Genomics‐Guided Efficient Identification of 2,5‐Diketopiperazine Derivatives from Actinobacteria

Secondary metabolites derived from microorganism constitute an important part of natural products. Mining of the microbial genomes revealed a large number of uncharacterized biosynthetic gene clusters, indicating their greater potential to synthetize specialized or secondary metabolites (SMs) than i...

Full description

Saved in:
Bibliographic Details
Published inChembiochem : a European journal of chemical biology Vol. 24; no. 3; pp. e202200502 - n/a
Main Authors Liu, Jing, Li, Shu‐Ming
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.02.2023
John Wiley and Sons Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Secondary metabolites derived from microorganism constitute an important part of natural products. Mining of the microbial genomes revealed a large number of uncharacterized biosynthetic gene clusters, indicating their greater potential to synthetize specialized or secondary metabolites (SMs) than identified by classic fermentation and isolation approaches. Various bioinformatics tools have been developed to analyze and identify such gene clusters, thus accelerating significantly the mining process. Heterologous expression of an individual biosynthetic gene cluster has been proven as an efficient way to activate the genes and identify the encoded metabolites that cannot be detected under normal laboratory cultivation conditions. Herein, we describe a concept of genomics‐guided approach by performing genome mining and heterologous expression to uncover novel CDPS‐derived DKPs and functionally characterize novel tailoring enzymes embedded in the biosynthetic pathways. Recent works focused on the identification of the nucleobase‐related and dimeric DKPs are also presented. Genome mining combined with heterologous expression has been demonstrated to be an efficient way to identify novel 2,5‐diketopiperazine derivatives from actinobacteria. Meanwhile, their biosynthetic pathways and new enzymes embedded inside have been functionally characterized. It is expected that more biologically active diketopiperazines can be obtained by exploring the genetic potentials of microorganism in the future.
AbstractList Secondary metabolites derived from microorganism constitute an important part of natural products. Mining of the microbial genomes revealed a large number of uncharacterized biosynthetic gene clusters, indicating their greater potential to synthetize specialized or secondary metabolites (SMs) than identified by classic fermentation and isolation approaches. Various bioinformatics tools have been developed to analyze and identify such gene clusters, thus accelerating significantly the mining process. Heterologous expression of an individual biosynthetic gene cluster has been proven as an efficient way to activate the genes and identify the encoded metabolites that cannot be detected under normal laboratory cultivation conditions. Herein, we describe a concept of genomics-guided approach by performing genome mining and heterologous expression to uncover novel CDPS-derived DKPs and functionally characterize novel tailoring enzymes embedded in the biosynthetic pathways. Recent works focused on the identification of the nucleobase-related and dimeric DKPs are also presented.Secondary metabolites derived from microorganism constitute an important part of natural products. Mining of the microbial genomes revealed a large number of uncharacterized biosynthetic gene clusters, indicating their greater potential to synthetize specialized or secondary metabolites (SMs) than identified by classic fermentation and isolation approaches. Various bioinformatics tools have been developed to analyze and identify such gene clusters, thus accelerating significantly the mining process. Heterologous expression of an individual biosynthetic gene cluster has been proven as an efficient way to activate the genes and identify the encoded metabolites that cannot be detected under normal laboratory cultivation conditions. Herein, we describe a concept of genomics-guided approach by performing genome mining and heterologous expression to uncover novel CDPS-derived DKPs and functionally characterize novel tailoring enzymes embedded in the biosynthetic pathways. Recent works focused on the identification of the nucleobase-related and dimeric DKPs are also presented.
Secondary metabolites derived from microorganism constitute an important part of natural products. Mining of the microbial genomes revealed a large number of uncharacterized biosynthetic gene clusters, indicating their greater potential to synthetize specialized or secondary metabolites (SMs) than identified by classic fermentation and isolation approaches. Various bioinformatics tools have been developed to analyze and identify such gene clusters, thus accelerating significantly the mining process. Heterologous expression of an individual biosynthetic gene cluster has been proven as an efficient way to activate the genes and identify the encoded metabolites that cannot be detected under normal laboratory cultivation conditions. Herein, we describe a concept of genomics‐guided approach by performing genome mining and heterologous expression to uncover novel CDPS‐derived DKPs and functionally characterize novel tailoring enzymes embedded in the biosynthetic pathways. Recent works focused on the identification of the nucleobase‐related and dimeric DKPs are also presented.
Secondary metabolites derived from microorganism constitute an important part of natural products. Mining of the microbial genomes revealed a large number of uncharacterized biosynthetic gene clusters, indicating their greater potential to synthetize specialized or secondary metabolites (SMs) than identified by classic fermentation and isolation approaches. Various bioinformatics tools have been developed to analyze and identify such gene clusters, thus accelerating significantly the mining process. Heterologous expression of an individual biosynthetic gene cluster has been proven as an efficient way to activate the genes and identify the encoded metabolites that cannot be detected under normal laboratory cultivation conditions. Herein, we describe a concept of genomics‐guided approach by performing genome mining and heterologous expression to uncover novel CDPS‐derived DKPs and functionally characterize novel tailoring enzymes embedded in the biosynthetic pathways. Recent works focused on the identification of the nucleobase‐related and dimeric DKPs are also presented. Genome mining combined with heterologous expression has been demonstrated to be an efficient way to identify novel 2,5‐diketopiperazine derivatives from actinobacteria. Meanwhile, their biosynthetic pathways and new enzymes embedded inside have been functionally characterized. It is expected that more biologically active diketopiperazines can be obtained by exploring the genetic potentials of microorganism in the future.
Secondary metabolites derived from microorganism constitute an important part of natural products. Mining of the microbial genomes revealed a large number of uncharacterized biosynthetic gene clusters, indicating their greater potential to synthetize specialized or secondary metabolites (SMs) than identified by classic fermentation and isolation approaches. Various bioinformatics tools have been developed to analyze and identify such gene clusters, thus accelerating significantly the mining process. Heterologous expression of an individual biosynthetic gene cluster has been proven as an efficient way to activate the genes and identify the encoded metabolites that cannot be detected under normal laboratory cultivation conditions. Herein, we describe a concept of genomics‐guided approach by performing genome mining and heterologous expression to uncover novel CDPS‐derived DKPs and functionally characterize novel tailoring enzymes embedded in the biosynthetic pathways. Recent works focused on the identification of the nucleobase‐related and dimeric DKPs are also presented. Genome mining combined with heterologous expression has been demonstrated to be an efficient way to identify novel 2,5‐diketopiperazine derivatives from actinobacteria. Meanwhile, their biosynthetic pathways and new enzymes embedded inside have been functionally characterized. It is expected that more biologically active diketopiperazines can be obtained by exploring the genetic potentials of microorganism in the future.
Author Liu, Jing
Li, Shu‐Ming
AuthorAffiliation 2 Current address: Department of Natural Products in Organismic Interactions Max Planck Institute for Terrestrial Microbiology Karl-von-Frisch-Straße 10 35043 Marburg Germany
1 Institut für Pharmazeutische Biologie und Biotechnologie Fachbereich Pharmazie Philipps-Universität Marburg Robert-Koch-Straße 4 35037 Marburg Germany
AuthorAffiliation_xml – name: 1 Institut für Pharmazeutische Biologie und Biotechnologie Fachbereich Pharmazie Philipps-Universität Marburg Robert-Koch-Straße 4 35037 Marburg Germany
– name: 2 Current address: Department of Natural Products in Organismic Interactions Max Planck Institute for Terrestrial Microbiology Karl-von-Frisch-Straße 10 35043 Marburg Germany
Author_xml – sequence: 1
  givenname: Jing
  surname: Liu
  fullname: Liu, Jing
  organization: Max Planck Institute for Terrestrial Microbiology
– sequence: 2
  givenname: Shu‐Ming
  orcidid: 0000-0003-4583-2655
  surname: Li
  fullname: Li, Shu‐Ming
  email: shuming.li@staff.uni-marburg.de
  organization: Philipps-Universität Marburg
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36098493$$D View this record in MEDLINE/PubMed
BookMark eNqFkctu1DAUhi1URC-wZYkisWHRGXxLbK9QOy3DSJXYwNpynBM4JbGHOBlUVjxCn5EnwWWGASohNr7ofP_xf_wfk4MQAxDylNE5o5S_9DX6OaecU1pS_oAcMSnMTFVCHOzOknN1SI5TuqaUmkqwR-RQVNRoacQRaZYQYo8-ff92u5ywgaa4bFv0CGEsVk1eMd_ciDEUsS34aZnBC_wEY1zjGgb3FQMUFzDgJkMbSEU7xL448yOGWDs_5op7TB62rkvwZLefkPevL98t3syu3i5Xi7OrmZeV4TPGgYFujXbeK8pNXUuuQNTSlLTRDrxmTIOrjDKlVqJudMsNdToPI5WrG3FCXm37rqe6h8Zn94Pr7HrA3g03Njq0f1cCfrQf4sbmrzRcqjJ3eLHrMMTPE6TR9pg8dJ0LEKdkuWKSVkJVNKPP76HXcRpCni9TGaukNipTz_60tPfyK4EMzLeAH2JKA7R7hNE7X9zeRWz3EWeBvCfwOP4MKI-E3b9lZiv7gh3c_OcRuzhfLX5rfwAtvr2Z
CitedBy_id crossref_primary_10_1021_acs_jnatprod_2c00787
crossref_primary_10_1021_acssynbio_3c00115
crossref_primary_10_1021_acs_orglett_3c03031
crossref_primary_10_1002_cbic_202300770
crossref_primary_10_1038_s41467_023_38168_3
crossref_primary_10_1021_acs_biochem_4c00505
crossref_primary_10_1038_s41429_024_00782_8
Cites_doi 10.3390/md18040199
10.1039/C5NP00013K
10.1021/acscatal.1c04609
10.1039/D1NP00032B
10.1039/D1NP00060H
10.3390/pr8040470
10.1021/jm700948z
10.1073/pnas.0812191106
10.1038/nrg3186
10.1016/j.biotechadv.2018.10.003
10.1038/s41467-017-02088-w
10.1038/s41573-020-00114-z
10.1039/D2NP00006G
10.1016/S1074-5521(02)00285-5
10.1021/acs.orglett.9b02666
10.1002/ange.201906891
10.1007/s10295-005-0033-8
10.1073/pnas.1507606112
10.1093/nar/gkx1249
10.1093/nar/gkx320
10.1016/j.biotechadv.2008.09.001
10.1038/nchembio.1868
10.1039/D0CC04772D
10.1021/jacs.0c06312
10.1038/ja.2017.51
10.1007/s00253-010-2860-4
10.1039/C6NP00025H
10.1021/acssynbio.8b00151
10.1021/ja206743v
10.1016/j.ymben.2018.03.010
10.1039/b817069j
10.3390/md16070244
10.1128/AEM.01337-10
10.1016/j.cell.2014.06.034
10.5582/ddt.2018.01066
10.1039/C9NP00023B
10.1002/anie.202200377
10.1016/j.cbpa.2020.07.010
10.1039/c3np70034h
10.3390/md19080403
10.1002/anie.202004978
10.1002/anie.200704960
10.1016/j.ymben.2018.09.004
10.1039/c2np20010d
10.1002/anie.201906891
10.1074/jbc.R116.762906
10.1038/s41467-020-19986-1
10.1039/C5NP00111K
10.1039/C9NP00036D
10.1039/C8NP00091C
10.1016/j.biotechadv.2022.107966
10.1007/s10295-016-1874-z
10.1016/j.mib.2019.01.001
10.1038/s41589-019-0400-9
10.1002/ange.200704960
10.1111/1751-7915.13351
10.1186/1471-2105-10-185
10.1039/C9NP00025A
10.1186/1475-2859-11-50
10.1021/acs.orglett.8b02051
10.1002/ange.201910563
10.1016/j.tim.2014.10.007
10.1021/acs.joc.2c00169
10.1038/s41429-019-0236-2
10.1016/j.copbio.2007.04.005
10.1039/C5NP00085H
10.1007/s00253-021-11178-1
10.1007/s00726-010-0567-6
10.1038/nrmicro3496
10.1111/j.1751-7915.2010.00219.x
10.1039/D1NP00036E
10.1039/D1NP00013F
10.1021/acs.jnatprod.0c01273
10.1039/C9NP00027E
10.1039/C8NP00012C
10.1016/B978-0-12-409547-2.14627-X
10.1039/D2NP00030J
10.1021/ja401945a
10.2147/TCRM.S3336
10.1021/cr0503097
10.1016/B978-008045382-8.00046-0
10.1021/acs.orglett.9b03491
10.1016/j.fgb.2010.06.003
10.1039/C8OB03063D
10.1002/ange.202004978
10.1038/ja.2005.1
10.3389/fmicb.2019.00387
10.1016/j.omtm.2019.05.006
10.1021/cr200398y
10.3390/molecules23010169
10.1128/MMBR.00054-12
10.1021/acs.jnatprod.9b01285
10.1093/nar/gkab335
10.1039/b111145k
10.1093/nar/gkr027
10.1016/j.annonc.2021.08.2127
10.1038/417141a
10.1021/np0401664
10.1038/nchembio.175
10.1016/0196-9781(94)00017-Z
10.1021/acs.orglett.1c01022
ContentType Journal Article
Copyright 2022 The Authors. ChemBioChem published by Wiley-VCH GmbH
2022 The Authors. ChemBioChem published by Wiley-VCH GmbH.
2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Authors. ChemBioChem published by Wiley-VCH GmbH
– notice: 2022 The Authors. ChemBioChem published by Wiley-VCH GmbH.
– notice: 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QO
7TM
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
7X8
5PM
DOI 10.1002/cbic.202200502
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Biotechnology Research Abstracts
Technology Research Database
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Nucleic Acids Abstracts
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
Virology and AIDS Abstracts


MEDLINE
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1439-7633
EndPage n/a
ExternalDocumentID PMC10092475
36098493
10_1002_cbic_202200502
CBIC202200502
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Deutsche Forschungsgemeinschaft
  funderid: INST 160/620-1; Li844/14-1; 201608310118
– fundername: China Scholarship Council
– fundername: ;
  grantid: INST 160/620-1; Li844/14-1; 201608310118
– fundername: ;
GroupedDBID ---
-DZ
-~X
05W
0R~
1L6
1OC
24P
29B
33P
3WU
4.4
4ZD
50Y
5GY
5VS
66C
6J9
6P2
77Q
8-0
8-1
8UM
A00
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACXBN
ACXQS
ADBBV
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IH2
IX1
JPC
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MXFUL
MXSTM
MY~
NNB
O9-
OIG
P2P
P2W
P4E
PQQKQ
R.K
ROL
RWI
RX1
SUPJJ
SV3
V2E
W99
WBKPD
WH7
WJL
WOHZO
WXSBR
WYJ
XPP
XV2
Y6R
YZZ
ZZTAW
~KM
~S-
.GJ
31~
53G
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADNMO
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
AI.
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
GODZA
HVGLF
VH1
XSW
ZGI
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QO
7TM
7U9
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
FR3
H94
K9.
M7N
P64
7X8
5PM
ID FETCH-LOGICAL-c4692-12e1e8f98acc7029bb427e3b4950d8aec8118ea69795873bd8f290a860947abd3
IEDL.DBID DR2
ISSN 1439-4227
1439-7633
IngestDate Thu Aug 21 18:38:23 EDT 2025
Fri Jul 11 01:36:46 EDT 2025
Sun Jul 13 03:49:15 EDT 2025
Thu Apr 03 07:06:52 EDT 2025
Thu Apr 24 22:51:31 EDT 2025
Tue Jul 01 04:35:23 EDT 2025
Wed Jan 22 16:17:33 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords nucleobase-containing DKPs
heterologous expression
2,5-DKPs
dimeric DKPs
genome mining
Language English
License Attribution
2022 The Authors. ChemBioChem published by Wiley-VCH GmbH.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4692-12e1e8f98acc7029bb427e3b4950d8aec8118ea69795873bd8f290a860947abd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4583-2655
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcbic.202200502
PMID 36098493
PQID 2771464897
PQPubID 986344
PageCount 6
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10092475
proquest_miscellaneous_2714063760
proquest_journals_2771464897
pubmed_primary_36098493
crossref_primary_10_1002_cbic_202200502
crossref_citationtrail_10_1002_cbic_202200502
wiley_primary_10_1002_cbic_202200502_CBIC202200502
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 1, 2023
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: February 1, 2023
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
– name: Hoboken
PublicationTitle Chembiochem : a European journal of chemical biology
PublicationTitleAlternate Chembiochem
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
John Wiley and Sons Inc
Publisher_xml – name: Wiley Subscription Services, Inc
– name: John Wiley and Sons Inc
References 2021; 20
2019; 51
2021; 23
2019; 10
2006; 33
2017; 44
2019; 12
2017; 45
2019; 14
2015; 32
2020 2020; 59 132
2019; 17
2020; 16
2020; 56
2020; 11
2008; 4
2008 2008; 47 120
2012; 13
2012; 11
2018; 49
2005; 68
2018; 47
2016; 33
2020; 18
2018; 46
2020; 8
2018; 7
2021; 38
2018; 9
2021; 32
2009; 10
2017; 70
2019; 21
2012; 29
2021; 84
2022; 39
2018; 35
2015; 13
2007; 18
2021; 49
2019; 72
2012
2002; 9
1995; 16
2010
2020; 142
2020; 83
2010; 39
2021; 105
2019; 37
2015; 11
2019; 36
2011; 77
2020; 37
2017; 292
2022; 87
2002; 417
2011; 4
2018; 23
2011; 39
2008; 51
2018; 20
2014; 158
2009; 27
2009; 26
2019 2019; 58 131
2011; 133
2010; 88
2015; 23
2018; 19
2010; 47
2012; 112
2021; 12
2013; 77
2022; 61
2020
2015; 112
2013; 30
2021; 19
2022; 59
2013; 135
2009; 5
2018; 12
2021; 60
2006; 106
2018; 16
2003; 20
2019; 131
2005; 58
2009; 106
e_1_2_9_75_1
e_1_2_9_52_1
e_1_2_9_98_2
e_1_2_9_56_2
e_1_2_9_94_1
e_1_2_9_10_1
e_1_2_9_33_1
e_1_2_9_90_1
e_1_2_9_71_1
e_1_2_9_107_1
e_1_2_9_122_2
e_1_2_9_103_2
e_1_2_9_14_1
e_1_2_9_37_1
e_1_2_9_18_2
e_1_2_9_79_2
e_1_2_9_41_1
e_1_2_9_87_1
e_1_2_9_68_1
e_1_2_9_83_1
e_1_2_9_45_2
e_1_2_9_22_2
e_1_2_9_64_2
e_1_2_9_6_1
(e_1_2_9_96_3) 2019; 131
e_1_2_9_119_2
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_111_2
e_1_2_9_115_1
e_1_2_9_49_2
e_1_2_9_30_2
e_1_2_9_72_3
e_1_2_9_72_2
e_1_2_9_99_2
Ziemert N. (e_1_2_9_26_2) 2020
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_95_2
e_1_2_9_53_2
e_1_2_9_76_1
e_1_2_9_91_1
Aigle B. (e_1_2_9_42_2) 2012
e_1_2_9_102_1
e_1_2_9_106_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_57_2
e_1_2_9_121_1
e_1_2_9_19_2
e_1_2_9_88_2
e_1_2_9_61_1
e_1_2_9_84_1
e_1_2_9_23_1
e_1_2_9_65_1
e_1_2_9_80_1
e_1_2_9_5_2
e_1_2_9_118_2
e_1_2_9_1_1
e_1_2_9_114_1
e_1_2_9_9_2
e_1_2_9_114_2
e_1_2_9_46_2
e_1_2_9_27_1
e_1_2_9_69_1
e_1_2_9_110_1
e_1_2_9_31_1
e_1_2_9_73_2
e_1_2_9_50_2
e_1_2_9_35_1
e_1_2_9_77_2
e_1_2_9_12_2
e_1_2_9_54_2
e_1_2_9_96_2
e_1_2_9_109_2
e_1_2_9_92_2
e_1_2_9_101_1
e_1_2_9_105_1
e_1_2_9_39_1
Skinnider M. A. (e_1_2_9_120_1) 2018; 19
e_1_2_9_16_2
e_1_2_9_58_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_89_2
e_1_2_9_24_1
e_1_2_9_66_1
e_1_2_9_43_2
e_1_2_9_85_2
e_1_2_9_81_1
e_1_2_9_4_2
e_1_2_9_113_2
e_1_2_9_117_1
e_1_2_9_8_2
e_1_2_9_28_1
e_1_2_9_47_1
Corr C. (e_1_2_9_25_2) 2010
e_1_2_9_51_2
e_1_2_9_97_2
e_1_2_9_74_1
e_1_2_9_78_2
e_1_2_9_93_2
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_108_2
e_1_2_9_70_1
e_1_2_9_100_2
e_1_2_9_104_2
e_1_2_9_123_2
e_1_2_9_13_2
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_17_2
e_1_2_9_63_2
e_1_2_9_86_2
e_1_2_9_40_1
e_1_2_9_21_2
e_1_2_9_44_2
e_1_2_9_67_1
e_1_2_9_7_1
e_1_2_9_82_1
e_1_2_9_3_1
e_1_2_9_112_2
e_1_2_9_116_1
e_1_2_9_48_2
e_1_2_9_29_2
References_xml – volume: 16
  start-page: 244
  year: 2018
  publication-title: Mar. Drugs
– volume: 26
  start-page: 1362
  year: 2009
  end-page: 1384
  publication-title: Nat. Prod. Rep.
– volume: 19
  start-page: 1
  year: 2018
  end-page: 11
  publication-title: BMC Genet.
– volume: 10
  start-page: 387
  year: 2019
  publication-title: Front. Microbiol.
– volume: 37
  start-page: 312
  year: 2020
  end-page: 321
  publication-title: Nat. Prod. Rep.
– volume: 16
  start-page: 151
  year: 1995
  end-page: 164
  publication-title: Peptides
– volume: 39
  start-page: 45
  year: 2010
  end-page: 57
  publication-title: Amino Acids
– volume: 12
  start-page: 318
  year: 2018
  end-page: 328
  publication-title: Drug Discov. Therap.
– volume: 11
  start-page: 6058
  year: 2020
  publication-title: Nat. Commun.
– volume: 51
  start-page: 1
  year: 2019
  end-page: 8
  publication-title: Curr. Opin. Microbiol.
– volume: 47
  start-page: 334
  year: 2018
  end-page: 345
  publication-title: Metab. Eng.
– volume: 112
  start-page: 8953
  year: 2015
  end-page: 8958
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 87
  start-page: 4818
  year: 2022
  end-page: 4828
  publication-title: J. Org. Chem.
– volume: 133
  start-page: 14940
  year: 2011
  end-page: 14943
  publication-title: J. Am. Chem. Soc.
– volume: 77
  start-page: 112
  year: 2013
  end-page: 143
  publication-title: Microbiol. Mol. Biol. Rev.
– volume: 21
  start-page: 7094
  year: 2019
  end-page: 7098
  publication-title: Org. Lett.
– volume: 13
  start-page: 509
  year: 2015
  end-page: 523
  publication-title: Nat. Rev. Microbiol.
– volume: 14
  start-page: 16
  year: 2019
  end-page: 26
  publication-title: Mol. Ther. Methods Clin. Dev.
– volume: 56
  start-page: 11042
  year: 2020
  end-page: 11045
  publication-title: Chem. Commun.
– volume: 39
  start-page: 1721
  year: 2022
  end-page: 1765
  publication-title: Nat. Prod. Rep.
– volume: 33
  start-page: 54
  year: 2016
  end-page: 72
  publication-title: Nat. Prod. Rep.
– volume: 9
  start-page: 1355
  year: 2002
  end-page: 1364
  publication-title: Chem. Biol.
– volume: 58 131
  start-page: 11534 11658
  year: 2019 2019
  end-page: 11540 11664
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 38
  start-page: 2024
  year: 2021
  end-page: 2040
  publication-title: Nat. Prod. Rep.
– volume: 37
  start-page: 1
  year: 2019
  end-page: 20
  publication-title: Biotechnol. Adv.
– volume: 36
  start-page: 1313
  year: 2019
  end-page: 1332
  publication-title: Nat. Prod. Rep.
– volume: 158
  start-page: 412
  year: 2014
  end-page: 421
  publication-title: Cell
– volume: 23
  start-page: 110
  year: 2015
  end-page: 119
  publication-title: Trends Microbiol.
– volume: 12
  start-page: 55
  year: 2019
  end-page: 57
  publication-title: Microb. Biotechnol.
– volume: 36
  start-page: 1412
  year: 2019
  end-page: 1436
  publication-title: Nat. Prod. Rep.
– volume: 49
  start-page: W29
  year: 2021
  end-page: W35
  publication-title: Nucleic Acids Res.
– volume: 21
  start-page: 9104
  year: 2019
  end-page: 9108
  publication-title: Org. Lett.
– volume: 36
  start-page: 1295
  year: 2019
  end-page: 1312
  publication-title: Nat. Prod. Rep.
– volume: 59
  year: 2022
  publication-title: Biotechnol. Adv.
– start-page: 19
  year: 2020
  end-page: 33
– volume: 292
  start-page: 8546
  year: 2017
  end-page: 8552
  publication-title: J. Biol. Chem.
– volume: 44
  start-page: 285
  year: 2017
  end-page: 293
  publication-title: J. Ind. Microbiol. Biotechnol.
– volume: 68
  start-page: 493
  year: 2005
  end-page: 496
  publication-title: J. Nat. Prod.
– volume: 112
  start-page: 3641
  year: 2012
  end-page: 3716
  publication-title: Chem. Rev.
– volume: 23
  start-page: 6601
  year: 2021
  end-page: 6605
  publication-title: Org. Lett.
– volume: 83
  start-page: 770
  year: 2020
  end-page: 803
  publication-title: J. Nat. Prod.
– volume: 39
  start-page: 4475
  year: 2011
  end-page: 4489
  publication-title: Nucleic Acids Res.
– volume: 60
  start-page: 47
  year: 2021
  end-page: 54
  publication-title: Curr. Opin. Chem. Biol.
– volume: 47
  start-page: 736
  year: 2010
  end-page: 741
  publication-title: Fungal Genet. Biol.
– volume: 135
  start-page: 7720
  year: 2013
  end-page: 7731
  publication-title: J. Am. Chem. Soc.
– volume: 58
  start-page: 1
  year: 2005
  end-page: 26
  publication-title: J. Antibiot.
– volume: 11
  start-page: 721
  year: 2015
  end-page: 727
  publication-title: Nat. Chem. Biol.
– volume: 23
  start-page: 169
  year: 2018
  publication-title: Molecules
– volume: 20
  start-page: 4921
  year: 2018
  end-page: 4925
  publication-title: Org. Lett.
– volume: 16
  start-page: 60
  year: 2020
  end-page: 68
  publication-title: Nat. Chem. Biol.
– volume: 18
  start-page: 199
  year: 2020
  publication-title: Mar. Drugs
– volume: 10
  start-page: 1
  year: 2009
  end-page: 10
  publication-title: BMC Bioinf.
– volume: 49
  start-page: 316
  year: 2018
  end-page: 324
  publication-title: Metab. Eng.
– volume: 72
  start-page: 913
  year: 2019
  end-page: 923
  publication-title: J. Antibiot.
– volume: 13
  start-page: 303
  year: 2012
  end-page: 314
  publication-title: Nat. Rev. Genet.
– volume: 39
  start-page: 1015
  year: 2022
  end-page: 1044
  publication-title: Nat. Prod. Rep.
– volume: 105
  start-page: 2277
  year: 2021
  end-page: 2285
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 30
  start-page: 1121
  year: 2013
  end-page: 1138
  publication-title: Nat. Prod. Rep.
– volume: 46
  year: 2018
  publication-title: Nucleic Acids Res.
– start-page: 343
  year: 2012
  end-page: 366
– volume: 4
  start-page: 1315
  year: 2008
  publication-title: Ther. Clin. Risk Manage.
– volume: 27
  start-page: 53
  year: 2009
  end-page: 75
  publication-title: Biotechnol. Adv.
– volume: 131
  start-page: 19133
  year: 2019
  end-page: 19139
  publication-title: Angew. Chem. Int. Ed.
– volume: 17
  start-page: 2305
  year: 2019
  end-page: 2314
  publication-title: Org. Biomol. Chem.
– volume: 32
  start-page: 956
  year: 2015
  end-page: 970
  publication-title: Nat. Prod. Rep.
– start-page: 429
  year: 2010
  end-page: 453
– volume: 33
  start-page: 174
  year: 2016
  end-page: 182
  publication-title: Nat. Prod. Rep.
– volume: 417
  start-page: 141
  year: 2002
  end-page: 147
  publication-title: Nature
– volume: 5
  start-page: 414
  year: 2009
  end-page: 420
  publication-title: Nat. Chem. Biol.
– volume: 38
  start-page: 2100
  year: 2021
  end-page: 2129
  publication-title: Nat. Prod. Rep.
– volume: 47 120
  start-page: 1485 1507
  year: 2008 2008
  end-page: 1487 1509
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 51
  start-page: 2618
  year: 2008
  end-page: 2628
  publication-title: J. Med. Chem.
– volume: 38
  start-page: 2041
  year: 2021
  end-page: 2065
  publication-title: Nat. Prod. Rep.
– volume: 35
  start-page: 575
  year: 2018
  end-page: 604
  publication-title: Nat. Prod. Rep.
– volume: 12
  start-page: 648
  year: 2021
  end-page: 654
  publication-title: ACS Catal.
– volume: 61
  year: 2022
  publication-title: Angew. Chem. Int. Ed.
– volume: 106
  start-page: 3468
  year: 2006
  end-page: 3496
  publication-title: Chem. Rev.
– volume: 20
  start-page: 275
  year: 2003
  end-page: 287
  publication-title: Nat. Prod. Rep.
– volume: 106
  start-page: 7426
  year: 2009
  end-page: 7431
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 36
  start-page: 1281
  year: 2019
  end-page: 1294
  publication-title: Nat. Prod. Rep.
– volume: 77
  start-page: 400
  year: 2011
  end-page: 406
  publication-title: Appl. Environ. Microbiol.
– volume: 8
  start-page: 470
  year: 2020
  publication-title: Processes
– volume: 70
  start-page: 865
  year: 2017
  end-page: 870
  publication-title: J. Antibiot.
– volume: 88
  start-page: 1233
  year: 2010
  end-page: 1242
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 84
  start-page: 1725
  year: 2021
  end-page: 1737
  publication-title: J. Nat. Prod.
– volume: 18
  start-page: 267
  year: 2007
  end-page: 272
  publication-title: Curr. Opin. Biotechnol.
– volume: 9
  start-page: 1
  year: 2018
  end-page: 9
  publication-title: Nat. Commun.
– volume: 29
  start-page: 961
  year: 2012
  end-page: 979
  publication-title: Nat. Prod. Rep.
– volume: 20
  start-page: 200
  year: 2021
  end-page: 216
  publication-title: Nat. Rev. Drug Discovery
– volume: 59 132
  start-page: 14065 14169
  year: 2020 2020
  end-page: 14069 14173
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 4
  start-page: 207
  year: 2011
  end-page: 215
  publication-title: Microb. Biotechnol.
– volume: 7
  start-page: 1702
  year: 2018
  end-page: 1708
  publication-title: ACS Synth. Biol.
– volume: 32
  start-page: S1326
  year: 2021
  publication-title: Ann. Oncol.
– volume: 45
  start-page: W49
  year: 2017
  end-page: W54
  publication-title: Nucleic Acids Res.
– volume: 19
  start-page: 403
  year: 2021
  publication-title: Mar. Drugs
– volume: 11
  start-page: 50
  year: 2012
  publication-title: Microb. Cell Fact.
– volume: 142
  start-page: 17413
  year: 2020
  end-page: 17424
  publication-title: J. Am. Chem. Soc.
– volume: 39
  start-page: 1172
  year: 2022
  end-page: 1225
  publication-title: Nat. Prod. Rep.
– volume: 33
  start-page: 121
  year: 2006
  end-page: 128
  publication-title: J. Ind. Microbiol. Biotechnol.
– volume: 33
  start-page: 988
  year: 2016
  end-page: 1005
  publication-title: Nat. Prod. Rep.
– ident: e_1_2_9_23_1
  doi: 10.3390/md18040199
– ident: e_1_2_9_123_2
  doi: 10.1039/C5NP00013K
– ident: e_1_2_9_99_2
  doi: 10.1021/acscatal.1c04609
– ident: e_1_2_9_107_1
– ident: e_1_2_9_19_2
  doi: 10.1039/D1NP00032B
– ident: e_1_2_9_111_2
  doi: 10.1039/D1NP00060H
– ident: e_1_2_9_1_1
  doi: 10.3390/pr8040470
– ident: e_1_2_9_17_2
  doi: 10.1021/jm700948z
– ident: e_1_2_9_20_1
– ident: e_1_2_9_101_1
  doi: 10.1073/pnas.0812191106
– ident: e_1_2_9_39_1
  doi: 10.1038/nrg3186
– ident: e_1_2_9_110_1
– ident: e_1_2_9_47_1
– ident: e_1_2_9_61_1
  doi: 10.1016/j.biotechadv.2018.10.003
– ident: e_1_2_9_116_1
  doi: 10.1038/s41467-017-02088-w
– ident: e_1_2_9_9_2
  doi: 10.1038/s41573-020-00114-z
– ident: e_1_2_9_112_2
  doi: 10.1039/D2NP00006G
– ident: e_1_2_9_85_2
  doi: 10.1016/S1074-5521(02)00285-5
– ident: e_1_2_9_52_1
– ident: e_1_2_9_106_1
  doi: 10.1021/acs.orglett.9b02666
– volume: 19
  start-page: 1
  year: 2018
  ident: e_1_2_9_120_1
  publication-title: BMC Genet.
– volume: 131
  start-page: 11658
  year: 2019
  ident: e_1_2_9_96_3
  publication-title: Angew. Chem.
  doi: 10.1002/ange.201906891
– ident: e_1_2_9_67_1
  doi: 10.1007/s10295-005-0033-8
– ident: e_1_2_9_51_2
  doi: 10.1073/pnas.1507606112
– ident: e_1_2_9_59_1
  doi: 10.1093/nar/gkx1249
– ident: e_1_2_9_33_1
  doi: 10.1093/nar/gkx320
– ident: e_1_2_9_70_1
  doi: 10.1016/j.biotechadv.2008.09.001
– ident: e_1_2_9_86_2
  doi: 10.1038/nchembio.1868
– ident: e_1_2_9_98_2
  doi: 10.1039/D0CC04772D
– ident: e_1_2_9_84_1
– ident: e_1_2_9_108_2
  doi: 10.1021/jacs.0c06312
– ident: e_1_2_9_46_2
  doi: 10.1038/ja.2017.51
– ident: e_1_2_9_63_2
  doi: 10.1007/s00253-010-2860-4
– ident: e_1_2_9_18_2
  doi: 10.1039/C6NP00025H
– ident: e_1_2_9_28_1
– ident: e_1_2_9_56_2
  doi: 10.1021/acssynbio.8b00151
– ident: e_1_2_9_62_1
– ident: e_1_2_9_115_1
  doi: 10.1021/ja206743v
– ident: e_1_2_9_57_2
  doi: 10.1016/j.ymben.2018.03.010
– ident: e_1_2_9_13_2
  doi: 10.1039/b817069j
– ident: e_1_2_9_43_2
  doi: 10.3390/md16070244
– ident: e_1_2_9_45_2
  doi: 10.1128/AEM.01337-10
– ident: e_1_2_9_7_1
– ident: e_1_2_9_34_1
  doi: 10.1016/j.cell.2014.06.034
– ident: e_1_2_9_8_2
  doi: 10.5582/ddt.2018.01066
– ident: e_1_2_9_65_1
  doi: 10.1039/C9NP00023B
– ident: e_1_2_9_100_2
  doi: 10.1002/anie.202200377
– ident: e_1_2_9_22_2
  doi: 10.1016/j.cbpa.2020.07.010
– ident: e_1_2_9_58_1
  doi: 10.1039/c3np70034h
– ident: e_1_2_9_78_2
  doi: 10.3390/md19080403
– ident: e_1_2_9_72_2
  doi: 10.1002/anie.202004978
– ident: e_1_2_9_91_1
– ident: e_1_2_9_114_1
  doi: 10.1002/anie.200704960
– ident: e_1_2_9_68_1
  doi: 10.1016/j.ymben.2018.09.004
– ident: e_1_2_9_77_2
  doi: 10.1039/c2np20010d
– ident: e_1_2_9_96_2
  doi: 10.1002/anie.201906891
– ident: e_1_2_9_94_1
– ident: e_1_2_9_122_2
  doi: 10.1074/jbc.R116.762906
– ident: e_1_2_9_15_1
– ident: e_1_2_9_32_1
  doi: 10.1038/s41467-020-19986-1
– ident: e_1_2_9_49_2
  doi: 10.1039/C5NP00111K
– ident: e_1_2_9_90_1
  doi: 10.1039/C9NP00036D
– ident: e_1_2_9_16_2
  doi: 10.1039/C8NP00091C
– ident: e_1_2_9_64_2
  doi: 10.1016/j.biotechadv.2022.107966
– ident: e_1_2_9_38_1
  doi: 10.1007/s10295-016-1874-z
– ident: e_1_2_9_27_1
  doi: 10.1016/j.mib.2019.01.001
– ident: e_1_2_9_35_1
  doi: 10.1038/s41589-019-0400-9
– ident: e_1_2_9_87_1
– ident: e_1_2_9_114_2
  doi: 10.1002/ange.200704960
– ident: e_1_2_9_12_2
  doi: 10.1111/1751-7915.13351
– ident: e_1_2_9_36_1
  doi: 10.1186/1471-2105-10-185
– ident: e_1_2_9_3_1
– ident: e_1_2_9_54_2
  doi: 10.1039/C9NP00025A
– ident: e_1_2_9_4_2
  doi: 10.1186/1475-2859-11-50
– ident: e_1_2_9_95_2
  doi: 10.1021/acs.orglett.8b02051
– ident: e_1_2_9_50_2
  doi: 10.1002/ange.201910563
– ident: e_1_2_9_105_1
  doi: 10.1016/j.tim.2014.10.007
– ident: e_1_2_9_119_2
  doi: 10.1021/acs.joc.2c00169
– ident: e_1_2_9_104_2
  doi: 10.1038/s41429-019-0236-2
– ident: e_1_2_9_10_1
  doi: 10.1016/j.copbio.2007.04.005
– ident: e_1_2_9_102_1
– ident: e_1_2_9_53_2
  doi: 10.1039/C5NP00085H
– ident: e_1_2_9_92_2
  doi: 10.1007/s00253-021-11178-1
– ident: e_1_2_9_103_2
  doi: 10.1007/s00726-010-0567-6
– ident: e_1_2_9_21_2
  doi: 10.1038/nrmicro3496
– ident: e_1_2_9_24_1
– ident: e_1_2_9_66_1
  doi: 10.1111/j.1751-7915.2010.00219.x
– ident: e_1_2_9_29_2
  doi: 10.1039/D1NP00036E
– ident: e_1_2_9_30_2
  doi: 10.1039/D1NP00013F
– ident: e_1_2_9_109_2
  doi: 10.1021/acs.jnatprod.0c01273
– ident: e_1_2_9_40_1
  doi: 10.1039/C9NP00027E
– ident: e_1_2_9_71_1
– ident: e_1_2_9_55_1
– ident: e_1_2_9_73_2
  doi: 10.1039/C8NP00012C
– start-page: 19
  volume-title: Comprehensive Natural Products III (Third Edition)
  year: 2020
  ident: e_1_2_9_26_2
  doi: 10.1016/B978-0-12-409547-2.14627-X
– ident: e_1_2_9_113_2
  doi: 10.1039/D2NP00030J
– ident: e_1_2_9_41_1
– ident: e_1_2_9_69_1
  doi: 10.1021/ja401945a
– ident: e_1_2_9_81_1
  doi: 10.2147/TCRM.S3336
– ident: e_1_2_9_83_1
  doi: 10.1021/cr0503097
– ident: e_1_2_9_11_1
– start-page: 429
  volume-title: Comprehensive Natural Products II: Chemistry and Biology
  year: 2010
  ident: e_1_2_9_25_2
  doi: 10.1016/B978-008045382-8.00046-0
– ident: e_1_2_9_97_2
  doi: 10.1021/acs.orglett.9b03491
– ident: e_1_2_9_37_1
  doi: 10.1016/j.fgb.2010.06.003
– ident: e_1_2_9_93_2
  doi: 10.1039/C8OB03063D
– ident: e_1_2_9_72_3
  doi: 10.1002/ange.202004978
– ident: e_1_2_9_2_1
  doi: 10.1038/ja.2005.1
– ident: e_1_2_9_76_1
– ident: e_1_2_9_6_1
  doi: 10.3389/fmicb.2019.00387
– ident: e_1_2_9_60_1
  doi: 10.1016/j.omtm.2019.05.006
– ident: e_1_2_9_74_1
  doi: 10.1021/cr200398y
– ident: e_1_2_9_79_2
  doi: 10.3390/molecules23010169
– ident: e_1_2_9_48_2
  doi: 10.1128/MMBR.00054-12
– start-page: 343
  volume-title: Methods Enzymol., Vol. 517
  year: 2012
  ident: e_1_2_9_42_2
– ident: e_1_2_9_5_2
  doi: 10.1021/acs.jnatprod.9b01285
– ident: e_1_2_9_121_1
– ident: e_1_2_9_31_1
  doi: 10.1093/nar/gkab335
– ident: e_1_2_9_82_1
  doi: 10.1039/b111145k
– ident: e_1_2_9_88_2
  doi: 10.1093/nar/gkr027
– ident: e_1_2_9_80_1
  doi: 10.1016/j.annonc.2021.08.2127
– ident: e_1_2_9_14_1
  doi: 10.1038/417141a
– ident: e_1_2_9_44_2
  doi: 10.1021/np0401664
– ident: e_1_2_9_117_1
– ident: e_1_2_9_89_2
  doi: 10.1038/nchembio.175
– ident: e_1_2_9_75_1
  doi: 10.1016/0196-9781(94)00017-Z
– ident: e_1_2_9_118_2
  doi: 10.1021/acs.orglett.1c01022
SSID ssj0009631
Score 2.4264143
Snippet Secondary metabolites derived from microorganism constitute an important part of natural products. Mining of the microbial genomes revealed a large number of...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e202200502
SubjectTerms 2,5-DKPs
Actinobacteria - genetics
Actinobacteria - metabolism
Bioinformatics
Biological Products - metabolism
Biosynthetic Pathways - genetics
Computational Biology
Concept
Concepts
Diketopiperazines
dimeric DKPs
Fermentation
Gene clusters
Gene expression
genome mining
Genomes
Genomics
heterologous expression
Metabolites
Microorganisms
Multigene Family
Natural products
nucleobase-containing DKPs
Secondary metabolites
Title Genomics‐Guided Efficient Identification of 2,5‐Diketopiperazine Derivatives from Actinobacteria
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcbic.202200502
https://www.ncbi.nlm.nih.gov/pubmed/36098493
https://www.proquest.com/docview/2771464897
https://www.proquest.com/docview/2714063760
https://pubmed.ncbi.nlm.nih.gov/PMC10092475
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1Lb9QwEMdHtJdyKfRFQx8yEqKXpt11nNg-brcvOCCEqNRb5FfUqJBddXeR6ImPwGfkk3TsPNpthZDgtqtMtGtnxp6_M_4Z4K2wiaOWo0y1ksVM6zRWkrrYZP2-pUVqhA7VFh-z8wv24TK9fLCLv-ZDdAtuPjLCeO0DXOnJ4T001OjSIwipXxYJNElfsOWzos_3_Cj0rqC4mH_dSSlvqY09ejh_-_ys9CTVfFox-TCTDVPR6QtQbSPqCpTrg9lUH5jbR3zH_2nlS1hu8lQyqB1rBZ65ahXWBhVq9G8_yDsSKkfDkvwqLA3bU-PWwJ65sNF58vvnr7NZaZ0lJ4FSgU0i9a7golkmJKOC0P0UDY_Lazcdjcuxuwm0a3KMcfE9IMknxG-AIQMcliscegJaWq3DxenJl-F53JzkEBuU3_70FNd3opBCGcN7VGrNKHeJRnXWs0I5I1DnOJVJLlPBE21FQWVPiQzFJ1faJhuwWI0qtwmEahTtFscdi1IwsVxzTAIdZrFCoVbNbARx-yRz02DO_WkbX_Ma0Exz36V516UR7HX24xrw8UfL7dYx8ibQJznlHOcaJiSP4E13Gfvcv3dRlRvNvA2q2MxXH0Xwqvaj7qcSbKJgMolAzHlYZ-Dx3_NXqvIqYMD7npfFeBoBDR70l7-fD4_eD7tvr__lpi14jp-Tumh9GxanNzO3gznZVO_CAmWfdkP03QHXUjCA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6h9lAuUFqg6QOMhOBC2l3nYfu47LbdQukBtRK3KH5ERIXsqruLBCd-Ar-RX9IZ51GWCiHBMclYiZ0Ze77x-BuA59JGjluBMNWqOIy1TsJccReatN-3vEiM1D7b4iwdX8RvPiRtNiGdhan5IbqAG1mGn6_JwCkgfXDDGmp0SRyEnOIiRCe5SmW9iT5_9P6GQQr1y2OumDY8ORctb2OPHyy3X16Xbjmbt3Mmf_Vl_WJ0dB902406B-VyfzHX--bbbwyP_9XPdbjXuKpsUOvWA7jjqg3YHFQI0z9_ZS-YTx71UfkNWBu2heM2wR47f9Z59vP7j-NFaZ1lh56oAvvE6oPBRRMpZJOC8VcJCo7KSzefTMupu_KE12yEpvHFs5LPGJ2BYQOcmSucfTy7dP4QLo4Oz4fjsCnmEBpE4FRAxfWdLJTMjRE9rrSOuXCRRoDWszJ3RiLUcXmqhEqkiLSVBVe9XKaIP0WubfQIVqpJ5baAcY243eLUYxENRlZogX6gQ0dW5ghXUxtA2P7KzDRM51Rw41NWczTzjIY064Y0gJed_LTm-Pij5G6rGVlj67OMC4HLTSyVCOBZ9xjHnLZe8spNFiSDQDalBKQAHteK1L0qwi7KWEUByCUV6wSIAXz5SVV-9EzgfaLMikUSAPcq9JfPz4avT4bd1fa_NHoKa-Pzd6fZ6cnZ2x24i_ejOod9F1bmVwu3hy7aXD_xRngNmt0zxQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4hkKAXxLMNUOpKiF6I2HWc2D5ud1mgrRCHInGL7NhRIyC72gcSN34Cv7G_pGMnG1ihColj4rGcePyYbzz-BuBAmMhSwxGmGslCpnUcKkltmCXttqF5nAntoy0ukrMr9uM6vn5xi7_ih2gcbm5m-PXaTfChyY-fSUMzXTgKQurcIo5Ncsmd-LmgLsoun2l3E5-REI0CGTJK-Yy2sUWP5-vPb0uvbM3XIZMvTVm_F_XXYLU2Ikmn0vo6LNhyAzY7JQLouwdySHxYp_eXb8BKd5bSbRPMqfW3kMd_H59Op4Wxhpx4CglsjlRXdvPah0cGOaFHMQr2ihs7GQyLoR15KmrSw0F77_nCx8TdTiEdXDNLXBc877Pagqv-ye_uWVinWQgzxMYutYltW5FLobKMt6jUmlFuI43QqWWEsplAEGJVIrmMBY-0ETmVLSUSRIZcaRNtw2I5KO0nIFQjoja4KBjEaZHhmqOFZtHEFAqBZGICCGe9nGY1B7lLhXGbVuzJNHVaSRutBPCtkR9W7Bv_ldybKS2tZ-E4pZzjRsCE5AF8bYqxz92hiCrtYOpkEGImLjQogI-VjpumIvxFwWQUgJjTfiPguLnnS8rij-fobjsyK8bjAKgfKG98ftr9ft5tnnbeU-kLLF_2-umv84ufu_ABX0dVcPkeLE5GU_sZbaeJ3vfT4x_CiBEw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genomics%E2%80%90Guided+Efficient+Identification+of+2%2C5%E2%80%90Diketopiperazine+Derivatives+from+Actinobacteria&rft.jtitle=Chembiochem+%3A+a+European+journal+of+chemical+biology&rft.au=Liu%2C+Jing&rft.au=Li%2C+Shu%E2%80%90Ming&rft.date=2023-02-01&rft.pub=John+Wiley+and+Sons+Inc&rft.issn=1439-4227&rft.eissn=1439-7633&rft.volume=24&rft.issue=3&rft_id=info:doi/10.1002%2Fcbic.202200502&rft_id=info%3Apmid%2F36098493&rft.externalDocID=PMC10092475
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1439-4227&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1439-4227&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1439-4227&client=summon