Low-degree structure in Mercury's planetary magnetic field
The structure of Mercury's internal magnetic field has been determined from analysis of orbital Magnetometer measurements by the MESSENGER spacecraft. We identified the magnetic equator on 531 low-altitude and 120 high-altitude equator crossings from the zero in the radial cylindrical magnetic...
Saved in:
Published in | Journal of Geophysical Research Planets Vol. 117; no. E12 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Goddard Space Flight Center
Blackwell Publishing Ltd
01.12.2012
American Geophysical Union |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The structure of Mercury's internal magnetic field has been determined from analysis of orbital Magnetometer measurements by the MESSENGER spacecraft. We identified the magnetic equator on 531 low-altitude and 120 high-altitude equator crossings from the zero in the radial cylindrical magnetic field component, Beta (sub rho). The low-altitude crossings are offset 479 +/- 6 km northward, indicating an offset of the planetary dipole. The tilt of the magnetic pole relative to the planetary spin axis is less than 0.8 deg.. The high-altitude crossings yield a northward offset of the magnetic equator of 486 +/- 74 km. A field with only nonzero dipole and octupole coefficients also matches the low-altitude observations but cannot yield off-equatorial Beta (sub rho) = 0 at radial distances greater than 3520 km. We compared offset dipole and other descriptions of the field with vector field observations below 600 km for 13 longitudinally distributed, magnetically quiet orbits. An offset dipole with southward directed moment of 190 nT-R-cube (sub M) yields root-mean-square (RMS) residuals below 14 nT, whereas a field with only dipole and octupole terms tuned to match the polar field and the low-altitude magnetic equator crossings yields RMS residuals up to 68 nT. Attributing the residuals from the offset-dipole field to axial degree 3 and 4 contributions we estimate that the Gauss coefficient magnitudes for the additional terms are less than 4% and 7%, respectively, relative to the dipole. The axial alignment and prominent quadrupole are consistent with a non-convecting layer above a deep dynamo in Mercury's fluid outer core. |
---|---|
AbstractList | The structure of Mercury's internal magnetic field has been determined from analysis of orbital Magnetometer measurements by the MESSENGER spacecraft. We identified the magnetic equator on 531 low‐altitude and 120 high‐altitude equator crossings from the zero in the radial cylindrical magnetic field component,Bρ. The low‐altitude crossings are offset 479 ± 6 km northward, indicating an offset of the planetary dipole. The tilt of the magnetic pole relative to the planetary spin axis is less than 0.8°. The high‐altitude crossings yield a northward offset of the magnetic equator of 486 ± 74 km. A field with only nonzero dipole and octupole coefficients also matches the low‐altitude observations but cannot yield off‐equatorialBρ= 0 at radial distances greater than 3520 km. We compared offset dipole and other descriptions of the field with vector field observations below 600 km for 13 longitudinally distributed, magnetically quiet orbits. An offset dipole with southward directed moment of 190 nT‐RM3yields root‐mean‐square (RMS) residuals below 14 nT, whereas a field with only dipole and octupole terms tuned to match the polar field and the low‐altitude magnetic equator crossings yields RMS residuals up to 68 nT. Attributing the residuals from the offset‐dipole field to axial degree 3 and 4 contributions we estimate that the Gauss coefficient magnitudes for the additional terms are less than 4% and 7%, respectively, relative to the dipole. The axial alignment and prominent quadrupole are consistent with a non‐convecting layer above a deep dynamo in Mercury's fluid outer core.
Key Points
Mercury's magnetic field is an axialy aligned dipole offset 0.2 RM to the north
Additional high‐degree structure is less than 7% of the offset dipole
The result is consistent with a deep dynamo and a nonconvecting outer layer The structure of Mercury's internal magnetic field has been determined from analysis of orbital Magnetometer measurements by the MESSENGER spacecraft. We identified the magnetic equator on 531 low-altitude and 120 high-altitude equator crossings from the zero in the radial cylindrical magnetic field component, B. The low-altitude crossings are offset 479 ± 6 km northward, indicating an offset of the planetary dipole. The tilt of the magnetic pole relative to the planetary spin axis is less than 0.8°. The high-altitude crossings yield a northward offset of the magnetic equator of 486 ± 74 km. A field with only nonzero dipole and octupole coefficients also matches the low-altitude observations but cannot yield off-equatorial B = 0 at radial distances greater than 3520 km. We compared offset dipole and other descriptions of the field with vector field observations below 600 km for 13 longitudinally distributed, magnetically quiet orbits. An offset dipole with southward directed moment of 190 nT-RM3 yields root-mean-square (RMS) residuals below 14 nT, whereas a field with only dipole and octupole terms tuned to match the polar field and the low-altitude magnetic equator crossings yields RMS residuals up to 68 nT. Attributing the residuals from the offset-dipole field to axial degree 3 and 4 contributions we estimate that the Gauss coefficient magnitudes for the additional terms are less than 4% and 7%, respectively, relative to the dipole. The axial alignment and prominent quadrupole are consistent with a non-convecting layer above a deep dynamo in Mercury's fluid outer core. The structure of Mercury's internal magnetic field has been determined from analysis of orbital Magnetometer measurements by the MESSENGER spacecraft. We identified the magnetic equator on 531 low‐altitude and 120 high‐altitude equator crossings from the zero in the radial cylindrical magnetic field component, B ρ . The low‐altitude crossings are offset 479 ± 6 km northward, indicating an offset of the planetary dipole. The tilt of the magnetic pole relative to the planetary spin axis is less than 0.8°. The high‐altitude crossings yield a northward offset of the magnetic equator of 486 ± 74 km. A field with only nonzero dipole and octupole coefficients also matches the low‐altitude observations but cannot yield off‐equatorial B ρ = 0 at radial distances greater than 3520 km. We compared offset dipole and other descriptions of the field with vector field observations below 600 km for 13 longitudinally distributed, magnetically quiet orbits. An offset dipole with southward directed moment of 190 nT‐ R M 3 yields root‐mean‐square (RMS) residuals below 14 nT, whereas a field with only dipole and octupole terms tuned to match the polar field and the low‐altitude magnetic equator crossings yields RMS residuals up to 68 nT. Attributing the residuals from the offset‐dipole field to axial degree 3 and 4 contributions we estimate that the Gauss coefficient magnitudes for the additional terms are less than 4% and 7%, respectively, relative to the dipole. The axial alignment and prominent quadrupole are consistent with a non‐convecting layer above a deep dynamo in Mercury's fluid outer core. Mercury's magnetic field is an axialy aligned dipole offset 0.2 RM to the north Additional high‐degree structure is less than 7% of the offset dipole The result is consistent with a deep dynamo and a nonconvecting outer layer The structure of Mercury's internal magnetic field has been determined from analysis of orbital Magnetometer measurements by the MESSENGER spacecraft. We identified the magnetic equator on 531 low-altitude and 120 high-altitude equator crossings from the zero in the radial cylindrical magnetic field component, Beta (sub rho). The low-altitude crossings are offset 479 +/- 6 km northward, indicating an offset of the planetary dipole. The tilt of the magnetic pole relative to the planetary spin axis is less than 0.8 deg.. The high-altitude crossings yield a northward offset of the magnetic equator of 486 +/- 74 km. A field with only nonzero dipole and octupole coefficients also matches the low-altitude observations but cannot yield off-equatorial Beta (sub rho) = 0 at radial distances greater than 3520 km. We compared offset dipole and other descriptions of the field with vector field observations below 600 km for 13 longitudinally distributed, magnetically quiet orbits. An offset dipole with southward directed moment of 190 nT-R-cube (sub M) yields root-mean-square (RMS) residuals below 14 nT, whereas a field with only dipole and octupole terms tuned to match the polar field and the low-altitude magnetic equator crossings yields RMS residuals up to 68 nT. Attributing the residuals from the offset-dipole field to axial degree 3 and 4 contributions we estimate that the Gauss coefficient magnitudes for the additional terms are less than 4% and 7%, respectively, relative to the dipole. The axial alignment and prominent quadrupole are consistent with a non-convecting layer above a deep dynamo in Mercury's fluid outer core. |
Audience | PUBLIC |
Author | Slavin, James A. Solomon, Sean C. Johnson, Catherine L. Anderson, Brian J. Korth, Haje Borovsky, Joseph E. Zuber, Maria T. Winslow, Reka M. Purucker, Michael E. McNutt Jr, Ralph L. |
Author_xml | – sequence: 1 givenname: Brian J. surname: Anderson fullname: Anderson, Brian J. email: brian.anderson@jhuapl.edu, brian.anderson@jhuapl.edu organization: Space Department, The Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland, USA – sequence: 2 givenname: Catherine L. surname: Johnson fullname: Johnson, Catherine L. organization: Department of Earth and Ocean Sciences, University of British Columbia, Vancouver, British Columbia, Canada – sequence: 3 givenname: Haje surname: Korth fullname: Korth, Haje organization: Space Department, The Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland, USA – sequence: 4 givenname: Reka M. surname: Winslow fullname: Winslow, Reka M. organization: Department of Earth and Ocean Sciences, University of British Columbia, Vancouver, British Columbia, Canada – sequence: 5 givenname: Joseph E. surname: Borovsky fullname: Borovsky, Joseph E. organization: Space Science Institute, Boulder, Colorado, USA – sequence: 6 givenname: Michael E. surname: Purucker fullname: Purucker, Michael E. organization: NASA Goddard Space Flight Center, Greenbelt, Maryland, USA – sequence: 7 givenname: James A. surname: Slavin fullname: Slavin, James A. organization: Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, Michigan, USA – sequence: 8 givenname: Sean C. surname: Solomon fullname: Solomon, Sean C. organization: Department of Terrestrial Magnetism, Carnegie Institution of Washington, Washington, D. C., USA – sequence: 9 givenname: Maria T. surname: Zuber fullname: Zuber, Maria T. organization: Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA – sequence: 10 givenname: Ralph L. surname: McNutt Jr fullname: McNutt Jr, Ralph L. organization: Space Department, The Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland, USA |
BookMark | eNqFkEFv1DAQhS1UJJbSG0cOkThwITAzdhKbG6q2C9W2SFBExcVynUnlkiZbO1G7_x5XixDqgc5lRprvvTea52JvGAcW4iXCOwQy7wmQjpcACivzRCwIq7okAtoTC0ClSyBqnomDlK4gl6pqBbgQH9bjbdnyZWQu0hRnP82RizAUJxz9HLdvUrHp3cCTi9vi2l3mKfiiC9y3L8TTzvWJD_70ffH9aHl2-Klcf1l9Pvy4Lr2qjSq9Me6i8aSkrhgunK-RW43etVK6tvbUQuUb3SE7YsOdBGNMRcS-cajZy33xeue7iePNzGmyV-MchxxpkTSRRjRNpt7uKB_HlCJ3dhPDdb7aItj7B9l_H5RxeoD7MLkpjMMUXegfEd2Gnrf_DbDHq69LiVJl0audaHDJ2Wyf7kEFgKCVzutytw5p4ru_ni7-snUjm8r-OF3Zs_Pq5Gdz_s0eyd-xx48l |
CitedBy_id | crossref_primary_10_1016_j_epsl_2019_115838 crossref_primary_10_1002_2016JA023103 crossref_primary_10_1016_j_epsl_2019_115834 crossref_primary_10_3847_1538_4357_ace24b crossref_primary_10_1002_2017JA024332 crossref_primary_10_1029_2022GL101607 crossref_primary_10_1051_0004_6361_202245162 crossref_primary_10_1029_2019GL082548 crossref_primary_10_3847_2041_8213_ab8566 crossref_primary_10_1029_2012JE004217 crossref_primary_10_1029_2023JA031702 crossref_primary_10_1016_j_epsl_2021_117108 crossref_primary_10_1029_2019JE005938 crossref_primary_10_1016_j_icarus_2015_07_019 crossref_primary_10_1029_2022JA030280 crossref_primary_10_1186_s40623_021_01386_4 crossref_primary_10_1186_s40623_021_01536_8 crossref_primary_10_1016_j_pss_2015_11_011 crossref_primary_10_3847_PSJ_acef15 crossref_primary_10_1029_2019GL083180 crossref_primary_10_1002_2017GL074699 crossref_primary_10_1016_j_pss_2016_01_008 crossref_primary_10_31857_S0002333724030083 crossref_primary_10_1002_2017GL074858 crossref_primary_10_1007_s11214_021_00808_9 crossref_primary_10_1029_2019JA027490 crossref_primary_10_1029_2020GL088075 crossref_primary_10_1002_2015GL067370 crossref_primary_10_1016_j_icarus_2019_113541 crossref_primary_10_1016_j_epsl_2014_05_013 crossref_primary_10_1002_2015JA021484 crossref_primary_10_1016_j_pss_2021_105379 crossref_primary_10_1002_2014GL060196 crossref_primary_10_3390_universe10010040 crossref_primary_10_1016_j_epsl_2019_04_022 crossref_primary_10_21105_joss_06677 crossref_primary_10_3847_1538_3881_ac9d89 crossref_primary_10_1002_2016JE005150 crossref_primary_10_1029_2012JA018073 crossref_primary_10_1002_2017JA024923 crossref_primary_10_1002_2015JA021194 crossref_primary_10_1002_2014GL061677 crossref_primary_10_1051_0004_6361_202347789 crossref_primary_10_1029_2020JE006621 crossref_primary_10_1029_2022JE007184 crossref_primary_10_1007_s11214_015_0193_4 crossref_primary_10_1016_j_icarus_2024_116079 crossref_primary_10_3390_rs15082125 crossref_primary_10_1002_2013JE004459 crossref_primary_10_1002_2014JA020319 crossref_primary_10_1007_s11214_020_00754_y crossref_primary_10_1029_2020GL089784 crossref_primary_10_1002_2014JA020792 crossref_primary_10_1016_j_pss_2016_06_009 crossref_primary_10_3847_1538_4357_ab74d1 crossref_primary_10_1016_j_icarus_2014_10_038 crossref_primary_10_1016_j_icarus_2013_12_007 crossref_primary_10_1016_j_epsl_2017_11_006 crossref_primary_10_31857_S0002333723060212 crossref_primary_10_1029_2012JA018064 crossref_primary_10_1029_2020JE006651 crossref_primary_10_1134_S1069351323060216 crossref_primary_10_1002_2017EA000280 crossref_primary_10_1029_2021GL094695 crossref_primary_10_1002_2014GL060258 crossref_primary_10_1002_2016JA023548 crossref_primary_10_1029_2018JE005683 crossref_primary_10_1002_2015GL067063 crossref_primary_10_1093_mnras_stad2404 crossref_primary_10_1029_2022GL100279 crossref_primary_10_1029_2022GL101643 crossref_primary_10_1002_2014JA019884 crossref_primary_10_1029_2018JE005835 crossref_primary_10_1126_science_aaa8720 crossref_primary_10_3847_1538_4357_ab6170 crossref_primary_10_1016_j_pss_2016_02_015 crossref_primary_10_1029_2023JE007976 crossref_primary_10_1002_jgra_50237 crossref_primary_10_1016_j_pepi_2017_07_001 crossref_primary_10_1016_j_pss_2015_10_004 crossref_primary_10_1029_2019JA027691 crossref_primary_10_1029_2012JA018052 crossref_primary_10_1029_2024JA032751 crossref_primary_10_1007_s11214_024_01085_y crossref_primary_10_1016_j_icarus_2013_02_014 crossref_primary_10_1007_s11214_021_00797_9 crossref_primary_10_5194_gi_9_471_2020 crossref_primary_10_1029_2018JE005569 crossref_primary_10_3847_PSJ_ac67de crossref_primary_10_1029_2022EA002344 crossref_primary_10_1002_2014JE004734 crossref_primary_10_1016_j_icarus_2020_114112 crossref_primary_10_1002_2014GL061401 crossref_primary_10_1029_2020JE006792 crossref_primary_10_1007_s10712_021_09677_x crossref_primary_10_1007_s11214_022_00875_6 crossref_primary_10_1002_2017JA024435 crossref_primary_10_1002_ggge_20242 crossref_primary_10_1016_j_pepi_2014_12_005 crossref_primary_10_1029_2023JA031529 crossref_primary_10_1016_j_pepi_2013_12_006 crossref_primary_10_1088_1674_4527_ac4ca1 crossref_primary_10_1007_s41614_020_00045_7 crossref_primary_10_1029_2024JE008660 crossref_primary_10_1002_jgra_50428 crossref_primary_10_1016_j_pepi_2015_11_002 crossref_primary_10_1029_2021JA029664 crossref_primary_10_5194_angeo_40_91_2022 crossref_primary_10_1016_j_epsl_2020_116108 crossref_primary_10_1029_2021JA030253 crossref_primary_10_1029_2023JA031810 crossref_primary_10_1002_2015JA021425 crossref_primary_10_1002_2017JA024295 crossref_primary_10_1017_S1473550419000132 crossref_primary_10_1002_jgra_50266 crossref_primary_10_1002_2015JA021022 |
Cites_doi | 10.1016/j.icarus.2010.01.024 10.1029/2012GL051472 10.1038/nature05342 10.1029/2012JA018052 10.1029/97JA00196 10.1029/JA080i019p02708 10.1016/j.epsl.2005.04.032 10.1029/2009JE003528 10.1007/s11214‐007‐9280‐5 10.1007/s11214‐007‐9244‐9 10.1016/j.epsl.2009.02.032 10.1007/s11214‐007‐9247‐6 10.1016/S0012‐821X(02)01126‐3 10.1016/S0012‐821X(03)00682‐4 10.1016/j.epsl.2009.12.007 10.1029/2011GL049451 10.1029/2007GL031662 10.1126/science.1218809 10.1029/2008JA013368 10.1029/2012JE004217 10.1029/2012JA017926 10.1016/S0032-0633(02)00020-X 10.1016/j.pss.2003.12.008 10.1007/s11214‐009‐9544‐3 10.1002/asna.201011466 10.1029/2012JA017756 10.1016/j.epsl.2008.12.017 10.1016/j.epsl.2011.02.035 10.1029/2010GL044533 10.1016/j.icarus.2008.02.013 10.1029/2012JA017525 10.1126/science.1211001 10.1126/science.1207290 10.1080/03091928208209008 10.1126/science.1188067 10.1126/science.1159081 10.1016/0012‐821X(87)90111‐7 10.1126/science.1211302 10.1016/j.pepi.2011.05.013 10.1007/s11214‐009‐9573‐y 10.1016/j.epsl.2006.08.008 10.1016/j.epsl.2005.02.040 10.1126/science.1140514 10.1007/s11214‐007‐9246‐7 10.1016/j.pepi.2008.06.016 10.1126/science.185.4146.151 10.1029/TE041i003p00225 10.1029/2006GL025792 10.1016/j.icarus.2010.04.006 |
ContentType | Journal Article |
Copyright | Copyright Determination: PUBLIC_USE_PERMITTED 2012 by the American Geophysical Union Copyright American Geophysical Union 2012 |
Copyright_xml | – notice: Copyright Determination: PUBLIC_USE_PERMITTED – notice: 2012 by the American Geophysical Union – notice: Copyright American Geophysical Union 2012 |
DBID | BSCLL CYE CYI AAYXX CITATION 3V. 7TG 7XB 88I 8FD 8FE 8FG 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR CCPQU DWQXO GNUQQ H8D HCIFZ KL. L7M M2P P5Z P62 PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI Q9U |
DOI | 10.1029/2012JE004159 |
DatabaseName | Istex NASA Scientific and Technical Information NASA Technical Reports Server CrossRef ProQuest Central (Corporate) Meteorological & Geoastrophysical Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One ProQuest Central Korea ProQuest Central Student Aerospace Database SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Advanced Technologies Database with Aerospace Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic |
DatabaseTitle | CrossRef ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Applied & Life Sciences Aerospace Database ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts Natural Science Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
DatabaseTitleList | ProQuest Central Student CrossRef |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology Biology Oceanography Geology Astronomy & Astrophysics Physics |
EISSN | 2156-2202 2169-9100 |
EndPage | n/a |
ExternalDocumentID | 2877260801 10_1029_2012JE004159 JGRE3134 20140010848 ark_67375_WNG_TX5MZ7XS_F |
Genre | article |
GrantInformation | NNX11AB84G NASW-00002 NNG11HP14C NAS5-97271 NNX13AJ86G NNH08CC05C |
GrantInformation_xml | – fundername: NASA funderid: NAS5‐97271; NASW‐00002; NNX11AB84G; NNH08CC05C; CCMSM‐24 |
GroupedDBID | 12K 1OC 7XC 88I 8FE 8FH 8G5 8R4 8R5 AAHQN AAMNL AANLZ AAXRX ABUWG ACAHQ ACCZN ACXBN AEIGN AEUYR AFFPM AGYGG AHBTC AITYG ALMA_UNASSIGNED_HOLDINGS AMYDB ATCPS BBNVY BENPR BHPHI BKSAR BPHCQ BRXPI BSCLL DCZOG DRFUL DRSTM DU5 DWQXO GNUQQ GUQSH HCIFZ LATKE LITHE LOXES LUTES LYRES M2O M2P MEWTI MSFUL MSSTM MXFUL MXSTM P-X Q2X RNS WHG WIN WXSBR XSW ~OA ~~A CYE CYI 24P AAYXX CITATION 05W 0R~ 33P 3V. 52M 702 7TG 7XB 8FD 8FG 8FK AAESR AASGY AAZKR ACGOD ACPOU ACXQS ADKYN ADOZA ADXAS ADZMN AEUYN AEYWJ AFKRA AIURR ALVPJ ARAPS ASPBG AVWKF AZFZN AZQEC AZVAB BFHJK BGLVJ BMXJE CCPQU D1K DPXWK FEDTE H8D HGLYW HVGLF HZ~ K6- KL. L7M LEEKS LK5 M7R MY~ O9- P2W P62 PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PROAC Q9U R.K SUPJJ WBKPD |
ID | FETCH-LOGICAL-c4694-c99ab7c24385e0bac61ed81cad33ad6c2d05c78f1ea2e9ef30999522ec7a18ec3 |
IEDL.DBID | BENPR |
ISSN | 0148-0227 2169-9097 |
IngestDate | Sat Jul 26 00:10:32 EDT 2025 Thu Apr 24 23:12:41 EDT 2025 Tue Jul 01 01:56:00 EDT 2025 Wed Jan 22 16:28:26 EST 2025 Fri Aug 15 15:20:38 EDT 2025 Wed Aug 20 00:50:11 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | E12 |
Keywords | Magnetometer Mercury Low-Degree |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4694-c99ab7c24385e0bac61ed81cad33ad6c2d05c78f1ea2e9ef30999522ec7a18ec3 |
Notes | NASA - No. NAS5-97271; No. NASW-00002; No. NNX11AB84G; No. NNH08CC05C; No. CCMSM-24 ark:/67375/WNG-TX5MZ7XS-F Tab-delimited Table 1.Tab-delimited Table 2.Tab-delimited Table 3.Tab-delimited Table 4.Tab-delimited Table 5.Tab-delimited Table 6. ArticleID:2012JE004159 istex:F2F8E22A0B9CF9847956836D21616DEBE0974564 GSFC Report Number: GSFC-E-DAA-TN9344 ISSN: 0148-0227 GSFC-E-DAA-TN9344 Goddard Space Flight Center SourceType-Scholarly Journals-1 content type line 14 |
OpenAccessLink | https://ntrs.nasa.gov/citations/20140010848 |
PQID | 1282281197 |
PQPubID | 54729 |
PageCount | 17 |
ParticipantIDs | proquest_journals_1282281197 crossref_primary_10_1029_2012JE004159 crossref_citationtrail_10_1029_2012JE004159 wiley_primary_10_1029_2012JE004159_JGRE3134 nasa_ntrs_20140010848 istex_primary_ark_67375_WNG_TX5MZ7XS_F |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2012 |
PublicationDateYYYYMMDD | 2012-12-01 |
PublicationDate_xml | – month: 12 year: 2012 text: December 2012 |
PublicationDecade | 2010 |
PublicationPlace | Goddard Space Flight Center |
PublicationPlace_xml | – name: Goddard Space Flight Center – name: Washington |
PublicationTitle | Journal of Geophysical Research Planets |
PublicationTitleAlternate | J. Geophys. Res |
PublicationYear | 2012 |
Publisher | Blackwell Publishing Ltd American Geophysical Union |
Publisher_xml | – name: Blackwell Publishing Ltd – name: American Geophysical Union |
References | Winslow, R. M., C. L. Johnson, B. J. Anderson, H. Korth, J. A. Slavin, M. E. Purucker, and S. C. Solomon (2012), Observations of Mercury's northern cusp region with MESSENGER's Magnetometer, Geophys. Res. Lett., 39, L08112, doi:10.1029/2012GL051472. Johnson, C. L., et al. (2012), MESSENGER observations of Mercury's magnetic field structure, J. Geophys. Res., doi:10.1029/2012JE004217, in press. Vilim, R., S. Stanley, and S. A. Hauck II (2010), Iron snow zones as a mechanism for generating Mercury's weak observed magnetic field, J. Geophys. Res., 115, E11003, doi:10.1029/2009JE003528. Manglik, A., J. Wicht, and U. R. Christensen (2010), A dynamo model with double diffusive convection for Mercury's core, Earth Planet. Sci. Lett., 289, 619-628, doi:10.1016/j.epsl.2009.12.007. Stanley, S., and A. Mohammadi (2008), Effects of an outer thin stably stratified layer on planetary dynamos, Phys. Earth Planet. Inter., 168, 179-190, doi:10.1016/j.pepi.2008.06.016. Heimpel, M., J. M. Aurnou, F. M. Al-Shamali, and N. Gomez Perez (2005), A numerical study of dynamo action as a function of spherical shell geometry, Earth Planet. Sci. Lett., 236, 542-557, doi:10.1016/j.epsl.2005.04.032. Stanley, S., and G. A. Glatzmaier (2010), Dynamo models for planets other than Earth, Space Sci. Rev., 152, 617-649, doi:10.1007/s11214-009-9573-y. Slavin, J. A., et al. (2012), MESSENGER observations of a flux-transfer-event shower at Mercury, J. Geophys. Res., 117, A00M06, doi:10.1029/2012JA017926. Solomon, S. C., R. L. McNutt Jr., R. E. Gold, and D. L. Domingue (2007), MESSENGER mission overview, Space Sci. Rev., 131, 3-39, doi:10.1007/s11214-007-9247-6. Giampieri, G., and A. Balogh (2002), Mercury's thermoelectric dynamo revisited, Planet. Space Sci. 50, 757-762. Alexeev, I. I., et al. (2010), Mercury's magnetospheric magnetic field after the first two MESSENGER flybys, Icarus, 209, 23-39, doi:10.1016/j.icarus.2010.01.024. Purucker, M. M., T. J. Sabaka, S. C. Solomon, B. J. Anderson, H. Korth, M. T. Zuber, and G. A. Neumann, (2009), Mercury's internal magnetic field: Constraints on large- and small-scale fields of crustal origin, Earth Planet. Sci. Lett., 285, 340-346, doi:10.1016/j.epsl.2008.12.017. Purucker, M. E., et al. (2012), Evidence for a crustal magnetic signature on Mercury from MESSENGER observations, Lunar Planet. Sci., 43, Abstract 1297. Rosenbauer, H., R. Schwenn, E. Marsch, B. Meyer, H. Miggenrieder, M. D. Montgomery, K. H. Muhlhauser, W. Pilipp, W. Voges, and S. M. Zink (1977), A survey on initial results of the Helios plasma experiment, J. Geophys., 42, 561-580. Cao, H., C. T. Russell, U. R. Christensen, M. K. Dougherty, and M. E. Burton (2011), Saturn's very axisymmetric magnetic field: No detectable secular variation or tilt, Earth Planet. Sci. Lett., 304, 22-28, doi:10.1016/j.epsl.2011.02.035. Korth, H., B. J. Anderson, C. L. Johnson, R. M. Winslow, J. A. Slavin, M. E. Purucker, S. C. Solomon, and R. L. McNutt Jr. (2012), Characteristics of the plasma distribution in Mercury's equatorial magnetosphere derived from MESSENGER Magnetometer observations, J. Geophys. Res., doi:10.1029/2012JA018052, in press. Wicht, J., M. Mandea, F. Takahashi, U. R. Christensen, M. Matushima, and B. Langlais (2007), The origin of Mercury's internal magnetic field, Space Sci. Rev., 132, 261-290, doi:10.1007/s11214-007-9280-5. Heyner, D., J. Wicht, N. Gómez-Pérez, D. Schmitt, H.-U. Auster, and K.-H. Glassmeier (2011b), Evidence from numerical experiments for a feedback dynamo generating Mercury's magnetic field, Science, 334, 1690-1693, doi:10.1126/science.1207290. Olson, P., and U. R. Christensen (2006), Dipole moment scaling for convection-driven planetary dynamos, Earth Planet. Sci. Lett., 250, 561-571, doi:101.1016/j.epsl.2006.08.008. Sundberg, T., et al. (2012), MESSENGER observations of dipolarization events in Mercury's magnetotail, J. Geophys. Res., 117, A00M03, doi:10.1029/2012JA017756. Slavin, J. A., et al. (2010), MESSENGER observations of extreme loading and unloading of Mercury's magnetic tail, Science, 329, 665-668, doi:10.1126/science.1188067. Takahashi, F., and M. Matsushima (2006), Dipolar and non-dipolar dynamos in thin spherical shell geometry with implications for the magnetic field of Mercury, Geophys. Res. Lett., 33, L10202, doi:10.1029/2006GL025792. Borovsky, J. E. (2012), Looking for evidence of mixing in the solar wind from 0.31 to 0.98 AU, J. Geophys. Res., 117, A06107, doi:10.1029/2012JA017525. Margot, J. L., S. J. Peale, R. F. Jurgens, M. A. Slade, and I. V. Holin (2007), Large longitude libration of Mercury reveals a molten core, Science, 316, 710-714, doi:10.1126/science.1140514. Christensen, U. R. (2006), A deep dynamo generating Mercury's magnetic field, Nature, 444, 1056-1058, doi:10.1038/nature05342. Ness, N. F., K. W. Behannon, R. P. Lepping, and Y. C. Whang (1975), The magnetic field of Mercury, 1, J. Geophys. Res., 80, 2708-2716, doi:10.1029/JA080i019p02708. Stevenson, D. J. (1982), Reducing the non-axisymmetry of a planetary dynamo and an application to Saturn, Geophys. Astrophys. Fluid Dyn., 21, 113-127, doi:10.1080/03091928208209008. Christensen, U. R., and J. Wicht (2008), Models of magnetic field generation in partly stable planetary cores: Applications to Mercury and Saturn, Icarus, 196, 16-34, doi:10.1016/j.icarus.2008.02.013. Uno, H., C. L. Johnson, B. J. Anderson, H. Korth, and S. C. Solomon (2009), Mercury's internal magnetic field: Constraints from regularized inversions, Earth Planet. Sci. Lett., 285, 328-339, doi:10.1016/j.epsl.2009.02.032. Stevenson, D. J. (2003), Planetary magnetic fields, Earth Planet. Sci. Lett., 208, 1-11, doi:10.1016/S0012-821X(02)01126-3. Heyner, D., D. Schmitt, K.-H. Glassmeier, and J. Wicht (2011a), Dynamo action in an ambient field, Astron. Nachr., 332, 36-42, doi:10.1002/asna.201011466. Korth, H., B. J. Anderson, M. H. Acuña, J. A. Slavin, N. A. Tsyganenko, S. C. Solomon, and R. L. McNutt Jr. (2004), Determination of the properties of Mercury's magnetic field by the MESSENGER mission, Planet. Space Sci., 52, 733-746, doi:10.1016/j.pss.2003.12.008. Smith, D. E., et al. (2012), Gravity field and internal structure of Mercury from MESSENGER, Science, 336, 214-217, doi:10.1126/science.1218809. Anderson, B. J., et al. (2010), The magnetic field of Mercury, Space Sci. Rev., 152, 307-339, doi:10.1007/s11214-009-9544-3. Anderson, B. J., C. L. Johnson, H. Korth, M. E. Purucker, R. M. Winslow, J. A. Slavin, S. C. Solomon, R. L. McNutt Jr., J. M. Raines, and T. H. Zurbuchen (2011), The global magnetic field of Mercury from MESSENGER orbital observations, Science, 333, 1859-1862, doi:10.1126/science.1211001. Aharonson, O., M. T. Zuber, and C. S. Solomon (2004), Crustal remanence in an internally magnetized non-uniform shell: A possible source for Mercury's magnetic field?, Earth Planet. Sci. Lett., 218, 261-268, doi:10.1016/S0012-821X(03)00682-4. Gómez-Pérez, N., and J. Wicht (2010), Behavior of planetary dynamos under the influence of external magnetic fields: Application to Mercury and Ganymede, Icarus, 209, 53-62, doi:10.1016/j.icarus.2010.04.006. Korth, H., B. J. Anderson, J. M. Raines, J. A. Slavin, T. H. Zurbuchen, C. L. Johnson, M. E. Purucker, R. M. Winslow, S. C. Solomon, and R. L. McNutt Jr. (2011), Plasma pressure in Mercury's equatorial magnetosphere derived from MESSENGER Magnetometer observations, Geophys. Res. Lett., 38, L22201, doi:10.1029/2011GL049451. Glassmeier, K.-H., J. Grosser, U. Auster, D. Constantinescu, Y. Narita, and S. Stellmach (2007b), Electromagnetic induction effects and dynamo action in the Hermean system, Space Sci. Rev., 132, 511-527, doi:10.1007/s11214-007-9244-9. Zurbuchen, T. H., et al. (2011), MESSENGER observations of the spatial distribution of planetary ions near Mercury, Science, 333, 1862-1865, doi:10.1126/science.1211302. Ness, N. F., K. W. Behannon, R. P. Lepping, Y. C. Whang, and K. H. Schatten (1974), Magnetic field observations near Mercury: Preliminary results, Science, 185, 151-160, doi:10.1126/science.185.4146.151. Anderson, B. J., M. H. Acuña, H. Korth, M. E. Purucker, C. L. Johnson, J. A. Slavin, S. C. Solomon, and R. L. McNutt Jr. (2008), The magnetic field of Mercury: New constraints on structure from MESSENGER, Science, 321, 82-85, doi:10.1126/science.1159081. Alexeev, I. I., E. S. Belenkaya, S. Y. Bobrovnikov, J. A. Slavin, and M. Sarantos (2008), Paraboloid model of Mercury, J. Geophys. Res., 113, A12210, doi:10.1029/2008JA013368. Anderson, B. J., M. H. Acuña, D. A. Lohr, J. Scheifele, A. Raval, H. Korth, and J. A. Slavin (2007), The Magnetometer instrument on MESSENGER, Space Sci. Rev., 131, 417-450, doi:10.1007/s11214-007-9246-7. Shue, J.-H., J. K. Chao, H. C. Fu, C. T. Russell, P. Song, K. K. Khurana, and H. J. Singer (1997), A new functional form to study the solar wind control of the magnetopause size and shape, J. Geophys. Res., 102, 9497-9511, doi:10.1029/97JA00196. Stanley, S., J. Bloxham, W. E. Hutchison, and M. T. Zuber (2005), Thin shell dynamo models consistent with Mercury's weak observed magnetic field, Earth Planet. Sci. Lett., 234, 27-38, doi:10.1016/j.epsl.2005.02.040. Gómez-Pérez, N., and S. C. Solomon (2010), Mercury's weak magnetic field: A result of magnetospheric feedback?, Geophys. Res. Lett., 37, L20204, doi:10.1029/2010GL044533. Bartels, J. (1936), The eccentric dipole approximating the Earth's magnetic field, J. Geophys. Res., 41, 225-250, doi:10.1029/TE041i003p00225. Schubert, G., and K. M. Soderlund (2011), Planetary magnetic fields: Observations and models, Phys. Earth Planet. Inter., 187, 92-108, doi:10.1016/j.pepi.2011.05.013. Stevenson, D. J. (1987), Mercury's magnetic field-A thermoelectric dynamo?, Earth Planet. Sci. Lett., 82, 114-120, doi:10.1016/0012-821X(87)90111-7. Glassmeier, K.-H., H.-U. Auster, and U. Motschmann (2007a), A feedback dynamo generating Mercury's magnetic field, Geophys. Res. Lett., 34, L22201, doi:10.1029/2007GL031662. 2011; 334 2011; 333 2010; 37 2010; 329 2010; 209 2012 2002; 50 2005; 234 2006; 33 2005; 236 2010; 289 2006; 250 1977; 42 2012; 39 2008; 168 2008; 321 2011; 38 1974; 185 2007; 34 2011; 332 1997; 102 2004; 52 2003; 208 2007; 316 2011; 304 1987; 82 2007; 132 2010; 115 1982; 21 2007; 131 2010; 152 1936; 41 2008; 113 2009; 285 2004; 218 2012; 336 2012; 117 2008; 196 2012; 43 2006; 444 1975; 80 2011; 187 e_1_2_6_51_1 e_1_2_6_30_1 Rosenbauer H. (e_1_2_6_33_1) 1977; 42 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_52_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 Purucker M. E. (e_1_2_6_32_1) 2012; 43 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_42_1 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_27_1 e_1_2_6_46_1 |
References_xml | – reference: Purucker, M. E., et al. (2012), Evidence for a crustal magnetic signature on Mercury from MESSENGER observations, Lunar Planet. Sci., 43, Abstract 1297. – reference: Slavin, J. A., et al. (2012), MESSENGER observations of a flux-transfer-event shower at Mercury, J. Geophys. Res., 117, A00M06, doi:10.1029/2012JA017926. – reference: Christensen, U. R. (2006), A deep dynamo generating Mercury's magnetic field, Nature, 444, 1056-1058, doi:10.1038/nature05342. – reference: Anderson, B. J., M. H. Acuña, D. A. Lohr, J. Scheifele, A. Raval, H. Korth, and J. A. Slavin (2007), The Magnetometer instrument on MESSENGER, Space Sci. Rev., 131, 417-450, doi:10.1007/s11214-007-9246-7. – reference: Stevenson, D. J. (1982), Reducing the non-axisymmetry of a planetary dynamo and an application to Saturn, Geophys. Astrophys. Fluid Dyn., 21, 113-127, doi:10.1080/03091928208209008. – reference: Alexeev, I. I., et al. (2010), Mercury's magnetospheric magnetic field after the first two MESSENGER flybys, Icarus, 209, 23-39, doi:10.1016/j.icarus.2010.01.024. – reference: Stanley, S., J. Bloxham, W. E. Hutchison, and M. T. Zuber (2005), Thin shell dynamo models consistent with Mercury's weak observed magnetic field, Earth Planet. Sci. Lett., 234, 27-38, doi:10.1016/j.epsl.2005.02.040. – reference: Bartels, J. (1936), The eccentric dipole approximating the Earth's magnetic field, J. Geophys. Res., 41, 225-250, doi:10.1029/TE041i003p00225. – reference: Olson, P., and U. R. Christensen (2006), Dipole moment scaling for convection-driven planetary dynamos, Earth Planet. Sci. Lett., 250, 561-571, doi:101.1016/j.epsl.2006.08.008. – reference: Purucker, M. M., T. J. Sabaka, S. C. Solomon, B. J. Anderson, H. Korth, M. T. Zuber, and G. A. Neumann, (2009), Mercury's internal magnetic field: Constraints on large- and small-scale fields of crustal origin, Earth Planet. Sci. Lett., 285, 340-346, doi:10.1016/j.epsl.2008.12.017. – reference: Ness, N. F., K. W. Behannon, R. P. Lepping, and Y. C. Whang (1975), The magnetic field of Mercury, 1, J. Geophys. Res., 80, 2708-2716, doi:10.1029/JA080i019p02708. – reference: Stanley, S., and A. Mohammadi (2008), Effects of an outer thin stably stratified layer on planetary dynamos, Phys. Earth Planet. Inter., 168, 179-190, doi:10.1016/j.pepi.2008.06.016. – reference: Glassmeier, K.-H., H.-U. Auster, and U. Motschmann (2007a), A feedback dynamo generating Mercury's magnetic field, Geophys. Res. Lett., 34, L22201, doi:10.1029/2007GL031662. – reference: Gómez-Pérez, N., and J. Wicht (2010), Behavior of planetary dynamos under the influence of external magnetic fields: Application to Mercury and Ganymede, Icarus, 209, 53-62, doi:10.1016/j.icarus.2010.04.006. – reference: Heimpel, M., J. M. Aurnou, F. M. Al-Shamali, and N. Gomez Perez (2005), A numerical study of dynamo action as a function of spherical shell geometry, Earth Planet. Sci. Lett., 236, 542-557, doi:10.1016/j.epsl.2005.04.032. – reference: Gómez-Pérez, N., and S. C. Solomon (2010), Mercury's weak magnetic field: A result of magnetospheric feedback?, Geophys. Res. Lett., 37, L20204, doi:10.1029/2010GL044533. – reference: Anderson, B. J., M. H. Acuña, H. Korth, M. E. Purucker, C. L. Johnson, J. A. Slavin, S. C. Solomon, and R. L. McNutt Jr. (2008), The magnetic field of Mercury: New constraints on structure from MESSENGER, Science, 321, 82-85, doi:10.1126/science.1159081. – reference: Smith, D. E., et al. (2012), Gravity field and internal structure of Mercury from MESSENGER, Science, 336, 214-217, doi:10.1126/science.1218809. – reference: Ness, N. F., K. W. Behannon, R. P. Lepping, Y. C. Whang, and K. H. Schatten (1974), Magnetic field observations near Mercury: Preliminary results, Science, 185, 151-160, doi:10.1126/science.185.4146.151. – reference: Shue, J.-H., J. K. Chao, H. C. Fu, C. T. Russell, P. Song, K. K. Khurana, and H. J. Singer (1997), A new functional form to study the solar wind control of the magnetopause size and shape, J. Geophys. Res., 102, 9497-9511, doi:10.1029/97JA00196. – reference: Solomon, S. C., R. L. McNutt Jr., R. E. Gold, and D. L. Domingue (2007), MESSENGER mission overview, Space Sci. Rev., 131, 3-39, doi:10.1007/s11214-007-9247-6. – reference: Winslow, R. M., C. L. Johnson, B. J. Anderson, H. Korth, J. A. Slavin, M. E. Purucker, and S. C. Solomon (2012), Observations of Mercury's northern cusp region with MESSENGER's Magnetometer, Geophys. Res. Lett., 39, L08112, doi:10.1029/2012GL051472. – reference: Uno, H., C. L. Johnson, B. J. Anderson, H. Korth, and S. C. Solomon (2009), Mercury's internal magnetic field: Constraints from regularized inversions, Earth Planet. Sci. Lett., 285, 328-339, doi:10.1016/j.epsl.2009.02.032. – reference: Zurbuchen, T. H., et al. (2011), MESSENGER observations of the spatial distribution of planetary ions near Mercury, Science, 333, 1862-1865, doi:10.1126/science.1211302. – reference: Korth, H., B. J. Anderson, M. H. Acuña, J. A. Slavin, N. A. Tsyganenko, S. C. Solomon, and R. L. McNutt Jr. (2004), Determination of the properties of Mercury's magnetic field by the MESSENGER mission, Planet. Space Sci., 52, 733-746, doi:10.1016/j.pss.2003.12.008. – reference: Stevenson, D. J. (1987), Mercury's magnetic field-A thermoelectric dynamo?, Earth Planet. Sci. Lett., 82, 114-120, doi:10.1016/0012-821X(87)90111-7. – reference: Heyner, D., D. Schmitt, K.-H. Glassmeier, and J. Wicht (2011a), Dynamo action in an ambient field, Astron. Nachr., 332, 36-42, doi:10.1002/asna.201011466. – reference: Borovsky, J. E. (2012), Looking for evidence of mixing in the solar wind from 0.31 to 0.98 AU, J. Geophys. Res., 117, A06107, doi:10.1029/2012JA017525. – reference: Cao, H., C. T. Russell, U. R. Christensen, M. K. Dougherty, and M. E. Burton (2011), Saturn's very axisymmetric magnetic field: No detectable secular variation or tilt, Earth Planet. Sci. Lett., 304, 22-28, doi:10.1016/j.epsl.2011.02.035. – reference: Sundberg, T., et al. (2012), MESSENGER observations of dipolarization events in Mercury's magnetotail, J. Geophys. Res., 117, A00M03, doi:10.1029/2012JA017756. – reference: Wicht, J., M. Mandea, F. Takahashi, U. R. Christensen, M. Matushima, and B. Langlais (2007), The origin of Mercury's internal magnetic field, Space Sci. Rev., 132, 261-290, doi:10.1007/s11214-007-9280-5. – reference: Takahashi, F., and M. Matsushima (2006), Dipolar and non-dipolar dynamos in thin spherical shell geometry with implications for the magnetic field of Mercury, Geophys. Res. Lett., 33, L10202, doi:10.1029/2006GL025792. – reference: Schubert, G., and K. M. Soderlund (2011), Planetary magnetic fields: Observations and models, Phys. Earth Planet. Inter., 187, 92-108, doi:10.1016/j.pepi.2011.05.013. – reference: Rosenbauer, H., R. Schwenn, E. Marsch, B. Meyer, H. Miggenrieder, M. D. Montgomery, K. H. Muhlhauser, W. Pilipp, W. Voges, and S. M. Zink (1977), A survey on initial results of the Helios plasma experiment, J. Geophys., 42, 561-580. – reference: Slavin, J. A., et al. (2010), MESSENGER observations of extreme loading and unloading of Mercury's magnetic tail, Science, 329, 665-668, doi:10.1126/science.1188067. – reference: Stanley, S., and G. A. Glatzmaier (2010), Dynamo models for planets other than Earth, Space Sci. Rev., 152, 617-649, doi:10.1007/s11214-009-9573-y. – reference: Christensen, U. R., and J. Wicht (2008), Models of magnetic field generation in partly stable planetary cores: Applications to Mercury and Saturn, Icarus, 196, 16-34, doi:10.1016/j.icarus.2008.02.013. – reference: Johnson, C. L., et al. (2012), MESSENGER observations of Mercury's magnetic field structure, J. Geophys. Res., doi:10.1029/2012JE004217, in press. – reference: Stevenson, D. J. (2003), Planetary magnetic fields, Earth Planet. Sci. Lett., 208, 1-11, doi:10.1016/S0012-821X(02)01126-3. – reference: Korth, H., B. J. Anderson, C. L. Johnson, R. M. Winslow, J. A. Slavin, M. E. Purucker, S. C. Solomon, and R. L. McNutt Jr. (2012), Characteristics of the plasma distribution in Mercury's equatorial magnetosphere derived from MESSENGER Magnetometer observations, J. Geophys. Res., doi:10.1029/2012JA018052, in press. – reference: Anderson, B. J., C. L. Johnson, H. Korth, M. E. Purucker, R. M. Winslow, J. A. Slavin, S. C. Solomon, R. L. McNutt Jr., J. M. Raines, and T. H. Zurbuchen (2011), The global magnetic field of Mercury from MESSENGER orbital observations, Science, 333, 1859-1862, doi:10.1126/science.1211001. – reference: Aharonson, O., M. T. Zuber, and C. S. Solomon (2004), Crustal remanence in an internally magnetized non-uniform shell: A possible source for Mercury's magnetic field?, Earth Planet. Sci. Lett., 218, 261-268, doi:10.1016/S0012-821X(03)00682-4. – reference: Manglik, A., J. Wicht, and U. R. Christensen (2010), A dynamo model with double diffusive convection for Mercury's core, Earth Planet. Sci. Lett., 289, 619-628, doi:10.1016/j.epsl.2009.12.007. – reference: Glassmeier, K.-H., J. Grosser, U. Auster, D. Constantinescu, Y. Narita, and S. Stellmach (2007b), Electromagnetic induction effects and dynamo action in the Hermean system, Space Sci. Rev., 132, 511-527, doi:10.1007/s11214-007-9244-9. – reference: Heyner, D., J. Wicht, N. Gómez-Pérez, D. Schmitt, H.-U. Auster, and K.-H. Glassmeier (2011b), Evidence from numerical experiments for a feedback dynamo generating Mercury's magnetic field, Science, 334, 1690-1693, doi:10.1126/science.1207290. – reference: Margot, J. L., S. J. Peale, R. F. Jurgens, M. A. Slade, and I. V. Holin (2007), Large longitude libration of Mercury reveals a molten core, Science, 316, 710-714, doi:10.1126/science.1140514. – reference: Alexeev, I. I., E. S. Belenkaya, S. Y. Bobrovnikov, J. A. Slavin, and M. Sarantos (2008), Paraboloid model of Mercury, J. Geophys. Res., 113, A12210, doi:10.1029/2008JA013368. – reference: Anderson, B. J., et al. (2010), The magnetic field of Mercury, Space Sci. Rev., 152, 307-339, doi:10.1007/s11214-009-9544-3. – reference: Korth, H., B. J. Anderson, J. M. Raines, J. A. Slavin, T. H. Zurbuchen, C. L. Johnson, M. E. Purucker, R. M. Winslow, S. C. Solomon, and R. L. McNutt Jr. (2011), Plasma pressure in Mercury's equatorial magnetosphere derived from MESSENGER Magnetometer observations, Geophys. Res. Lett., 38, L22201, doi:10.1029/2011GL049451. – reference: Vilim, R., S. Stanley, and S. A. Hauck II (2010), Iron snow zones as a mechanism for generating Mercury's weak observed magnetic field, J. Geophys. Res., 115, E11003, doi:10.1029/2009JE003528. – reference: Giampieri, G., and A. Balogh (2002), Mercury's thermoelectric dynamo revisited, Planet. Space Sci. 50, 757-762. – volume: 33 year: 2006 article-title: Dipolar and non‐dipolar dynamos in thin spherical shell geometry with implications for the magnetic field of Mercury publication-title: Geophys. Res. Lett. – volume: 132 start-page: 261 year: 2007 end-page: 290 article-title: The origin of Mercury's internal magnetic field publication-title: Space Sci. Rev. – volume: 329 start-page: 665 year: 2010 end-page: 668 article-title: MESSENGER observations of extreme loading and unloading of Mercury's magnetic tail publication-title: Science – volume: 37 year: 2010 article-title: Mercury's weak magnetic field: A result of magnetospheric feedback? publication-title: Geophys. Res. Lett. – volume: 113 year: 2008 article-title: Paraboloid model of Mercury publication-title: J. Geophys. Res. – volume: 43 year: 2012 article-title: Evidence for a crustal magnetic signature on Mercury from MESSENGER observations publication-title: Lunar Planet. Sci. – volume: 117 year: 2012 article-title: MESSENGER observations of a flux‐transfer‐event shower at Mercury publication-title: J. Geophys. Res. – volume: 285 start-page: 340 year: 2009 end-page: 346 article-title: Mercury's internal magnetic field: Constraints on large‐ and small‐scale fields of crustal origin publication-title: Earth Planet. Sci. Lett. – volume: 52 start-page: 733 year: 2004 end-page: 746 article-title: Determination of the properties of Mercury's magnetic field by the MESSENGER mission publication-title: Planet. Space Sci. – volume: 152 start-page: 617 year: 2010 end-page: 649 article-title: Dynamo models for planets other than Earth publication-title: Space Sci. Rev. – volume: 41 start-page: 225 year: 1936 end-page: 250 article-title: The eccentric dipole approximating the Earth's magnetic field publication-title: J. Geophys. Res. – volume: 117 year: 2012 article-title: Looking for evidence of mixing in the solar wind from 0.31 to 0.98 AU publication-title: J. Geophys. Res. – volume: 304 start-page: 22 year: 2011 end-page: 28 article-title: Saturn's very axisymmetric magnetic field: No detectable secular variation or tilt publication-title: Earth Planet. Sci. Lett. – volume: 117 year: 2012 article-title: MESSENGER observations of dipolarization events in Mercury's magnetotail publication-title: J. Geophys. Res. – volume: 444 start-page: 1056 year: 2006 end-page: 1058 article-title: A deep dynamo generating Mercury's magnetic field publication-title: Nature – volume: 334 start-page: 1690 year: 2011 end-page: 1693 article-title: Evidence from numerical experiments for a feedback dynamo generating Mercury's magnetic field publication-title: Science – year: 2012 article-title: MESSENGER observations of Mercury's magnetic field structure publication-title: J. Geophys. Res. – volume: 336 start-page: 214 year: 2012 end-page: 217 article-title: Gravity field and internal structure of Mercury from MESSENGER publication-title: Science – volume: 321 start-page: 82 year: 2008 end-page: 85 article-title: The magnetic field of Mercury: New constraints on structure from MESSENGER publication-title: Science – volume: 236 start-page: 542 year: 2005 end-page: 557 article-title: A numerical study of dynamo action as a function of spherical shell geometry publication-title: Earth Planet. Sci. Lett. – volume: 82 start-page: 114 year: 1987 end-page: 120 article-title: Mercury's magnetic field–A thermoelectric dynamo? publication-title: Earth Planet. Sci. Lett. – volume: 250 start-page: 561 year: 2006 end-page: 571 article-title: Dipole moment scaling for convection‐driven planetary dynamos publication-title: Earth Planet. Sci. Lett. – volume: 316 start-page: 710 year: 2007 end-page: 714 article-title: Large longitude libration of Mercury reveals a molten core publication-title: Science – volume: 187 start-page: 92 year: 2011 end-page: 108 article-title: Planetary magnetic fields: Observations and models publication-title: Phys. Earth Planet. Inter. – volume: 285 start-page: 328 year: 2009 end-page: 339 article-title: Mercury's internal magnetic field: Constraints from regularized inversions publication-title: Earth Planet. Sci. Lett. – volume: 333 start-page: 1862 year: 2011 end-page: 1865 article-title: MESSENGER observations of the spatial distribution of planetary ions near Mercury publication-title: Science – volume: 115 year: 2010 article-title: Iron snow zones as a mechanism for generating Mercury's weak observed magnetic field publication-title: J. Geophys. Res. – volume: 102 start-page: 9497 year: 1997 end-page: 9511 article-title: A new functional form to study the solar wind control of the magnetopause size and shape publication-title: J. Geophys. Res. – volume: 131 start-page: 3 year: 2007 end-page: 39 article-title: MESSENGER mission overview publication-title: Space Sci. Rev. – volume: 289 start-page: 619 year: 2010 end-page: 628 article-title: A dynamo model with double diffusive convection for Mercury's core publication-title: Earth Planet. Sci. Lett. – volume: 196 start-page: 16 year: 2008 end-page: 34 article-title: Models of magnetic field generation in partly stable planetary cores: Applications to Mercury and Saturn publication-title: Icarus – volume: 209 start-page: 23 year: 2010 end-page: 39 article-title: Mercury's magnetospheric magnetic field after the first two MESSENGER flybys publication-title: Icarus – volume: 209 start-page: 53 year: 2010 end-page: 62 article-title: Behavior of planetary dynamos under the influence of external magnetic fields: Application to Mercury and Ganymede publication-title: Icarus – volume: 38 year: 2011 article-title: Plasma pressure in Mercury's equatorial magnetosphere derived from MESSENGER Magnetometer observations publication-title: Geophys. Res. Lett. – volume: 42 start-page: 561 year: 1977 end-page: 580 article-title: A survey on initial results of the Helios plasma experiment publication-title: J. Geophys. – volume: 234 start-page: 27 year: 2005 end-page: 38 article-title: Thin shell dynamo models consistent with Mercury's weak observed magnetic field publication-title: Earth Planet. Sci. Lett. – volume: 132 start-page: 511 year: 2007 end-page: 527 article-title: Electromagnetic induction effects and dynamo action in the Hermean system publication-title: Space Sci. Rev. – volume: 131 start-page: 417 year: 2007 end-page: 450 article-title: The Magnetometer instrument on MESSENGER publication-title: Space Sci. Rev. – volume: 333 start-page: 1859 year: 2011 end-page: 1862 article-title: The global magnetic field of Mercury from MESSENGER orbital observations publication-title: Science – volume: 218 start-page: 261 year: 2004 end-page: 268 article-title: Crustal remanence in an internally magnetized non‐uniform shell: A possible source for Mercury's magnetic field? publication-title: Earth Planet. Sci. Lett. – volume: 152 start-page: 307 year: 2010 end-page: 339 article-title: The magnetic field of Mercury publication-title: Space Sci. Rev. – volume: 332 start-page: 36 year: 2011 end-page: 42 article-title: Dynamo action in an ambient field publication-title: Astron. Nachr. – volume: 208 start-page: 1 year: 2003 end-page: 11 article-title: Planetary magnetic fields publication-title: Earth Planet. Sci. Lett. – volume: 185 start-page: 151 year: 1974 end-page: 160 article-title: Magnetic field observations near Mercury: Preliminary results publication-title: Science – volume: 80 start-page: 2708 year: 1975 end-page: 2716 article-title: The magnetic field of Mercury, 1 publication-title: J. Geophys. Res. – year: 2012 article-title: Characteristics of the plasma distribution in Mercury's equatorial magnetosphere derived from MESSENGER Magnetometer observations publication-title: J. Geophys. Res. – volume: 168 start-page: 179 year: 2008 end-page: 190 article-title: Effects of an outer thin stably stratified layer on planetary dynamos publication-title: Phys. Earth Planet. Inter. – volume: 21 start-page: 113 year: 1982 end-page: 127 article-title: Reducing the non‐axisymmetry of a planetary dynamo and an application to Saturn publication-title: Geophys. Astrophys. Fluid Dyn. – volume: 50 start-page: 757 year: 2002 end-page: 762 article-title: Mercury's thermoelectric dynamo revisited publication-title: Planet. Space Sci. – volume: 39 year: 2012 article-title: Observations of Mercury's northern cusp region with MESSENGER's Magnetometer publication-title: Geophys. Res. Lett. – volume: 34 year: 2007 article-title: A feedback dynamo generating Mercury's magnetic field publication-title: Geophys. Res. Lett. – ident: e_1_2_6_4_1 doi: 10.1016/j.icarus.2010.01.024 – ident: e_1_2_6_51_1 doi: 10.1029/2012GL051472 – ident: e_1_2_6_12_1 doi: 10.1038/nature05342 – ident: e_1_2_6_25_1 doi: 10.1029/2012JA018052 – ident: e_1_2_6_35_1 doi: 10.1029/97JA00196 – ident: e_1_2_6_29_1 doi: 10.1029/JA080i019p02708 – ident: e_1_2_6_19_1 doi: 10.1016/j.epsl.2005.04.032 – ident: e_1_2_6_49_1 doi: 10.1029/2009JE003528 – ident: e_1_2_6_50_1 doi: 10.1007/s11214‐007‐9280‐5 – ident: e_1_2_6_16_1 doi: 10.1007/s11214‐007‐9244‐9 – ident: e_1_2_6_48_1 doi: 10.1016/j.epsl.2009.02.032 – ident: e_1_2_6_39_1 doi: 10.1007/s11214‐007‐9247‐6 – volume: 43 year: 2012 ident: e_1_2_6_32_1 article-title: Evidence for a crustal magnetic signature on Mercury from MESSENGER observations publication-title: Lunar Planet. Sci. – ident: e_1_2_6_45_1 doi: 10.1016/S0012‐821X(02)01126‐3 – ident: e_1_2_6_2_1 doi: 10.1016/S0012‐821X(03)00682‐4 – ident: e_1_2_6_26_1 doi: 10.1016/j.epsl.2009.12.007 – ident: e_1_2_6_24_1 doi: 10.1029/2011GL049451 – ident: e_1_2_6_15_1 doi: 10.1029/2007GL031662 – ident: e_1_2_6_38_1 doi: 10.1126/science.1218809 – ident: e_1_2_6_3_1 doi: 10.1029/2008JA013368 – ident: e_1_2_6_22_1 doi: 10.1029/2012JE004217 – ident: e_1_2_6_37_1 doi: 10.1029/2012JA017926 – ident: e_1_2_6_14_1 doi: 10.1016/S0032-0633(02)00020-X – ident: e_1_2_6_23_1 doi: 10.1016/j.pss.2003.12.008 – ident: e_1_2_6_7_1 doi: 10.1007/s11214‐009‐9544‐3 – ident: e_1_2_6_20_1 doi: 10.1002/asna.201011466 – ident: e_1_2_6_46_1 doi: 10.1029/2012JA017756 – ident: e_1_2_6_31_1 doi: 10.1016/j.epsl.2008.12.017 – ident: e_1_2_6_11_1 doi: 10.1016/j.epsl.2011.02.035 – ident: e_1_2_6_17_1 doi: 10.1029/2010GL044533 – ident: e_1_2_6_13_1 doi: 10.1016/j.icarus.2008.02.013 – ident: e_1_2_6_10_1 doi: 10.1029/2012JA017525 – ident: e_1_2_6_8_1 doi: 10.1126/science.1211001 – volume: 42 start-page: 561 year: 1977 ident: e_1_2_6_33_1 article-title: A survey on initial results of the Helios plasma experiment publication-title: J. Geophys. – ident: e_1_2_6_21_1 doi: 10.1126/science.1207290 – ident: e_1_2_6_43_1 doi: 10.1080/03091928208209008 – ident: e_1_2_6_36_1 doi: 10.1126/science.1188067 – ident: e_1_2_6_6_1 doi: 10.1126/science.1159081 – ident: e_1_2_6_44_1 doi: 10.1016/0012‐821X(87)90111‐7 – ident: e_1_2_6_52_1 doi: 10.1126/science.1211302 – ident: e_1_2_6_34_1 doi: 10.1016/j.pepi.2011.05.013 – ident: e_1_2_6_40_1 doi: 10.1007/s11214‐009‐9573‐y – ident: e_1_2_6_30_1 doi: 10.1016/j.epsl.2006.08.008 – ident: e_1_2_6_42_1 doi: 10.1016/j.epsl.2005.02.040 – ident: e_1_2_6_27_1 doi: 10.1126/science.1140514 – ident: e_1_2_6_5_1 doi: 10.1007/s11214‐007‐9246‐7 – ident: e_1_2_6_41_1 doi: 10.1016/j.pepi.2008.06.016 – ident: e_1_2_6_28_1 doi: 10.1126/science.185.4146.151 – ident: e_1_2_6_9_1 doi: 10.1029/TE041i003p00225 – ident: e_1_2_6_47_1 doi: 10.1029/2006GL025792 – ident: e_1_2_6_18_1 doi: 10.1016/j.icarus.2010.04.006 |
SSID | ssj0000456401 ssj0014561 ssj0030581 ssj0030583 ssj0043761 ssj0030582 ssj0030585 ssj0030584 ssj0030586 ssj0000816913 |
Score | 2.4736977 |
Snippet | The structure of Mercury's internal magnetic field has been determined from analysis of orbital Magnetometer measurements by the MESSENGER spacecraft. We... |
SourceID | proquest crossref wiley nasa istex |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Altitude Lunar And Planetary Science And Exploration magnetic field Magnetic fields Magnetism Mercury MESSENGER planetary dynamo Planetology Planets Spacecraft |
Title | Low-degree structure in Mercury's planetary magnetic field |
URI | https://api.istex.fr/ark:/67375/WNG-TX5MZ7XS-F/fulltext.pdf https://ntrs.nasa.gov/citations/20140010848 https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2012JE004159 https://www.proquest.com/docview/1282281197 |
Volume | 117 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwELYYfeEF8WNohTH5AcYDsmjiuLZ5QQO1nSpaobGJihfLOV8QgqWlGYL99_gSt5QH9pYHx3HunPP33V3uGHtWBglQWS-MAiOKoIKIPMuLCK2rLCiEqqSI7mw-PL0opgu1SA63JqVVbmxia6jDEshH_iqjfEdDQa83qx-CukZRdDW10NhjvWiCTSRfvbej-YezrZeF2krYtkdyHi-EHVidst8HuY3EP8unIyo5RaVKd86lHon4d7TStW_8P9hzF8G2R9D4HrubsCM_6ZR9n93C-gE7OGnIm728vObHvL3unBXNQ_b6_fKXCBgZNfKuTuzPNfKvNZ_hGqIsXzR8RbmuV359zS_9l5p-aORtTts-uxiPzt-ditQrQUAkuIUAa32pIS-kUTgoPQwzDCYDH6T0YQh5GCjQpsrQ52ixkoQMI_ZC0D4zCPJRfNlljQeMa1vKSIoQlAzxuEdfVaoMWlfBAObK99nLjaQcpELi1M_iu2sD2rl1u3Lts-fb0auugMZ_xh23Qt8O8utvlHSmlfs0n7jzhZp91ouPbtxn-6QVF5_Z0AwF0VpTmD473KjJpe-wcX93TVx1q7obF-Gmk7ORzGTx-ObJnrA7dFuX1nLIbkcV4tMITq7KI7ZnxpOjtA__AOAD3rs |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELYKPcAF8ShqoIAPtByQ1ay9ztpICFWQR9MkB0hFxMV47VlUlW5CtqjkT_Eb8ewjhAO99eaDNev1jD3fPDxDyMvUC-cybZmSTrHYS8-CnWVZgNZZ5CW4LMWI7njSGZzGw5mcbZHfzVsYTKts7sTyovZzhz7ywwjzHRUGvd4tfjDsGoXR1aaFRiUWJ7C6CiZb8fb4Q-DvPue97vT9gNVdBZgLpmDMnNY2TRyPhZLQTq3rROBV5KwXwvqO474tXaKyCCwHDZlADBVQCrjERgqcCHRvke1YCI0nSvX6a58ONrHQZUdmHgZMt3VS59q3uT4MqpYPu1jgCgujbmjBbWTor6ATclvYf5DuJl4uFV7vPrlXI1V6VInWA7IF-UOye1Sg73x-saIHtBxXrpHiEXkzml8xD8F-B1pVpf25BHqW0zEsXeDcq4IuMLP20i5X9MJ-y_H5JC0z6HbI6Y3s4ePws_McdglNdCqCCQZOCh_ABdgsk6lPkswrB1zaFnnd7JRxddly7J7x3ZThc67N5r62yP569qIq1_GfeQflpq8n2eU5prgl0nye9M10Jsdfktkn02uRHeSKCd8skEKMRrSKVYvsNWwy9akvzF8ZDasuWXftIsyw_7ErIhE_uZ7YC3JnMB2PzOh4cvKU3EUSVULNHrkd2AnPAiy6TJ-XskjJ15sW_j_F1BqY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKIyEuiEdRAwV8oOWAVsna69hGQqjQpG3aRFVpRcTFeG0vQtBNyBaV_DV-HTP7COFAb735YM16Z0aebx6eIeRF6rlzmbaREk5FiRc-Aj_LRgCts9iL4LIUM7qjce_gPBlOxGSN_G7ewmBZZXMnlhe1nzqMkXdirHdUmPTqZHVZxMne4O3sR4QTpDDT2ozTqFTkKCyuwH0r3hzugay3GRv0z94fRPWEgciBW5hETmubSscSrkToptb14uBV7Kzn3PqeY74rnFRZHCwLOmQc8RQgluCkjVVwHOjeIi0JXlF3nbTe9ccnp8sID4600OV8ZgaLSHe1rCvvu0x3wPCyYR_bXWGb1BWb2ELx_gILkdvC_oN7V9Fzaf4G98jdGrfS3UrR7pO1kD8gm7sFRtKnFwu6Q8t1FSgpHpLXx9OryAfw5gOtetT-nAf6NaejMHcgx5cFnWGd7aWdL-iF_ZLjY0pa1tNtkPMb4eIj-NlpHjYJlTrl4JAFJ7gHqBFslonUS5l55QITtk1eNZwyrm5ijrM0vpsymc60WeVrm2wvd8-q5h3_2bdTMn25yc6_YcGbFObjeN-cTcTok5x8MIM22UCpGPhmgRQSdKlVotpkqxGTqe-AwvzVWDh1KbprD2GG-6d9HvPk8fXEnpPboPjm-HB89ITcQQpVdc0WWQdphqeAkS7TZ7UyUvL5pvX_D-F8ICo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low%E2%80%90degree+structure+in+Mercury%27s+planetary+magnetic+field&rft.jtitle=Journal+of+Geophysical+Research%3A+Planets&rft.au=Anderson%2C+Brian+J.&rft.au=Johnson%2C+Catherine+L.&rft.au=Korth%2C+Haje&rft.au=Winslow%2C+Reka+M.&rft.date=2012-12-01&rft.issn=0148-0227&rft.volume=117&rft.issue=E12&rft_id=info:doi/10.1029%2F2012JE004159&rft.externalDBID=n%2Fa&rft.externalDocID=10_1029_2012JE004159 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0148-0227&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0148-0227&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0148-0227&client=summon |