Genomics‐Guided Efficient Identification of 2,5‐Diketopiperazine Derivatives from Actinobacteria
Secondary metabolites derived from microorganism constitute an important part of natural products. Mining of the microbial genomes revealed a large number of uncharacterized biosynthetic gene clusters, indicating their greater potential to synthetize specialized or secondary metabolites (SMs) than i...
Saved in:
Published in | Chembiochem : a European journal of chemical biology Vol. 24; no. 3; pp. e202200502 - n/a |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.02.2023
John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Secondary metabolites derived from microorganism constitute an important part of natural products. Mining of the microbial genomes revealed a large number of uncharacterized biosynthetic gene clusters, indicating their greater potential to synthetize specialized or secondary metabolites (SMs) than identified by classic fermentation and isolation approaches. Various bioinformatics tools have been developed to analyze and identify such gene clusters, thus accelerating significantly the mining process. Heterologous expression of an individual biosynthetic gene cluster has been proven as an efficient way to activate the genes and identify the encoded metabolites that cannot be detected under normal laboratory cultivation conditions. Herein, we describe a concept of genomics‐guided approach by performing genome mining and heterologous expression to uncover novel CDPS‐derived DKPs and functionally characterize novel tailoring enzymes embedded in the biosynthetic pathways. Recent works focused on the identification of the nucleobase‐related and dimeric DKPs are also presented.
Genome mining combined with heterologous expression has been demonstrated to be an efficient way to identify novel 2,5‐diketopiperazine derivatives from actinobacteria. Meanwhile, their biosynthetic pathways and new enzymes embedded inside have been functionally characterized. It is expected that more biologically active diketopiperazines can be obtained by exploring the genetic potentials of microorganism in the future. |
---|---|
AbstractList | Secondary metabolites derived from microorganism constitute an important part of natural products. Mining of the microbial genomes revealed a large number of uncharacterized biosynthetic gene clusters, indicating their greater potential to synthetize specialized or secondary metabolites (SMs) than identified by classic fermentation and isolation approaches. Various bioinformatics tools have been developed to analyze and identify such gene clusters, thus accelerating significantly the mining process. Heterologous expression of an individual biosynthetic gene cluster has been proven as an efficient way to activate the genes and identify the encoded metabolites that cannot be detected under normal laboratory cultivation conditions. Herein, we describe a concept of genomics-guided approach by performing genome mining and heterologous expression to uncover novel CDPS-derived DKPs and functionally characterize novel tailoring enzymes embedded in the biosynthetic pathways. Recent works focused on the identification of the nucleobase-related and dimeric DKPs are also presented.Secondary metabolites derived from microorganism constitute an important part of natural products. Mining of the microbial genomes revealed a large number of uncharacterized biosynthetic gene clusters, indicating their greater potential to synthetize specialized or secondary metabolites (SMs) than identified by classic fermentation and isolation approaches. Various bioinformatics tools have been developed to analyze and identify such gene clusters, thus accelerating significantly the mining process. Heterologous expression of an individual biosynthetic gene cluster has been proven as an efficient way to activate the genes and identify the encoded metabolites that cannot be detected under normal laboratory cultivation conditions. Herein, we describe a concept of genomics-guided approach by performing genome mining and heterologous expression to uncover novel CDPS-derived DKPs and functionally characterize novel tailoring enzymes embedded in the biosynthetic pathways. Recent works focused on the identification of the nucleobase-related and dimeric DKPs are also presented. Secondary metabolites derived from microorganism constitute an important part of natural products. Mining of the microbial genomes revealed a large number of uncharacterized biosynthetic gene clusters, indicating their greater potential to synthetize specialized or secondary metabolites (SMs) than identified by classic fermentation and isolation approaches. Various bioinformatics tools have been developed to analyze and identify such gene clusters, thus accelerating significantly the mining process. Heterologous expression of an individual biosynthetic gene cluster has been proven as an efficient way to activate the genes and identify the encoded metabolites that cannot be detected under normal laboratory cultivation conditions. Herein, we describe a concept of genomics‐guided approach by performing genome mining and heterologous expression to uncover novel CDPS‐derived DKPs and functionally characterize novel tailoring enzymes embedded in the biosynthetic pathways. Recent works focused on the identification of the nucleobase‐related and dimeric DKPs are also presented. Secondary metabolites derived from microorganism constitute an important part of natural products. Mining of the microbial genomes revealed a large number of uncharacterized biosynthetic gene clusters, indicating their greater potential to synthetize specialized or secondary metabolites (SMs) than identified by classic fermentation and isolation approaches. Various bioinformatics tools have been developed to analyze and identify such gene clusters, thus accelerating significantly the mining process. Heterologous expression of an individual biosynthetic gene cluster has been proven as an efficient way to activate the genes and identify the encoded metabolites that cannot be detected under normal laboratory cultivation conditions. Herein, we describe a concept of genomics‐guided approach by performing genome mining and heterologous expression to uncover novel CDPS‐derived DKPs and functionally characterize novel tailoring enzymes embedded in the biosynthetic pathways. Recent works focused on the identification of the nucleobase‐related and dimeric DKPs are also presented. Genome mining combined with heterologous expression has been demonstrated to be an efficient way to identify novel 2,5‐diketopiperazine derivatives from actinobacteria. Meanwhile, their biosynthetic pathways and new enzymes embedded inside have been functionally characterized. It is expected that more biologically active diketopiperazines can be obtained by exploring the genetic potentials of microorganism in the future. Secondary metabolites derived from microorganism constitute an important part of natural products. Mining of the microbial genomes revealed a large number of uncharacterized biosynthetic gene clusters, indicating their greater potential to synthetize specialized or secondary metabolites (SMs) than identified by classic fermentation and isolation approaches. Various bioinformatics tools have been developed to analyze and identify such gene clusters, thus accelerating significantly the mining process. Heterologous expression of an individual biosynthetic gene cluster has been proven as an efficient way to activate the genes and identify the encoded metabolites that cannot be detected under normal laboratory cultivation conditions. Herein, we describe a concept of genomics‐guided approach by performing genome mining and heterologous expression to uncover novel CDPS‐derived DKPs and functionally characterize novel tailoring enzymes embedded in the biosynthetic pathways. Recent works focused on the identification of the nucleobase‐related and dimeric DKPs are also presented. Genome mining combined with heterologous expression has been demonstrated to be an efficient way to identify novel 2,5‐diketopiperazine derivatives from actinobacteria. Meanwhile, their biosynthetic pathways and new enzymes embedded inside have been functionally characterized. It is expected that more biologically active diketopiperazines can be obtained by exploring the genetic potentials of microorganism in the future. |
Author | Liu, Jing Li, Shu‐Ming |
AuthorAffiliation | 2 Current address: Department of Natural Products in Organismic Interactions Max Planck Institute for Terrestrial Microbiology Karl-von-Frisch-Straße 10 35043 Marburg Germany 1 Institut für Pharmazeutische Biologie und Biotechnologie Fachbereich Pharmazie Philipps-Universität Marburg Robert-Koch-Straße 4 35037 Marburg Germany |
AuthorAffiliation_xml | – name: 1 Institut für Pharmazeutische Biologie und Biotechnologie Fachbereich Pharmazie Philipps-Universität Marburg Robert-Koch-Straße 4 35037 Marburg Germany – name: 2 Current address: Department of Natural Products in Organismic Interactions Max Planck Institute for Terrestrial Microbiology Karl-von-Frisch-Straße 10 35043 Marburg Germany |
Author_xml | – sequence: 1 givenname: Jing surname: Liu fullname: Liu, Jing organization: Max Planck Institute for Terrestrial Microbiology – sequence: 2 givenname: Shu‐Ming orcidid: 0000-0003-4583-2655 surname: Li fullname: Li, Shu‐Ming email: shuming.li@staff.uni-marburg.de organization: Philipps-Universität Marburg |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36098493$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctu1DAUhi1URC-wZYkisWHRGXxLbK9QOy3DSJXYwNpynBM4JbGHOBlUVjxCn5EnwWWGASohNr7ofP_xf_wfk4MQAxDylNE5o5S_9DX6OaecU1pS_oAcMSnMTFVCHOzOknN1SI5TuqaUmkqwR-RQVNRoacQRaZYQYo8-ff92u5ywgaa4bFv0CGEsVk1eMd_ciDEUsS34aZnBC_wEY1zjGgb3FQMUFzDgJkMbSEU7xL448yOGWDs_5op7TB62rkvwZLefkPevL98t3syu3i5Xi7OrmZeV4TPGgYFujXbeK8pNXUuuQNTSlLTRDrxmTIOrjDKlVqJudMsNdToPI5WrG3FCXm37rqe6h8Zn94Pr7HrA3g03Njq0f1cCfrQf4sbmrzRcqjJ3eLHrMMTPE6TR9pg8dJ0LEKdkuWKSVkJVNKPP76HXcRpCni9TGaukNipTz_60tPfyK4EMzLeAH2JKA7R7hNE7X9zeRWz3EWeBvCfwOP4MKI-E3b9lZiv7gh3c_OcRuzhfLX5rfwAtvr2Z |
CitedBy_id | crossref_primary_10_1021_acs_jnatprod_2c00787 crossref_primary_10_1021_acssynbio_3c00115 crossref_primary_10_1021_acs_orglett_3c03031 crossref_primary_10_1002_cbic_202300770 crossref_primary_10_1038_s41467_023_38168_3 crossref_primary_10_1021_acs_biochem_4c00505 crossref_primary_10_1038_s41429_024_00782_8 |
Cites_doi | 10.3390/md18040199 10.1039/C5NP00013K 10.1021/acscatal.1c04609 10.1039/D1NP00032B 10.1039/D1NP00060H 10.3390/pr8040470 10.1021/jm700948z 10.1073/pnas.0812191106 10.1038/nrg3186 10.1016/j.biotechadv.2018.10.003 10.1038/s41467-017-02088-w 10.1038/s41573-020-00114-z 10.1039/D2NP00006G 10.1016/S1074-5521(02)00285-5 10.1021/acs.orglett.9b02666 10.1002/ange.201906891 10.1007/s10295-005-0033-8 10.1073/pnas.1507606112 10.1093/nar/gkx1249 10.1093/nar/gkx320 10.1016/j.biotechadv.2008.09.001 10.1038/nchembio.1868 10.1039/D0CC04772D 10.1021/jacs.0c06312 10.1038/ja.2017.51 10.1007/s00253-010-2860-4 10.1039/C6NP00025H 10.1021/acssynbio.8b00151 10.1021/ja206743v 10.1016/j.ymben.2018.03.010 10.1039/b817069j 10.3390/md16070244 10.1128/AEM.01337-10 10.1016/j.cell.2014.06.034 10.5582/ddt.2018.01066 10.1039/C9NP00023B 10.1002/anie.202200377 10.1016/j.cbpa.2020.07.010 10.1039/c3np70034h 10.3390/md19080403 10.1002/anie.202004978 10.1002/anie.200704960 10.1016/j.ymben.2018.09.004 10.1039/c2np20010d 10.1002/anie.201906891 10.1074/jbc.R116.762906 10.1038/s41467-020-19986-1 10.1039/C5NP00111K 10.1039/C9NP00036D 10.1039/C8NP00091C 10.1016/j.biotechadv.2022.107966 10.1007/s10295-016-1874-z 10.1016/j.mib.2019.01.001 10.1038/s41589-019-0400-9 10.1002/ange.200704960 10.1111/1751-7915.13351 10.1186/1471-2105-10-185 10.1039/C9NP00025A 10.1186/1475-2859-11-50 10.1021/acs.orglett.8b02051 10.1002/ange.201910563 10.1016/j.tim.2014.10.007 10.1021/acs.joc.2c00169 10.1038/s41429-019-0236-2 10.1016/j.copbio.2007.04.005 10.1039/C5NP00085H 10.1007/s00253-021-11178-1 10.1007/s00726-010-0567-6 10.1038/nrmicro3496 10.1111/j.1751-7915.2010.00219.x 10.1039/D1NP00036E 10.1039/D1NP00013F 10.1021/acs.jnatprod.0c01273 10.1039/C9NP00027E 10.1039/C8NP00012C 10.1016/B978-0-12-409547-2.14627-X 10.1039/D2NP00030J 10.1021/ja401945a 10.2147/TCRM.S3336 10.1021/cr0503097 10.1016/B978-008045382-8.00046-0 10.1021/acs.orglett.9b03491 10.1016/j.fgb.2010.06.003 10.1039/C8OB03063D 10.1002/ange.202004978 10.1038/ja.2005.1 10.3389/fmicb.2019.00387 10.1016/j.omtm.2019.05.006 10.1021/cr200398y 10.3390/molecules23010169 10.1128/MMBR.00054-12 10.1021/acs.jnatprod.9b01285 10.1093/nar/gkab335 10.1039/b111145k 10.1093/nar/gkr027 10.1016/j.annonc.2021.08.2127 10.1038/417141a 10.1021/np0401664 10.1038/nchembio.175 10.1016/0196-9781(94)00017-Z 10.1021/acs.orglett.1c01022 |
ContentType | Journal Article |
Copyright | 2022 The Authors. ChemBioChem published by Wiley-VCH GmbH 2022 The Authors. ChemBioChem published by Wiley-VCH GmbH. 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 The Authors. ChemBioChem published by Wiley-VCH GmbH – notice: 2022 The Authors. ChemBioChem published by Wiley-VCH GmbH. – notice: 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL 7QO 7TM 7U9 8FD C1K FR3 H94 K9. M7N P64 7X8 5PM |
DOI | 10.1002/cbic.202200502 |
DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Biotechnology Research Abstracts Technology Research Database Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Nucleic Acids Abstracts AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Engineering Research Database Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Virology and AIDS Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1439-7633 |
EndPage | n/a |
ExternalDocumentID | PMC10092475 36098493 10_1002_cbic_202200502 CBIC202200502 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Deutsche Forschungsgemeinschaft funderid: INST 160/620-1; Li844/14-1; 201608310118 – fundername: China Scholarship Council – fundername: ; grantid: INST 160/620-1; Li844/14-1; 201608310118 – fundername: ; |
GroupedDBID | --- -DZ -~X 05W 0R~ 1L6 1OC 24P 29B 33P 3WU 4.4 4ZD 50Y 5GY 5VS 66C 6J9 6P2 77Q 8-0 8-1 8UM A00 AAESR AAHHS AAHQN AAIHA AAMNL AANLZ AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACPRK ACXBN ACXQS ADBBV ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EMOBN F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IH2 IX1 JPC KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MXFUL MXSTM MY~ NNB O9- OIG P2P P2W P4E PQQKQ R.K ROL RWI RX1 SUPJJ SV3 V2E W99 WBKPD WH7 WJL WOHZO WXSBR WYJ XPP XV2 Y6R YZZ ZZTAW ~KM ~S- .GJ 31~ 53G AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADNMO AEYWJ AFFNX AGHNM AGQPQ AGYGG AI. ASPBG AVWKF AZFZN CITATION EJD FEDTE GODZA HVGLF VH1 XSW ZGI CGR CUY CVF ECM EIF NPM 7QL 7QO 7TM 7U9 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K FR3 H94 K9. M7N P64 7X8 5PM |
ID | FETCH-LOGICAL-c4692-12e1e8f98acc7029bb427e3b4950d8aec8118ea69795873bd8f290a860947abd3 |
IEDL.DBID | DR2 |
ISSN | 1439-4227 1439-7633 |
IngestDate | Thu Aug 21 18:38:23 EDT 2025 Fri Jul 11 01:36:46 EDT 2025 Sun Jul 13 03:49:15 EDT 2025 Thu Apr 03 07:06:52 EDT 2025 Thu Apr 24 22:51:31 EDT 2025 Tue Jul 01 04:35:23 EDT 2025 Wed Jan 22 16:17:33 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | nucleobase-containing DKPs heterologous expression 2,5-DKPs dimeric DKPs genome mining |
Language | English |
License | Attribution 2022 The Authors. ChemBioChem published by Wiley-VCH GmbH. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4692-12e1e8f98acc7029bb427e3b4950d8aec8118ea69795873bd8f290a860947abd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-4583-2655 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcbic.202200502 |
PMID | 36098493 |
PQID | 2771464897 |
PQPubID | 986344 |
PageCount | 6 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_10092475 proquest_miscellaneous_2714063760 proquest_journals_2771464897 pubmed_primary_36098493 crossref_primary_10_1002_cbic_202200502 crossref_citationtrail_10_1002_cbic_202200502 wiley_primary_10_1002_cbic_202200502_CBIC202200502 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 1, 2023 |
PublicationDateYYYYMMDD | 2023-02-01 |
PublicationDate_xml | – month: 02 year: 2023 text: February 1, 2023 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim – name: Hoboken |
PublicationTitle | Chembiochem : a European journal of chemical biology |
PublicationTitleAlternate | Chembiochem |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc John Wiley and Sons Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: John Wiley and Sons Inc |
References | 2021; 20 2019; 51 2021; 23 2019; 10 2006; 33 2017; 44 2019; 12 2017; 45 2019; 14 2015; 32 2020 2020; 59 132 2019; 17 2020; 16 2020; 56 2020; 11 2008; 4 2008 2008; 47 120 2012; 13 2012; 11 2018; 49 2005; 68 2018; 47 2016; 33 2020; 18 2018; 46 2020; 8 2018; 7 2021; 38 2018; 9 2021; 32 2009; 10 2017; 70 2019; 21 2012; 29 2021; 84 2022; 39 2018; 35 2015; 13 2007; 18 2021; 49 2019; 72 2012 2002; 9 1995; 16 2010 2020; 142 2020; 83 2010; 39 2021; 105 2019; 37 2015; 11 2019; 36 2011; 77 2020; 37 2017; 292 2022; 87 2002; 417 2011; 4 2018; 23 2011; 39 2008; 51 2018; 20 2014; 158 2009; 27 2009; 26 2019 2019; 58 131 2011; 133 2010; 88 2015; 23 2018; 19 2010; 47 2012; 112 2021; 12 2013; 77 2022; 61 2020 2015; 112 2013; 30 2021; 19 2022; 59 2013; 135 2009; 5 2018; 12 2021; 60 2006; 106 2018; 16 2003; 20 2019; 131 2005; 58 2009; 106 e_1_2_9_75_1 e_1_2_9_52_1 e_1_2_9_98_2 e_1_2_9_56_2 e_1_2_9_94_1 e_1_2_9_10_1 e_1_2_9_33_1 e_1_2_9_90_1 e_1_2_9_71_1 e_1_2_9_107_1 e_1_2_9_122_2 e_1_2_9_103_2 e_1_2_9_14_1 e_1_2_9_37_1 e_1_2_9_18_2 e_1_2_9_79_2 e_1_2_9_41_1 e_1_2_9_87_1 e_1_2_9_68_1 e_1_2_9_83_1 e_1_2_9_45_2 e_1_2_9_22_2 e_1_2_9_64_2 e_1_2_9_6_1 (e_1_2_9_96_3) 2019; 131 e_1_2_9_119_2 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_111_2 e_1_2_9_115_1 e_1_2_9_49_2 e_1_2_9_30_2 e_1_2_9_72_3 e_1_2_9_72_2 e_1_2_9_99_2 Ziemert N. (e_1_2_9_26_2) 2020 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_95_2 e_1_2_9_53_2 e_1_2_9_76_1 e_1_2_9_91_1 Aigle B. (e_1_2_9_42_2) 2012 e_1_2_9_102_1 e_1_2_9_106_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_57_2 e_1_2_9_121_1 e_1_2_9_19_2 e_1_2_9_88_2 e_1_2_9_61_1 e_1_2_9_84_1 e_1_2_9_23_1 e_1_2_9_65_1 e_1_2_9_80_1 e_1_2_9_5_2 e_1_2_9_118_2 e_1_2_9_1_1 e_1_2_9_114_1 e_1_2_9_9_2 e_1_2_9_114_2 e_1_2_9_46_2 e_1_2_9_27_1 e_1_2_9_69_1 e_1_2_9_110_1 e_1_2_9_31_1 e_1_2_9_73_2 e_1_2_9_50_2 e_1_2_9_35_1 e_1_2_9_77_2 e_1_2_9_12_2 e_1_2_9_54_2 e_1_2_9_96_2 e_1_2_9_109_2 e_1_2_9_92_2 e_1_2_9_101_1 e_1_2_9_105_1 e_1_2_9_39_1 Skinnider M. A. (e_1_2_9_120_1) 2018; 19 e_1_2_9_16_2 e_1_2_9_58_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_89_2 e_1_2_9_24_1 e_1_2_9_66_1 e_1_2_9_43_2 e_1_2_9_85_2 e_1_2_9_81_1 e_1_2_9_4_2 e_1_2_9_113_2 e_1_2_9_117_1 e_1_2_9_8_2 e_1_2_9_28_1 e_1_2_9_47_1 Corr C. (e_1_2_9_25_2) 2010 e_1_2_9_51_2 e_1_2_9_97_2 e_1_2_9_74_1 e_1_2_9_78_2 e_1_2_9_93_2 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_108_2 e_1_2_9_70_1 e_1_2_9_100_2 e_1_2_9_104_2 e_1_2_9_123_2 e_1_2_9_13_2 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_17_2 e_1_2_9_63_2 e_1_2_9_86_2 e_1_2_9_40_1 e_1_2_9_21_2 e_1_2_9_44_2 e_1_2_9_67_1 e_1_2_9_7_1 e_1_2_9_82_1 e_1_2_9_3_1 e_1_2_9_112_2 e_1_2_9_116_1 e_1_2_9_48_2 e_1_2_9_29_2 |
References_xml | – volume: 16 start-page: 244 year: 2018 publication-title: Mar. Drugs – volume: 26 start-page: 1362 year: 2009 end-page: 1384 publication-title: Nat. Prod. Rep. – volume: 19 start-page: 1 year: 2018 end-page: 11 publication-title: BMC Genet. – volume: 10 start-page: 387 year: 2019 publication-title: Front. Microbiol. – volume: 37 start-page: 312 year: 2020 end-page: 321 publication-title: Nat. Prod. Rep. – volume: 16 start-page: 151 year: 1995 end-page: 164 publication-title: Peptides – volume: 39 start-page: 45 year: 2010 end-page: 57 publication-title: Amino Acids – volume: 12 start-page: 318 year: 2018 end-page: 328 publication-title: Drug Discov. Therap. – volume: 11 start-page: 6058 year: 2020 publication-title: Nat. Commun. – volume: 51 start-page: 1 year: 2019 end-page: 8 publication-title: Curr. Opin. Microbiol. – volume: 47 start-page: 334 year: 2018 end-page: 345 publication-title: Metab. Eng. – volume: 112 start-page: 8953 year: 2015 end-page: 8958 publication-title: Proc. Natl. Acad. Sci. USA – volume: 87 start-page: 4818 year: 2022 end-page: 4828 publication-title: J. Org. Chem. – volume: 133 start-page: 14940 year: 2011 end-page: 14943 publication-title: J. Am. Chem. Soc. – volume: 77 start-page: 112 year: 2013 end-page: 143 publication-title: Microbiol. Mol. Biol. Rev. – volume: 21 start-page: 7094 year: 2019 end-page: 7098 publication-title: Org. Lett. – volume: 13 start-page: 509 year: 2015 end-page: 523 publication-title: Nat. Rev. Microbiol. – volume: 14 start-page: 16 year: 2019 end-page: 26 publication-title: Mol. Ther. Methods Clin. Dev. – volume: 56 start-page: 11042 year: 2020 end-page: 11045 publication-title: Chem. Commun. – volume: 39 start-page: 1721 year: 2022 end-page: 1765 publication-title: Nat. Prod. Rep. – volume: 33 start-page: 54 year: 2016 end-page: 72 publication-title: Nat. Prod. Rep. – volume: 9 start-page: 1355 year: 2002 end-page: 1364 publication-title: Chem. Biol. – volume: 58 131 start-page: 11534 11658 year: 2019 2019 end-page: 11540 11664 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 38 start-page: 2024 year: 2021 end-page: 2040 publication-title: Nat. Prod. Rep. – volume: 37 start-page: 1 year: 2019 end-page: 20 publication-title: Biotechnol. Adv. – volume: 36 start-page: 1313 year: 2019 end-page: 1332 publication-title: Nat. Prod. Rep. – volume: 158 start-page: 412 year: 2014 end-page: 421 publication-title: Cell – volume: 23 start-page: 110 year: 2015 end-page: 119 publication-title: Trends Microbiol. – volume: 12 start-page: 55 year: 2019 end-page: 57 publication-title: Microb. Biotechnol. – volume: 36 start-page: 1412 year: 2019 end-page: 1436 publication-title: Nat. Prod. Rep. – volume: 49 start-page: W29 year: 2021 end-page: W35 publication-title: Nucleic Acids Res. – volume: 21 start-page: 9104 year: 2019 end-page: 9108 publication-title: Org. Lett. – volume: 36 start-page: 1295 year: 2019 end-page: 1312 publication-title: Nat. Prod. Rep. – volume: 59 year: 2022 publication-title: Biotechnol. Adv. – start-page: 19 year: 2020 end-page: 33 – volume: 292 start-page: 8546 year: 2017 end-page: 8552 publication-title: J. Biol. Chem. – volume: 44 start-page: 285 year: 2017 end-page: 293 publication-title: J. Ind. Microbiol. Biotechnol. – volume: 68 start-page: 493 year: 2005 end-page: 496 publication-title: J. Nat. Prod. – volume: 112 start-page: 3641 year: 2012 end-page: 3716 publication-title: Chem. Rev. – volume: 23 start-page: 6601 year: 2021 end-page: 6605 publication-title: Org. Lett. – volume: 83 start-page: 770 year: 2020 end-page: 803 publication-title: J. Nat. Prod. – volume: 39 start-page: 4475 year: 2011 end-page: 4489 publication-title: Nucleic Acids Res. – volume: 60 start-page: 47 year: 2021 end-page: 54 publication-title: Curr. Opin. Chem. Biol. – volume: 47 start-page: 736 year: 2010 end-page: 741 publication-title: Fungal Genet. Biol. – volume: 135 start-page: 7720 year: 2013 end-page: 7731 publication-title: J. Am. Chem. Soc. – volume: 58 start-page: 1 year: 2005 end-page: 26 publication-title: J. Antibiot. – volume: 11 start-page: 721 year: 2015 end-page: 727 publication-title: Nat. Chem. Biol. – volume: 23 start-page: 169 year: 2018 publication-title: Molecules – volume: 20 start-page: 4921 year: 2018 end-page: 4925 publication-title: Org. Lett. – volume: 16 start-page: 60 year: 2020 end-page: 68 publication-title: Nat. Chem. Biol. – volume: 18 start-page: 199 year: 2020 publication-title: Mar. Drugs – volume: 10 start-page: 1 year: 2009 end-page: 10 publication-title: BMC Bioinf. – volume: 49 start-page: 316 year: 2018 end-page: 324 publication-title: Metab. Eng. – volume: 72 start-page: 913 year: 2019 end-page: 923 publication-title: J. Antibiot. – volume: 13 start-page: 303 year: 2012 end-page: 314 publication-title: Nat. Rev. Genet. – volume: 39 start-page: 1015 year: 2022 end-page: 1044 publication-title: Nat. Prod. Rep. – volume: 105 start-page: 2277 year: 2021 end-page: 2285 publication-title: Appl. Microbiol. Biotechnol. – volume: 30 start-page: 1121 year: 2013 end-page: 1138 publication-title: Nat. Prod. Rep. – volume: 46 year: 2018 publication-title: Nucleic Acids Res. – start-page: 343 year: 2012 end-page: 366 – volume: 4 start-page: 1315 year: 2008 publication-title: Ther. Clin. Risk Manage. – volume: 27 start-page: 53 year: 2009 end-page: 75 publication-title: Biotechnol. Adv. – volume: 131 start-page: 19133 year: 2019 end-page: 19139 publication-title: Angew. Chem. Int. Ed. – volume: 17 start-page: 2305 year: 2019 end-page: 2314 publication-title: Org. Biomol. Chem. – volume: 32 start-page: 956 year: 2015 end-page: 970 publication-title: Nat. Prod. Rep. – start-page: 429 year: 2010 end-page: 453 – volume: 33 start-page: 174 year: 2016 end-page: 182 publication-title: Nat. Prod. Rep. – volume: 417 start-page: 141 year: 2002 end-page: 147 publication-title: Nature – volume: 5 start-page: 414 year: 2009 end-page: 420 publication-title: Nat. Chem. Biol. – volume: 38 start-page: 2100 year: 2021 end-page: 2129 publication-title: Nat. Prod. Rep. – volume: 47 120 start-page: 1485 1507 year: 2008 2008 end-page: 1487 1509 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 51 start-page: 2618 year: 2008 end-page: 2628 publication-title: J. Med. Chem. – volume: 38 start-page: 2041 year: 2021 end-page: 2065 publication-title: Nat. Prod. Rep. – volume: 35 start-page: 575 year: 2018 end-page: 604 publication-title: Nat. Prod. Rep. – volume: 12 start-page: 648 year: 2021 end-page: 654 publication-title: ACS Catal. – volume: 61 year: 2022 publication-title: Angew. Chem. Int. Ed. – volume: 106 start-page: 3468 year: 2006 end-page: 3496 publication-title: Chem. Rev. – volume: 20 start-page: 275 year: 2003 end-page: 287 publication-title: Nat. Prod. Rep. – volume: 106 start-page: 7426 year: 2009 end-page: 7431 publication-title: Proc. Natl. Acad. Sci. USA – volume: 36 start-page: 1281 year: 2019 end-page: 1294 publication-title: Nat. Prod. Rep. – volume: 77 start-page: 400 year: 2011 end-page: 406 publication-title: Appl. Environ. Microbiol. – volume: 8 start-page: 470 year: 2020 publication-title: Processes – volume: 70 start-page: 865 year: 2017 end-page: 870 publication-title: J. Antibiot. – volume: 88 start-page: 1233 year: 2010 end-page: 1242 publication-title: Appl. Microbiol. Biotechnol. – volume: 84 start-page: 1725 year: 2021 end-page: 1737 publication-title: J. Nat. Prod. – volume: 18 start-page: 267 year: 2007 end-page: 272 publication-title: Curr. Opin. Biotechnol. – volume: 9 start-page: 1 year: 2018 end-page: 9 publication-title: Nat. Commun. – volume: 29 start-page: 961 year: 2012 end-page: 979 publication-title: Nat. Prod. Rep. – volume: 20 start-page: 200 year: 2021 end-page: 216 publication-title: Nat. Rev. Drug Discovery – volume: 59 132 start-page: 14065 14169 year: 2020 2020 end-page: 14069 14173 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 4 start-page: 207 year: 2011 end-page: 215 publication-title: Microb. Biotechnol. – volume: 7 start-page: 1702 year: 2018 end-page: 1708 publication-title: ACS Synth. Biol. – volume: 32 start-page: S1326 year: 2021 publication-title: Ann. Oncol. – volume: 45 start-page: W49 year: 2017 end-page: W54 publication-title: Nucleic Acids Res. – volume: 19 start-page: 403 year: 2021 publication-title: Mar. Drugs – volume: 11 start-page: 50 year: 2012 publication-title: Microb. Cell Fact. – volume: 142 start-page: 17413 year: 2020 end-page: 17424 publication-title: J. Am. Chem. Soc. – volume: 39 start-page: 1172 year: 2022 end-page: 1225 publication-title: Nat. Prod. Rep. – volume: 33 start-page: 121 year: 2006 end-page: 128 publication-title: J. Ind. Microbiol. Biotechnol. – volume: 33 start-page: 988 year: 2016 end-page: 1005 publication-title: Nat. Prod. Rep. – ident: e_1_2_9_23_1 doi: 10.3390/md18040199 – ident: e_1_2_9_123_2 doi: 10.1039/C5NP00013K – ident: e_1_2_9_99_2 doi: 10.1021/acscatal.1c04609 – ident: e_1_2_9_107_1 – ident: e_1_2_9_19_2 doi: 10.1039/D1NP00032B – ident: e_1_2_9_111_2 doi: 10.1039/D1NP00060H – ident: e_1_2_9_1_1 doi: 10.3390/pr8040470 – ident: e_1_2_9_17_2 doi: 10.1021/jm700948z – ident: e_1_2_9_20_1 – ident: e_1_2_9_101_1 doi: 10.1073/pnas.0812191106 – ident: e_1_2_9_39_1 doi: 10.1038/nrg3186 – ident: e_1_2_9_110_1 – ident: e_1_2_9_47_1 – ident: e_1_2_9_61_1 doi: 10.1016/j.biotechadv.2018.10.003 – ident: e_1_2_9_116_1 doi: 10.1038/s41467-017-02088-w – ident: e_1_2_9_9_2 doi: 10.1038/s41573-020-00114-z – ident: e_1_2_9_112_2 doi: 10.1039/D2NP00006G – ident: e_1_2_9_85_2 doi: 10.1016/S1074-5521(02)00285-5 – ident: e_1_2_9_52_1 – ident: e_1_2_9_106_1 doi: 10.1021/acs.orglett.9b02666 – volume: 19 start-page: 1 year: 2018 ident: e_1_2_9_120_1 publication-title: BMC Genet. – volume: 131 start-page: 11658 year: 2019 ident: e_1_2_9_96_3 publication-title: Angew. Chem. doi: 10.1002/ange.201906891 – ident: e_1_2_9_67_1 doi: 10.1007/s10295-005-0033-8 – ident: e_1_2_9_51_2 doi: 10.1073/pnas.1507606112 – ident: e_1_2_9_59_1 doi: 10.1093/nar/gkx1249 – ident: e_1_2_9_33_1 doi: 10.1093/nar/gkx320 – ident: e_1_2_9_70_1 doi: 10.1016/j.biotechadv.2008.09.001 – ident: e_1_2_9_86_2 doi: 10.1038/nchembio.1868 – ident: e_1_2_9_98_2 doi: 10.1039/D0CC04772D – ident: e_1_2_9_84_1 – ident: e_1_2_9_108_2 doi: 10.1021/jacs.0c06312 – ident: e_1_2_9_46_2 doi: 10.1038/ja.2017.51 – ident: e_1_2_9_63_2 doi: 10.1007/s00253-010-2860-4 – ident: e_1_2_9_18_2 doi: 10.1039/C6NP00025H – ident: e_1_2_9_28_1 – ident: e_1_2_9_56_2 doi: 10.1021/acssynbio.8b00151 – ident: e_1_2_9_62_1 – ident: e_1_2_9_115_1 doi: 10.1021/ja206743v – ident: e_1_2_9_57_2 doi: 10.1016/j.ymben.2018.03.010 – ident: e_1_2_9_13_2 doi: 10.1039/b817069j – ident: e_1_2_9_43_2 doi: 10.3390/md16070244 – ident: e_1_2_9_45_2 doi: 10.1128/AEM.01337-10 – ident: e_1_2_9_7_1 – ident: e_1_2_9_34_1 doi: 10.1016/j.cell.2014.06.034 – ident: e_1_2_9_8_2 doi: 10.5582/ddt.2018.01066 – ident: e_1_2_9_65_1 doi: 10.1039/C9NP00023B – ident: e_1_2_9_100_2 doi: 10.1002/anie.202200377 – ident: e_1_2_9_22_2 doi: 10.1016/j.cbpa.2020.07.010 – ident: e_1_2_9_58_1 doi: 10.1039/c3np70034h – ident: e_1_2_9_78_2 doi: 10.3390/md19080403 – ident: e_1_2_9_72_2 doi: 10.1002/anie.202004978 – ident: e_1_2_9_91_1 – ident: e_1_2_9_114_1 doi: 10.1002/anie.200704960 – ident: e_1_2_9_68_1 doi: 10.1016/j.ymben.2018.09.004 – ident: e_1_2_9_77_2 doi: 10.1039/c2np20010d – ident: e_1_2_9_96_2 doi: 10.1002/anie.201906891 – ident: e_1_2_9_94_1 – ident: e_1_2_9_122_2 doi: 10.1074/jbc.R116.762906 – ident: e_1_2_9_15_1 – ident: e_1_2_9_32_1 doi: 10.1038/s41467-020-19986-1 – ident: e_1_2_9_49_2 doi: 10.1039/C5NP00111K – ident: e_1_2_9_90_1 doi: 10.1039/C9NP00036D – ident: e_1_2_9_16_2 doi: 10.1039/C8NP00091C – ident: e_1_2_9_64_2 doi: 10.1016/j.biotechadv.2022.107966 – ident: e_1_2_9_38_1 doi: 10.1007/s10295-016-1874-z – ident: e_1_2_9_27_1 doi: 10.1016/j.mib.2019.01.001 – ident: e_1_2_9_35_1 doi: 10.1038/s41589-019-0400-9 – ident: e_1_2_9_87_1 – ident: e_1_2_9_114_2 doi: 10.1002/ange.200704960 – ident: e_1_2_9_12_2 doi: 10.1111/1751-7915.13351 – ident: e_1_2_9_36_1 doi: 10.1186/1471-2105-10-185 – ident: e_1_2_9_3_1 – ident: e_1_2_9_54_2 doi: 10.1039/C9NP00025A – ident: e_1_2_9_4_2 doi: 10.1186/1475-2859-11-50 – ident: e_1_2_9_95_2 doi: 10.1021/acs.orglett.8b02051 – ident: e_1_2_9_50_2 doi: 10.1002/ange.201910563 – ident: e_1_2_9_105_1 doi: 10.1016/j.tim.2014.10.007 – ident: e_1_2_9_119_2 doi: 10.1021/acs.joc.2c00169 – ident: e_1_2_9_104_2 doi: 10.1038/s41429-019-0236-2 – ident: e_1_2_9_10_1 doi: 10.1016/j.copbio.2007.04.005 – ident: e_1_2_9_102_1 – ident: e_1_2_9_53_2 doi: 10.1039/C5NP00085H – ident: e_1_2_9_92_2 doi: 10.1007/s00253-021-11178-1 – ident: e_1_2_9_103_2 doi: 10.1007/s00726-010-0567-6 – ident: e_1_2_9_21_2 doi: 10.1038/nrmicro3496 – ident: e_1_2_9_24_1 – ident: e_1_2_9_66_1 doi: 10.1111/j.1751-7915.2010.00219.x – ident: e_1_2_9_29_2 doi: 10.1039/D1NP00036E – ident: e_1_2_9_30_2 doi: 10.1039/D1NP00013F – ident: e_1_2_9_109_2 doi: 10.1021/acs.jnatprod.0c01273 – ident: e_1_2_9_40_1 doi: 10.1039/C9NP00027E – ident: e_1_2_9_71_1 – ident: e_1_2_9_55_1 – ident: e_1_2_9_73_2 doi: 10.1039/C8NP00012C – start-page: 19 volume-title: Comprehensive Natural Products III (Third Edition) year: 2020 ident: e_1_2_9_26_2 doi: 10.1016/B978-0-12-409547-2.14627-X – ident: e_1_2_9_113_2 doi: 10.1039/D2NP00030J – ident: e_1_2_9_41_1 – ident: e_1_2_9_69_1 doi: 10.1021/ja401945a – ident: e_1_2_9_81_1 doi: 10.2147/TCRM.S3336 – ident: e_1_2_9_83_1 doi: 10.1021/cr0503097 – ident: e_1_2_9_11_1 – start-page: 429 volume-title: Comprehensive Natural Products II: Chemistry and Biology year: 2010 ident: e_1_2_9_25_2 doi: 10.1016/B978-008045382-8.00046-0 – ident: e_1_2_9_97_2 doi: 10.1021/acs.orglett.9b03491 – ident: e_1_2_9_37_1 doi: 10.1016/j.fgb.2010.06.003 – ident: e_1_2_9_93_2 doi: 10.1039/C8OB03063D – ident: e_1_2_9_72_3 doi: 10.1002/ange.202004978 – ident: e_1_2_9_2_1 doi: 10.1038/ja.2005.1 – ident: e_1_2_9_76_1 – ident: e_1_2_9_6_1 doi: 10.3389/fmicb.2019.00387 – ident: e_1_2_9_60_1 doi: 10.1016/j.omtm.2019.05.006 – ident: e_1_2_9_74_1 doi: 10.1021/cr200398y – ident: e_1_2_9_79_2 doi: 10.3390/molecules23010169 – ident: e_1_2_9_48_2 doi: 10.1128/MMBR.00054-12 – start-page: 343 volume-title: Methods Enzymol., Vol. 517 year: 2012 ident: e_1_2_9_42_2 – ident: e_1_2_9_5_2 doi: 10.1021/acs.jnatprod.9b01285 – ident: e_1_2_9_121_1 – ident: e_1_2_9_31_1 doi: 10.1093/nar/gkab335 – ident: e_1_2_9_82_1 doi: 10.1039/b111145k – ident: e_1_2_9_88_2 doi: 10.1093/nar/gkr027 – ident: e_1_2_9_80_1 doi: 10.1016/j.annonc.2021.08.2127 – ident: e_1_2_9_14_1 doi: 10.1038/417141a – ident: e_1_2_9_44_2 doi: 10.1021/np0401664 – ident: e_1_2_9_117_1 – ident: e_1_2_9_89_2 doi: 10.1038/nchembio.175 – ident: e_1_2_9_75_1 doi: 10.1016/0196-9781(94)00017-Z – ident: e_1_2_9_118_2 doi: 10.1021/acs.orglett.1c01022 |
SSID | ssj0009631 |
Score | 2.4264143 |
Snippet | Secondary metabolites derived from microorganism constitute an important part of natural products. Mining of the microbial genomes revealed a large number of... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e202200502 |
SubjectTerms | 2,5-DKPs Actinobacteria - genetics Actinobacteria - metabolism Bioinformatics Biological Products - metabolism Biosynthetic Pathways - genetics Computational Biology Concept Concepts Diketopiperazines dimeric DKPs Fermentation Gene clusters Gene expression genome mining Genomes Genomics heterologous expression Metabolites Microorganisms Multigene Family Natural products nucleobase-containing DKPs Secondary metabolites |
Title | Genomics‐Guided Efficient Identification of 2,5‐Diketopiperazine Derivatives from Actinobacteria |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcbic.202200502 https://www.ncbi.nlm.nih.gov/pubmed/36098493 https://www.proquest.com/docview/2771464897 https://www.proquest.com/docview/2714063760 https://pubmed.ncbi.nlm.nih.gov/PMC10092475 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1Lb9QwEMdHtJdyKfRFQx8yEqKXpt11nNg-brcvOCCEqNRb5FfUqJBddXeR6ImPwGfkk3TsPNpthZDgtqtMtGtnxp6_M_4Z4K2wiaOWo0y1ksVM6zRWkrrYZP2-pUVqhA7VFh-z8wv24TK9fLCLv-ZDdAtuPjLCeO0DXOnJ4T001OjSIwipXxYJNElfsOWzos_3_Cj0rqC4mH_dSSlvqY09ejh_-_ys9CTVfFox-TCTDVPR6QtQbSPqCpTrg9lUH5jbR3zH_2nlS1hu8lQyqB1rBZ65ahXWBhVq9G8_yDsSKkfDkvwqLA3bU-PWwJ65sNF58vvnr7NZaZ0lJ4FSgU0i9a7golkmJKOC0P0UDY_Lazcdjcuxuwm0a3KMcfE9IMknxG-AIQMcliscegJaWq3DxenJl-F53JzkEBuU3_70FNd3opBCGcN7VGrNKHeJRnXWs0I5I1DnOJVJLlPBE21FQWVPiQzFJ1faJhuwWI0qtwmEahTtFscdi1IwsVxzTAIdZrFCoVbNbARx-yRz02DO_WkbX_Ma0Exz36V516UR7HX24xrw8UfL7dYx8ibQJznlHOcaJiSP4E13Gfvcv3dRlRvNvA2q2MxXH0Xwqvaj7qcSbKJgMolAzHlYZ-Dx3_NXqvIqYMD7npfFeBoBDR70l7-fD4_eD7tvr__lpi14jp-Tumh9GxanNzO3gznZVO_CAmWfdkP03QHXUjCA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6h9lAuUFqg6QOMhOBC2l3nYfu47LbdQukBtRK3KH5ERIXsqruLBCd-Ar-RX9IZ51GWCiHBMclYiZ0Ze77x-BuA59JGjluBMNWqOIy1TsJccReatN-3vEiM1D7b4iwdX8RvPiRtNiGdhan5IbqAG1mGn6_JwCkgfXDDGmp0SRyEnOIiRCe5SmW9iT5_9P6GQQr1y2OumDY8ORctb2OPHyy3X16Xbjmbt3Mmf_Vl_WJ0dB902406B-VyfzHX--bbbwyP_9XPdbjXuKpsUOvWA7jjqg3YHFQI0z9_ZS-YTx71UfkNWBu2heM2wR47f9Z59vP7j-NFaZ1lh56oAvvE6oPBRRMpZJOC8VcJCo7KSzefTMupu_KE12yEpvHFs5LPGJ2BYQOcmSucfTy7dP4QLo4Oz4fjsCnmEBpE4FRAxfWdLJTMjRE9rrSOuXCRRoDWszJ3RiLUcXmqhEqkiLSVBVe9XKaIP0WubfQIVqpJ5baAcY243eLUYxENRlZogX6gQ0dW5ghXUxtA2P7KzDRM51Rw41NWczTzjIY064Y0gJed_LTm-Pij5G6rGVlj67OMC4HLTSyVCOBZ9xjHnLZe8spNFiSDQDalBKQAHteK1L0qwi7KWEUByCUV6wSIAXz5SVV-9EzgfaLMikUSAPcq9JfPz4avT4bd1fa_NHoKa-Pzd6fZ6cnZ2x24i_ejOod9F1bmVwu3hy7aXD_xRngNmt0zxQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4hkKAXxLMNUOpKiF6I2HWc2D5ud1mgrRCHInGL7NhRIyC72gcSN34Cv7G_pGMnG1ihColj4rGcePyYbzz-BuBAmMhSwxGmGslCpnUcKkltmCXttqF5nAntoy0ukrMr9uM6vn5xi7_ih2gcbm5m-PXaTfChyY-fSUMzXTgKQurcIo5Ncsmd-LmgLsoun2l3E5-REI0CGTJK-Yy2sUWP5-vPb0uvbM3XIZMvTVm_F_XXYLU2Ikmn0vo6LNhyAzY7JQLouwdySHxYp_eXb8BKd5bSbRPMqfW3kMd_H59Op4Wxhpx4CglsjlRXdvPah0cGOaFHMQr2ihs7GQyLoR15KmrSw0F77_nCx8TdTiEdXDNLXBc877Pagqv-ye_uWVinWQgzxMYutYltW5FLobKMt6jUmlFuI43QqWWEsplAEGJVIrmMBY-0ETmVLSUSRIZcaRNtw2I5KO0nIFQjoja4KBjEaZHhmqOFZtHEFAqBZGICCGe9nGY1B7lLhXGbVuzJNHVaSRutBPCtkR9W7Bv_ldybKS2tZ-E4pZzjRsCE5AF8bYqxz92hiCrtYOpkEGImLjQogI-VjpumIvxFwWQUgJjTfiPguLnnS8rij-fobjsyK8bjAKgfKG98ftr9ft5tnnbeU-kLLF_2-umv84ufu_ABX0dVcPkeLE5GU_sZbaeJ3vfT4x_CiBEw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genomics%E2%80%90Guided+Efficient+Identification+of+2%2C5%E2%80%90Diketopiperazine+Derivatives+from+Actinobacteria&rft.jtitle=Chembiochem+%3A+a+European+journal+of+chemical+biology&rft.au=Liu%2C+Jing&rft.au=Li%2C+Shu%E2%80%90Ming&rft.date=2023-02-01&rft.pub=John+Wiley+and+Sons+Inc&rft.issn=1439-4227&rft.eissn=1439-7633&rft.volume=24&rft.issue=3&rft_id=info:doi/10.1002%2Fcbic.202200502&rft_id=info%3Apmid%2F36098493&rft.externalDocID=PMC10092475 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1439-4227&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1439-4227&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1439-4227&client=summon |