Low-degree structure in Mercury's planetary magnetic field

The structure of Mercury's internal magnetic field has been determined from analysis of orbital Magnetometer measurements by the MESSENGER spacecraft. We identified the magnetic equator on 531 low-altitude and 120 high-altitude equator crossings from the zero in the radial cylindrical magnetic...

Full description

Saved in:
Bibliographic Details
Published inJournal of Geophysical Research Planets Vol. 117; no. E12
Main Authors Anderson, Brian J., Johnson, Catherine L., Korth, Haje, Winslow, Reka M., Borovsky, Joseph E., Purucker, Michael E., Slavin, James A., Solomon, Sean C., Zuber, Maria T., McNutt Jr, Ralph L.
Format Journal Article
LanguageEnglish
Published Goddard Space Flight Center Blackwell Publishing Ltd 01.12.2012
American Geophysical Union
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The structure of Mercury's internal magnetic field has been determined from analysis of orbital Magnetometer measurements by the MESSENGER spacecraft. We identified the magnetic equator on 531 low-altitude and 120 high-altitude equator crossings from the zero in the radial cylindrical magnetic field component, Beta (sub rho). The low-altitude crossings are offset 479 +/- 6 km northward, indicating an offset of the planetary dipole. The tilt of the magnetic pole relative to the planetary spin axis is less than 0.8 deg.. The high-altitude crossings yield a northward offset of the magnetic equator of 486 +/- 74 km. A field with only nonzero dipole and octupole coefficients also matches the low-altitude observations but cannot yield off-equatorial Beta (sub rho) = 0 at radial distances greater than 3520 km. We compared offset dipole and other descriptions of the field with vector field observations below 600 km for 13 longitudinally distributed, magnetically quiet orbits. An offset dipole with southward directed moment of 190 nT-R-cube (sub M) yields root-mean-square (RMS) residuals below 14 nT, whereas a field with only dipole and octupole terms tuned to match the polar field and the low-altitude magnetic equator crossings yields RMS residuals up to 68 nT. Attributing the residuals from the offset-dipole field to axial degree 3 and 4 contributions we estimate that the Gauss coefficient magnitudes for the additional terms are less than 4% and 7%, respectively, relative to the dipole. The axial alignment and prominent quadrupole are consistent with a non-convecting layer above a deep dynamo in Mercury's fluid outer core.
AbstractList The structure of Mercury's internal magnetic field has been determined from analysis of orbital Magnetometer measurements by the MESSENGER spacecraft. We identified the magnetic equator on 531 low‐altitude and 120 high‐altitude equator crossings from the zero in the radial cylindrical magnetic field component,Bρ. The low‐altitude crossings are offset 479 ± 6 km northward, indicating an offset of the planetary dipole. The tilt of the magnetic pole relative to the planetary spin axis is less than 0.8°. The high‐altitude crossings yield a northward offset of the magnetic equator of 486 ± 74 km. A field with only nonzero dipole and octupole coefficients also matches the low‐altitude observations but cannot yield off‐equatorialBρ= 0 at radial distances greater than 3520 km. We compared offset dipole and other descriptions of the field with vector field observations below 600 km for 13 longitudinally distributed, magnetically quiet orbits. An offset dipole with southward directed moment of 190 nT‐RM3yields root‐mean‐square (RMS) residuals below 14 nT, whereas a field with only dipole and octupole terms tuned to match the polar field and the low‐altitude magnetic equator crossings yields RMS residuals up to 68 nT. Attributing the residuals from the offset‐dipole field to axial degree 3 and 4 contributions we estimate that the Gauss coefficient magnitudes for the additional terms are less than 4% and 7%, respectively, relative to the dipole. The axial alignment and prominent quadrupole are consistent with a non‐convecting layer above a deep dynamo in Mercury's fluid outer core. Key Points Mercury's magnetic field is an axialy aligned dipole offset 0.2 RM to the north Additional high‐degree structure is less than 7% of the offset dipole The result is consistent with a deep dynamo and a nonconvecting outer layer
The structure of Mercury's internal magnetic field has been determined from analysis of orbital Magnetometer measurements by the MESSENGER spacecraft. We identified the magnetic equator on 531 low-altitude and 120 high-altitude equator crossings from the zero in the radial cylindrical magnetic field component, B. The low-altitude crossings are offset 479 ± 6 km northward, indicating an offset of the planetary dipole. The tilt of the magnetic pole relative to the planetary spin axis is less than 0.8°. The high-altitude crossings yield a northward offset of the magnetic equator of 486 ± 74 km. A field with only nonzero dipole and octupole coefficients also matches the low-altitude observations but cannot yield off-equatorial B = 0 at radial distances greater than 3520 km. We compared offset dipole and other descriptions of the field with vector field observations below 600 km for 13 longitudinally distributed, magnetically quiet orbits. An offset dipole with southward directed moment of 190 nT-RM3 yields root-mean-square (RMS) residuals below 14 nT, whereas a field with only dipole and octupole terms tuned to match the polar field and the low-altitude magnetic equator crossings yields RMS residuals up to 68 nT. Attributing the residuals from the offset-dipole field to axial degree 3 and 4 contributions we estimate that the Gauss coefficient magnitudes for the additional terms are less than 4% and 7%, respectively, relative to the dipole. The axial alignment and prominent quadrupole are consistent with a non-convecting layer above a deep dynamo in Mercury's fluid outer core.
The structure of Mercury's internal magnetic field has been determined from analysis of orbital Magnetometer measurements by the MESSENGER spacecraft. We identified the magnetic equator on 531 low‐altitude and 120 high‐altitude equator crossings from the zero in the radial cylindrical magnetic field component, B ρ . The low‐altitude crossings are offset 479 ± 6 km northward, indicating an offset of the planetary dipole. The tilt of the magnetic pole relative to the planetary spin axis is less than 0.8°. The high‐altitude crossings yield a northward offset of the magnetic equator of 486 ± 74 km. A field with only nonzero dipole and octupole coefficients also matches the low‐altitude observations but cannot yield off‐equatorial B ρ = 0 at radial distances greater than 3520 km. We compared offset dipole and other descriptions of the field with vector field observations below 600 km for 13 longitudinally distributed, magnetically quiet orbits. An offset dipole with southward directed moment of 190 nT‐ R M 3 yields root‐mean‐square (RMS) residuals below 14 nT, whereas a field with only dipole and octupole terms tuned to match the polar field and the low‐altitude magnetic equator crossings yields RMS residuals up to 68 nT. Attributing the residuals from the offset‐dipole field to axial degree 3 and 4 contributions we estimate that the Gauss coefficient magnitudes for the additional terms are less than 4% and 7%, respectively, relative to the dipole. The axial alignment and prominent quadrupole are consistent with a non‐convecting layer above a deep dynamo in Mercury's fluid outer core. Mercury's magnetic field is an axialy aligned dipole offset 0.2 RM to the north Additional high‐degree structure is less than 7% of the offset dipole The result is consistent with a deep dynamo and a nonconvecting outer layer
The structure of Mercury's internal magnetic field has been determined from analysis of orbital Magnetometer measurements by the MESSENGER spacecraft. We identified the magnetic equator on 531 low-altitude and 120 high-altitude equator crossings from the zero in the radial cylindrical magnetic field component, Beta (sub rho). The low-altitude crossings are offset 479 +/- 6 km northward, indicating an offset of the planetary dipole. The tilt of the magnetic pole relative to the planetary spin axis is less than 0.8 deg.. The high-altitude crossings yield a northward offset of the magnetic equator of 486 +/- 74 km. A field with only nonzero dipole and octupole coefficients also matches the low-altitude observations but cannot yield off-equatorial Beta (sub rho) = 0 at radial distances greater than 3520 km. We compared offset dipole and other descriptions of the field with vector field observations below 600 km for 13 longitudinally distributed, magnetically quiet orbits. An offset dipole with southward directed moment of 190 nT-R-cube (sub M) yields root-mean-square (RMS) residuals below 14 nT, whereas a field with only dipole and octupole terms tuned to match the polar field and the low-altitude magnetic equator crossings yields RMS residuals up to 68 nT. Attributing the residuals from the offset-dipole field to axial degree 3 and 4 contributions we estimate that the Gauss coefficient magnitudes for the additional terms are less than 4% and 7%, respectively, relative to the dipole. The axial alignment and prominent quadrupole are consistent with a non-convecting layer above a deep dynamo in Mercury's fluid outer core.
Audience PUBLIC
Author Slavin, James A.
Solomon, Sean C.
Johnson, Catherine L.
Anderson, Brian J.
Korth, Haje
Borovsky, Joseph E.
Zuber, Maria T.
Winslow, Reka M.
Purucker, Michael E.
McNutt Jr, Ralph L.
Author_xml – sequence: 1
  givenname: Brian J.
  surname: Anderson
  fullname: Anderson, Brian J.
  email: brian.anderson@jhuapl.edu, brian.anderson@jhuapl.edu
  organization: Space Department, The Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland, USA
– sequence: 2
  givenname: Catherine L.
  surname: Johnson
  fullname: Johnson, Catherine L.
  organization: Department of Earth and Ocean Sciences, University of British Columbia, Vancouver, British Columbia, Canada
– sequence: 3
  givenname: Haje
  surname: Korth
  fullname: Korth, Haje
  organization: Space Department, The Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland, USA
– sequence: 4
  givenname: Reka M.
  surname: Winslow
  fullname: Winslow, Reka M.
  organization: Department of Earth and Ocean Sciences, University of British Columbia, Vancouver, British Columbia, Canada
– sequence: 5
  givenname: Joseph E.
  surname: Borovsky
  fullname: Borovsky, Joseph E.
  organization: Space Science Institute, Boulder, Colorado, USA
– sequence: 6
  givenname: Michael E.
  surname: Purucker
  fullname: Purucker, Michael E.
  organization: NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
– sequence: 7
  givenname: James A.
  surname: Slavin
  fullname: Slavin, James A.
  organization: Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, Michigan, USA
– sequence: 8
  givenname: Sean C.
  surname: Solomon
  fullname: Solomon, Sean C.
  organization: Department of Terrestrial Magnetism, Carnegie Institution of Washington, Washington, D. C., USA
– sequence: 9
  givenname: Maria T.
  surname: Zuber
  fullname: Zuber, Maria T.
  organization: Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
– sequence: 10
  givenname: Ralph L.
  surname: McNutt Jr
  fullname: McNutt Jr, Ralph L.
  organization: Space Department, The Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland, USA
BookMark eNqFkEFv1DAQhS1UJJbSG0cOkThwITAzdhKbG6q2C9W2SFBExcVynUnlkiZbO1G7_x5XixDqgc5lRprvvTea52JvGAcW4iXCOwQy7wmQjpcACivzRCwIq7okAtoTC0ClSyBqnomDlK4gl6pqBbgQH9bjbdnyZWQu0hRnP82RizAUJxz9HLdvUrHp3cCTi9vi2l3mKfiiC9y3L8TTzvWJD_70ffH9aHl2-Klcf1l9Pvy4Lr2qjSq9Me6i8aSkrhgunK-RW43etVK6tvbUQuUb3SE7YsOdBGNMRcS-cajZy33xeue7iePNzGmyV-MchxxpkTSRRjRNpt7uKB_HlCJ3dhPDdb7aItj7B9l_H5RxeoD7MLkpjMMUXegfEd2Gnrf_DbDHq69LiVJl0audaHDJ2Wyf7kEFgKCVzutytw5p4ru_ni7-snUjm8r-OF3Zs_Pq5Gdz_s0eyd-xx48l
CitedBy_id crossref_primary_10_1016_j_epsl_2019_115838
crossref_primary_10_1002_2016JA023103
crossref_primary_10_1016_j_epsl_2019_115834
crossref_primary_10_3847_1538_4357_ace24b
crossref_primary_10_1002_2017JA024332
crossref_primary_10_1029_2022GL101607
crossref_primary_10_1051_0004_6361_202245162
crossref_primary_10_1029_2019GL082548
crossref_primary_10_3847_2041_8213_ab8566
crossref_primary_10_1029_2012JE004217
crossref_primary_10_1029_2023JA031702
crossref_primary_10_1016_j_epsl_2021_117108
crossref_primary_10_1029_2019JE005938
crossref_primary_10_1016_j_icarus_2015_07_019
crossref_primary_10_1029_2022JA030280
crossref_primary_10_1186_s40623_021_01386_4
crossref_primary_10_1186_s40623_021_01536_8
crossref_primary_10_1016_j_pss_2015_11_011
crossref_primary_10_3847_PSJ_acef15
crossref_primary_10_1029_2019GL083180
crossref_primary_10_1002_2017GL074699
crossref_primary_10_1016_j_pss_2016_01_008
crossref_primary_10_31857_S0002333724030083
crossref_primary_10_1002_2017GL074858
crossref_primary_10_1007_s11214_021_00808_9
crossref_primary_10_1029_2019JA027490
crossref_primary_10_1029_2020GL088075
crossref_primary_10_1002_2015GL067370
crossref_primary_10_1016_j_icarus_2019_113541
crossref_primary_10_1016_j_epsl_2014_05_013
crossref_primary_10_1002_2015JA021484
crossref_primary_10_1016_j_pss_2021_105379
crossref_primary_10_1002_2014GL060196
crossref_primary_10_3390_universe10010040
crossref_primary_10_1016_j_epsl_2019_04_022
crossref_primary_10_21105_joss_06677
crossref_primary_10_3847_1538_3881_ac9d89
crossref_primary_10_1002_2016JE005150
crossref_primary_10_1029_2012JA018073
crossref_primary_10_1002_2017JA024923
crossref_primary_10_1002_2015JA021194
crossref_primary_10_1002_2014GL061677
crossref_primary_10_1051_0004_6361_202347789
crossref_primary_10_1029_2020JE006621
crossref_primary_10_1029_2022JE007184
crossref_primary_10_1007_s11214_015_0193_4
crossref_primary_10_1016_j_icarus_2024_116079
crossref_primary_10_3390_rs15082125
crossref_primary_10_1002_2013JE004459
crossref_primary_10_1002_2014JA020319
crossref_primary_10_1007_s11214_020_00754_y
crossref_primary_10_1029_2020GL089784
crossref_primary_10_1002_2014JA020792
crossref_primary_10_1016_j_pss_2016_06_009
crossref_primary_10_3847_1538_4357_ab74d1
crossref_primary_10_1016_j_icarus_2014_10_038
crossref_primary_10_1016_j_icarus_2013_12_007
crossref_primary_10_1016_j_epsl_2017_11_006
crossref_primary_10_31857_S0002333723060212
crossref_primary_10_1029_2012JA018064
crossref_primary_10_1029_2020JE006651
crossref_primary_10_1134_S1069351323060216
crossref_primary_10_1002_2017EA000280
crossref_primary_10_1029_2021GL094695
crossref_primary_10_1002_2014GL060258
crossref_primary_10_1002_2016JA023548
crossref_primary_10_1029_2018JE005683
crossref_primary_10_1002_2015GL067063
crossref_primary_10_1093_mnras_stad2404
crossref_primary_10_1029_2022GL100279
crossref_primary_10_1029_2022GL101643
crossref_primary_10_1002_2014JA019884
crossref_primary_10_1029_2018JE005835
crossref_primary_10_1126_science_aaa8720
crossref_primary_10_3847_1538_4357_ab6170
crossref_primary_10_1016_j_pss_2016_02_015
crossref_primary_10_1029_2023JE007976
crossref_primary_10_1002_jgra_50237
crossref_primary_10_1016_j_pepi_2017_07_001
crossref_primary_10_1016_j_pss_2015_10_004
crossref_primary_10_1029_2019JA027691
crossref_primary_10_1029_2012JA018052
crossref_primary_10_1029_2024JA032751
crossref_primary_10_1007_s11214_024_01085_y
crossref_primary_10_1016_j_icarus_2013_02_014
crossref_primary_10_1007_s11214_021_00797_9
crossref_primary_10_5194_gi_9_471_2020
crossref_primary_10_1029_2018JE005569
crossref_primary_10_3847_PSJ_ac67de
crossref_primary_10_1029_2022EA002344
crossref_primary_10_1002_2014JE004734
crossref_primary_10_1016_j_icarus_2020_114112
crossref_primary_10_1002_2014GL061401
crossref_primary_10_1029_2020JE006792
crossref_primary_10_1007_s10712_021_09677_x
crossref_primary_10_1007_s11214_022_00875_6
crossref_primary_10_1002_2017JA024435
crossref_primary_10_1002_ggge_20242
crossref_primary_10_1016_j_pepi_2014_12_005
crossref_primary_10_1029_2023JA031529
crossref_primary_10_1016_j_pepi_2013_12_006
crossref_primary_10_1088_1674_4527_ac4ca1
crossref_primary_10_1007_s41614_020_00045_7
crossref_primary_10_1029_2024JE008660
crossref_primary_10_1002_jgra_50428
crossref_primary_10_1016_j_pepi_2015_11_002
crossref_primary_10_1029_2021JA029664
crossref_primary_10_5194_angeo_40_91_2022
crossref_primary_10_1016_j_epsl_2020_116108
crossref_primary_10_1029_2021JA030253
crossref_primary_10_1029_2023JA031810
crossref_primary_10_1002_2015JA021425
crossref_primary_10_1002_2017JA024295
crossref_primary_10_1017_S1473550419000132
crossref_primary_10_1002_jgra_50266
crossref_primary_10_1002_2015JA021022
Cites_doi 10.1016/j.icarus.2010.01.024
10.1029/2012GL051472
10.1038/nature05342
10.1029/2012JA018052
10.1029/97JA00196
10.1029/JA080i019p02708
10.1016/j.epsl.2005.04.032
10.1029/2009JE003528
10.1007/s11214‐007‐9280‐5
10.1007/s11214‐007‐9244‐9
10.1016/j.epsl.2009.02.032
10.1007/s11214‐007‐9247‐6
10.1016/S0012‐821X(02)01126‐3
10.1016/S0012‐821X(03)00682‐4
10.1016/j.epsl.2009.12.007
10.1029/2011GL049451
10.1029/2007GL031662
10.1126/science.1218809
10.1029/2008JA013368
10.1029/2012JE004217
10.1029/2012JA017926
10.1016/S0032-0633(02)00020-X
10.1016/j.pss.2003.12.008
10.1007/s11214‐009‐9544‐3
10.1002/asna.201011466
10.1029/2012JA017756
10.1016/j.epsl.2008.12.017
10.1016/j.epsl.2011.02.035
10.1029/2010GL044533
10.1016/j.icarus.2008.02.013
10.1029/2012JA017525
10.1126/science.1211001
10.1126/science.1207290
10.1080/03091928208209008
10.1126/science.1188067
10.1126/science.1159081
10.1016/0012‐821X(87)90111‐7
10.1126/science.1211302
10.1016/j.pepi.2011.05.013
10.1007/s11214‐009‐9573‐y
10.1016/j.epsl.2006.08.008
10.1016/j.epsl.2005.02.040
10.1126/science.1140514
10.1007/s11214‐007‐9246‐7
10.1016/j.pepi.2008.06.016
10.1126/science.185.4146.151
10.1029/TE041i003p00225
10.1029/2006GL025792
10.1016/j.icarus.2010.04.006
ContentType Journal Article
Copyright Copyright Determination: PUBLIC_USE_PERMITTED
2012 by the American Geophysical Union
Copyright American Geophysical Union 2012
Copyright_xml – notice: Copyright Determination: PUBLIC_USE_PERMITTED
– notice: 2012 by the American Geophysical Union
– notice: Copyright American Geophysical Union 2012
DBID BSCLL
CYE
CYI
AAYXX
CITATION
3V.
7TG
7XB
88I
8FD
8FE
8FG
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
DWQXO
GNUQQ
H8D
HCIFZ
KL.
L7M
M2P
P5Z
P62
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1029/2012JE004159
DatabaseName Istex
NASA Scientific and Technical Information
NASA Technical Reports Server
CrossRef
ProQuest Central (Corporate)
Meteorological & Geoastrophysical Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
Aerospace Database
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Advanced Technologies Database with Aerospace
Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest One Sustainability
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList
ProQuest Central Student
CrossRef

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Biology
Oceanography
Geology
Astronomy & Astrophysics
Physics
EISSN 2156-2202
2169-9100
EndPage n/a
ExternalDocumentID 2877260801
10_1029_2012JE004159
JGRE3134
20140010848
ark_67375_WNG_TX5MZ7XS_F
Genre article
GrantInformation NNX11AB84G
NASW-00002
NNG11HP14C
NAS5-97271
NNX13AJ86G
NNH08CC05C
GrantInformation_xml – fundername: NASA
  funderid: NAS5‐97271; NASW‐00002; NNX11AB84G; NNH08CC05C; CCMSM‐24
GroupedDBID 12K
1OC
7XC
88I
8FE
8FH
8G5
8R4
8R5
AAHQN
AAMNL
AANLZ
AAXRX
ABUWG
ACAHQ
ACCZN
ACXBN
AEIGN
AEUYR
AFFPM
AGYGG
AHBTC
AITYG
ALMA_UNASSIGNED_HOLDINGS
AMYDB
ATCPS
BBNVY
BENPR
BHPHI
BKSAR
BPHCQ
BRXPI
BSCLL
DCZOG
DRFUL
DRSTM
DU5
DWQXO
GNUQQ
GUQSH
HCIFZ
LATKE
LITHE
LOXES
LUTES
LYRES
M2O
M2P
MEWTI
MSFUL
MSSTM
MXFUL
MXSTM
P-X
Q2X
RNS
WHG
WIN
WXSBR
XSW
~OA
~~A
CYE
CYI
24P
AAYXX
CITATION
05W
0R~
33P
3V.
52M
702
7TG
7XB
8FD
8FG
8FK
AAESR
AASGY
AAZKR
ACGOD
ACPOU
ACXQS
ADKYN
ADOZA
ADXAS
ADZMN
AEUYN
AEYWJ
AFKRA
AIURR
ALVPJ
ARAPS
ASPBG
AVWKF
AZFZN
AZQEC
AZVAB
BFHJK
BGLVJ
BMXJE
CCPQU
D1K
DPXWK
FEDTE
H8D
HGLYW
HVGLF
HZ~
K6-
KL.
L7M
LEEKS
LK5
M7R
MY~
O9-
P2W
P62
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PROAC
Q9U
R.K
SUPJJ
WBKPD
ID FETCH-LOGICAL-c4694-c99ab7c24385e0bac61ed81cad33ad6c2d05c78f1ea2e9ef30999522ec7a18ec3
IEDL.DBID BENPR
ISSN 0148-0227
2169-9097
IngestDate Sat Jul 26 00:10:32 EDT 2025
Thu Apr 24 23:12:41 EDT 2025
Tue Jul 01 01:56:00 EDT 2025
Wed Jan 22 16:28:26 EST 2025
Fri Aug 15 15:20:38 EDT 2025
Wed Aug 20 00:50:11 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue E12
Keywords Magnetometer
Mercury
Low-Degree
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4694-c99ab7c24385e0bac61ed81cad33ad6c2d05c78f1ea2e9ef30999522ec7a18ec3
Notes NASA - No. NAS5-97271; No. NASW-00002; No. NNX11AB84G; No. NNH08CC05C; No. CCMSM-24
ark:/67375/WNG-TX5MZ7XS-F
Tab-delimited Table 1.Tab-delimited Table 2.Tab-delimited Table 3.Tab-delimited Table 4.Tab-delimited Table 5.Tab-delimited Table 6.
ArticleID:2012JE004159
istex:F2F8E22A0B9CF9847956836D21616DEBE0974564
GSFC
Report Number: GSFC-E-DAA-TN9344
ISSN: 0148-0227
GSFC-E-DAA-TN9344
Goddard Space Flight Center
SourceType-Scholarly Journals-1
content type line 14
OpenAccessLink https://ntrs.nasa.gov/citations/20140010848
PQID 1282281197
PQPubID 54729
PageCount 17
ParticipantIDs proquest_journals_1282281197
crossref_primary_10_1029_2012JE004159
crossref_citationtrail_10_1029_2012JE004159
wiley_primary_10_1029_2012JE004159_JGRE3134
nasa_ntrs_20140010848
istex_primary_ark_67375_WNG_TX5MZ7XS_F
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2012
PublicationDateYYYYMMDD 2012-12-01
PublicationDate_xml – month: 12
  year: 2012
  text: December 2012
PublicationDecade 2010
PublicationPlace Goddard Space Flight Center
PublicationPlace_xml – name: Goddard Space Flight Center
– name: Washington
PublicationTitle Journal of Geophysical Research Planets
PublicationTitleAlternate J. Geophys. Res
PublicationYear 2012
Publisher Blackwell Publishing Ltd
American Geophysical Union
Publisher_xml – name: Blackwell Publishing Ltd
– name: American Geophysical Union
References Winslow, R. M., C. L. Johnson, B. J. Anderson, H. Korth, J. A. Slavin, M. E. Purucker, and S. C. Solomon (2012), Observations of Mercury's northern cusp region with MESSENGER's Magnetometer, Geophys. Res. Lett., 39, L08112, doi:10.1029/2012GL051472.
Johnson, C. L., et al. (2012), MESSENGER observations of Mercury's magnetic field structure, J. Geophys. Res., doi:10.1029/2012JE004217, in press.
Vilim, R., S. Stanley, and S. A. Hauck II (2010), Iron snow zones as a mechanism for generating Mercury's weak observed magnetic field, J. Geophys. Res., 115, E11003, doi:10.1029/2009JE003528.
Manglik, A., J. Wicht, and U. R. Christensen (2010), A dynamo model with double diffusive convection for Mercury's core, Earth Planet. Sci. Lett., 289, 619-628, doi:10.1016/j.epsl.2009.12.007.
Stanley, S., and A. Mohammadi (2008), Effects of an outer thin stably stratified layer on planetary dynamos, Phys. Earth Planet. Inter., 168, 179-190, doi:10.1016/j.pepi.2008.06.016.
Heimpel, M., J. M. Aurnou, F. M. Al-Shamali, and N. Gomez Perez (2005), A numerical study of dynamo action as a function of spherical shell geometry, Earth Planet. Sci. Lett., 236, 542-557, doi:10.1016/j.epsl.2005.04.032.
Stanley, S., and G. A. Glatzmaier (2010), Dynamo models for planets other than Earth, Space Sci. Rev., 152, 617-649, doi:10.1007/s11214-009-9573-y.
Slavin, J. A., et al. (2012), MESSENGER observations of a flux-transfer-event shower at Mercury, J. Geophys. Res., 117, A00M06, doi:10.1029/2012JA017926.
Solomon, S. C., R. L. McNutt Jr., R. E. Gold, and D. L. Domingue (2007), MESSENGER mission overview, Space Sci. Rev., 131, 3-39, doi:10.1007/s11214-007-9247-6.
Giampieri, G., and A. Balogh (2002), Mercury's thermoelectric dynamo revisited, Planet. Space Sci. 50, 757-762.
Alexeev, I. I., et al. (2010), Mercury's magnetospheric magnetic field after the first two MESSENGER flybys, Icarus, 209, 23-39, doi:10.1016/j.icarus.2010.01.024.
Purucker, M. M., T. J. Sabaka, S. C. Solomon, B. J. Anderson, H. Korth, M. T. Zuber, and G. A. Neumann, (2009), Mercury's internal magnetic field: Constraints on large- and small-scale fields of crustal origin, Earth Planet. Sci. Lett., 285, 340-346, doi:10.1016/j.epsl.2008.12.017.
Purucker, M. E., et al. (2012), Evidence for a crustal magnetic signature on Mercury from MESSENGER observations, Lunar Planet. Sci., 43, Abstract 1297.
Rosenbauer, H., R. Schwenn, E. Marsch, B. Meyer, H. Miggenrieder, M. D. Montgomery, K. H. Muhlhauser, W. Pilipp, W. Voges, and S. M. Zink (1977), A survey on initial results of the Helios plasma experiment, J. Geophys., 42, 561-580.
Cao, H., C. T. Russell, U. R. Christensen, M. K. Dougherty, and M. E. Burton (2011), Saturn's very axisymmetric magnetic field: No detectable secular variation or tilt, Earth Planet. Sci. Lett., 304, 22-28, doi:10.1016/j.epsl.2011.02.035.
Korth, H., B. J. Anderson, C. L. Johnson, R. M. Winslow, J. A. Slavin, M. E. Purucker, S. C. Solomon, and R. L. McNutt Jr. (2012), Characteristics of the plasma distribution in Mercury's equatorial magnetosphere derived from MESSENGER Magnetometer observations, J. Geophys. Res., doi:10.1029/2012JA018052, in press.
Wicht, J., M. Mandea, F. Takahashi, U. R. Christensen, M. Matushima, and B. Langlais (2007), The origin of Mercury's internal magnetic field, Space Sci. Rev., 132, 261-290, doi:10.1007/s11214-007-9280-5.
Heyner, D., J. Wicht, N. Gómez-Pérez, D. Schmitt, H.-U. Auster, and K.-H. Glassmeier (2011b), Evidence from numerical experiments for a feedback dynamo generating Mercury's magnetic field, Science, 334, 1690-1693, doi:10.1126/science.1207290.
Olson, P., and U. R. Christensen (2006), Dipole moment scaling for convection-driven planetary dynamos, Earth Planet. Sci. Lett., 250, 561-571, doi:101.1016/j.epsl.2006.08.008.
Sundberg, T., et al. (2012), MESSENGER observations of dipolarization events in Mercury's magnetotail, J. Geophys. Res., 117, A00M03, doi:10.1029/2012JA017756.
Slavin, J. A., et al. (2010), MESSENGER observations of extreme loading and unloading of Mercury's magnetic tail, Science, 329, 665-668, doi:10.1126/science.1188067.
Takahashi, F., and M. Matsushima (2006), Dipolar and non-dipolar dynamos in thin spherical shell geometry with implications for the magnetic field of Mercury, Geophys. Res. Lett., 33, L10202, doi:10.1029/2006GL025792.
Borovsky, J. E. (2012), Looking for evidence of mixing in the solar wind from 0.31 to 0.98 AU, J. Geophys. Res., 117, A06107, doi:10.1029/2012JA017525.
Margot, J. L., S. J. Peale, R. F. Jurgens, M. A. Slade, and I. V. Holin (2007), Large longitude libration of Mercury reveals a molten core, Science, 316, 710-714, doi:10.1126/science.1140514.
Christensen, U. R. (2006), A deep dynamo generating Mercury's magnetic field, Nature, 444, 1056-1058, doi:10.1038/nature05342.
Ness, N. F., K. W. Behannon, R. P. Lepping, and Y. C. Whang (1975), The magnetic field of Mercury, 1, J. Geophys. Res., 80, 2708-2716, doi:10.1029/JA080i019p02708.
Stevenson, D. J. (1982), Reducing the non-axisymmetry of a planetary dynamo and an application to Saturn, Geophys. Astrophys. Fluid Dyn., 21, 113-127, doi:10.1080/03091928208209008.
Christensen, U. R., and J. Wicht (2008), Models of magnetic field generation in partly stable planetary cores: Applications to Mercury and Saturn, Icarus, 196, 16-34, doi:10.1016/j.icarus.2008.02.013.
Uno, H., C. L. Johnson, B. J. Anderson, H. Korth, and S. C. Solomon (2009), Mercury's internal magnetic field: Constraints from regularized inversions, Earth Planet. Sci. Lett., 285, 328-339, doi:10.1016/j.epsl.2009.02.032.
Stevenson, D. J. (2003), Planetary magnetic fields, Earth Planet. Sci. Lett., 208, 1-11, doi:10.1016/S0012-821X(02)01126-3.
Heyner, D., D. Schmitt, K.-H. Glassmeier, and J. Wicht (2011a), Dynamo action in an ambient field, Astron. Nachr., 332, 36-42, doi:10.1002/asna.201011466.
Korth, H., B. J. Anderson, M. H. Acuña, J. A. Slavin, N. A. Tsyganenko, S. C. Solomon, and R. L. McNutt Jr. (2004), Determination of the properties of Mercury's magnetic field by the MESSENGER mission, Planet. Space Sci., 52, 733-746, doi:10.1016/j.pss.2003.12.008.
Smith, D. E., et al. (2012), Gravity field and internal structure of Mercury from MESSENGER, Science, 336, 214-217, doi:10.1126/science.1218809.
Anderson, B. J., et al. (2010), The magnetic field of Mercury, Space Sci. Rev., 152, 307-339, doi:10.1007/s11214-009-9544-3.
Anderson, B. J., C. L. Johnson, H. Korth, M. E. Purucker, R. M. Winslow, J. A. Slavin, S. C. Solomon, R. L. McNutt Jr., J. M. Raines, and T. H. Zurbuchen (2011), The global magnetic field of Mercury from MESSENGER orbital observations, Science, 333, 1859-1862, doi:10.1126/science.1211001.
Aharonson, O., M. T. Zuber, and C. S. Solomon (2004), Crustal remanence in an internally magnetized non-uniform shell: A possible source for Mercury's magnetic field?, Earth Planet. Sci. Lett., 218, 261-268, doi:10.1016/S0012-821X(03)00682-4.
Gómez-Pérez, N., and J. Wicht (2010), Behavior of planetary dynamos under the influence of external magnetic fields: Application to Mercury and Ganymede, Icarus, 209, 53-62, doi:10.1016/j.icarus.2010.04.006.
Korth, H., B. J. Anderson, J. M. Raines, J. A. Slavin, T. H. Zurbuchen, C. L. Johnson, M. E. Purucker, R. M. Winslow, S. C. Solomon, and R. L. McNutt Jr. (2011), Plasma pressure in Mercury's equatorial magnetosphere derived from MESSENGER Magnetometer observations, Geophys. Res. Lett., 38, L22201, doi:10.1029/2011GL049451.
Glassmeier, K.-H., J. Grosser, U. Auster, D. Constantinescu, Y. Narita, and S. Stellmach (2007b), Electromagnetic induction effects and dynamo action in the Hermean system, Space Sci. Rev., 132, 511-527, doi:10.1007/s11214-007-9244-9.
Zurbuchen, T. H., et al. (2011), MESSENGER observations of the spatial distribution of planetary ions near Mercury, Science, 333, 1862-1865, doi:10.1126/science.1211302.
Ness, N. F., K. W. Behannon, R. P. Lepping, Y. C. Whang, and K. H. Schatten (1974), Magnetic field observations near Mercury: Preliminary results, Science, 185, 151-160, doi:10.1126/science.185.4146.151.
Anderson, B. J., M. H. Acuña, H. Korth, M. E. Purucker, C. L. Johnson, J. A. Slavin, S. C. Solomon, and R. L. McNutt Jr. (2008), The magnetic field of Mercury: New constraints on structure from MESSENGER, Science, 321, 82-85, doi:10.1126/science.1159081.
Alexeev, I. I., E. S. Belenkaya, S. Y. Bobrovnikov, J. A. Slavin, and M. Sarantos (2008), Paraboloid model of Mercury, J. Geophys. Res., 113, A12210, doi:10.1029/2008JA013368.
Anderson, B. J., M. H. Acuña, D. A. Lohr, J. Scheifele, A. Raval, H. Korth, and J. A. Slavin (2007), The Magnetometer instrument on MESSENGER, Space Sci. Rev., 131, 417-450, doi:10.1007/s11214-007-9246-7.
Shue, J.-H., J. K. Chao, H. C. Fu, C. T. Russell, P. Song, K. K. Khurana, and H. J. Singer (1997), A new functional form to study the solar wind control of the magnetopause size and shape, J. Geophys. Res., 102, 9497-9511, doi:10.1029/97JA00196.
Stanley, S., J. Bloxham, W. E. Hutchison, and M. T. Zuber (2005), Thin shell dynamo models consistent with Mercury's weak observed magnetic field, Earth Planet. Sci. Lett., 234, 27-38, doi:10.1016/j.epsl.2005.02.040.
Gómez-Pérez, N., and S. C. Solomon (2010), Mercury's weak magnetic field: A result of magnetospheric feedback?, Geophys. Res. Lett., 37, L20204, doi:10.1029/2010GL044533.
Bartels, J. (1936), The eccentric dipole approximating the Earth's magnetic field, J. Geophys. Res., 41, 225-250, doi:10.1029/TE041i003p00225.
Schubert, G., and K. M. Soderlund (2011), Planetary magnetic fields: Observations and models, Phys. Earth Planet. Inter., 187, 92-108, doi:10.1016/j.pepi.2011.05.013.
Stevenson, D. J. (1987), Mercury's magnetic field-A thermoelectric dynamo?, Earth Planet. Sci. Lett., 82, 114-120, doi:10.1016/0012-821X(87)90111-7.
Glassmeier, K.-H., H.-U. Auster, and U. Motschmann (2007a), A feedback dynamo generating Mercury's magnetic field, Geophys. Res. Lett., 34, L22201, doi:10.1029/2007GL031662.
2011; 334
2011; 333
2010; 37
2010; 329
2010; 209
2012
2002; 50
2005; 234
2006; 33
2005; 236
2010; 289
2006; 250
1977; 42
2012; 39
2008; 168
2008; 321
2011; 38
1974; 185
2007; 34
2011; 332
1997; 102
2004; 52
2003; 208
2007; 316
2011; 304
1987; 82
2007; 132
2010; 115
1982; 21
2007; 131
2010; 152
1936; 41
2008; 113
2009; 285
2004; 218
2012; 336
2012; 117
2008; 196
2012; 43
2006; 444
1975; 80
2011; 187
e_1_2_6_51_1
e_1_2_6_30_1
Rosenbauer H. (e_1_2_6_33_1) 1977; 42
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
Purucker M. E. (e_1_2_6_32_1) 2012; 43
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – reference: Purucker, M. E., et al. (2012), Evidence for a crustal magnetic signature on Mercury from MESSENGER observations, Lunar Planet. Sci., 43, Abstract 1297.
– reference: Slavin, J. A., et al. (2012), MESSENGER observations of a flux-transfer-event shower at Mercury, J. Geophys. Res., 117, A00M06, doi:10.1029/2012JA017926.
– reference: Christensen, U. R. (2006), A deep dynamo generating Mercury's magnetic field, Nature, 444, 1056-1058, doi:10.1038/nature05342.
– reference: Anderson, B. J., M. H. Acuña, D. A. Lohr, J. Scheifele, A. Raval, H. Korth, and J. A. Slavin (2007), The Magnetometer instrument on MESSENGER, Space Sci. Rev., 131, 417-450, doi:10.1007/s11214-007-9246-7.
– reference: Stevenson, D. J. (1982), Reducing the non-axisymmetry of a planetary dynamo and an application to Saturn, Geophys. Astrophys. Fluid Dyn., 21, 113-127, doi:10.1080/03091928208209008.
– reference: Alexeev, I. I., et al. (2010), Mercury's magnetospheric magnetic field after the first two MESSENGER flybys, Icarus, 209, 23-39, doi:10.1016/j.icarus.2010.01.024.
– reference: Stanley, S., J. Bloxham, W. E. Hutchison, and M. T. Zuber (2005), Thin shell dynamo models consistent with Mercury's weak observed magnetic field, Earth Planet. Sci. Lett., 234, 27-38, doi:10.1016/j.epsl.2005.02.040.
– reference: Bartels, J. (1936), The eccentric dipole approximating the Earth's magnetic field, J. Geophys. Res., 41, 225-250, doi:10.1029/TE041i003p00225.
– reference: Olson, P., and U. R. Christensen (2006), Dipole moment scaling for convection-driven planetary dynamos, Earth Planet. Sci. Lett., 250, 561-571, doi:101.1016/j.epsl.2006.08.008.
– reference: Purucker, M. M., T. J. Sabaka, S. C. Solomon, B. J. Anderson, H. Korth, M. T. Zuber, and G. A. Neumann, (2009), Mercury's internal magnetic field: Constraints on large- and small-scale fields of crustal origin, Earth Planet. Sci. Lett., 285, 340-346, doi:10.1016/j.epsl.2008.12.017.
– reference: Ness, N. F., K. W. Behannon, R. P. Lepping, and Y. C. Whang (1975), The magnetic field of Mercury, 1, J. Geophys. Res., 80, 2708-2716, doi:10.1029/JA080i019p02708.
– reference: Stanley, S., and A. Mohammadi (2008), Effects of an outer thin stably stratified layer on planetary dynamos, Phys. Earth Planet. Inter., 168, 179-190, doi:10.1016/j.pepi.2008.06.016.
– reference: Glassmeier, K.-H., H.-U. Auster, and U. Motschmann (2007a), A feedback dynamo generating Mercury's magnetic field, Geophys. Res. Lett., 34, L22201, doi:10.1029/2007GL031662.
– reference: Gómez-Pérez, N., and J. Wicht (2010), Behavior of planetary dynamos under the influence of external magnetic fields: Application to Mercury and Ganymede, Icarus, 209, 53-62, doi:10.1016/j.icarus.2010.04.006.
– reference: Heimpel, M., J. M. Aurnou, F. M. Al-Shamali, and N. Gomez Perez (2005), A numerical study of dynamo action as a function of spherical shell geometry, Earth Planet. Sci. Lett., 236, 542-557, doi:10.1016/j.epsl.2005.04.032.
– reference: Gómez-Pérez, N., and S. C. Solomon (2010), Mercury's weak magnetic field: A result of magnetospheric feedback?, Geophys. Res. Lett., 37, L20204, doi:10.1029/2010GL044533.
– reference: Anderson, B. J., M. H. Acuña, H. Korth, M. E. Purucker, C. L. Johnson, J. A. Slavin, S. C. Solomon, and R. L. McNutt Jr. (2008), The magnetic field of Mercury: New constraints on structure from MESSENGER, Science, 321, 82-85, doi:10.1126/science.1159081.
– reference: Smith, D. E., et al. (2012), Gravity field and internal structure of Mercury from MESSENGER, Science, 336, 214-217, doi:10.1126/science.1218809.
– reference: Ness, N. F., K. W. Behannon, R. P. Lepping, Y. C. Whang, and K. H. Schatten (1974), Magnetic field observations near Mercury: Preliminary results, Science, 185, 151-160, doi:10.1126/science.185.4146.151.
– reference: Shue, J.-H., J. K. Chao, H. C. Fu, C. T. Russell, P. Song, K. K. Khurana, and H. J. Singer (1997), A new functional form to study the solar wind control of the magnetopause size and shape, J. Geophys. Res., 102, 9497-9511, doi:10.1029/97JA00196.
– reference: Solomon, S. C., R. L. McNutt Jr., R. E. Gold, and D. L. Domingue (2007), MESSENGER mission overview, Space Sci. Rev., 131, 3-39, doi:10.1007/s11214-007-9247-6.
– reference: Winslow, R. M., C. L. Johnson, B. J. Anderson, H. Korth, J. A. Slavin, M. E. Purucker, and S. C. Solomon (2012), Observations of Mercury's northern cusp region with MESSENGER's Magnetometer, Geophys. Res. Lett., 39, L08112, doi:10.1029/2012GL051472.
– reference: Uno, H., C. L. Johnson, B. J. Anderson, H. Korth, and S. C. Solomon (2009), Mercury's internal magnetic field: Constraints from regularized inversions, Earth Planet. Sci. Lett., 285, 328-339, doi:10.1016/j.epsl.2009.02.032.
– reference: Zurbuchen, T. H., et al. (2011), MESSENGER observations of the spatial distribution of planetary ions near Mercury, Science, 333, 1862-1865, doi:10.1126/science.1211302.
– reference: Korth, H., B. J. Anderson, M. H. Acuña, J. A. Slavin, N. A. Tsyganenko, S. C. Solomon, and R. L. McNutt Jr. (2004), Determination of the properties of Mercury's magnetic field by the MESSENGER mission, Planet. Space Sci., 52, 733-746, doi:10.1016/j.pss.2003.12.008.
– reference: Stevenson, D. J. (1987), Mercury's magnetic field-A thermoelectric dynamo?, Earth Planet. Sci. Lett., 82, 114-120, doi:10.1016/0012-821X(87)90111-7.
– reference: Heyner, D., D. Schmitt, K.-H. Glassmeier, and J. Wicht (2011a), Dynamo action in an ambient field, Astron. Nachr., 332, 36-42, doi:10.1002/asna.201011466.
– reference: Borovsky, J. E. (2012), Looking for evidence of mixing in the solar wind from 0.31 to 0.98 AU, J. Geophys. Res., 117, A06107, doi:10.1029/2012JA017525.
– reference: Cao, H., C. T. Russell, U. R. Christensen, M. K. Dougherty, and M. E. Burton (2011), Saturn's very axisymmetric magnetic field: No detectable secular variation or tilt, Earth Planet. Sci. Lett., 304, 22-28, doi:10.1016/j.epsl.2011.02.035.
– reference: Sundberg, T., et al. (2012), MESSENGER observations of dipolarization events in Mercury's magnetotail, J. Geophys. Res., 117, A00M03, doi:10.1029/2012JA017756.
– reference: Wicht, J., M. Mandea, F. Takahashi, U. R. Christensen, M. Matushima, and B. Langlais (2007), The origin of Mercury's internal magnetic field, Space Sci. Rev., 132, 261-290, doi:10.1007/s11214-007-9280-5.
– reference: Takahashi, F., and M. Matsushima (2006), Dipolar and non-dipolar dynamos in thin spherical shell geometry with implications for the magnetic field of Mercury, Geophys. Res. Lett., 33, L10202, doi:10.1029/2006GL025792.
– reference: Schubert, G., and K. M. Soderlund (2011), Planetary magnetic fields: Observations and models, Phys. Earth Planet. Inter., 187, 92-108, doi:10.1016/j.pepi.2011.05.013.
– reference: Rosenbauer, H., R. Schwenn, E. Marsch, B. Meyer, H. Miggenrieder, M. D. Montgomery, K. H. Muhlhauser, W. Pilipp, W. Voges, and S. M. Zink (1977), A survey on initial results of the Helios plasma experiment, J. Geophys., 42, 561-580.
– reference: Slavin, J. A., et al. (2010), MESSENGER observations of extreme loading and unloading of Mercury's magnetic tail, Science, 329, 665-668, doi:10.1126/science.1188067.
– reference: Stanley, S., and G. A. Glatzmaier (2010), Dynamo models for planets other than Earth, Space Sci. Rev., 152, 617-649, doi:10.1007/s11214-009-9573-y.
– reference: Christensen, U. R., and J. Wicht (2008), Models of magnetic field generation in partly stable planetary cores: Applications to Mercury and Saturn, Icarus, 196, 16-34, doi:10.1016/j.icarus.2008.02.013.
– reference: Johnson, C. L., et al. (2012), MESSENGER observations of Mercury's magnetic field structure, J. Geophys. Res., doi:10.1029/2012JE004217, in press.
– reference: Stevenson, D. J. (2003), Planetary magnetic fields, Earth Planet. Sci. Lett., 208, 1-11, doi:10.1016/S0012-821X(02)01126-3.
– reference: Korth, H., B. J. Anderson, C. L. Johnson, R. M. Winslow, J. A. Slavin, M. E. Purucker, S. C. Solomon, and R. L. McNutt Jr. (2012), Characteristics of the plasma distribution in Mercury's equatorial magnetosphere derived from MESSENGER Magnetometer observations, J. Geophys. Res., doi:10.1029/2012JA018052, in press.
– reference: Anderson, B. J., C. L. Johnson, H. Korth, M. E. Purucker, R. M. Winslow, J. A. Slavin, S. C. Solomon, R. L. McNutt Jr., J. M. Raines, and T. H. Zurbuchen (2011), The global magnetic field of Mercury from MESSENGER orbital observations, Science, 333, 1859-1862, doi:10.1126/science.1211001.
– reference: Aharonson, O., M. T. Zuber, and C. S. Solomon (2004), Crustal remanence in an internally magnetized non-uniform shell: A possible source for Mercury's magnetic field?, Earth Planet. Sci. Lett., 218, 261-268, doi:10.1016/S0012-821X(03)00682-4.
– reference: Manglik, A., J. Wicht, and U. R. Christensen (2010), A dynamo model with double diffusive convection for Mercury's core, Earth Planet. Sci. Lett., 289, 619-628, doi:10.1016/j.epsl.2009.12.007.
– reference: Glassmeier, K.-H., J. Grosser, U. Auster, D. Constantinescu, Y. Narita, and S. Stellmach (2007b), Electromagnetic induction effects and dynamo action in the Hermean system, Space Sci. Rev., 132, 511-527, doi:10.1007/s11214-007-9244-9.
– reference: Heyner, D., J. Wicht, N. Gómez-Pérez, D. Schmitt, H.-U. Auster, and K.-H. Glassmeier (2011b), Evidence from numerical experiments for a feedback dynamo generating Mercury's magnetic field, Science, 334, 1690-1693, doi:10.1126/science.1207290.
– reference: Margot, J. L., S. J. Peale, R. F. Jurgens, M. A. Slade, and I. V. Holin (2007), Large longitude libration of Mercury reveals a molten core, Science, 316, 710-714, doi:10.1126/science.1140514.
– reference: Alexeev, I. I., E. S. Belenkaya, S. Y. Bobrovnikov, J. A. Slavin, and M. Sarantos (2008), Paraboloid model of Mercury, J. Geophys. Res., 113, A12210, doi:10.1029/2008JA013368.
– reference: Anderson, B. J., et al. (2010), The magnetic field of Mercury, Space Sci. Rev., 152, 307-339, doi:10.1007/s11214-009-9544-3.
– reference: Korth, H., B. J. Anderson, J. M. Raines, J. A. Slavin, T. H. Zurbuchen, C. L. Johnson, M. E. Purucker, R. M. Winslow, S. C. Solomon, and R. L. McNutt Jr. (2011), Plasma pressure in Mercury's equatorial magnetosphere derived from MESSENGER Magnetometer observations, Geophys. Res. Lett., 38, L22201, doi:10.1029/2011GL049451.
– reference: Vilim, R., S. Stanley, and S. A. Hauck II (2010), Iron snow zones as a mechanism for generating Mercury's weak observed magnetic field, J. Geophys. Res., 115, E11003, doi:10.1029/2009JE003528.
– reference: Giampieri, G., and A. Balogh (2002), Mercury's thermoelectric dynamo revisited, Planet. Space Sci. 50, 757-762.
– volume: 33
  year: 2006
  article-title: Dipolar and non‐dipolar dynamos in thin spherical shell geometry with implications for the magnetic field of Mercury
  publication-title: Geophys. Res. Lett.
– volume: 132
  start-page: 261
  year: 2007
  end-page: 290
  article-title: The origin of Mercury's internal magnetic field
  publication-title: Space Sci. Rev.
– volume: 329
  start-page: 665
  year: 2010
  end-page: 668
  article-title: MESSENGER observations of extreme loading and unloading of Mercury's magnetic tail
  publication-title: Science
– volume: 37
  year: 2010
  article-title: Mercury's weak magnetic field: A result of magnetospheric feedback?
  publication-title: Geophys. Res. Lett.
– volume: 113
  year: 2008
  article-title: Paraboloid model of Mercury
  publication-title: J. Geophys. Res.
– volume: 43
  year: 2012
  article-title: Evidence for a crustal magnetic signature on Mercury from MESSENGER observations
  publication-title: Lunar Planet. Sci.
– volume: 117
  year: 2012
  article-title: MESSENGER observations of a flux‐transfer‐event shower at Mercury
  publication-title: J. Geophys. Res.
– volume: 285
  start-page: 340
  year: 2009
  end-page: 346
  article-title: Mercury's internal magnetic field: Constraints on large‐ and small‐scale fields of crustal origin
  publication-title: Earth Planet. Sci. Lett.
– volume: 52
  start-page: 733
  year: 2004
  end-page: 746
  article-title: Determination of the properties of Mercury's magnetic field by the MESSENGER mission
  publication-title: Planet. Space Sci.
– volume: 152
  start-page: 617
  year: 2010
  end-page: 649
  article-title: Dynamo models for planets other than Earth
  publication-title: Space Sci. Rev.
– volume: 41
  start-page: 225
  year: 1936
  end-page: 250
  article-title: The eccentric dipole approximating the Earth's magnetic field
  publication-title: J. Geophys. Res.
– volume: 117
  year: 2012
  article-title: Looking for evidence of mixing in the solar wind from 0.31 to 0.98 AU
  publication-title: J. Geophys. Res.
– volume: 304
  start-page: 22
  year: 2011
  end-page: 28
  article-title: Saturn's very axisymmetric magnetic field: No detectable secular variation or tilt
  publication-title: Earth Planet. Sci. Lett.
– volume: 117
  year: 2012
  article-title: MESSENGER observations of dipolarization events in Mercury's magnetotail
  publication-title: J. Geophys. Res.
– volume: 444
  start-page: 1056
  year: 2006
  end-page: 1058
  article-title: A deep dynamo generating Mercury's magnetic field
  publication-title: Nature
– volume: 334
  start-page: 1690
  year: 2011
  end-page: 1693
  article-title: Evidence from numerical experiments for a feedback dynamo generating Mercury's magnetic field
  publication-title: Science
– year: 2012
  article-title: MESSENGER observations of Mercury's magnetic field structure
  publication-title: J. Geophys. Res.
– volume: 336
  start-page: 214
  year: 2012
  end-page: 217
  article-title: Gravity field and internal structure of Mercury from MESSENGER
  publication-title: Science
– volume: 321
  start-page: 82
  year: 2008
  end-page: 85
  article-title: The magnetic field of Mercury: New constraints on structure from MESSENGER
  publication-title: Science
– volume: 236
  start-page: 542
  year: 2005
  end-page: 557
  article-title: A numerical study of dynamo action as a function of spherical shell geometry
  publication-title: Earth Planet. Sci. Lett.
– volume: 82
  start-page: 114
  year: 1987
  end-page: 120
  article-title: Mercury's magnetic field–A thermoelectric dynamo?
  publication-title: Earth Planet. Sci. Lett.
– volume: 250
  start-page: 561
  year: 2006
  end-page: 571
  article-title: Dipole moment scaling for convection‐driven planetary dynamos
  publication-title: Earth Planet. Sci. Lett.
– volume: 316
  start-page: 710
  year: 2007
  end-page: 714
  article-title: Large longitude libration of Mercury reveals a molten core
  publication-title: Science
– volume: 187
  start-page: 92
  year: 2011
  end-page: 108
  article-title: Planetary magnetic fields: Observations and models
  publication-title: Phys. Earth Planet. Inter.
– volume: 285
  start-page: 328
  year: 2009
  end-page: 339
  article-title: Mercury's internal magnetic field: Constraints from regularized inversions
  publication-title: Earth Planet. Sci. Lett.
– volume: 333
  start-page: 1862
  year: 2011
  end-page: 1865
  article-title: MESSENGER observations of the spatial distribution of planetary ions near Mercury
  publication-title: Science
– volume: 115
  year: 2010
  article-title: Iron snow zones as a mechanism for generating Mercury's weak observed magnetic field
  publication-title: J. Geophys. Res.
– volume: 102
  start-page: 9497
  year: 1997
  end-page: 9511
  article-title: A new functional form to study the solar wind control of the magnetopause size and shape
  publication-title: J. Geophys. Res.
– volume: 131
  start-page: 3
  year: 2007
  end-page: 39
  article-title: MESSENGER mission overview
  publication-title: Space Sci. Rev.
– volume: 289
  start-page: 619
  year: 2010
  end-page: 628
  article-title: A dynamo model with double diffusive convection for Mercury's core
  publication-title: Earth Planet. Sci. Lett.
– volume: 196
  start-page: 16
  year: 2008
  end-page: 34
  article-title: Models of magnetic field generation in partly stable planetary cores: Applications to Mercury and Saturn
  publication-title: Icarus
– volume: 209
  start-page: 23
  year: 2010
  end-page: 39
  article-title: Mercury's magnetospheric magnetic field after the first two MESSENGER flybys
  publication-title: Icarus
– volume: 209
  start-page: 53
  year: 2010
  end-page: 62
  article-title: Behavior of planetary dynamos under the influence of external magnetic fields: Application to Mercury and Ganymede
  publication-title: Icarus
– volume: 38
  year: 2011
  article-title: Plasma pressure in Mercury's equatorial magnetosphere derived from MESSENGER Magnetometer observations
  publication-title: Geophys. Res. Lett.
– volume: 42
  start-page: 561
  year: 1977
  end-page: 580
  article-title: A survey on initial results of the Helios plasma experiment
  publication-title: J. Geophys.
– volume: 234
  start-page: 27
  year: 2005
  end-page: 38
  article-title: Thin shell dynamo models consistent with Mercury's weak observed magnetic field
  publication-title: Earth Planet. Sci. Lett.
– volume: 132
  start-page: 511
  year: 2007
  end-page: 527
  article-title: Electromagnetic induction effects and dynamo action in the Hermean system
  publication-title: Space Sci. Rev.
– volume: 131
  start-page: 417
  year: 2007
  end-page: 450
  article-title: The Magnetometer instrument on MESSENGER
  publication-title: Space Sci. Rev.
– volume: 333
  start-page: 1859
  year: 2011
  end-page: 1862
  article-title: The global magnetic field of Mercury from MESSENGER orbital observations
  publication-title: Science
– volume: 218
  start-page: 261
  year: 2004
  end-page: 268
  article-title: Crustal remanence in an internally magnetized non‐uniform shell: A possible source for Mercury's magnetic field?
  publication-title: Earth Planet. Sci. Lett.
– volume: 152
  start-page: 307
  year: 2010
  end-page: 339
  article-title: The magnetic field of Mercury
  publication-title: Space Sci. Rev.
– volume: 332
  start-page: 36
  year: 2011
  end-page: 42
  article-title: Dynamo action in an ambient field
  publication-title: Astron. Nachr.
– volume: 208
  start-page: 1
  year: 2003
  end-page: 11
  article-title: Planetary magnetic fields
  publication-title: Earth Planet. Sci. Lett.
– volume: 185
  start-page: 151
  year: 1974
  end-page: 160
  article-title: Magnetic field observations near Mercury: Preliminary results
  publication-title: Science
– volume: 80
  start-page: 2708
  year: 1975
  end-page: 2716
  article-title: The magnetic field of Mercury, 1
  publication-title: J. Geophys. Res.
– year: 2012
  article-title: Characteristics of the plasma distribution in Mercury's equatorial magnetosphere derived from MESSENGER Magnetometer observations
  publication-title: J. Geophys. Res.
– volume: 168
  start-page: 179
  year: 2008
  end-page: 190
  article-title: Effects of an outer thin stably stratified layer on planetary dynamos
  publication-title: Phys. Earth Planet. Inter.
– volume: 21
  start-page: 113
  year: 1982
  end-page: 127
  article-title: Reducing the non‐axisymmetry of a planetary dynamo and an application to Saturn
  publication-title: Geophys. Astrophys. Fluid Dyn.
– volume: 50
  start-page: 757
  year: 2002
  end-page: 762
  article-title: Mercury's thermoelectric dynamo revisited
  publication-title: Planet. Space Sci.
– volume: 39
  year: 2012
  article-title: Observations of Mercury's northern cusp region with MESSENGER's Magnetometer
  publication-title: Geophys. Res. Lett.
– volume: 34
  year: 2007
  article-title: A feedback dynamo generating Mercury's magnetic field
  publication-title: Geophys. Res. Lett.
– ident: e_1_2_6_4_1
  doi: 10.1016/j.icarus.2010.01.024
– ident: e_1_2_6_51_1
  doi: 10.1029/2012GL051472
– ident: e_1_2_6_12_1
  doi: 10.1038/nature05342
– ident: e_1_2_6_25_1
  doi: 10.1029/2012JA018052
– ident: e_1_2_6_35_1
  doi: 10.1029/97JA00196
– ident: e_1_2_6_29_1
  doi: 10.1029/JA080i019p02708
– ident: e_1_2_6_19_1
  doi: 10.1016/j.epsl.2005.04.032
– ident: e_1_2_6_49_1
  doi: 10.1029/2009JE003528
– ident: e_1_2_6_50_1
  doi: 10.1007/s11214‐007‐9280‐5
– ident: e_1_2_6_16_1
  doi: 10.1007/s11214‐007‐9244‐9
– ident: e_1_2_6_48_1
  doi: 10.1016/j.epsl.2009.02.032
– ident: e_1_2_6_39_1
  doi: 10.1007/s11214‐007‐9247‐6
– volume: 43
  year: 2012
  ident: e_1_2_6_32_1
  article-title: Evidence for a crustal magnetic signature on Mercury from MESSENGER observations
  publication-title: Lunar Planet. Sci.
– ident: e_1_2_6_45_1
  doi: 10.1016/S0012‐821X(02)01126‐3
– ident: e_1_2_6_2_1
  doi: 10.1016/S0012‐821X(03)00682‐4
– ident: e_1_2_6_26_1
  doi: 10.1016/j.epsl.2009.12.007
– ident: e_1_2_6_24_1
  doi: 10.1029/2011GL049451
– ident: e_1_2_6_15_1
  doi: 10.1029/2007GL031662
– ident: e_1_2_6_38_1
  doi: 10.1126/science.1218809
– ident: e_1_2_6_3_1
  doi: 10.1029/2008JA013368
– ident: e_1_2_6_22_1
  doi: 10.1029/2012JE004217
– ident: e_1_2_6_37_1
  doi: 10.1029/2012JA017926
– ident: e_1_2_6_14_1
  doi: 10.1016/S0032-0633(02)00020-X
– ident: e_1_2_6_23_1
  doi: 10.1016/j.pss.2003.12.008
– ident: e_1_2_6_7_1
  doi: 10.1007/s11214‐009‐9544‐3
– ident: e_1_2_6_20_1
  doi: 10.1002/asna.201011466
– ident: e_1_2_6_46_1
  doi: 10.1029/2012JA017756
– ident: e_1_2_6_31_1
  doi: 10.1016/j.epsl.2008.12.017
– ident: e_1_2_6_11_1
  doi: 10.1016/j.epsl.2011.02.035
– ident: e_1_2_6_17_1
  doi: 10.1029/2010GL044533
– ident: e_1_2_6_13_1
  doi: 10.1016/j.icarus.2008.02.013
– ident: e_1_2_6_10_1
  doi: 10.1029/2012JA017525
– ident: e_1_2_6_8_1
  doi: 10.1126/science.1211001
– volume: 42
  start-page: 561
  year: 1977
  ident: e_1_2_6_33_1
  article-title: A survey on initial results of the Helios plasma experiment
  publication-title: J. Geophys.
– ident: e_1_2_6_21_1
  doi: 10.1126/science.1207290
– ident: e_1_2_6_43_1
  doi: 10.1080/03091928208209008
– ident: e_1_2_6_36_1
  doi: 10.1126/science.1188067
– ident: e_1_2_6_6_1
  doi: 10.1126/science.1159081
– ident: e_1_2_6_44_1
  doi: 10.1016/0012‐821X(87)90111‐7
– ident: e_1_2_6_52_1
  doi: 10.1126/science.1211302
– ident: e_1_2_6_34_1
  doi: 10.1016/j.pepi.2011.05.013
– ident: e_1_2_6_40_1
  doi: 10.1007/s11214‐009‐9573‐y
– ident: e_1_2_6_30_1
  doi: 10.1016/j.epsl.2006.08.008
– ident: e_1_2_6_42_1
  doi: 10.1016/j.epsl.2005.02.040
– ident: e_1_2_6_27_1
  doi: 10.1126/science.1140514
– ident: e_1_2_6_5_1
  doi: 10.1007/s11214‐007‐9246‐7
– ident: e_1_2_6_41_1
  doi: 10.1016/j.pepi.2008.06.016
– ident: e_1_2_6_28_1
  doi: 10.1126/science.185.4146.151
– ident: e_1_2_6_9_1
  doi: 10.1029/TE041i003p00225
– ident: e_1_2_6_47_1
  doi: 10.1029/2006GL025792
– ident: e_1_2_6_18_1
  doi: 10.1016/j.icarus.2010.04.006
SSID ssj0000456401
ssj0014561
ssj0030581
ssj0030583
ssj0043761
ssj0030582
ssj0030585
ssj0030584
ssj0030586
ssj0000816913
Score 2.4736977
Snippet The structure of Mercury's internal magnetic field has been determined from analysis of orbital Magnetometer measurements by the MESSENGER spacecraft. We...
SourceID proquest
crossref
wiley
nasa
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Altitude
Lunar And Planetary Science And Exploration
magnetic field
Magnetic fields
Magnetism
Mercury
MESSENGER
planetary dynamo
Planetology
Planets
Spacecraft
Title Low-degree structure in Mercury's planetary magnetic field
URI https://api.istex.fr/ark:/67375/WNG-TX5MZ7XS-F/fulltext.pdf
https://ntrs.nasa.gov/citations/20140010848
https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2012JE004159
https://www.proquest.com/docview/1282281197
Volume 117
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwELYYfeEF8WNohTH5AcYDsmjiuLZ5QQO1nSpaobGJihfLOV8QgqWlGYL99_gSt5QH9pYHx3HunPP33V3uGHtWBglQWS-MAiOKoIKIPMuLCK2rLCiEqqSI7mw-PL0opgu1SA63JqVVbmxia6jDEshH_iqjfEdDQa83qx-CukZRdDW10NhjvWiCTSRfvbej-YezrZeF2krYtkdyHi-EHVidst8HuY3EP8unIyo5RaVKd86lHon4d7TStW_8P9hzF8G2R9D4HrubsCM_6ZR9n93C-gE7OGnIm728vObHvL3unBXNQ_b6_fKXCBgZNfKuTuzPNfKvNZ_hGqIsXzR8RbmuV359zS_9l5p-aORtTts-uxiPzt-ditQrQUAkuIUAa32pIS-kUTgoPQwzDCYDH6T0YQh5GCjQpsrQ52ixkoQMI_ZC0D4zCPJRfNlljQeMa1vKSIoQlAzxuEdfVaoMWlfBAObK99nLjaQcpELi1M_iu2sD2rl1u3Lts-fb0auugMZ_xh23Qt8O8utvlHSmlfs0n7jzhZp91ouPbtxn-6QVF5_Z0AwF0VpTmD473KjJpe-wcX93TVx1q7obF-Gmk7ORzGTx-ObJnrA7dFuX1nLIbkcV4tMITq7KI7ZnxpOjtA__AOAD3rs
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELYKPcAF8ShqoIAPtByQ1ay9ztpICFWQR9MkB0hFxMV47VlUlW5CtqjkT_Eb8ewjhAO99eaDNev1jD3fPDxDyMvUC-cybZmSTrHYS8-CnWVZgNZZ5CW4LMWI7njSGZzGw5mcbZHfzVsYTKts7sTyovZzhz7ywwjzHRUGvd4tfjDsGoXR1aaFRiUWJ7C6CiZb8fb4Q-DvPue97vT9gNVdBZgLpmDMnNY2TRyPhZLQTq3rROBV5KwXwvqO474tXaKyCCwHDZlADBVQCrjERgqcCHRvke1YCI0nSvX6a58ONrHQZUdmHgZMt3VS59q3uT4MqpYPu1jgCgujbmjBbWTor6ATclvYf5DuJl4uFV7vPrlXI1V6VInWA7IF-UOye1Sg73x-saIHtBxXrpHiEXkzml8xD8F-B1pVpf25BHqW0zEsXeDcq4IuMLP20i5X9MJ-y_H5JC0z6HbI6Y3s4ePws_McdglNdCqCCQZOCh_ABdgsk6lPkswrB1zaFnnd7JRxddly7J7x3ZThc67N5r62yP569qIq1_GfeQflpq8n2eU5prgl0nye9M10Jsdfktkn02uRHeSKCd8skEKMRrSKVYvsNWwy9akvzF8ZDasuWXftIsyw_7ErIhE_uZ7YC3JnMB2PzOh4cvKU3EUSVULNHrkd2AnPAiy6TJ-XskjJ15sW_j_F1BqY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKIyEuiEdRAwV8oOWAVsna69hGQqjQpG3aRFVpRcTFeG0vQtBNyBaV_DV-HTP7COFAb735YM16Z0aebx6eIeRF6rlzmbaREk5FiRc-Aj_LRgCts9iL4LIUM7qjce_gPBlOxGSN_G7ewmBZZXMnlhe1nzqMkXdirHdUmPTqZHVZxMne4O3sR4QTpDDT2ozTqFTkKCyuwH0r3hzugay3GRv0z94fRPWEgciBW5hETmubSscSrkToptb14uBV7Kzn3PqeY74rnFRZHCwLOmQc8RQgluCkjVVwHOjeIi0JXlF3nbTe9ccnp8sID4600OV8ZgaLSHe1rCvvu0x3wPCyYR_bXWGb1BWb2ELx_gILkdvC_oN7V9Fzaf4G98jdGrfS3UrR7pO1kD8gm7sFRtKnFwu6Q8t1FSgpHpLXx9OryAfw5gOtetT-nAf6NaejMHcgx5cFnWGd7aWdL-iF_ZLjY0pa1tNtkPMb4eIj-NlpHjYJlTrl4JAFJ7gHqBFslonUS5l55QITtk1eNZwyrm5ijrM0vpsymc60WeVrm2wvd8-q5h3_2bdTMn25yc6_YcGbFObjeN-cTcTok5x8MIM22UCpGPhmgRQSdKlVotpkqxGTqe-AwvzVWDh1KbprD2GG-6d9HvPk8fXEnpPboPjm-HB89ITcQQpVdc0WWQdphqeAkS7TZ7UyUvL5pvX_D-F8ICo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low%E2%80%90degree+structure+in+Mercury%27s+planetary+magnetic+field&rft.jtitle=Journal+of+Geophysical+Research%3A+Planets&rft.au=Anderson%2C+Brian+J.&rft.au=Johnson%2C+Catherine+L.&rft.au=Korth%2C+Haje&rft.au=Winslow%2C+Reka+M.&rft.date=2012-12-01&rft.issn=0148-0227&rft.volume=117&rft.issue=E12&rft_id=info:doi/10.1029%2F2012JE004159&rft.externalDBID=n%2Fa&rft.externalDocID=10_1029_2012JE004159
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0148-0227&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0148-0227&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0148-0227&client=summon