Swelling‐Dependent Shape‐Based Transformation of a Human Mesenchymal Stromal Cells‐Laden 4D Bioprinted Construct for Cartilage Tissue Engineering

3D bioprinting is usually implemented on flat surfaces, posing serious limitations in the fabrication of multilayered curved constructs. 4D bioprinting, combining 3D bioprinting with time‐dependent stimuli‐induced transformation, enables the fabrication of shape‐changing constructs. Here, a 4D biofa...

Full description

Saved in:
Bibliographic Details
Published inAdvanced healthcare materials Vol. 12; no. 2; pp. e2201891 - n/a
Main Authors Díaz‐Payno, Pedro J., Kalogeropoulou, Maria, Muntz, Iain, Kingma, Esther, Kops, Nicole, D'Este, Matteo, Koenderink, Gijsje H., Fratila‐Apachitei, Lidy E., Osch, Gerjo J. V. M., Zadpoor, Amir A.
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.01.2023
John Wiley and Sons Inc
Subjects
Online AccessGet full text
ISSN2192-2640
2192-2659
2192-2659
DOI10.1002/adhm.202201891

Cover

Abstract 3D bioprinting is usually implemented on flat surfaces, posing serious limitations in the fabrication of multilayered curved constructs. 4D bioprinting, combining 3D bioprinting with time‐dependent stimuli‐induced transformation, enables the fabrication of shape‐changing constructs. Here, a 4D biofabrication method is reported for cartilage engineering based on the differential swelling of a smart multi‐material system made from two hydrogel‐based materials: hyaluronan and alginate. Two ink formulations are used: tyramine‐functionalized hyaluronan (HAT, high‐swelling) and alginate with HAT (AHAT, low‐swelling). Both inks have similar elastic, shear‐thinning, and printability behavior. The inks are 3D printed into a bilayered scaffold before triggering the shape‐change by using liquid immersion as stimulus. In time (4D), the differential swelling between the two zones leads to the scaffold's self‐bending. Different designs are made to tune the radius of curvature and shape. A bioprinted formulation of AHAT and human bone marrow cells demonstrates high cell viability. After 28 days in chondrogenic medium, the curvature is clearly present while cartilage‐like matrix production is visible on histology. A proof‐of‐concept of the recently emerged technology of 4D bioprinting with a specific application for the design of curved structures potentially mimicking the curvature and multilayer cellular nature of native cartilage is demonstrated. 3D bioprinting poses serious limitations in the fabrication of multilayered curved constructs, motivating the development of 4D bioprinting as the next generation of biofabrication technologies. 4D bioprinting, combining 3D bioprinting with time‐dependent stimuli‐induced transformation, enables the fabrication of self‐bending constructs. Here, a 4D smart multi‐material system for curved cartilage engineering is reported as a proof‐of‐concept.
AbstractList 3D bioprinting is usually implemented on flat surfaces, posing serious limitations in the fabrication of multilayered curved constructs. 4D bioprinting, combining 3D bioprinting with time‐dependent stimuli‐induced transformation, enables the fabrication of shape‐changing constructs. Here, a 4D biofabrication method is reported for cartilage engineering based on the differential swelling of a smart multi‐material system made from two hydrogel‐based materials: hyaluronan and alginate. Two ink formulations are used: tyramine‐functionalized hyaluronan (HAT, high‐swelling) and alginate with HAT (AHAT, low‐swelling). Both inks have similar elastic, shear‐thinning, and printability behavior. The inks are 3D printed into a bilayered scaffold before triggering the shape‐change by using liquid immersion as stimulus. In time (4D), the differential swelling between the two zones leads to the scaffold's self‐bending. Different designs are made to tune the radius of curvature and shape. A bioprinted formulation of AHAT and human bone marrow cells demonstrates high cell viability. After 28 days in chondrogenic medium, the curvature is clearly present while cartilage‐like matrix production is visible on histology. A proof‐of‐concept of the recently emerged technology of 4D bioprinting with a specific application for the design of curved structures potentially mimicking the curvature and multilayer cellular nature of native cartilage is demonstrated. 3D bioprinting poses serious limitations in the fabrication of multilayered curved constructs, motivating the development of 4D bioprinting as the next generation of biofabrication technologies. 4D bioprinting, combining 3D bioprinting with time‐dependent stimuli‐induced transformation, enables the fabrication of self‐bending constructs. Here, a 4D smart multi‐material system for curved cartilage engineering is reported as a proof‐of‐concept.
3D bioprinting is usually implemented on flat surfaces, posing serious limitations in the fabrication of multilayered curved constructs. 4D bioprinting, combining 3D bioprinting with time‐dependent stimuli‐induced transformation, enables the fabrication of shape‐changing constructs. Here, a 4D biofabrication method is reported for cartilage engineering based on the differential swelling of a smart multi‐material system made from two hydrogel‐based materials: hyaluronan and alginate. Two ink formulations are used: tyramine‐functionalized hyaluronan (HAT, high‐swelling) and alginate with HAT (AHAT, low‐swelling). Both inks have similar elastic, shear‐thinning, and printability behavior. The inks are 3D printed into a bilayered scaffold before triggering the shape‐change by using liquid immersion as stimulus. In time (4D), the differential swelling between the two zones leads to the scaffold's self‐bending. Different designs are made to tune the radius of curvature and shape. A bioprinted formulation of AHAT and human bone marrow cells demonstrates high cell viability. After 28 days in chondrogenic medium, the curvature is clearly present while cartilage‐like matrix production is visible on histology. A proof‐of‐concept of the recently emerged technology of 4D bioprinting with a specific application for the design of curved structures potentially mimicking the curvature and multilayer cellular nature of native cartilage is demonstrated.
3D bioprinting is usually implemented on flat surfaces, posing serious limitations in the fabrication of multilayered curved constructs. 4D bioprinting, combining 3D bioprinting with time-dependent stimuli-induced transformation, enables the fabrication of shape-changing constructs. Here, a 4D biofabrication method is reported for cartilage engineering based on the differential swelling of a smart multi-material system made from two hydrogel-based materials: hyaluronan and alginate. Two ink formulations are used: tyramine-functionalized hyaluronan (HAT, high-swelling) and alginate with HAT (AHAT, low-swelling). Both inks have similar elastic, shear-thinning, and printability behavior. The inks are 3D printed into a bilayered scaffold before triggering the shape-change by using liquid immersion as stimulus. In time (4D), the differential swelling between the two zones leads to the scaffold's self-bending. Different designs are made to tune the radius of curvature and shape. A bioprinted formulation of AHAT and human bone marrow cells demonstrates high cell viability. After 28 days in chondrogenic medium, the curvature is clearly present while cartilage-like matrix production is visible on histology. A proof-of-concept of the recently emerged technology of 4D bioprinting with a specific application for the design of curved structures potentially mimicking the curvature and multilayer cellular nature of native cartilage is demonstrated.3D bioprinting is usually implemented on flat surfaces, posing serious limitations in the fabrication of multilayered curved constructs. 4D bioprinting, combining 3D bioprinting with time-dependent stimuli-induced transformation, enables the fabrication of shape-changing constructs. Here, a 4D biofabrication method is reported for cartilage engineering based on the differential swelling of a smart multi-material system made from two hydrogel-based materials: hyaluronan and alginate. Two ink formulations are used: tyramine-functionalized hyaluronan (HAT, high-swelling) and alginate with HAT (AHAT, low-swelling). Both inks have similar elastic, shear-thinning, and printability behavior. The inks are 3D printed into a bilayered scaffold before triggering the shape-change by using liquid immersion as stimulus. In time (4D), the differential swelling between the two zones leads to the scaffold's self-bending. Different designs are made to tune the radius of curvature and shape. A bioprinted formulation of AHAT and human bone marrow cells demonstrates high cell viability. After 28 days in chondrogenic medium, the curvature is clearly present while cartilage-like matrix production is visible on histology. A proof-of-concept of the recently emerged technology of 4D bioprinting with a specific application for the design of curved structures potentially mimicking the curvature and multilayer cellular nature of native cartilage is demonstrated.
Author Muntz, Iain
Osch, Gerjo J. V. M.
Kalogeropoulou, Maria
Díaz‐Payno, Pedro J.
Kops, Nicole
Kingma, Esther
D'Este, Matteo
Koenderink, Gijsje H.
Fratila‐Apachitei, Lidy E.
Zadpoor, Amir A.
AuthorAffiliation 1 Department of Biomechanical Engineering Faculty of Mechanical Maritime and Materials Engineering Delft University of Technology Delft 2628CD Netherlands
2 Department of Orthopedics and Sports Medicine Erasmus MC University Medical Center Rotterdam 3015GD Netherlands
5 Department of Otorhinolaryngology Erasmus MC University Medical Center Rotterdam 3015GD Netherlands
3 Department of Bionanoscience Kavli Institute of Nanoscience Delft Delft University of Technology Delft 2628CD Netherlands
4 AO Research Institute Davos Davos 7270 Switzerland
AuthorAffiliation_xml – name: 3 Department of Bionanoscience Kavli Institute of Nanoscience Delft Delft University of Technology Delft 2628CD Netherlands
– name: 4 AO Research Institute Davos Davos 7270 Switzerland
– name: 1 Department of Biomechanical Engineering Faculty of Mechanical Maritime and Materials Engineering Delft University of Technology Delft 2628CD Netherlands
– name: 2 Department of Orthopedics and Sports Medicine Erasmus MC University Medical Center Rotterdam 3015GD Netherlands
– name: 5 Department of Otorhinolaryngology Erasmus MC University Medical Center Rotterdam 3015GD Netherlands
Author_xml – sequence: 1
  givenname: Pedro J.
  orcidid: 0000-0002-3744-9093
  surname: Díaz‐Payno
  fullname: Díaz‐Payno, Pedro J.
  email: diazpap@tcd.ie
  organization: Erasmus MC University Medical Center
– sequence: 2
  givenname: Maria
  orcidid: 0000-0002-1084-5766
  surname: Kalogeropoulou
  fullname: Kalogeropoulou, Maria
  organization: Delft University of Technology
– sequence: 3
  givenname: Iain
  orcidid: 0000-0002-8434-8316
  surname: Muntz
  fullname: Muntz, Iain
  organization: Delft University of Technology
– sequence: 4
  givenname: Esther
  surname: Kingma
  fullname: Kingma, Esther
  organization: Delft University of Technology
– sequence: 5
  givenname: Nicole
  surname: Kops
  fullname: Kops, Nicole
  organization: Erasmus MC University Medical Center
– sequence: 6
  givenname: Matteo
  orcidid: 0000-0002-0424-8172
  surname: D'Este
  fullname: D'Este, Matteo
  organization: AO Research Institute Davos
– sequence: 7
  givenname: Gijsje H.
  orcidid: 0000-0002-7823-8807
  surname: Koenderink
  fullname: Koenderink, Gijsje H.
  organization: Delft University of Technology
– sequence: 8
  givenname: Lidy E.
  orcidid: 0000-0002-7341-4445
  surname: Fratila‐Apachitei
  fullname: Fratila‐Apachitei, Lidy E.
  organization: Delft University of Technology
– sequence: 9
  givenname: Gerjo J. V. M.
  orcidid: 0000-0003-1852-6409
  surname: Osch
  fullname: Osch, Gerjo J. V. M.
  email: g.vanosch@erasmusmc.nl
  organization: Erasmus MC University Medical Center
– sequence: 10
  givenname: Amir A.
  orcidid: 0000-0003-3234-2112
  surname: Zadpoor
  fullname: Zadpoor, Amir A.
  email: a.a.zadpoor@tudelft.nl
  organization: Delft University of Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36308047$$D View this record in MEDLINE/PubMed
BookMark eNqFks1uEzEUhUeoiJbSLUtkiQ2bBP_N3wq1k0KQUrFIWFt3Zu5MXM3YwZ5plR2PwK7v1yfBIW2ASghvrmWf8-lc-76Mjow1GEWvGZ0ySvl7qNf9lFPOKcty9iw64SznE57E-dFhL-lxdOb9NQ0riVmSsRfRsUgEzahMT6K75S12nTbt_fcfM9ygqdEMZLmGDYaTC_BYk5UD4xvrehi0NcQ2BMh87MGQK_RoqvW2h44sB2d3tQg8H7wLCCgiZ-RC243TZgikwho_uLEaSMCRAtygO2iRrLT3I5JL02qDGMTtq-h5A53Hs4d6Gn39eLkq5pPFl0-fi_PFpJJJziZpQ2tOkTWIoixlmnIEqFjWlBTzHEVcZSLmNSZpSessTlJRQck4cGBSSqDiNPqw527Gsse6Ct076FQI3IPbKgta_X1j9Fq19kYxJpMAzAPh3QPB2W8j-kH12lfhEcCgHb3iqaCC0yxOg_TtE-m1HZ0J_QVVEnMuOEuC6s2fkQ5ZHj8tCOReUDnrvcNGVXr49Tchoe4Uo2o3Hmo3HuowHsE2fWJ7JP_TkO8Nt7rD7X_U6nw2v_rt_QkjmdKF
CitedBy_id crossref_primary_10_1007_s12289_023_01778_9
crossref_primary_10_1089_ten_teb_2024_0168
crossref_primary_10_1088_1758_5090_acfdd0
crossref_primary_10_1002_admt_202401210
crossref_primary_10_1088_1758_5090_ad1e6f
crossref_primary_10_1126_sciadv_adl1549
crossref_primary_10_3390_biomimetics9080484
crossref_primary_10_3390_jfb15100280
crossref_primary_10_1186_s13287_024_03712_5
crossref_primary_10_1016_j_tibtech_2024_03_008
crossref_primary_10_1088_1758_5090_ad30c8
crossref_primary_10_1016_j_tibtech_2025_02_013
crossref_primary_10_1088_1758_5090_acd6bf
crossref_primary_10_1080_09205063_2024_2321636
crossref_primary_10_1016_j_bioactmat_2024_10_001
crossref_primary_10_3390_gels9100833
crossref_primary_10_3390_jfb14070347
crossref_primary_10_1016_j_bioactmat_2024_03_033
crossref_primary_10_1186_s13287_024_03859_1
crossref_primary_10_1007_s12668_024_01596_6
crossref_primary_10_1007_s40964_024_00876_7
crossref_primary_10_1016_j_bprint_2025_e00406
crossref_primary_10_1016_j_carbpol_2025_123422
crossref_primary_10_1039_D4TB00006D
crossref_primary_10_1080_17425247_2025_2466768
crossref_primary_10_1002_mame_202300272
crossref_primary_10_1039_D3BM02044D
crossref_primary_10_1016_j_polymer_2024_127823
crossref_primary_10_1002_anbr_202400059
crossref_primary_10_1002_adma_202304738
crossref_primary_10_1002_adma_202312263
crossref_primary_10_1016_j_aiepr_2024_05_001
crossref_primary_10_1021_acs_chemrev_4c00070
crossref_primary_10_1126_sciadv_adq5011
crossref_primary_10_1002_adhm_202403583
crossref_primary_10_1016_j_aiepr_2023_08_002
crossref_primary_10_1021_acs_macromol_3c00967
crossref_primary_10_1007_s10118_025_3259_0
crossref_primary_10_1016_j_bprint_2024_e00331
crossref_primary_10_1016_j_colsurfb_2024_114484
crossref_primary_10_3390_polym16192686
crossref_primary_10_1016_j_bioadv_2023_213637
crossref_primary_10_1002_adma_202402301
crossref_primary_10_37349_emed_2024_00203
crossref_primary_10_1016_j_mtbio_2023_100870
crossref_primary_10_1002_aisy_202400526
crossref_primary_10_1089_ten_tea_2023_0239
crossref_primary_10_1016_j_bioactmat_2025_01_033
Cites_doi 10.1111/j.1525-1594.2010.01193.x
10.20473/j.djmkg.v52.i1.p36-40
10.1021/acs.chemrev.0c00008
10.3390/polym14020354
10.3390/su10082776
10.1088/1758-5090/aadf58
10.1016/j.biomaterials.2016.01.019
10.1073/pnas.1811296115
10.1088/1758-5090/8/1/013001
10.1371/journal.pone.0235052
10.1016/j.biomaterials.2003.09.046
10.1088/1758-5090/aacdc7
10.1038/s41467-017-00543-2
10.1002/biot.201000340
10.1016/j.actbio.2005.07.009
10.1039/C7MH00269F
10.1038/s41563-020-00803-5
10.1002/smll.202202196
10.1038/nrcardio.2016.170
10.1243/09544119JEIM288
10.1126/science.aav9051
10.1088/1758-5090/9/1/012001
10.1088/1758-5090/aa8dd8
10.1002/app.1992.070450211
10.1016/j.biomaterials.2020.120281
10.1063/1.5059393
10.1016/j.msec.2020.111701
10.1002/adbi.201700043
10.1088/1758-5090/aa8114
10.1016/j.mtbio.2020.100058
10.1007/s10856-006-0615-7
10.1007/s10439-016-1653-z
10.1021/acs.chemrev.0c00084
10.1021/acs.biomac.5b00188
10.1089/ten.tea.2019.0298
10.1088/1758-5090/ab6034
10.1002/adfm.202010104
10.1002/(SICI)1097-4636(199910)47:1<46::AID-JBM6>3.0.CO;2-N
10.1016/j.actbio.2021.04.016
10.1016/j.biomaterials.2013.09.078
10.1088/1758-5090/ab94cf
10.1021/acsbiomaterials.8b00416
10.1016/j.biomaterials.2012.01.007
10.1016/j.biomaterials.2018.09.044
10.1038/nmeth.2019
10.1126/sciadv.aba7406
10.1152/ajpcell.1996.271.3.C742
10.1039/C3TB21462A
10.1007/s10439-016-1704-5
10.1088/1758-5090/ab331e
10.1007/s40137-018-0198-5
10.1016/S0142-9612(01)00281-2
10.1007/BF01496959
10.1088/1758-5090/aa8cb7
10.1111/j.1525-1594.2005.00137.x
10.1002/term.1682
10.1038/s41598-021-84384-6
10.1088/1758-5090/ab5158
10.1088/1758-5090/ab39c5
10.1016/j.tibtech.2016.03.004
10.1038/s43246-021-00165-8
10.1021/acs.biomac.6b00366
10.1080/02652039109373974
10.1016/j.joca.2003.08.006
10.1080/09205063.2012.735100
10.3390/bioengineering7020032
10.7150/thno.50794
10.1002/adma.202109394
10.1007/978-1-0716-0989-7_2
10.3390/ijms17121976
10.1016/j.biomaterials.2011.08.027
10.1016/j.actbio.2022.03.009
10.3390/app11177821
10.1016/j.biomaterials.2009.06.034
10.1002/adma.201703443
10.1016/j.carbpol.2012.10.028
10.1016/j.biomaterials.2010.04.045
10.1016/j.biomaterials.2017.03.026
ContentType Journal Article
Copyright 2022 The Authors. Advanced Healthcare Materials published by Wiley‐VCH GmbH
2022 The Authors. Advanced Healthcare Materials published by Wiley-VCH GmbH.
2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Authors. Advanced Healthcare Materials published by Wiley‐VCH GmbH
– notice: 2022 The Authors. Advanced Healthcare Materials published by Wiley-VCH GmbH.
– notice: 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QP
7QQ
7SC
7SE
7SP
7SR
7T5
7TA
7TB
7TM
7TO
7U5
8BQ
8FD
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
7X8
5PM
DOI 10.1002/adhm.202201891
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Immunology Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Oncogenes and Growth Factors Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
AIDS and Cancer Research Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Computer and Information Systems Abstracts Professional
Immunology Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList
CrossRef
MEDLINE
MEDLINE - Academic

Materials Research Database
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley-Blackwell Open Access Collection
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2192-2659
EndPage n/a
ExternalDocumentID PMC11468569
36308047
10_1002_adhm_202201891
ADHM202201891
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Swiss National Science Foundation (SNSF): INDEED project, SNSF's
  funderid: 310030E_189310
– fundername: Medical Delta Programme RegMed4D
– fundername: Convergence programme Syn‐Cells for Health(care) under the theme of Health and Technology
– fundername: Swiss National Science Foundation (SNSF): INDEED project, SNSF's
  grantid: 310030E_189310
GroupedDBID 05W
0R~
1OC
24P
33P
53G
8-0
8-1
A00
AAESR
AAHHS
AAHQN
AAIHA
AAIPD
AAMNL
AANLZ
AAXRX
AAYCA
AAZKR
ABCUV
ABLJU
ABQWH
ABXGK
ACAHQ
ACCFJ
ACCZN
ACGFS
ACGOF
ACIWK
ACPOU
ACPRK
ACXBN
ACXQS
ADBBV
ADBTR
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
D-A
D-B
DCZOG
DRFUL
DRMAN
DRSTM
EBD
EBS
EMOBN
G-S
HGLYW
HZ~
KBYEO
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MXFUL
MXMAN
MXSTM
MY.
MY~
O9-
P2W
PQQKQ
ROL
SUPJJ
SV3
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
C45
CITATION
EJD
GODZA
OVD
TEORI
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QP
7QQ
7SC
7SE
7SP
7SR
7T5
7TA
7TB
7TM
7TO
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
7X8
LH4
5PM
ID FETCH-LOGICAL-c4691-7f0d20e1fee3bb4772eaac18fb0e99e35c8352de67b0d85673cab12a2a1444a03
IEDL.DBID 24P
ISSN 2192-2640
2192-2659
IngestDate Thu Aug 21 18:35:05 EDT 2025
Fri Sep 05 13:42:01 EDT 2025
Fri Jul 25 11:50:43 EDT 2025
Thu Apr 03 06:54:06 EDT 2025
Tue Jul 01 03:06:49 EDT 2025
Thu Apr 24 23:03:53 EDT 2025
Wed Jan 22 16:19:08 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords tissue engineering
biofabrication
shape-change
smart bioinks
4D bioprinting
Language English
License Attribution
2022 The Authors. Advanced Healthcare Materials published by Wiley-VCH GmbH.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4691-7f0d20e1fee3bb4772eaac18fb0e99e35c8352de67b0d85673cab12a2a1444a03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8434-8316
0000-0002-7823-8807
0000-0002-7341-4445
0000-0003-3234-2112
0000-0003-1852-6409
0000-0002-0424-8172
0000-0002-1084-5766
0000-0002-3744-9093
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadhm.202201891
PMID 36308047
PQID 2765223216
PQPubID 2032434
PageCount 17
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11468569
proquest_miscellaneous_2730320857
proquest_journals_2765223216
pubmed_primary_36308047
crossref_citationtrail_10_1002_adhm_202201891
crossref_primary_10_1002_adhm_202201891
wiley_primary_10_1002_adhm_202201891_ADHM202201891
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
– name: Hoboken
PublicationTitle Advanced healthcare materials
PublicationTitleAlternate Adv Healthc Mater
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
John Wiley and Sons Inc
Publisher_xml – name: Wiley Subscription Services, Inc
– name: John Wiley and Sons Inc
References 2017; 8
2017; 1
2021; 20
2017; 4
2019; 52
2020; 120
2019; 11
2013; 24
2021; 128
2004; 25
2007; 221
2017; 45
1999; 47
2020; 15
2021; 120
2020; 12
1929; 47
2005; 29
2017; 9
2019; 365
2016; 34
2003; 11
2020; 7
2018; 6
2020; 6
2021; 31
2014; 2
2018; 4
2022; 34
2016; 83
1992; 45
2021; 2221
2010; 31
2015; 16
2019; 6
2021; 2
2006; 17
2020; 260
2013; 92
2011; 32
2011; 35
2017; 29
2017; 131
2016; 17
2015; 9
2011; 6
2012; 33
1991; 8
2019; 188
2016; 13
2022; 143
2009; 30
2021; 11
2021
2002; 23
2018; 115
1996; 271
2022; 14
2020; 26
2014; 35
2005; 1
2018; 10
2016; 8
2016; 9
2022; 18
2012; 9
e_1_2_9_75_1
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_77_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
Narcisi R. (e_1_2_9_79_1) 2021
e_1_2_9_71_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_68_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_78_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_76_1
e_1_2_9_70_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_63_1
e_1_2_9_40_1
Hendrijantini N. (e_1_2_9_45_1) 2019; 52
e_1_2_9_61_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_67_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_65_1
e_1_2_9_7_1
Manen T. (e_1_2_9_62_1) 2021
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_1_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_69_1
e_1_2_9_29_1
References_xml – volume: 18
  year: 2022
  publication-title: Small
– volume: 14
  start-page: 354
  year: 2022
  publication-title: Polymers
– volume: 45
  start-page: 210
  year: 2017
  publication-title: Ann. Biomed. Eng.
– volume: 6
  year: 2019
  publication-title: Appl. Phys. Rev.
– volume: 29
  start-page: 838
  year: 2005
  publication-title: Artif. Organs
– volume: 8
  year: 2016
  publication-title: Biofabrication
– volume: 8
  start-page: 237
  year: 1991
  publication-title: Food Addit. Contam.
– volume: 31
  start-page: 6173
  year: 2010
  publication-title: Biomaterials
– year: 2021
– volume: 2221
  start-page: 15
  year: 2021
  end-page: 28
– volume: 6
  start-page: 4
  year: 2018
  publication-title: Curr. Surg. Rep.
– volume: 47
  start-page: 46
  year: 1999
  publication-title: J. Biomed. Mater. Res.
– volume: 4
  start-page: 3088
  year: 2018
  publication-title: ACS Biomater. Sci. Eng.
– volume: 33
  start-page: 3279
  year: 2012
  publication-title: Biomaterials
– volume: 271
  start-page: C742
  year: 1996
  publication-title: Am. J. Physiol.: Cell Physiol.
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 9
  start-page: 676
  year: 2012
  publication-title: Nat. Methods
– volume: 7
  start-page: 32
  year: 2020
  publication-title: Bioengineering
– volume: 2
  start-page: 56
  year: 2021
  publication-title: Commun. Mater.
– volume: 12
  year: 2020
  publication-title: Biofabrication
– volume: 120
  year: 2021
  publication-title: Mater. Sci. Eng., C
– volume: 35
  start-page: 741
  year: 2011
  publication-title: Artif. Organs
– volume: 9
  start-page: 1286
  year: 2015
  publication-title: J. Tissue Eng. Regener. Med.
– volume: 15
  year: 2020
  publication-title: PLoS One
– volume: 1
  start-page: 625
  year: 2005
  publication-title: Acta Biomater.
– volume: 10
  start-page: 2776
  year: 2018
  publication-title: Sustainability
– volume: 7
  year: 2020
  publication-title: Mater. Today Bio
– volume: 131
  start-page: 98
  year: 2017
  publication-title: Biomaterials
– volume: 143
  start-page: 266
  year: 2022
  publication-title: Acta Biomater.
– volume: 83
  start-page: 156
  year: 2016
  publication-title: Biomaterials
– volume: 11
  start-page: 879
  year: 2003
  publication-title: Osteoarthritis Cartilage
– volume: 11
  start-page: 7821
  year: 2021
  publication-title: Appl. Sci.
– volume: 13
  start-page: 701
  year: 2016
  publication-title: Nat. Rev. Cardiol.
– volume: 221
  start-page: 429
  year: 2007
  publication-title: Proc. Inst. Mech. Eng., Part H
– volume: 35
  start-page: 49
  year: 2014
  publication-title: Biomaterials
– volume: 34
  start-page: 746
  year: 2016
  publication-title: Trends Biotechnol.
– volume: 6
  start-page: 204
  year: 2011
  publication-title: Biotechnol. J.
– volume: 52
  start-page: 36
  year: 2019
  publication-title: Dent. J.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 47
  start-page: 176
  year: 1929
  publication-title: Kolloid‐Z.
– volume: 9
  year: 2016
  publication-title: Biofabrication
– volume: 10
  year: 2018
  publication-title: Biofabrication
– volume: 16
  start-page: 1489
  year: 2015
  publication-title: Biomacromolecules
– volume: 6
  year: 2020
  publication-title: Sci. Adv.
– volume: 92
  start-page: 1262
  year: 2013
  publication-title: Carbohydr. Polym.
– volume: 20
  start-page: 22
  year: 2021
  publication-title: Nat. Mater.
– volume: 365
  start-page: 482
  year: 2019
  publication-title: Science
– volume: 4
  start-page: 1064
  year: 2017
  publication-title: Mater. Horiz.
– volume: 45
  start-page: 132
  year: 2017
  publication-title: Ann. Biomed. Eng.
– volume: 188
  start-page: 63
  year: 2019
  publication-title: Biomaterials
– volume: 11
  start-page: 48
  year: 2021
  publication-title: Theranostics
– volume: 115
  year: 2018
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 25
  start-page: 2603
  year: 2004
  publication-title: Biomaterials
– volume: 17
  start-page: 1393
  year: 2006
  publication-title: J. Mater. Sci.: Mater. Med.
– volume: 128
  start-page: 130
  year: 2021
  publication-title: Acta Biomater.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 11
  start-page: 5130
  year: 2021
  publication-title: Sci. Rep.
– volume: 45
  start-page: 293
  year: 1992
  publication-title: J. Appl. Polym. Sci.
– volume: 23
  start-page: 1511
  year: 2002
  publication-title: Biomaterials
– volume: 24
  start-page: 1084
  year: 2013
  publication-title: J. Biomater. Sci., Polym. Ed.
– volume: 17
  start-page: 1976
  year: 2016
  publication-title: Int. J. Mol. Sci.
– volume: 1
  year: 2017
  publication-title: Adv. Biosyst.
– volume: 120
  year: 2020
  publication-title: Chem. Rev.
– volume: 32
  start-page: 8927
  year: 2011
  publication-title: Biomaterials
– volume: 9
  year: 2017
  publication-title: Biofabrication
– volume: 260
  year: 2020
  publication-title: Biomaterials
– volume: 26
  start-page: 318
  year: 2020
  publication-title: Tissue Eng., Part A
– volume: 2
  start-page: 2357
  year: 2014
  publication-title: J. Mater. Chem. B
– volume: 8
  start-page: 400
  year: 2017
  publication-title: Nat. Commun.
– volume: 11
  year: 2019
  publication-title: Biofabrication
– volume: 17
  start-page: 2137
  year: 2016
  publication-title: Biomacromolecules
– volume: 30
  start-page: 5910
  year: 2009
  publication-title: Biomaterials
– ident: e_1_2_9_27_1
  doi: 10.1111/j.1525-1594.2010.01193.x
– volume: 52
  start-page: 36
  year: 2019
  ident: e_1_2_9_45_1
  publication-title: Dent. J.
  doi: 10.20473/j.djmkg.v52.i1.p36-40
– ident: e_1_2_9_6_1
  doi: 10.1021/acs.chemrev.0c00008
– ident: e_1_2_9_57_1
  doi: 10.3390/polym14020354
– ident: e_1_2_9_26_1
  doi: 10.3390/su10082776
– ident: e_1_2_9_31_1
  doi: 10.1088/1758-5090/aadf58
– ident: e_1_2_9_35_1
  doi: 10.1016/j.biomaterials.2016.01.019
– ident: e_1_2_9_29_1
  doi: 10.1073/pnas.1811296115
– ident: e_1_2_9_4_1
  doi: 10.1088/1758-5090/8/1/013001
– ident: e_1_2_9_28_1
  doi: 10.1371/journal.pone.0235052
– ident: e_1_2_9_49_1
  doi: 10.1016/j.biomaterials.2003.09.046
– ident: e_1_2_9_56_1
  doi: 10.1088/1758-5090/aacdc7
– ident: e_1_2_9_20_1
  doi: 10.1038/s41467-017-00543-2
– ident: e_1_2_9_68_1
  doi: 10.1002/biot.201000340
– ident: e_1_2_9_76_1
  doi: 10.1016/j.actbio.2005.07.009
– ident: e_1_2_9_16_1
  doi: 10.1039/C7MH00269F
– ident: e_1_2_9_69_1
  doi: 10.1038/s41563-020-00803-5
– ident: e_1_2_9_23_1
  doi: 10.1002/smll.202202196
– ident: e_1_2_9_11_1
  doi: 10.1038/nrcardio.2016.170
– ident: e_1_2_9_77_1
  doi: 10.1243/09544119JEIM288
– ident: e_1_2_9_3_1
  doi: 10.1126/science.aav9051
– ident: e_1_2_9_15_1
  doi: 10.1088/1758-5090/9/1/012001
– ident: e_1_2_9_64_1
  doi: 10.1088/1758-5090/aa8dd8
– ident: e_1_2_9_61_1
  doi: 10.1002/app.1992.070450211
– ident: e_1_2_9_18_1
  doi: 10.1016/j.biomaterials.2020.120281
– ident: e_1_2_9_5_1
  doi: 10.1063/1.5059393
– ident: e_1_2_9_71_1
  doi: 10.1016/j.msec.2020.111701
– ident: e_1_2_9_73_1
  doi: 10.1002/adbi.201700043
– ident: e_1_2_9_17_1
  doi: 10.1088/1758-5090/aa8114
– ident: e_1_2_9_55_1
  doi: 10.1016/j.mtbio.2020.100058
– ident: e_1_2_9_72_1
  doi: 10.1007/s10856-006-0615-7
– ident: e_1_2_9_12_1
  doi: 10.1007/s10439-016-1653-z
– ident: e_1_2_9_9_1
  doi: 10.1021/acs.chemrev.0c00084
– ident: e_1_2_9_37_1
  doi: 10.1021/acs.biomac.5b00188
– ident: e_1_2_9_65_1
  doi: 10.1089/ten.tea.2019.0298
– ident: e_1_2_9_7_1
  doi: 10.1088/1758-5090/ab6034
– ident: e_1_2_9_22_1
  doi: 10.1002/adfm.202010104
– ident: e_1_2_9_60_1
  doi: 10.1002/(SICI)1097-4636(199910)47:1<46::AID-JBM6>3.0.CO;2-N
– ident: e_1_2_9_42_1
  doi: 10.1016/j.actbio.2021.04.016
– ident: e_1_2_9_58_1
  doi: 10.1016/j.biomaterials.2013.09.078
– ident: e_1_2_9_63_1
  doi: 10.1088/1758-5090/ab94cf
– ident: e_1_2_9_50_1
  doi: 10.1021/acsbiomaterials.8b00416
– ident: e_1_2_9_48_1
  doi: 10.1016/j.biomaterials.2012.01.007
– ident: e_1_2_9_53_1
  doi: 10.1016/j.biomaterials.2018.09.044
– ident: e_1_2_9_78_1
  doi: 10.1038/nmeth.2019
– ident: e_1_2_9_1_1
  doi: 10.1126/sciadv.aba7406
– ident: e_1_2_9_44_1
  doi: 10.1152/ajpcell.1996.271.3.C742
– ident: e_1_2_9_30_1
  doi: 10.1039/C3TB21462A
– ident: e_1_2_9_38_1
  doi: 10.1007/s10439-016-1704-5
– ident: e_1_2_9_40_1
  doi: 10.1088/1758-5090/ab331e
– ident: e_1_2_9_52_1
  doi: 10.1007/s40137-018-0198-5
– ident: e_1_2_9_43_1
  doi: 10.1016/S0142-9612(01)00281-2
– ident: e_1_2_9_51_1
  doi: 10.1007/BF01496959
– ident: e_1_2_9_33_1
  doi: 10.1088/1758-5090/aa8cb7
– ident: e_1_2_9_70_1
  doi: 10.1111/j.1525-1594.2005.00137.x
– ident: e_1_2_9_36_1
  doi: 10.1002/term.1682
– ident: e_1_2_9_66_1
  doi: 10.1038/s41598-021-84384-6
– ident: e_1_2_9_8_1
  doi: 10.1088/1758-5090/ab5158
– ident: e_1_2_9_21_1
  doi: 10.1088/1758-5090/ab39c5
– ident: e_1_2_9_14_1
  doi: 10.1016/j.tibtech.2016.03.004
– ident: e_1_2_9_13_1
  doi: 10.1038/s43246-021-00165-8
– ident: e_1_2_9_34_1
  doi: 10.1021/acs.biomac.6b00366
– ident: e_1_2_9_46_1
  doi: 10.1080/02652039109373974
– ident: e_1_2_9_75_1
  doi: 10.1016/j.joca.2003.08.006
– ident: e_1_2_9_47_1
  doi: 10.1080/09205063.2012.735100
– ident: e_1_2_9_10_1
  doi: 10.3390/bioengineering7020032
– ident: e_1_2_9_19_1
  doi: 10.7150/thno.50794
– ident: e_1_2_9_24_1
  doi: 10.1002/adma.202109394
– start-page: 15
  volume-title: Osteoporosis and Osteoarthritis. Methods in Molecular Biology
  year: 2021
  ident: e_1_2_9_79_1
  doi: 10.1007/978-1-0716-0989-7_2
– ident: e_1_2_9_41_1
  doi: 10.3390/ijms17121976
– ident: e_1_2_9_74_1
  doi: 10.1016/j.biomaterials.2011.08.027
– ident: e_1_2_9_54_1
  doi: 10.1016/j.actbio.2022.03.009
– ident: e_1_2_9_39_1
  doi: 10.3390/app11177821
– ident: e_1_2_9_67_1
  doi: 10.1016/j.biomaterials.2009.06.034
– volume-title: Theoretical stiffness limits of 4D printed self‐folding metamaterials
  year: 2021
  ident: e_1_2_9_62_1
– ident: e_1_2_9_25_1
  doi: 10.1002/adma.201703443
– ident: e_1_2_9_32_1
  doi: 10.1016/j.carbpol.2012.10.028
– ident: e_1_2_9_59_1
  doi: 10.1016/j.biomaterials.2010.04.045
– ident: e_1_2_9_2_1
  doi: 10.1016/j.biomaterials.2017.03.026
SSID ssj0000651681
Score 2.5209336
Snippet 3D bioprinting is usually implemented on flat surfaces, posing serious limitations in the fabrication of multilayered curved constructs. 4D bioprinting,...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2201891
SubjectTerms 3-D printers
4D bioprinting
Alginates
Alginates - chemistry
Alginic acid
biofabrication
Bioprinting
Bone marrow
Cartilage
Cell viability
Cellular structure
Flat surfaces
Histology
Humans
Hyaluronic Acid
Hydrogels
Inks
Mesenchymal Stem Cells
Mesenchyme
Multilayers
Printing, Three-Dimensional
Radius of curvature
Scaffolds
shape‐change
smart bioinks
Stromal cells
Swelling
Three dimensional printing
Time dependence
Tissue Engineering
Tissue Scaffolds - chemistry
Tyramine
Title Swelling‐Dependent Shape‐Based Transformation of a Human Mesenchymal Stromal Cells‐Laden 4D Bioprinted Construct for Cartilage Tissue Engineering
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadhm.202201891
https://www.ncbi.nlm.nih.gov/pubmed/36308047
https://www.proquest.com/docview/2765223216
https://www.proquest.com/docview/2730320857
https://pubmed.ncbi.nlm.nih.gov/PMC11468569
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NatwwEBYlubSH0qR_btOgQqEnE1mSZfu42U1YSrYUdgO5GUmW2EBih-zmkFseobe-X58kM7LX9RJKoSf_SJaMZ8bzaez5hpAvwnhwO8rErtBVLK1lceF8EVuvnDCwepNVYPv8rqbn8ttFejHI4m_5IfqAG1pGeF-jgWuzOvpDGqqrJWaSc_BgOaav72J-LRZv4PJHH2UBB5uoUKkULJPj71xsw9zI-NH2ENue6QncfPrX5BDNBnd0-oq87HAkHbWC3yPPXL1PXgzYBV-TX3MMzMHu74efk67W7ZrOl_rGwZljcF8VXQxwa1PTxlNNQ1yfzjAtyS7vr2GW-fq2we0YxlvBtWcahqJyQo8vGwwMAmqlWPkzcNFSGI6OUSOv4F1FF0GydHBnb8j56cliPI27OgyxhcVzEmeeVZy5xDsQn5GAx53WNsm9Ya4onEgtwrjKqcywKk9VJqw2Cddcw2pNaibekp26qd17Qr1iNq24M94qaTOvReEZs4mTIk9l5iMSb2RQ2o6kHGtlXJUtvTIvUWZlL7OIfO3737T0HH_tebARadmZ6arkmQL8KXiiIvK5bwYDw68munbNHfYRWGQ-T7OIvGs1oJ9KKAGIW0JLvqUbfQck795uqS-XgcQbtRWeVRERHtToH7dfjibTWX_04X8u-kiew75o40cHZAd0wn0CRLU2h8FoDsnuaDI7mz8CV40gTw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTtwwELYQHGgPFaU_pKXFlSr1FOHYjpMcYbdogV1UaRept8h2bC0STVDZHnrrI_TW9-NJmHGy6a4QqtRTfuw4UWYm83ni-YaQj8J4cDvKxK7QVSytZXHhfBFbr5wwMHuTVWD7vFCjS3n2NV2uJsRcmJYfog-4oWWE7zUaOAakD_-yhupqjqnkHFxYjvnrWxLAOa7q4_JLH2YBD5uoUKoUTJPjei62pG5k_HB9iHXX9ABvPlw2uQpngz862SHPOiBJj1rJPycbrt4lT1foBV-QP1OMzMHu3a_fw67Y7YJO5_rGwZlj8F8Vna0A16amjaeahsA-nWBekp3__AZ3mS6-N7gdwHi3cO1Yw1BUDunxVYORQYCtFEt_BjJaCsPRAarkNXys6CyIlq482UtyefJ5NhjFXSGG2MLsOYkzzyrOXOIdyM9IAOROa5vk3jBXFE6kFnFc5VRmWJWnKhNWm4RrrmG6JjUTr8hm3dRuj1CvmE0r7oy3StrMa1F4xmzipMhTmfmIxEsZlLZjKcdiGddly6_MS5RZ2cssIp_6_jctP8ejPfeXIi07O70teaYAgAqeqIh86JvBwvC3ia5d8wP7CKwyn6dZRF63GtDfSigBkFtCS76mG30HZO9eb6mv5oHFG9PB4V0VEeFBjf7x-OXRcDTpj978z0UHZHs0m4zL8enF-VvyBM6LNpi0TzZBP9w7gFcL8z4Y0D3fDiIu
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYlgdIeSvqMm7RVodCTiSzJsn1Mdrts2yQEdgO5GVkPNpDaS7I59Naf0Fv-X39JZ2Sv6yWUQk9-SJaMZ8bzaez5hpAPovLgdlQVu0LbWBrD4sL5IjZeOVHB6k3awPZ5qqbn8stFejHI4m_5IfqAG1pGeF-jgS-tP_hDGqrtAjPJOXiwHNPXt_GLH5oml2d9lAUcbKJCpVKwTI6_c7E1cyPjB5tDbHqme3Dz_l-TQzQb3NFkhzzpcCQ9bAX_lDxw9TPyeMAu-JzczTAwB7u_fvwcd7VuV3S20EsHZ47AfVk6H-DWpqaNp5qGuD49wbQks_j-DWaZra4b3I5gvBu49ljDUFSO6dFlg4FBQK0UK38GLloKw9ERauQVvKvoPEiWDu7sBTmffJqPpnFXhyE2sHhO4swzy5lLvAPxVRLwuNPaJLmvmCsKJ1KDMM46lVXM5qnKhNFVwjXXsFqTmomXZKtuardLqFfMpJa7yhslTea1KDxjJnFS5KnMfETitQxK05GUY62Mq7KlV-YlyqzsZRaRj33_ZUvP8dee-2uRlp2Z3pQ8U4A_BU9URN73zWBg-NVE1665xT4Ci8znaRaRV60G9FMJJQBxS2jJN3Sj74Dk3Zst9eUikHhjNjg8qyIiPKjRP26_PBxPT_qj1_9z0Tvy8Gw8KY8_n37dI4_gtGhDSftkC9TDvQFwtareBvv5DfeJIVc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Swelling%E2%80%90Dependent+Shape%E2%80%90Based+Transformation+of+a+Human+Mesenchymal+Stromal+Cells%E2%80%90Laden+4D+Bioprinted+Construct+for+Cartilage+Tissue+Engineering&rft.jtitle=Advanced+healthcare+materials&rft.au=D%C3%ADaz%E2%80%90Payno%2C+Pedro+J.&rft.au=Kalogeropoulou%2C+Maria&rft.au=Muntz%2C+Iain&rft.au=Kingma%2C+Esther&rft.date=2023-01-01&rft.pub=John+Wiley+and+Sons+Inc&rft.issn=2192-2640&rft.eissn=2192-2659&rft.volume=12&rft.issue=2&rft_id=info:doi/10.1002%2Fadhm.202201891&rft_id=info%3Apmid%2F36308047&rft.externalDocID=PMC11468569
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2192-2640&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2192-2640&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2192-2640&client=summon