Swelling‐Dependent Shape‐Based Transformation of a Human Mesenchymal Stromal Cells‐Laden 4D Bioprinted Construct for Cartilage Tissue Engineering
3D bioprinting is usually implemented on flat surfaces, posing serious limitations in the fabrication of multilayered curved constructs. 4D bioprinting, combining 3D bioprinting with time‐dependent stimuli‐induced transformation, enables the fabrication of shape‐changing constructs. Here, a 4D biofa...
Saved in:
Published in | Advanced healthcare materials Vol. 12; no. 2; pp. e2201891 - n/a |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.01.2023
John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
ISSN | 2192-2640 2192-2659 2192-2659 |
DOI | 10.1002/adhm.202201891 |
Cover
Abstract | 3D bioprinting is usually implemented on flat surfaces, posing serious limitations in the fabrication of multilayered curved constructs. 4D bioprinting, combining 3D bioprinting with time‐dependent stimuli‐induced transformation, enables the fabrication of shape‐changing constructs. Here, a 4D biofabrication method is reported for cartilage engineering based on the differential swelling of a smart multi‐material system made from two hydrogel‐based materials: hyaluronan and alginate. Two ink formulations are used: tyramine‐functionalized hyaluronan (HAT, high‐swelling) and alginate with HAT (AHAT, low‐swelling). Both inks have similar elastic, shear‐thinning, and printability behavior. The inks are 3D printed into a bilayered scaffold before triggering the shape‐change by using liquid immersion as stimulus. In time (4D), the differential swelling between the two zones leads to the scaffold's self‐bending. Different designs are made to tune the radius of curvature and shape. A bioprinted formulation of AHAT and human bone marrow cells demonstrates high cell viability. After 28 days in chondrogenic medium, the curvature is clearly present while cartilage‐like matrix production is visible on histology. A proof‐of‐concept of the recently emerged technology of 4D bioprinting with a specific application for the design of curved structures potentially mimicking the curvature and multilayer cellular nature of native cartilage is demonstrated.
3D bioprinting poses serious limitations in the fabrication of multilayered curved constructs, motivating the development of 4D bioprinting as the next generation of biofabrication technologies. 4D bioprinting, combining 3D bioprinting with time‐dependent stimuli‐induced transformation, enables the fabrication of self‐bending constructs. Here, a 4D smart multi‐material system for curved cartilage engineering is reported as a proof‐of‐concept. |
---|---|
AbstractList | 3D bioprinting is usually implemented on flat surfaces, posing serious limitations in the fabrication of multilayered curved constructs. 4D bioprinting, combining 3D bioprinting with time‐dependent stimuli‐induced transformation, enables the fabrication of shape‐changing constructs. Here, a 4D biofabrication method is reported for cartilage engineering based on the differential swelling of a smart multi‐material system made from two hydrogel‐based materials: hyaluronan and alginate. Two ink formulations are used: tyramine‐functionalized hyaluronan (HAT, high‐swelling) and alginate with HAT (AHAT, low‐swelling). Both inks have similar elastic, shear‐thinning, and printability behavior. The inks are 3D printed into a bilayered scaffold before triggering the shape‐change by using liquid immersion as stimulus. In time (4D), the differential swelling between the two zones leads to the scaffold's self‐bending. Different designs are made to tune the radius of curvature and shape. A bioprinted formulation of AHAT and human bone marrow cells demonstrates high cell viability. After 28 days in chondrogenic medium, the curvature is clearly present while cartilage‐like matrix production is visible on histology. A proof‐of‐concept of the recently emerged technology of 4D bioprinting with a specific application for the design of curved structures potentially mimicking the curvature and multilayer cellular nature of native cartilage is demonstrated.
3D bioprinting poses serious limitations in the fabrication of multilayered curved constructs, motivating the development of 4D bioprinting as the next generation of biofabrication technologies. 4D bioprinting, combining 3D bioprinting with time‐dependent stimuli‐induced transformation, enables the fabrication of self‐bending constructs. Here, a 4D smart multi‐material system for curved cartilage engineering is reported as a proof‐of‐concept. 3D bioprinting is usually implemented on flat surfaces, posing serious limitations in the fabrication of multilayered curved constructs. 4D bioprinting, combining 3D bioprinting with time‐dependent stimuli‐induced transformation, enables the fabrication of shape‐changing constructs. Here, a 4D biofabrication method is reported for cartilage engineering based on the differential swelling of a smart multi‐material system made from two hydrogel‐based materials: hyaluronan and alginate. Two ink formulations are used: tyramine‐functionalized hyaluronan (HAT, high‐swelling) and alginate with HAT (AHAT, low‐swelling). Both inks have similar elastic, shear‐thinning, and printability behavior. The inks are 3D printed into a bilayered scaffold before triggering the shape‐change by using liquid immersion as stimulus. In time (4D), the differential swelling between the two zones leads to the scaffold's self‐bending. Different designs are made to tune the radius of curvature and shape. A bioprinted formulation of AHAT and human bone marrow cells demonstrates high cell viability. After 28 days in chondrogenic medium, the curvature is clearly present while cartilage‐like matrix production is visible on histology. A proof‐of‐concept of the recently emerged technology of 4D bioprinting with a specific application for the design of curved structures potentially mimicking the curvature and multilayer cellular nature of native cartilage is demonstrated. 3D bioprinting is usually implemented on flat surfaces, posing serious limitations in the fabrication of multilayered curved constructs. 4D bioprinting, combining 3D bioprinting with time-dependent stimuli-induced transformation, enables the fabrication of shape-changing constructs. Here, a 4D biofabrication method is reported for cartilage engineering based on the differential swelling of a smart multi-material system made from two hydrogel-based materials: hyaluronan and alginate. Two ink formulations are used: tyramine-functionalized hyaluronan (HAT, high-swelling) and alginate with HAT (AHAT, low-swelling). Both inks have similar elastic, shear-thinning, and printability behavior. The inks are 3D printed into a bilayered scaffold before triggering the shape-change by using liquid immersion as stimulus. In time (4D), the differential swelling between the two zones leads to the scaffold's self-bending. Different designs are made to tune the radius of curvature and shape. A bioprinted formulation of AHAT and human bone marrow cells demonstrates high cell viability. After 28 days in chondrogenic medium, the curvature is clearly present while cartilage-like matrix production is visible on histology. A proof-of-concept of the recently emerged technology of 4D bioprinting with a specific application for the design of curved structures potentially mimicking the curvature and multilayer cellular nature of native cartilage is demonstrated.3D bioprinting is usually implemented on flat surfaces, posing serious limitations in the fabrication of multilayered curved constructs. 4D bioprinting, combining 3D bioprinting with time-dependent stimuli-induced transformation, enables the fabrication of shape-changing constructs. Here, a 4D biofabrication method is reported for cartilage engineering based on the differential swelling of a smart multi-material system made from two hydrogel-based materials: hyaluronan and alginate. Two ink formulations are used: tyramine-functionalized hyaluronan (HAT, high-swelling) and alginate with HAT (AHAT, low-swelling). Both inks have similar elastic, shear-thinning, and printability behavior. The inks are 3D printed into a bilayered scaffold before triggering the shape-change by using liquid immersion as stimulus. In time (4D), the differential swelling between the two zones leads to the scaffold's self-bending. Different designs are made to tune the radius of curvature and shape. A bioprinted formulation of AHAT and human bone marrow cells demonstrates high cell viability. After 28 days in chondrogenic medium, the curvature is clearly present while cartilage-like matrix production is visible on histology. A proof-of-concept of the recently emerged technology of 4D bioprinting with a specific application for the design of curved structures potentially mimicking the curvature and multilayer cellular nature of native cartilage is demonstrated. |
Author | Muntz, Iain Osch, Gerjo J. V. M. Kalogeropoulou, Maria Díaz‐Payno, Pedro J. Kops, Nicole Kingma, Esther D'Este, Matteo Koenderink, Gijsje H. Fratila‐Apachitei, Lidy E. Zadpoor, Amir A. |
AuthorAffiliation | 1 Department of Biomechanical Engineering Faculty of Mechanical Maritime and Materials Engineering Delft University of Technology Delft 2628CD Netherlands 2 Department of Orthopedics and Sports Medicine Erasmus MC University Medical Center Rotterdam 3015GD Netherlands 5 Department of Otorhinolaryngology Erasmus MC University Medical Center Rotterdam 3015GD Netherlands 3 Department of Bionanoscience Kavli Institute of Nanoscience Delft Delft University of Technology Delft 2628CD Netherlands 4 AO Research Institute Davos Davos 7270 Switzerland |
AuthorAffiliation_xml | – name: 3 Department of Bionanoscience Kavli Institute of Nanoscience Delft Delft University of Technology Delft 2628CD Netherlands – name: 4 AO Research Institute Davos Davos 7270 Switzerland – name: 1 Department of Biomechanical Engineering Faculty of Mechanical Maritime and Materials Engineering Delft University of Technology Delft 2628CD Netherlands – name: 2 Department of Orthopedics and Sports Medicine Erasmus MC University Medical Center Rotterdam 3015GD Netherlands – name: 5 Department of Otorhinolaryngology Erasmus MC University Medical Center Rotterdam 3015GD Netherlands |
Author_xml | – sequence: 1 givenname: Pedro J. orcidid: 0000-0002-3744-9093 surname: Díaz‐Payno fullname: Díaz‐Payno, Pedro J. email: diazpap@tcd.ie organization: Erasmus MC University Medical Center – sequence: 2 givenname: Maria orcidid: 0000-0002-1084-5766 surname: Kalogeropoulou fullname: Kalogeropoulou, Maria organization: Delft University of Technology – sequence: 3 givenname: Iain orcidid: 0000-0002-8434-8316 surname: Muntz fullname: Muntz, Iain organization: Delft University of Technology – sequence: 4 givenname: Esther surname: Kingma fullname: Kingma, Esther organization: Delft University of Technology – sequence: 5 givenname: Nicole surname: Kops fullname: Kops, Nicole organization: Erasmus MC University Medical Center – sequence: 6 givenname: Matteo orcidid: 0000-0002-0424-8172 surname: D'Este fullname: D'Este, Matteo organization: AO Research Institute Davos – sequence: 7 givenname: Gijsje H. orcidid: 0000-0002-7823-8807 surname: Koenderink fullname: Koenderink, Gijsje H. organization: Delft University of Technology – sequence: 8 givenname: Lidy E. orcidid: 0000-0002-7341-4445 surname: Fratila‐Apachitei fullname: Fratila‐Apachitei, Lidy E. organization: Delft University of Technology – sequence: 9 givenname: Gerjo J. V. M. orcidid: 0000-0003-1852-6409 surname: Osch fullname: Osch, Gerjo J. V. M. email: g.vanosch@erasmusmc.nl organization: Erasmus MC University Medical Center – sequence: 10 givenname: Amir A. orcidid: 0000-0003-3234-2112 surname: Zadpoor fullname: Zadpoor, Amir A. email: a.a.zadpoor@tudelft.nl organization: Delft University of Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36308047$$D View this record in MEDLINE/PubMed |
BookMark | eNqFks1uEzEUhUeoiJbSLUtkiQ2bBP_N3wq1k0KQUrFIWFt3Zu5MXM3YwZ5plR2PwK7v1yfBIW2ASghvrmWf8-lc-76Mjow1GEWvGZ0ySvl7qNf9lFPOKcty9iw64SznE57E-dFhL-lxdOb9NQ0riVmSsRfRsUgEzahMT6K75S12nTbt_fcfM9ygqdEMZLmGDYaTC_BYk5UD4xvrehi0NcQ2BMh87MGQK_RoqvW2h44sB2d3tQg8H7wLCCgiZ-RC243TZgikwho_uLEaSMCRAtygO2iRrLT3I5JL02qDGMTtq-h5A53Hs4d6Gn39eLkq5pPFl0-fi_PFpJJJziZpQ2tOkTWIoixlmnIEqFjWlBTzHEVcZSLmNSZpSessTlJRQck4cGBSSqDiNPqw527Gsse6Ct076FQI3IPbKgta_X1j9Fq19kYxJpMAzAPh3QPB2W8j-kH12lfhEcCgHb3iqaCC0yxOg_TtE-m1HZ0J_QVVEnMuOEuC6s2fkQ5ZHj8tCOReUDnrvcNGVXr49Tchoe4Uo2o3Hmo3HuowHsE2fWJ7JP_TkO8Nt7rD7X_U6nw2v_rt_QkjmdKF |
CitedBy_id | crossref_primary_10_1007_s12289_023_01778_9 crossref_primary_10_1089_ten_teb_2024_0168 crossref_primary_10_1088_1758_5090_acfdd0 crossref_primary_10_1002_admt_202401210 crossref_primary_10_1088_1758_5090_ad1e6f crossref_primary_10_1126_sciadv_adl1549 crossref_primary_10_3390_biomimetics9080484 crossref_primary_10_3390_jfb15100280 crossref_primary_10_1186_s13287_024_03712_5 crossref_primary_10_1016_j_tibtech_2024_03_008 crossref_primary_10_1088_1758_5090_ad30c8 crossref_primary_10_1016_j_tibtech_2025_02_013 crossref_primary_10_1088_1758_5090_acd6bf crossref_primary_10_1080_09205063_2024_2321636 crossref_primary_10_1016_j_bioactmat_2024_10_001 crossref_primary_10_3390_gels9100833 crossref_primary_10_3390_jfb14070347 crossref_primary_10_1016_j_bioactmat_2024_03_033 crossref_primary_10_1186_s13287_024_03859_1 crossref_primary_10_1007_s12668_024_01596_6 crossref_primary_10_1007_s40964_024_00876_7 crossref_primary_10_1016_j_bprint_2025_e00406 crossref_primary_10_1016_j_carbpol_2025_123422 crossref_primary_10_1039_D4TB00006D crossref_primary_10_1080_17425247_2025_2466768 crossref_primary_10_1002_mame_202300272 crossref_primary_10_1039_D3BM02044D crossref_primary_10_1016_j_polymer_2024_127823 crossref_primary_10_1002_anbr_202400059 crossref_primary_10_1002_adma_202304738 crossref_primary_10_1002_adma_202312263 crossref_primary_10_1016_j_aiepr_2024_05_001 crossref_primary_10_1021_acs_chemrev_4c00070 crossref_primary_10_1126_sciadv_adq5011 crossref_primary_10_1002_adhm_202403583 crossref_primary_10_1016_j_aiepr_2023_08_002 crossref_primary_10_1021_acs_macromol_3c00967 crossref_primary_10_1007_s10118_025_3259_0 crossref_primary_10_1016_j_bprint_2024_e00331 crossref_primary_10_1016_j_colsurfb_2024_114484 crossref_primary_10_3390_polym16192686 crossref_primary_10_1016_j_bioadv_2023_213637 crossref_primary_10_1002_adma_202402301 crossref_primary_10_37349_emed_2024_00203 crossref_primary_10_1016_j_mtbio_2023_100870 crossref_primary_10_1002_aisy_202400526 crossref_primary_10_1089_ten_tea_2023_0239 crossref_primary_10_1016_j_bioactmat_2025_01_033 |
Cites_doi | 10.1111/j.1525-1594.2010.01193.x 10.20473/j.djmkg.v52.i1.p36-40 10.1021/acs.chemrev.0c00008 10.3390/polym14020354 10.3390/su10082776 10.1088/1758-5090/aadf58 10.1016/j.biomaterials.2016.01.019 10.1073/pnas.1811296115 10.1088/1758-5090/8/1/013001 10.1371/journal.pone.0235052 10.1016/j.biomaterials.2003.09.046 10.1088/1758-5090/aacdc7 10.1038/s41467-017-00543-2 10.1002/biot.201000340 10.1016/j.actbio.2005.07.009 10.1039/C7MH00269F 10.1038/s41563-020-00803-5 10.1002/smll.202202196 10.1038/nrcardio.2016.170 10.1243/09544119JEIM288 10.1126/science.aav9051 10.1088/1758-5090/9/1/012001 10.1088/1758-5090/aa8dd8 10.1002/app.1992.070450211 10.1016/j.biomaterials.2020.120281 10.1063/1.5059393 10.1016/j.msec.2020.111701 10.1002/adbi.201700043 10.1088/1758-5090/aa8114 10.1016/j.mtbio.2020.100058 10.1007/s10856-006-0615-7 10.1007/s10439-016-1653-z 10.1021/acs.chemrev.0c00084 10.1021/acs.biomac.5b00188 10.1089/ten.tea.2019.0298 10.1088/1758-5090/ab6034 10.1002/adfm.202010104 10.1002/(SICI)1097-4636(199910)47:1<46::AID-JBM6>3.0.CO;2-N 10.1016/j.actbio.2021.04.016 10.1016/j.biomaterials.2013.09.078 10.1088/1758-5090/ab94cf 10.1021/acsbiomaterials.8b00416 10.1016/j.biomaterials.2012.01.007 10.1016/j.biomaterials.2018.09.044 10.1038/nmeth.2019 10.1126/sciadv.aba7406 10.1152/ajpcell.1996.271.3.C742 10.1039/C3TB21462A 10.1007/s10439-016-1704-5 10.1088/1758-5090/ab331e 10.1007/s40137-018-0198-5 10.1016/S0142-9612(01)00281-2 10.1007/BF01496959 10.1088/1758-5090/aa8cb7 10.1111/j.1525-1594.2005.00137.x 10.1002/term.1682 10.1038/s41598-021-84384-6 10.1088/1758-5090/ab5158 10.1088/1758-5090/ab39c5 10.1016/j.tibtech.2016.03.004 10.1038/s43246-021-00165-8 10.1021/acs.biomac.6b00366 10.1080/02652039109373974 10.1016/j.joca.2003.08.006 10.1080/09205063.2012.735100 10.3390/bioengineering7020032 10.7150/thno.50794 10.1002/adma.202109394 10.1007/978-1-0716-0989-7_2 10.3390/ijms17121976 10.1016/j.biomaterials.2011.08.027 10.1016/j.actbio.2022.03.009 10.3390/app11177821 10.1016/j.biomaterials.2009.06.034 10.1002/adma.201703443 10.1016/j.carbpol.2012.10.028 10.1016/j.biomaterials.2010.04.045 10.1016/j.biomaterials.2017.03.026 |
ContentType | Journal Article |
Copyright | 2022 The Authors. Advanced Healthcare Materials published by Wiley‐VCH GmbH 2022 The Authors. Advanced Healthcare Materials published by Wiley-VCH GmbH. 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 The Authors. Advanced Healthcare Materials published by Wiley‐VCH GmbH – notice: 2022 The Authors. Advanced Healthcare Materials published by Wiley-VCH GmbH. – notice: 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QP 7QQ 7SC 7SE 7SP 7SR 7T5 7TA 7TB 7TM 7TO 7U5 8BQ 8FD F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D 7X8 5PM |
DOI | 10.1002/adhm.202201891 |
DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Calcium & Calcified Tissue Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Immunology Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Oncogenes and Growth Factors Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Materials Business File Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts AIDS and Cancer Research Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts METADEX Computer and Information Systems Abstracts Professional Immunology Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic Materials Research Database |
Database_xml | – sequence: 1 dbid: 24P name: Wiley-Blackwell Open Access Collection url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2192-2659 |
EndPage | n/a |
ExternalDocumentID | PMC11468569 36308047 10_1002_adhm_202201891 ADHM202201891 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Swiss National Science Foundation (SNSF): INDEED project, SNSF's funderid: 310030E_189310 – fundername: Medical Delta Programme RegMed4D – fundername: Convergence programme Syn‐Cells for Health(care) under the theme of Health and Technology – fundername: Swiss National Science Foundation (SNSF): INDEED project, SNSF's grantid: 310030E_189310 |
GroupedDBID | 05W 0R~ 1OC 24P 33P 53G 8-0 8-1 A00 AAESR AAHHS AAHQN AAIHA AAIPD AAMNL AANLZ AAXRX AAYCA AAZKR ABCUV ABLJU ABQWH ABXGK ACAHQ ACCFJ ACCZN ACGFS ACGOF ACIWK ACPOU ACPRK ACXBN ACXQS ADBBV ADBTR ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFGKR AFRAH AFWVQ AFZJQ AHBTC AHMBA AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI D-A D-B DCZOG DRFUL DRMAN DRSTM EBD EBS EMOBN G-S HGLYW HZ~ KBYEO LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MXFUL MXMAN MXSTM MY. MY~ O9- P2W PQQKQ ROL SUPJJ SV3 WBKPD WOHZO WXSBR WYJ ZZTAW 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN C45 CITATION EJD GODZA OVD TEORI CGR CUY CVF ECM EIF NPM 7QF 7QP 7QQ 7SC 7SE 7SP 7SR 7T5 7TA 7TB 7TM 7TO 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D 7X8 LH4 5PM |
ID | FETCH-LOGICAL-c4691-7f0d20e1fee3bb4772eaac18fb0e99e35c8352de67b0d85673cab12a2a1444a03 |
IEDL.DBID | 24P |
ISSN | 2192-2640 2192-2659 |
IngestDate | Thu Aug 21 18:35:05 EDT 2025 Fri Sep 05 13:42:01 EDT 2025 Fri Jul 25 11:50:43 EDT 2025 Thu Apr 03 06:54:06 EDT 2025 Tue Jul 01 03:06:49 EDT 2025 Thu Apr 24 23:03:53 EDT 2025 Wed Jan 22 16:19:08 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | tissue engineering biofabrication shape-change smart bioinks 4D bioprinting |
Language | English |
License | Attribution 2022 The Authors. Advanced Healthcare Materials published by Wiley-VCH GmbH. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4691-7f0d20e1fee3bb4772eaac18fb0e99e35c8352de67b0d85673cab12a2a1444a03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8434-8316 0000-0002-7823-8807 0000-0002-7341-4445 0000-0003-3234-2112 0000-0003-1852-6409 0000-0002-0424-8172 0000-0002-1084-5766 0000-0002-3744-9093 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadhm.202201891 |
PMID | 36308047 |
PQID | 2765223216 |
PQPubID | 2032434 |
PageCount | 17 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_11468569 proquest_miscellaneous_2730320857 proquest_journals_2765223216 pubmed_primary_36308047 crossref_citationtrail_10_1002_adhm_202201891 crossref_primary_10_1002_adhm_202201891 wiley_primary_10_1002_adhm_202201891_ADHM202201891 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-01-01 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim – name: Hoboken |
PublicationTitle | Advanced healthcare materials |
PublicationTitleAlternate | Adv Healthc Mater |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc John Wiley and Sons Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: John Wiley and Sons Inc |
References | 2017; 8 2017; 1 2021; 20 2017; 4 2019; 52 2020; 120 2019; 11 2013; 24 2021; 128 2004; 25 2007; 221 2017; 45 1999; 47 2020; 15 2021; 120 2020; 12 1929; 47 2005; 29 2017; 9 2019; 365 2016; 34 2003; 11 2020; 7 2018; 6 2020; 6 2021; 31 2014; 2 2018; 4 2022; 34 2016; 83 1992; 45 2021; 2221 2010; 31 2015; 16 2019; 6 2021; 2 2006; 17 2020; 260 2013; 92 2011; 32 2011; 35 2017; 29 2017; 131 2016; 17 2015; 9 2011; 6 2012; 33 1991; 8 2019; 188 2016; 13 2022; 143 2009; 30 2021; 11 2021 2002; 23 2018; 115 1996; 271 2022; 14 2020; 26 2014; 35 2005; 1 2018; 10 2016; 8 2016; 9 2022; 18 2012; 9 e_1_2_9_75_1 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_77_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 Narcisi R. (e_1_2_9_79_1) 2021 e_1_2_9_71_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_58_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_68_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_78_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_76_1 e_1_2_9_70_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_63_1 e_1_2_9_40_1 Hendrijantini N. (e_1_2_9_45_1) 2019; 52 e_1_2_9_61_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_67_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_65_1 e_1_2_9_7_1 Manen T. (e_1_2_9_62_1) 2021 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_1_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_69_1 e_1_2_9_29_1 |
References_xml | – volume: 18 year: 2022 publication-title: Small – volume: 14 start-page: 354 year: 2022 publication-title: Polymers – volume: 45 start-page: 210 year: 2017 publication-title: Ann. Biomed. Eng. – volume: 6 year: 2019 publication-title: Appl. Phys. Rev. – volume: 29 start-page: 838 year: 2005 publication-title: Artif. Organs – volume: 8 year: 2016 publication-title: Biofabrication – volume: 8 start-page: 237 year: 1991 publication-title: Food Addit. Contam. – volume: 31 start-page: 6173 year: 2010 publication-title: Biomaterials – year: 2021 – volume: 2221 start-page: 15 year: 2021 end-page: 28 – volume: 6 start-page: 4 year: 2018 publication-title: Curr. Surg. Rep. – volume: 47 start-page: 46 year: 1999 publication-title: J. Biomed. Mater. Res. – volume: 4 start-page: 3088 year: 2018 publication-title: ACS Biomater. Sci. Eng. – volume: 33 start-page: 3279 year: 2012 publication-title: Biomaterials – volume: 271 start-page: C742 year: 1996 publication-title: Am. J. Physiol.: Cell Physiol. – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 9 start-page: 676 year: 2012 publication-title: Nat. Methods – volume: 7 start-page: 32 year: 2020 publication-title: Bioengineering – volume: 2 start-page: 56 year: 2021 publication-title: Commun. Mater. – volume: 12 year: 2020 publication-title: Biofabrication – volume: 120 year: 2021 publication-title: Mater. Sci. Eng., C – volume: 35 start-page: 741 year: 2011 publication-title: Artif. Organs – volume: 9 start-page: 1286 year: 2015 publication-title: J. Tissue Eng. Regener. Med. – volume: 15 year: 2020 publication-title: PLoS One – volume: 1 start-page: 625 year: 2005 publication-title: Acta Biomater. – volume: 10 start-page: 2776 year: 2018 publication-title: Sustainability – volume: 7 year: 2020 publication-title: Mater. Today Bio – volume: 131 start-page: 98 year: 2017 publication-title: Biomaterials – volume: 143 start-page: 266 year: 2022 publication-title: Acta Biomater. – volume: 83 start-page: 156 year: 2016 publication-title: Biomaterials – volume: 11 start-page: 879 year: 2003 publication-title: Osteoarthritis Cartilage – volume: 11 start-page: 7821 year: 2021 publication-title: Appl. Sci. – volume: 13 start-page: 701 year: 2016 publication-title: Nat. Rev. Cardiol. – volume: 221 start-page: 429 year: 2007 publication-title: Proc. Inst. Mech. Eng., Part H – volume: 35 start-page: 49 year: 2014 publication-title: Biomaterials – volume: 34 start-page: 746 year: 2016 publication-title: Trends Biotechnol. – volume: 6 start-page: 204 year: 2011 publication-title: Biotechnol. J. – volume: 52 start-page: 36 year: 2019 publication-title: Dent. J. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 47 start-page: 176 year: 1929 publication-title: Kolloid‐Z. – volume: 9 year: 2016 publication-title: Biofabrication – volume: 10 year: 2018 publication-title: Biofabrication – volume: 16 start-page: 1489 year: 2015 publication-title: Biomacromolecules – volume: 6 year: 2020 publication-title: Sci. Adv. – volume: 92 start-page: 1262 year: 2013 publication-title: Carbohydr. Polym. – volume: 20 start-page: 22 year: 2021 publication-title: Nat. Mater. – volume: 365 start-page: 482 year: 2019 publication-title: Science – volume: 4 start-page: 1064 year: 2017 publication-title: Mater. Horiz. – volume: 45 start-page: 132 year: 2017 publication-title: Ann. Biomed. Eng. – volume: 188 start-page: 63 year: 2019 publication-title: Biomaterials – volume: 11 start-page: 48 year: 2021 publication-title: Theranostics – volume: 115 year: 2018 publication-title: Proc. Natl. Acad. Sci. USA – volume: 25 start-page: 2603 year: 2004 publication-title: Biomaterials – volume: 17 start-page: 1393 year: 2006 publication-title: J. Mater. Sci.: Mater. Med. – volume: 128 start-page: 130 year: 2021 publication-title: Acta Biomater. – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 11 start-page: 5130 year: 2021 publication-title: Sci. Rep. – volume: 45 start-page: 293 year: 1992 publication-title: J. Appl. Polym. Sci. – volume: 23 start-page: 1511 year: 2002 publication-title: Biomaterials – volume: 24 start-page: 1084 year: 2013 publication-title: J. Biomater. Sci., Polym. Ed. – volume: 17 start-page: 1976 year: 2016 publication-title: Int. J. Mol. Sci. – volume: 1 year: 2017 publication-title: Adv. Biosyst. – volume: 120 year: 2020 publication-title: Chem. Rev. – volume: 32 start-page: 8927 year: 2011 publication-title: Biomaterials – volume: 9 year: 2017 publication-title: Biofabrication – volume: 260 year: 2020 publication-title: Biomaterials – volume: 26 start-page: 318 year: 2020 publication-title: Tissue Eng., Part A – volume: 2 start-page: 2357 year: 2014 publication-title: J. Mater. Chem. B – volume: 8 start-page: 400 year: 2017 publication-title: Nat. Commun. – volume: 11 year: 2019 publication-title: Biofabrication – volume: 17 start-page: 2137 year: 2016 publication-title: Biomacromolecules – volume: 30 start-page: 5910 year: 2009 publication-title: Biomaterials – ident: e_1_2_9_27_1 doi: 10.1111/j.1525-1594.2010.01193.x – volume: 52 start-page: 36 year: 2019 ident: e_1_2_9_45_1 publication-title: Dent. J. doi: 10.20473/j.djmkg.v52.i1.p36-40 – ident: e_1_2_9_6_1 doi: 10.1021/acs.chemrev.0c00008 – ident: e_1_2_9_57_1 doi: 10.3390/polym14020354 – ident: e_1_2_9_26_1 doi: 10.3390/su10082776 – ident: e_1_2_9_31_1 doi: 10.1088/1758-5090/aadf58 – ident: e_1_2_9_35_1 doi: 10.1016/j.biomaterials.2016.01.019 – ident: e_1_2_9_29_1 doi: 10.1073/pnas.1811296115 – ident: e_1_2_9_4_1 doi: 10.1088/1758-5090/8/1/013001 – ident: e_1_2_9_28_1 doi: 10.1371/journal.pone.0235052 – ident: e_1_2_9_49_1 doi: 10.1016/j.biomaterials.2003.09.046 – ident: e_1_2_9_56_1 doi: 10.1088/1758-5090/aacdc7 – ident: e_1_2_9_20_1 doi: 10.1038/s41467-017-00543-2 – ident: e_1_2_9_68_1 doi: 10.1002/biot.201000340 – ident: e_1_2_9_76_1 doi: 10.1016/j.actbio.2005.07.009 – ident: e_1_2_9_16_1 doi: 10.1039/C7MH00269F – ident: e_1_2_9_69_1 doi: 10.1038/s41563-020-00803-5 – ident: e_1_2_9_23_1 doi: 10.1002/smll.202202196 – ident: e_1_2_9_11_1 doi: 10.1038/nrcardio.2016.170 – ident: e_1_2_9_77_1 doi: 10.1243/09544119JEIM288 – ident: e_1_2_9_3_1 doi: 10.1126/science.aav9051 – ident: e_1_2_9_15_1 doi: 10.1088/1758-5090/9/1/012001 – ident: e_1_2_9_64_1 doi: 10.1088/1758-5090/aa8dd8 – ident: e_1_2_9_61_1 doi: 10.1002/app.1992.070450211 – ident: e_1_2_9_18_1 doi: 10.1016/j.biomaterials.2020.120281 – ident: e_1_2_9_5_1 doi: 10.1063/1.5059393 – ident: e_1_2_9_71_1 doi: 10.1016/j.msec.2020.111701 – ident: e_1_2_9_73_1 doi: 10.1002/adbi.201700043 – ident: e_1_2_9_17_1 doi: 10.1088/1758-5090/aa8114 – ident: e_1_2_9_55_1 doi: 10.1016/j.mtbio.2020.100058 – ident: e_1_2_9_72_1 doi: 10.1007/s10856-006-0615-7 – ident: e_1_2_9_12_1 doi: 10.1007/s10439-016-1653-z – ident: e_1_2_9_9_1 doi: 10.1021/acs.chemrev.0c00084 – ident: e_1_2_9_37_1 doi: 10.1021/acs.biomac.5b00188 – ident: e_1_2_9_65_1 doi: 10.1089/ten.tea.2019.0298 – ident: e_1_2_9_7_1 doi: 10.1088/1758-5090/ab6034 – ident: e_1_2_9_22_1 doi: 10.1002/adfm.202010104 – ident: e_1_2_9_60_1 doi: 10.1002/(SICI)1097-4636(199910)47:1<46::AID-JBM6>3.0.CO;2-N – ident: e_1_2_9_42_1 doi: 10.1016/j.actbio.2021.04.016 – ident: e_1_2_9_58_1 doi: 10.1016/j.biomaterials.2013.09.078 – ident: e_1_2_9_63_1 doi: 10.1088/1758-5090/ab94cf – ident: e_1_2_9_50_1 doi: 10.1021/acsbiomaterials.8b00416 – ident: e_1_2_9_48_1 doi: 10.1016/j.biomaterials.2012.01.007 – ident: e_1_2_9_53_1 doi: 10.1016/j.biomaterials.2018.09.044 – ident: e_1_2_9_78_1 doi: 10.1038/nmeth.2019 – ident: e_1_2_9_1_1 doi: 10.1126/sciadv.aba7406 – ident: e_1_2_9_44_1 doi: 10.1152/ajpcell.1996.271.3.C742 – ident: e_1_2_9_30_1 doi: 10.1039/C3TB21462A – ident: e_1_2_9_38_1 doi: 10.1007/s10439-016-1704-5 – ident: e_1_2_9_40_1 doi: 10.1088/1758-5090/ab331e – ident: e_1_2_9_52_1 doi: 10.1007/s40137-018-0198-5 – ident: e_1_2_9_43_1 doi: 10.1016/S0142-9612(01)00281-2 – ident: e_1_2_9_51_1 doi: 10.1007/BF01496959 – ident: e_1_2_9_33_1 doi: 10.1088/1758-5090/aa8cb7 – ident: e_1_2_9_70_1 doi: 10.1111/j.1525-1594.2005.00137.x – ident: e_1_2_9_36_1 doi: 10.1002/term.1682 – ident: e_1_2_9_66_1 doi: 10.1038/s41598-021-84384-6 – ident: e_1_2_9_8_1 doi: 10.1088/1758-5090/ab5158 – ident: e_1_2_9_21_1 doi: 10.1088/1758-5090/ab39c5 – ident: e_1_2_9_14_1 doi: 10.1016/j.tibtech.2016.03.004 – ident: e_1_2_9_13_1 doi: 10.1038/s43246-021-00165-8 – ident: e_1_2_9_34_1 doi: 10.1021/acs.biomac.6b00366 – ident: e_1_2_9_46_1 doi: 10.1080/02652039109373974 – ident: e_1_2_9_75_1 doi: 10.1016/j.joca.2003.08.006 – ident: e_1_2_9_47_1 doi: 10.1080/09205063.2012.735100 – ident: e_1_2_9_10_1 doi: 10.3390/bioengineering7020032 – ident: e_1_2_9_19_1 doi: 10.7150/thno.50794 – ident: e_1_2_9_24_1 doi: 10.1002/adma.202109394 – start-page: 15 volume-title: Osteoporosis and Osteoarthritis. Methods in Molecular Biology year: 2021 ident: e_1_2_9_79_1 doi: 10.1007/978-1-0716-0989-7_2 – ident: e_1_2_9_41_1 doi: 10.3390/ijms17121976 – ident: e_1_2_9_74_1 doi: 10.1016/j.biomaterials.2011.08.027 – ident: e_1_2_9_54_1 doi: 10.1016/j.actbio.2022.03.009 – ident: e_1_2_9_39_1 doi: 10.3390/app11177821 – ident: e_1_2_9_67_1 doi: 10.1016/j.biomaterials.2009.06.034 – volume-title: Theoretical stiffness limits of 4D printed self‐folding metamaterials year: 2021 ident: e_1_2_9_62_1 – ident: e_1_2_9_25_1 doi: 10.1002/adma.201703443 – ident: e_1_2_9_32_1 doi: 10.1016/j.carbpol.2012.10.028 – ident: e_1_2_9_59_1 doi: 10.1016/j.biomaterials.2010.04.045 – ident: e_1_2_9_2_1 doi: 10.1016/j.biomaterials.2017.03.026 |
SSID | ssj0000651681 |
Score | 2.5209336 |
Snippet | 3D bioprinting is usually implemented on flat surfaces, posing serious limitations in the fabrication of multilayered curved constructs. 4D bioprinting,... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2201891 |
SubjectTerms | 3-D printers 4D bioprinting Alginates Alginates - chemistry Alginic acid biofabrication Bioprinting Bone marrow Cartilage Cell viability Cellular structure Flat surfaces Histology Humans Hyaluronic Acid Hydrogels Inks Mesenchymal Stem Cells Mesenchyme Multilayers Printing, Three-Dimensional Radius of curvature Scaffolds shape‐change smart bioinks Stromal cells Swelling Three dimensional printing Time dependence Tissue Engineering Tissue Scaffolds - chemistry Tyramine |
Title | Swelling‐Dependent Shape‐Based Transformation of a Human Mesenchymal Stromal Cells‐Laden 4D Bioprinted Construct for Cartilage Tissue Engineering |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadhm.202201891 https://www.ncbi.nlm.nih.gov/pubmed/36308047 https://www.proquest.com/docview/2765223216 https://www.proquest.com/docview/2730320857 https://pubmed.ncbi.nlm.nih.gov/PMC11468569 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NatwwEBYlubSH0qR_btOgQqEnE1mSZfu42U1YSrYUdgO5GUmW2EBih-zmkFseobe-X58kM7LX9RJKoSf_SJaMZ8bzaez5hpAvwnhwO8rErtBVLK1lceF8EVuvnDCwepNVYPv8rqbn8ttFejHI4m_5IfqAG1pGeF-jgWuzOvpDGqqrJWaSc_BgOaav72J-LRZv4PJHH2UBB5uoUKkULJPj71xsw9zI-NH2ENue6QncfPrX5BDNBnd0-oq87HAkHbWC3yPPXL1PXgzYBV-TX3MMzMHu74efk67W7ZrOl_rGwZljcF8VXQxwa1PTxlNNQ1yfzjAtyS7vr2GW-fq2we0YxlvBtWcahqJyQo8vGwwMAmqlWPkzcNFSGI6OUSOv4F1FF0GydHBnb8j56cliPI27OgyxhcVzEmeeVZy5xDsQn5GAx53WNsm9Ya4onEgtwrjKqcywKk9VJqw2Cddcw2pNaibekp26qd17Qr1iNq24M94qaTOvReEZs4mTIk9l5iMSb2RQ2o6kHGtlXJUtvTIvUWZlL7OIfO3737T0HH_tebARadmZ6arkmQL8KXiiIvK5bwYDw68munbNHfYRWGQ-T7OIvGs1oJ9KKAGIW0JLvqUbfQck795uqS-XgcQbtRWeVRERHtToH7dfjibTWX_04X8u-kiew75o40cHZAd0wn0CRLU2h8FoDsnuaDI7mz8CV40gTw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTtwwELYQHGgPFaU_pKXFlSr1FOHYjpMcYbdogV1UaRept8h2bC0STVDZHnrrI_TW9-NJmHGy6a4QqtRTfuw4UWYm83ni-YaQj8J4cDvKxK7QVSytZXHhfBFbr5wwMHuTVWD7vFCjS3n2NV2uJsRcmJYfog-4oWWE7zUaOAakD_-yhupqjqnkHFxYjvnrWxLAOa7q4_JLH2YBD5uoUKoUTJPjei62pG5k_HB9iHXX9ABvPlw2uQpngz862SHPOiBJj1rJPycbrt4lT1foBV-QP1OMzMHu3a_fw67Y7YJO5_rGwZlj8F8Vna0A16amjaeahsA-nWBekp3__AZ3mS6-N7gdwHi3cO1Yw1BUDunxVYORQYCtFEt_BjJaCsPRAarkNXys6CyIlq482UtyefJ5NhjFXSGG2MLsOYkzzyrOXOIdyM9IAOROa5vk3jBXFE6kFnFc5VRmWJWnKhNWm4RrrmG6JjUTr8hm3dRuj1CvmE0r7oy3StrMa1F4xmzipMhTmfmIxEsZlLZjKcdiGddly6_MS5RZ2cssIp_6_jctP8ejPfeXIi07O70teaYAgAqeqIh86JvBwvC3ia5d8wP7CKwyn6dZRF63GtDfSigBkFtCS76mG30HZO9eb6mv5oHFG9PB4V0VEeFBjf7x-OXRcDTpj978z0UHZHs0m4zL8enF-VvyBM6LNpi0TzZBP9w7gFcL8z4Y0D3fDiIu |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYlgdIeSvqMm7RVodCTiSzJsn1Mdrts2yQEdgO5GVkPNpDaS7I59Naf0Fv-X39JZ2Sv6yWUQk9-SJaMZ8bzaez5hpAPovLgdlQVu0LbWBrD4sL5IjZeOVHB6k3awPZ5qqbn8stFejHI4m_5IfqAG1pGeF-jgS-tP_hDGqrtAjPJOXiwHNPXt_GLH5oml2d9lAUcbKJCpVKwTI6_c7E1cyPjB5tDbHqme3Dz_l-TQzQb3NFkhzzpcCQ9bAX_lDxw9TPyeMAu-JzczTAwB7u_fvwcd7VuV3S20EsHZ47AfVk6H-DWpqaNp5qGuD49wbQks_j-DWaZra4b3I5gvBu49ljDUFSO6dFlg4FBQK0UK38GLloKw9ERauQVvKvoPEiWDu7sBTmffJqPpnFXhyE2sHhO4swzy5lLvAPxVRLwuNPaJLmvmCsKJ1KDMM46lVXM5qnKhNFVwjXXsFqTmomXZKtuardLqFfMpJa7yhslTea1KDxjJnFS5KnMfETitQxK05GUY62Mq7KlV-YlyqzsZRaRj33_ZUvP8dee-2uRlp2Z3pQ8U4A_BU9URN73zWBg-NVE1665xT4Ci8znaRaRV60G9FMJJQBxS2jJN3Sj74Dk3Zst9eUikHhjNjg8qyIiPKjRP26_PBxPT_qj1_9z0Tvy8Gw8KY8_n37dI4_gtGhDSftkC9TDvQFwtareBvv5DfeJIVc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Swelling%E2%80%90Dependent+Shape%E2%80%90Based+Transformation+of+a+Human+Mesenchymal+Stromal+Cells%E2%80%90Laden+4D+Bioprinted+Construct+for+Cartilage+Tissue+Engineering&rft.jtitle=Advanced+healthcare+materials&rft.au=D%C3%ADaz%E2%80%90Payno%2C+Pedro+J.&rft.au=Kalogeropoulou%2C+Maria&rft.au=Muntz%2C+Iain&rft.au=Kingma%2C+Esther&rft.date=2023-01-01&rft.pub=John+Wiley+and+Sons+Inc&rft.issn=2192-2640&rft.eissn=2192-2659&rft.volume=12&rft.issue=2&rft_id=info:doi/10.1002%2Fadhm.202201891&rft_id=info%3Apmid%2F36308047&rft.externalDocID=PMC11468569 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2192-2640&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2192-2640&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2192-2640&client=summon |