
  end-page: 8212
  publication-title: ACS Omega
– volume: 111
  start-page: E3900
  year: 2014
  end-page: E3909
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 25
  start-page: 3
  year: 2015
  end-page: 4
  publication-title: Cell Res.
– volume: 88
  year: 2020
  publication-title: Cancer Treat. Rev.
– volume: 23
  start-page: 159
  year: 2022
  end-page: 164
  publication-title: Nat. Immunol.
– volume: 13
  start-page: 2108
  year: 2021
  publication-title: Viruses
– volume: 530
  start-page: 441
  year: 2016
  end-page: 446
  publication-title: Nature
– volume: 8
  year: 2021
  publication-title: Front. Mol. Biosci.
– volume: 10
  start-page: 4595
  year: 2019
  publication-title: Nat. Commun.
– volume: 11
  start-page: 4682
  year: 2020
  publication-title: Nat. Commun.
– volume: 7
  start-page: 76
  year: 2021
  publication-title: Cell Discovery
– volume: 25
  start-page: 3894
  year: 2019
  end-page: 3901
  publication-title: Med. Sci. Monit.
– volume: 145
  start-page: 19
  year: 2019
  end-page: 29
  publication-title: J. Cancer Res. Clin.
– volume: 15
  start-page: 10
  year: 2021
  publication-title: Hum. Genomics
– volume: 579
  start-page: 265
  year: 2020
  end-page: 269
  publication-title: Nature
– volume: 104
  start-page: 700
  year: 2011
  end-page: 706
  publication-title: Br. J. Cancer
– volume: 9
  start-page: 1442
  year: 2021
  end-page: 1448
  publication-title: J. Allergy Clin. Immunol.
– volume: 84
  start-page: 13374
  year: 2019
  end-page: 13383
  publication-title: J. Org. Chem.
– volume: 22
  start-page: 93
  year: 2022
  publication-title: BMC Gastroenterol.
– volume: 16
  start-page: 1281
  year: 2019
  end-page: 1288
  publication-title: Nat. Methods
– volume: 12
  start-page: 1323
  year: 2019
  end-page: 1333
  publication-title: Transl. Oncol.
– volume: 46
  start-page: 5753
  year: 2018
  end-page: 5763
  publication-title: Nucleic Acids Res.
– volume: 7
  start-page: 7
  year: 2021
  publication-title: Cell Discovery
– volume: 16
  start-page: 76
  year: 2021
  end-page: 85
  publication-title: ACS Chem. Biol.
– volume: 15
  start-page: 1116
  year: 2019
  end-page: 1128
  publication-title: Beilstein J. Org. Chem.
– volume: 153
  start-page: 285
  year: 2022
  end-page: 291
  publication-title: Monatsh. Chem.
– volume: 64
  start-page: 581
  year: 1975
  end-page: 586
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 68
  start-page: 993
  year: 2017
  end-page: 1005
  publication-title: Mol. Cell
– volume: 10
  year: 2022
  publication-title: Biomedicine
– volume: 8
  start-page: 700
  year: 2020
  publication-title: Vaccine
– volume: 22
  start-page: 781
  year: 2022
  end-page: 790
  publication-title: Lancet Infect. Dis.
– volume: 45
  start-page: 685
  year: 2021
  end-page: 693
  publication-title: Genet. Epidemiol.
– volume: 13
  start-page: 186
  year: 2020
  publication-title: BMC Med. Genomics
– volume: 53
  start-page: 1113
  year: 2021
  end-page: 1116
  publication-title: Nat. Genet.
– volume: 368
  start-page: 1499
  year: 2020
  end-page: 1504
  publication-title: Science
– volume: 11
  start-page: e02131
  year: 2020
  end-page: 02120
  publication-title: mBio
– volume: 30
  start-page: 1124
  year: 2002
  end-page: 1131
  publication-title: Nucleic Acids Res.
– volume: 9
  start-page: 396
  year: 2018
  publication-title: Front. Endocrinol.
– year: 2022
  publication-title: J. Mass Spectrom.
– volume: 7
  year: 2021
  publication-title: Sci. Adv.
– volume: 35
  year: 2021
  publication-title: J. Diabetes Complications
– volume: 10
  year: 2020
  publication-title: Clin. Obes.
– volume: 12
  start-page: 4569
  year: 2021
  publication-title: Nat. Commun.
– volume: 8
  year: 2020
  publication-title: PeerJ
– volume: 109
  start-page: 78
  year: 2016
  end-page: 87
  publication-title: Biomaterials
– volume: 551
  start-page: 251
  year: 2017
  end-page: 255
  publication-title: Nature
– volume: 181
  start-page: 914
  year: 2020
  end-page: 921
  publication-title: Cell
– ident: e_1_2_9_9_2
  doi: 10.1038/s41467-021-24824-z
– ident: e_1_2_9_3_1
– ident: e_1_2_9_45_2
  doi: 10.1016/j.diabres.2020.108347
– ident: e_1_2_9_50_2
  doi: 10.1016/j.tranon.2019.06.007
– ident: e_1_2_9_56_2
  doi: 10.1007/s00432-018-2796-0
– ident: e_1_2_9_38_1
  doi: 10.3390/genes13050910
– year: 2022
  ident: e_1_2_9_17_2
  publication-title: J. Mass Spectrom.
– ident: e_1_2_9_47_1
– ident: e_1_2_9_35_1
  doi: 10.1016/0006-291X(75)90361-7
– ident: e_1_2_9_24_2
  doi: 10.1038/s41421-020-00241-2
– ident: e_1_2_9_63_1
  doi: 10.1021/acsomega.7b01482
– ident: e_1_2_9_15_2
  doi: 10.1093/nar/30.5.1124
– ident: e_1_2_9_60_1
– ident: e_1_2_9_27_1
– volume: 10
  year: 2022
  ident: e_1_2_9_1_1
  publication-title: Biomedicine
– ident: e_1_2_9_42_2
  doi: 10.1016/j.annonc.2020.03.296
– ident: e_1_2_9_8_1
– ident: e_1_2_9_14_2
  doi: 10.1021/acs.joc.9b01527
– ident: e_1_2_9_41_1
– year: 2020
  ident: e_1_2_9_30_2
  publication-title: bioRxiv
– ident: e_1_2_9_34_1
  doi: 10.1016/j.biomaterials.2016.09.006
– ident: e_1_2_9_25_2
  doi: 10.1128/mBio.02131-20
– ident: e_1_2_9_59_1
  doi: 10.7717/peerj.10181
– ident: e_1_2_9_39_1
  doi: 10.1038/s41586-020-2008-3
– ident: e_1_2_9_11_2
  doi: 10.1038/s41421-021-00318-6
– ident: e_1_2_9_52_2
  doi: 10.3389/fmolb.2021.692130
– ident: e_1_2_9_43_2
  doi: 10.1016/j.ctrv.2020.102041
– ident: e_1_2_9_44_2
  doi: 10.1016/j.jdiacomp.2020.107817
– ident: e_1_2_9_10_2
  doi: 10.1186/s12920-020-00839-1
– ident: e_1_2_9_58_1
  doi: 10.1093/nar/gky341
– ident: e_1_2_9_48_2
  doi: 10.1126/sciadv.abd2605
– ident: e_1_2_9_4_2
  doi: 10.1016/S1473-3099(22)00143-8
– year: 2020
  ident: e_1_2_9_28_2
  publication-title: bioRxiv
– ident: e_1_2_9_32_2
  doi: 10.3390/v13112108
– ident: e_1_2_9_61_2
  doi: 10.1038/nature24456
– ident: e_1_2_9_54_1
– year: 2020
  ident: e_1_2_9_29_2
  publication-title: bioRxiv
– ident: e_1_2_9_19_1
– ident: e_1_2_9_13_1
– ident: e_1_2_9_37_1
  doi: 10.1128/mBio.01067-21
– volume: 9
  start-page: 1442
  year: 2021
  ident: e_1_2_9_2_1
  publication-title: J. Allergy Clin. Immunol.
– ident: e_1_2_9_18_1
  doi: 10.1007/s00706-022-02896-x
– ident: e_1_2_9_49_2
  doi: 10.1038/sj.bjc.6606012
– ident: e_1_2_9_64_1
  doi: 10.3762/bjoc.15.108
– ident: e_1_2_9_33_1
  doi: 10.1038/s41467-019-12504-y
– ident: e_1_2_9_6_2
  doi: 10.1038/s41590-021-01030-z
– ident: e_1_2_9_40_1
  doi: 10.1038/nature16998
– ident: e_1_2_9_46_2
  doi: 10.1111/cob.12403
– ident: e_1_2_9_5_2
  doi: 10.3390/vaccines8040700
– ident: e_1_2_9_21_2
  doi: 10.1073/pnas.1323705111
– ident: e_1_2_9_53_1
  doi: 10.1186/s12876-022-02160-w
– ident: e_1_2_9_16_2
  doi: 10.1021/acschembio.0c00735
– ident: e_1_2_9_20_2
  doi: 10.1038/s41467-020-18463-z
– ident: e_1_2_9_36_1
  doi: 10.1016/j.molcel.2017.10.019
– ident: e_1_2_9_57_2
  doi: 10.3389/fendo.2018.00396
– ident: e_1_2_9_22_2
  doi: 10.1126/science.abc1560
– ident: e_1_2_9_55_2
  doi: 10.1038/cr.2014.162
– ident: e_1_2_9_51_2
  doi: 10.12659/MSM.913556
– ident: e_1_2_9_23_1
– ident: e_1_2_9_62_2
  doi: 10.1038/s41592-019-0550-4
– ident: e_1_2_9_26_1
  doi: 10.1038/s41588-021-00903-1
– ident: e_1_2_9_31_2
  doi: 10.1016/j.cell.2020.04.011
– ident: e_1_2_9_7_1
  doi: 10.1002/gepi.22421
– ident: e_1_2_9_12_2
  doi: 10.1186/s40246-021-00306-7
SSID ssj0009631
Score 2.4169495
Snippet SARS‐CoV‐2 causes individualized symptoms. Many reasons have been given. We propose that an individual's epitranscriptomic system could be responsible as well....
SARS-CoV-2 causes individualized symptoms. Many reasons have been given. We propose that an individual's epitranscriptomic system could be responsible as well....
SARS-CoV-2 causes individualized symptoms. Many reasons have been given. We propose that an individual’s epitranscriptomic system could be responsible as well....
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e202300095
SubjectTerms 5-Methylcytosine
Adenosine
Catalytic activity
COVID-19
Diabetes mellitus
epitranscriptomics
Genomes
Humans
N6-methyladenosine
Replication
Ribonucleic acid
RNA
RNA - genetics
RNA modification
RNA, Viral - genetics
RNA-dependent RNA polymerase
SARS-CoV-2
SARS-CoV-2 - genetics
Severe acute respiratory syndrome
Severe acute respiratory syndrome coronavirus 2
Viral diseases
Title Effects of Epitranscriptomic RNA Modifications on the Catalytic Activity of the SARS‐CoV‐2 Replication Complex
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcbic.202300095
https://www.ncbi.nlm.nih.gov/pubmed/36752976
https://www.proquest.com/docview/2801883960
https://www.proquest.com/docview/2774499019
https://pubmed.ncbi.nlm.nih.gov/PMC10121919
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hXuACpeWRUpCREJzSJo7zOoaoVYvUHrYU9Rb5FbGiJFV3V6Kc-An8Rn4JM_Ym7VKhSnCJEtl52B6Pv3nkM8CbtpUIFNI0FELkoZBFGxayjENlIkWAQMeOjuHoODs4FR_O0rMbf_F7fojR4UYzw-lrmuBSzXavSUO1mhIFIUJoggmohClhi1DR5Jo_CqXLWVyCwp2c5wNrY8R3V29fXZVuQc3bGZM3kaxbivYfgRwa4TNQvuws5mpHf_-D3_F_WrkOD5c4lVVesB7DPdttwGbVoY3-9Yq9ZS5z1LnkN-B-PewatwmXng55xvqW7V1M57QUOsVEfz-zyXHFjnpD6UneU8j6jiEEZTV5ka7wXazSfj8LegCVnFSTk18_ftb9JzxyhgbD4GZkpMvO7bcncLq_97E-CJf7OoQajfE0VKootM3aEkVDRCpRKEeWS0VRXp63RvEoK62NrIiFRgTI26yUqIiS1PA8Njx5Cmtd39nnwDSiHWFUkpQ2EsIIJWwqTdyWptCJ4iKAcBjXRi9Jz2nvjfPG0zXzhjq4GTs4gHdj_QtP9_HXmtuDmDTLaT9rsAFxgZAziwJ4PRbjCFAURna2X2AdBNyCopFlAM-8VI2vStB84wgQAyhW5G2sQGTgqyXd9LMjBSeeNrS98aHcydMdn9_U7w_r8WrrX256AQ_onEJrcb4Na_PLhX2JCG2uXrlZ-Bu2EzR0
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BOZQLjxZKoICREJzSJo7zOoao1Ra6e9i2iFsUPyJWlKRqdyXKiZ_Ab-SXMGNvUpYKIcElUmLnYXtsf_PINwAvm6ZGoBDHvhAi9UWdNX5W56EvdSAJEKjQ0jGMJ8noRLz9EPfRhPQvjOOHGAxuNDPsek0TnAzSu1esoUrOiIMQMTThhJtwi9J6W61qesUghfJldS5BDk_O0563MeC7q_ev7kvXwOb1mMlfsazdjPbvguyb4WJQPu0s5nJHff2N4fG_2nkP7iyhKiucbN2HG6bdgM2iRTX98yV7xWzwqLXKb8B62SeO24Rzx4h8wbqG7Z3N5rQb2rWJfoBm00nBxp2mCCVnLGRdyxCFspIMSZf4LlYol9KCHkAlR8X06Me372X3Ho-coc7QWxoZLWen5ssDONnfOy5H_jK1g69QH499KbNMmaTJUTpEICOJomR4LcnRy9NGSx4kuTGBEaFQCAJ5k-Q1rkVRrHkaah49hLW2a80jYAoBj9AyinITCKGFFCauddjkOlOR5MIDvx_YSi15zyn9xmnlGJt5RR1cDR3sweuh_plj_Phjze1eTqrlzL-osAFhhqgzCTx4MRTjCJAjpm5Nt8A6iLkFOSRzD7acWA2vilCD44gRPchWBG6oQHzgqyXt7KPlBSeqNlS_8aHcCtRfPr8q3xyUw9njf7npOayPjseH1eHB5N0TuE3XydMWptuwNj9fmKcI2ObymZ2SPwHeCDiP
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFL2CIkE3PFoooQWMhGCVNnGc1zKkHbVAR2hKUXdR_IgYtU1G7YxEWfEJ_Ua-hHudSdqhQkiwiZTYedg-ts-91zkGeF1VJRKFMHSFELEryqRykzL1Xak9SYRA-VaOYX8Y7R6K90fh0bW_-Ft9iN7hRj3DjtfUwSe62roSDVVyTBKESKGJJtyGOyLyEsL19uhKQArhZU0uQfFOzuNOttHjW4v3L05LN7jmzSWT16msnYsGD6DsStEuQTnenE3lpvr-m8Dj_xTzIdyfE1WWtch6BLdMvQKrWY1G-ukFe8Ps0lHrk1-Be3m3bdwqnLV6yOesqdjOZDyludCOTPT7MxsNM7bfaFqf1LoKWVMz5KAsJzfSBb6LZard0IIeQCkH2ejg54_LvPmCR87QYuj8jIwGsxPz7TEcDnY-57vufGMHV6E1HrpSJokyUZUiNoQnA4lAMryUFOblcaUl96LUGM8IXyikgLyK0hJHoiDUPPY1D57AUt3U5ikwhXRHaBkEqfGE0EIKE5bar1KdqEBy4YDbtWuh5qrntPnGSdHqNfOCKrjoK9iBt33-Sav38cecGx1Minm_Py-wAH6CnDPyHHjVJ2MLUBimrE0zwzzIuAWFI1MH1lpU9a8K0H7jyBAdSBbw1mcgNfDFlHr81aqCk1AbGt_4UG7x9JfPL_J3e3l_9uxfbnoJdz9tD4qPe8MP67BMlynM5scbsDQ9m5nnyNam8oXtkL8AJ9Y3Rw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+Epitranscriptomic+RNA+Modifications+on+the+Catalytic+Activity+of+the+SARS%E2%80%90CoV%E2%80%902+Replication+Complex&rft.jtitle=Chembiochem+%3A+a+European+journal+of+chemical+biology&rft.au=Apostle%2C+Alexander&rft.au=Yin%2C+Yipeng&rft.au=Chillar%2C+Komal&rft.au=Eriyagama%2C+Adikari+M.+D.+N.&rft.date=2023-04-17&rft.issn=1439-4227&rft.eissn=1439-7633&rft.volume=24&rft.issue=8&rft_id=info:doi/10.1002%2Fcbic.202300095&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_cbic_202300095
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1439-4227&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1439-4227&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1439-4227&client=summon