ISCOMs/MPLA‐Adjuvanted SDAD Protein Nanoparticles Induce Improved Mucosal Immune Responses and Cross‐Protection in Mice

The epidemics caused by the influenza virus are a serious threat to public health and the economy. Adding appropriate adjuvants to improve immunogenicity and finding effective mucosal vaccines to combat respiratory infection at the portal of virus entry are important strategies to boost protection....

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 19; no. 34; pp. e2301801 - n/a
Main Authors Zhu, Wandi, Park, Jaeyoung, Pho, Thomas, Wei, Lai, Dong, Chunhong, Kim, Joo, Ma, Yao, Champion, Julie A., Wang, Bao‐Zhong
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.08.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The epidemics caused by the influenza virus are a serious threat to public health and the economy. Adding appropriate adjuvants to improve immunogenicity and finding effective mucosal vaccines to combat respiratory infection at the portal of virus entry are important strategies to boost protection. In this study, a novel type of core/shell protein nanoparticle consisting of influenza nucleoprotein (NP) as the core and NA1‐M2e or NA2‐M2e fusion proteins as the coating antigens by SDAD hetero‐bifunctional crosslinking is exploited. Immune‐stimulating complexes (ISCOMs)/monophosphoryl lipid A (MPLA) adjuvants further boost the NP/NA‐M2e SDAD protein nanoparticle‐induced immune responses when administered intramuscularly. The ISCOMs/MPLA‐adjuvanted protein nanoparticles are delivered through the intranasal route to validate the application as mucosal vaccines. ISCOMs/MPLA‐adjuvanted nanoparticles induce significantly strengthened antigen‐specific antibody responses, cytokine‐secreting splenocytes in the systemic compartment, and higher levels of antigen‐specific IgA and IgG in the local mucosa. Meanwhile, significantly expanded lung resident memory (RM) T and B cells (TRM/BRM) and alveolar macrophages population are observed in ISCOMs/MPLA‐adjuvanted nanoparticle‐immunized mice with a 100% survival rate after homogeneous and heterogeneous H3N2 viral challenges. Taken together, ISCOMs/MPLA‐adjuvanted protein nanoparticles could improve strong systemic and mucosal immune responses conferring protection in different immunization routes. In this study, novel protein nanoparticles are generated by conjugating the influenza M2e‐NA fusion protein onto influenza nucleoprotein nanoparticle cores using a hetero‐bifunctional crosslinker SDAD (NHS‐SS‐Diazirine).  The resulting protein nanoparticles, when formulated with ISCOMs/monophosphoryl lipid A adjuvants, exhibit significantly improved immune responses in both systemic and local mucosal compartments. These outcomes position this formulation as a promising mucosal vaccine candidate.
AbstractList The epidemics caused by the influenza virus are a serious threat to public health and the economy. Adding appropriate adjuvants to improve immunogenicity and finding effective mucosal vaccines to combat respiratory infection at the portal of virus entry are important strategies to boost protection. In this study, a novel type of core/shell protein nanoparticle consisting of influenza nucleoprotein (NP) as the core and NA1-M2e or NA2-M2e fusion proteins as the coating antigens by SDAD hetero-bifunctional crosslinking is exploited. Immune-stimulating complexes (ISCOMs)/monophosphoryl lipid A (MPLA) adjuvants further boost the NP/NA-M2e SDAD protein nanoparticle-induced immune responses when administered intramuscularly. The ISCOMs/MPLA-adjuvanted protein nanoparticles are delivered through the intranasal route to validate the application as mucosal vaccines. ISCOMs/MPLA-adjuvanted nanoparticles induce significantly strengthened antigen-specific antibody responses, cytokine-secreting splenocytes in the systemic compartment, and higher levels of antigen-specific IgA and IgG in the local mucosa. Meanwhile, significantly expanded lung resident memory (RM) T and B cells (T /B ) and alveolar macrophages population are observed in ISCOMs/MPLA-adjuvanted nanoparticle-immunized mice with a 100% survival rate after homogeneous and heterogeneous H3N2 viral challenges. Taken together, ISCOMs/MPLA-adjuvanted protein nanoparticles could improve strong systemic and mucosal immune responses conferring protection in different immunization routes.
Abstract The epidemics caused by the influenza virus are a serious threat to public health and the economy. Adding appropriate adjuvants to improve immunogenicity and finding effective mucosal vaccines to combat respiratory infection at the portal of virus entry are important strategies to boost protection. In this study, a novel type of core/shell protein nanoparticle consisting of influenza nucleoprotein (NP) as the core and NA1‐M2e or NA2‐M2e fusion proteins as the coating antigens by SDAD hetero‐bifunctional crosslinking is exploited. Immune‐stimulating complexes (ISCOMs)/monophosphoryl lipid A (MPLA) adjuvants further boost the NP/NA‐M2e SDAD protein nanoparticle‐induced immune responses when administered intramuscularly. The ISCOMs/MPLA‐adjuvanted protein nanoparticles are delivered through the intranasal route to validate the application as mucosal vaccines. ISCOMs/MPLA‐adjuvanted nanoparticles induce significantly strengthened antigen‐specific antibody responses, cytokine‐secreting splenocytes in the systemic compartment, and higher levels of antigen‐specific IgA and IgG in the local mucosa. Meanwhile, significantly expanded lung resident memory (RM) T and B cells (T RM /B RM ) and alveolar macrophages population are observed in ISCOMs/MPLA‐adjuvanted nanoparticle‐immunized mice with a 100% survival rate after homogeneous and heterogeneous H3N2 viral challenges. Taken together, ISCOMs/MPLA‐adjuvanted protein nanoparticles could improve strong systemic and mucosal immune responses conferring protection in different immunization routes.
The epidemics caused by the influenza virus are a serious threat to public health and the economy. Adding appropriate adjuvants to improve immunogenicity and finding effective mucosal vaccines to combat respiratory infection at the portal of virus entry are important strategies to boost protection. In this study, a novel type of core/shell protein nanoparticle consisting of influenza nucleoprotein (NP) as the core and NA1‐M2e or NA2‐M2e fusion proteins as the coating antigens by SDAD hetero‐bifunctional crosslinking is exploited. Immune‐stimulating complexes (ISCOMs)/monophosphoryl lipid A (MPLA) adjuvants further boost the NP/NA‐M2e SDAD protein nanoparticle‐induced immune responses when administered intramuscularly. The ISCOMs/MPLA‐adjuvanted protein nanoparticles are delivered through the intranasal route to validate the application as mucosal vaccines. ISCOMs/MPLA‐adjuvanted nanoparticles induce significantly strengthened antigen‐specific antibody responses, cytokine‐secreting splenocytes in the systemic compartment, and higher levels of antigen‐specific IgA and IgG in the local mucosa. Meanwhile, significantly expanded lung resident memory (RM) T and B cells (TRM/BRM) and alveolar macrophages population are observed in ISCOMs/MPLA‐adjuvanted nanoparticle‐immunized mice with a 100% survival rate after homogeneous and heterogeneous H3N2 viral challenges. Taken together, ISCOMs/MPLA‐adjuvanted protein nanoparticles could improve strong systemic and mucosal immune responses conferring protection in different immunization routes. In this study, novel protein nanoparticles are generated by conjugating the influenza M2e‐NA fusion protein onto influenza nucleoprotein nanoparticle cores using a hetero‐bifunctional crosslinker SDAD (NHS‐SS‐Diazirine).  The resulting protein nanoparticles, when formulated with ISCOMs/monophosphoryl lipid A adjuvants, exhibit significantly improved immune responses in both systemic and local mucosal compartments. These outcomes position this formulation as a promising mucosal vaccine candidate.
The epidemics caused by the influenza virus are a serious threat to public health and the economy. Adding appropriate adjuvants to improve immunogenicity and finding effective mucosal vaccines to combat respiratory infection at the portal of virus entry are important strategies to boost protection. In this study, we exploited a novel type of core/shell protein nanoparticle consisting of influenza NP as the core and NA1-M2e or NA2-M2e fusion proteins as the coating antigens by SDAD heterobifunctional crosslinking. ISCOMs/MPLA adjuvants further boosted the NP/NA-M2e SDAD protein nanoparticle-induced antigen-specific antibodies and cellular immune responses, which provided complete protection against influenza viral challenges when administered intramuscularly. The ISCOMs/MPLA-adjuvanted protein nanoparticles were delivered through the intranasal route to validate the application as mucosal vaccines. ISCOMs/MPLA-adjuvanted nanoparticles induced significantly strengthened antigen-specific antibody responses, cytokine-secreting splenocytes in the systemic compartment, and higher levels of antigen-specific IgA and IgG in the local mucosa. Meanwhile, significantly expanded lung resident memory (RM) T and B cells (T RM /B RM ) and alveolar macrophages population were observed in ISCOMs/MPLA-adjuvanted nanoparticle-immunized mice with a 100% survival rate after homogeneous and heterogeneous H3N2 viral challenges. Taken together, ISCOMs/MPLA-adjuvanted protein nanoparticles could improve strong systemic and mucosal immune responses conferring protection in different immunization routes.
The epidemics caused by the influenza virus are a serious threat to public health and the economy. Adding appropriate adjuvants to improve immunogenicity and finding effective mucosal vaccines to combat respiratory infection at the portal of virus entry are important strategies to boost protection. In this study, a novel type of core/shell protein nanoparticle consisting of influenza nucleoprotein (NP) as the core and NA1‐M2e or NA2‐M2e fusion proteins as the coating antigens by SDAD hetero‐bifunctional crosslinking is exploited. Immune‐stimulating complexes (ISCOMs)/monophosphoryl lipid A (MPLA) adjuvants further boost the NP/NA‐M2e SDAD protein nanoparticle‐induced immune responses when administered intramuscularly. The ISCOMs/MPLA‐adjuvanted protein nanoparticles are delivered through the intranasal route to validate the application as mucosal vaccines. ISCOMs/MPLA‐adjuvanted nanoparticles induce significantly strengthened antigen‐specific antibody responses, cytokine‐secreting splenocytes in the systemic compartment, and higher levels of antigen‐specific IgA and IgG in the local mucosa. Meanwhile, significantly expanded lung resident memory (RM) T and B cells (TRM/BRM) and alveolar macrophages population are observed in ISCOMs/MPLA‐adjuvanted nanoparticle‐immunized mice with a 100% survival rate after homogeneous and heterogeneous H3N2 viral challenges. Taken together, ISCOMs/MPLA‐adjuvanted protein nanoparticles could improve strong systemic and mucosal immune responses conferring protection in different immunization routes.
The epidemics caused by the influenza virus are a serious threat to public health and the economy. Adding appropriate adjuvants to improve immunogenicity and finding effective mucosal vaccines to combat respiratory infection at the portal of virus entry are important strategies to boost protection. In this study, a novel type of core/shell protein nanoparticle consisting of influenza nucleoprotein (NP) as the core and NA1-M2e or NA2-M2e fusion proteins as the coating antigens by SDAD hetero-bifunctional crosslinking is exploited. Immune-stimulating complexes (ISCOMs)/monophosphoryl lipid A (MPLA) adjuvants further boost the NP/NA-M2e SDAD protein nanoparticle-induced immune responses when administered intramuscularly. The ISCOMs/MPLA-adjuvanted protein nanoparticles are delivered through the intranasal route to validate the application as mucosal vaccines. ISCOMs/MPLA-adjuvanted nanoparticles induce significantly strengthened antigen-specific antibody responses, cytokine-secreting splenocytes in the systemic compartment, and higher levels of antigen-specific IgA and IgG in the local mucosa. Meanwhile, significantly expanded lung resident memory (RM) T and B cells (TRM /BRM ) and alveolar macrophages population are observed in ISCOMs/MPLA-adjuvanted nanoparticle-immunized mice with a 100% survival rate after homogeneous and heterogeneous H3N2 viral challenges. Taken together, ISCOMs/MPLA-adjuvanted protein nanoparticles could improve strong systemic and mucosal immune responses conferring protection in different immunization routes.The epidemics caused by the influenza virus are a serious threat to public health and the economy. Adding appropriate adjuvants to improve immunogenicity and finding effective mucosal vaccines to combat respiratory infection at the portal of virus entry are important strategies to boost protection. In this study, a novel type of core/shell protein nanoparticle consisting of influenza nucleoprotein (NP) as the core and NA1-M2e or NA2-M2e fusion proteins as the coating antigens by SDAD hetero-bifunctional crosslinking is exploited. Immune-stimulating complexes (ISCOMs)/monophosphoryl lipid A (MPLA) adjuvants further boost the NP/NA-M2e SDAD protein nanoparticle-induced immune responses when administered intramuscularly. The ISCOMs/MPLA-adjuvanted protein nanoparticles are delivered through the intranasal route to validate the application as mucosal vaccines. ISCOMs/MPLA-adjuvanted nanoparticles induce significantly strengthened antigen-specific antibody responses, cytokine-secreting splenocytes in the systemic compartment, and higher levels of antigen-specific IgA and IgG in the local mucosa. Meanwhile, significantly expanded lung resident memory (RM) T and B cells (TRM /BRM ) and alveolar macrophages population are observed in ISCOMs/MPLA-adjuvanted nanoparticle-immunized mice with a 100% survival rate after homogeneous and heterogeneous H3N2 viral challenges. Taken together, ISCOMs/MPLA-adjuvanted protein nanoparticles could improve strong systemic and mucosal immune responses conferring protection in different immunization routes.
Author Wei, Lai
Zhu, Wandi
Kim, Joo
Park, Jaeyoung
Pho, Thomas
Dong, Chunhong
Champion, Julie A.
Wang, Bao‐Zhong
Ma, Yao
AuthorAffiliation 1 Center for Inflammation, Immunity & Infection, Georgia State University, Atlanta, GA 30303, USA
3 Bioengineering Program, Georgia Institute of Technology, Atlanta, GA 30332, USA
2 School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
AuthorAffiliation_xml – name: 3 Bioengineering Program, Georgia Institute of Technology, Atlanta, GA 30332, USA
– name: 2 School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
– name: 1 Center for Inflammation, Immunity & Infection, Georgia State University, Atlanta, GA 30303, USA
Author_xml – sequence: 1
  givenname: Wandi
  surname: Zhu
  fullname: Zhu, Wandi
  organization: Georgia State University
– sequence: 2
  givenname: Jaeyoung
  surname: Park
  fullname: Park, Jaeyoung
  organization: Georgia Institute of Technology
– sequence: 3
  givenname: Thomas
  surname: Pho
  fullname: Pho, Thomas
  organization: Georgia Institute of Technology
– sequence: 4
  givenname: Lai
  surname: Wei
  fullname: Wei, Lai
  organization: Georgia State University
– sequence: 5
  givenname: Chunhong
  surname: Dong
  fullname: Dong, Chunhong
  organization: Georgia State University
– sequence: 6
  givenname: Joo
  surname: Kim
  fullname: Kim, Joo
  organization: Georgia State University
– sequence: 7
  givenname: Yao
  surname: Ma
  fullname: Ma, Yao
  organization: Georgia State University
– sequence: 8
  givenname: Julie A.
  surname: Champion
  fullname: Champion, Julie A.
  organization: Georgia Institute of Technology
– sequence: 9
  givenname: Bao‐Zhong
  orcidid: 0000-0002-1561-4318
  surname: Wang
  fullname: Wang, Bao‐Zhong
  email: bwang23@gsu.edu
  organization: Georgia State University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37162451$$D View this record in MEDLINE/PubMed
BookMark eNqFkU9v0zAYhy00xLbClSOKxIVLO7924iQnVHUMKiVsonC2XOcNpErsYCdF0y58BD4jnwSHjvLnwsmW_fiRf-_vnJwYa5CQp0AXQCm78F3bLhhlnEJG4QE5AwF8LjKWnxz3QE_Jufc7SjmwOH1ETnkKgsUJnJG79WZ1XfqL8qZYfv_6bVntxr0yA1bR5nJ5Gd04O2BjorfK2F65odEt-mhtqlFjtO56Z_cBLUdtvWrDQTcajN6h763xAVSmilbOeh_UP1V6aKyJgrBsND4mD2vVenxyv87Ih6tX71dv5sX16_VqWcx1LHKY8ypFBbUQMSKKWANNtagVR9yi4mwKwoFmecZoJkSdAW5DOoh5FdCtrvmMvDx4-3HbYaXRDE61sndNp9yttKqRf9-Y5pP8aPcSaMLiOAxxRl7cG5z9PKIfZNd4jW2rDNrRS5YB5DzPMhrQ5_-gOzs6E_IFKonzlCfJJFwcKD1Nx2F9_A1QORUrp2Llsdjw4NmfGY74ryYDkB-AL02Lt__RyU1ZFL_lPwCoI7QU
CitedBy_id crossref_primary_10_1186_s12951_023_02229_y
crossref_primary_10_1021_acsnano_3c07669
crossref_primary_10_1186_s12951_024_02311_z
crossref_primary_10_3390_pathogens12121390
crossref_primary_10_1007_s13346_023_01431_7
Cites_doi 10.3389/fimmu.2013.00185
10.3389/fimmu.2021.738955
10.1016/j.jconrel.2016.02.014
10.1038/nri3193
10.1002/adhm.201901176
10.1586/erv.11.25
10.1038/s41385-018-0003-x
10.1038/s41467-021-27063-4
10.1016/j.immuni.2019.03.011
10.1038/s41577-021-00599-8
10.1021/acsabm.1c00240
10.3389/fimmu.2022.953088
10.1038/s12276-021-00603-0
10.1182/blood.V99.9.3263
10.1016/j.biomaterials.2022.121664
10.1016/j.cell.2022.05.022
10.1038/s41573-021-00163-y
10.3389/fmicb.2017.00900
10.3109/21691401.2014.913054
10.1101/2022.03.22.485401
10.1172/JCI141810
10.1016/S0264-410X(02)00545-5
10.1046/j.1365-2249.1998.00650.x
10.1002/jlb.64.6.713
10.1073/pnas.1805713115
10.1128/IAI.70.12.6638-6645.2002
10.1126/science.abo2523
10.1016/j.nano.2021.102479
10.3390/pharmaceutics13010068
10.1038/cmi.2013.59
10.3389/fimmu.2022.1039194
10.1038/s41586-021-03365-x
10.1038/s41385-022-00511-0
10.1093/intimm/13.8.1053
10.1056/NEJMc2209651
10.1016/j.tibtech.2022.03.011
10.1016/S0960-9822(00)00556-X
10.1007/s00018-008-8228-6
10.4049/jimmunol.1601775
10.1038/s41541-022-00485-x
10.1126/science.aau0810
10.1128/CVI.05265-11
10.4049/jimmunol.176.6.3697
10.1016/j.clim.2008.08.018
10.4049/jimmunol.160.10.4688
10.1146/annurev-immunol-042617-053214
10.1016/j.immuni.2015.05.018
10.1073/pnas.1115369109
10.1038/s41565-020-0739-9
10.1002/embj.201488027
10.1038/s41598-018-31995-1
10.1182/blood.2020007890
10.1016/j.nano.2022.102614
10.1158/2326-6066.CIR-13-0102
10.4049/jimmunol.1302929
10.1038/s41573-019-0056-x
10.1172/JCI160898
10.4049/jimmunol.1004114
10.1371/journal.pone.0220196
10.1128/mBio.00492-17
10.1056/NEJMoa2026920
10.1016/j.omtn.2022.10.024
10.1146/annurev-immunol-030409-101212
10.1016/j.jconrel.2017.06.017
10.1371/journal.ppat.1004053
10.1126/sciimmunol.add3075
10.1016/j.isci.2021.103037
10.1038/s41590-018-0260-6
10.1016/j.celrep.2021.110112
10.1126/sciimmunol.abf5314
10.1038/s41467-017-02725-4
10.3389/fimmu.2020.00003
10.1038/s41385-021-00461-z
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
2023 Wiley-VCH GmbH.
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
– notice: 2023 Wiley-VCH GmbH.
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
5PM
DOI 10.1002/smll.202301801
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE
CrossRef


Materials Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Public Health
EISSN 1613-6829
EndPage n/a
ExternalDocumentID 10_1002_smll_202301801
37162451
SMLL202301801
Genre article
Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Science Foundation
  funderid: ECCS‐2025462
– fundername: US NIH/National Institute of Allergy and Infectious Diseases
  funderid: R01AI101047; R01AI143844
– fundername: NIAID NIH HHS
  grantid: R01 AI101047
– fundername: NIAID NIH HHS
  grantid: R01 AI143844
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAIHA
AANLZ
AAONW
AAXRX
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EMOBN
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
31~
AASGY
AAYOK
ACBWZ
ASPBG
AVWKF
AZFZN
BDRZF
CGR
CUY
CVF
EBD
ECM
EIF
EJD
FEDTE
GODZA
HVGLF
NPM
SV3
AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
5PM
ID FETCH-LOGICAL-c4691-3d7ea1f664eee64c107c6fa3eebea32624531089820866f81eb162143dc10bcf3
IEDL.DBID DR2
ISSN 1613-6810
1613-6829
IngestDate Tue Sep 17 21:29:00 EDT 2024
Sat Aug 17 04:22:11 EDT 2024
Fri Sep 13 07:31:18 EDT 2024
Fri Aug 23 03:49:02 EDT 2024
Wed Oct 02 05:23:37 EDT 2024
Sat Aug 24 00:52:06 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 34
Keywords intranasal delivery
influenza virus
adjuvant
mucosal vaccines
protein nanoparticles
Language English
License 2023 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4691-3d7ea1f664eee64c107c6fa3eebea32624531089820866f81eb162143dc10bcf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
W.Z., J.P., and T.P. produced and characterized nanoparticles; W.Z., L.W., C.D., J.K., and Y.M. conducted the animal experiments and analysis; B.-Z.W. and W.Z. designed the experiments; W.Z. wrote the original draft, and B.-Z.W., J.A.C., and W.Z. reviewed and edited the manuscript.
Author contributions
ORCID 0000-0002-1561-4318
OpenAccessLink https://rss.onlinelibrary.wiley.com/doi/am-pdf/10.1002/smll.202301801
PMID 37162451
PQID 2854973551
PQPubID 1046358
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10524461
proquest_miscellaneous_2811939880
proquest_journals_2854973551
crossref_primary_10_1002_smll_202301801
pubmed_primary_37162451
wiley_primary_10_1002_smll_202301801_SMLL202301801
PublicationCentury 2000
PublicationDate 2023-08-01
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 24
1998; 160
2022; 132
2017; 8
2021; 20
2013; 4
2013; 1
2019; 50
2002; 99
2019; 14
2006; 176
2011; 10
2012; 19
2020; 367
2020; 11
2022; 22
2017; 199
2012; 12
1998; 113
2020; 19
2022; 378
2022; 287
2018; 9
2018; 8
2021; 37
2019; 20
2022; 40
2010; 28
2000; 10
2015; 42
2020; 9
2008; 65
2022; 30
2021; 592
2020; 136
2001; 13
2014; 11
2014; 10
2016; 44
2021; 4
2020; 383
2019; 37
2009; 130
2014; 193
1998; 64
2016; 240
2012; 109
2021; 13
2022; 387
2021; 16
2021; 53
2023; 47
2022; 185
2021; 12
2022
2022; 7
2018; 115
2022; 13
2022; 15
2021; 131
2002; 70
2017; 261
2018; 11
2014; 33
2003; 21
2011; 187
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_71_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_70_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_67_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_65_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_1_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_69_1
e_1_2_9_29_1
References_xml – volume: 13
  start-page: 68
  year: 2021
  publication-title: Pharmaceutics
– volume: 11
  start-page: 1071
  year: 2018
  publication-title: Mucosal Immunol.
– volume: 12
  start-page: 6871
  year: 2021
  publication-title: Nat. Commun.
– volume: 14
  year: 2019
  publication-title: PLoS One
– volume: 113
  start-page: 235
  year: 1998
  publication-title: Clin. Exp. Immunol.
– volume: 9
  year: 2020
  publication-title: Adv. Healthcare Mater.
– volume: 42
  start-page: 1197
  year: 2015
  publication-title: Immunity
– volume: 44
  start-page: 83
  year: 2016
  publication-title: Artif. Cells, Nanomed., Biotechnol.
– volume: 136
  start-page: 2722
  year: 2020
  publication-title: Blood
– volume: 383
  start-page: 2320
  year: 2020
  publication-title: N. Engl. J. Med.
– volume: 10
  year: 2014
  publication-title: PLoS Pathog.
– volume: 387
  start-page: 1333
  year: 2022
  publication-title: N. Engl. J. Med.
– volume: 7
  year: 2022
  publication-title: Sci. Immunol.
– volume: 37
  start-page: 521
  year: 2019
  publication-title: Annu. Rev. Immunol.
– volume: 47
  year: 2023
  publication-title: Nanomedicine
– volume: 378
  year: 2022
  publication-title: Science
– volume: 11
  start-page: 150
  year: 2014
  publication-title: Cell Mol. Immunol.
– volume: 19
  start-page: 79
  year: 2012
  publication-title: Clin. Vaccine Immunol.
– volume: 16
  start-page: 1
  year: 2021
  publication-title: Nat. Nanotechnol.
– year: 2022
  publication-title: bioRxiv
– volume: 130
  start-page: 27
  year: 2009
  publication-title: Clin. Immunol.
– volume: 115
  year: 2018
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 33
  start-page: 1104
  year: 2014
  publication-title: EMBO J.
– volume: 40
  start-page: 1195
  year: 2022
  publication-title: Trends Biotechnol.
– volume: 592
  start-page: 623
  year: 2021
  publication-title: Nature
– volume: 12
  start-page: 339
  year: 2012
  publication-title: Nat. Rev. Immunol.
– volume: 13
  start-page: 1053
  year: 2001
  publication-title: Int. Immunol.
– volume: 8
  start-page: 900
  year: 2017
  publication-title: Front. Microbiol.
– volume: 160
  start-page: 4688
  year: 1998
  publication-title: J. Immunol.
– volume: 24
  year: 2021
  publication-title: iScience
– volume: 187
  start-page: 55
  year: 2011
  publication-title: J. Immunol.
– volume: 28
  start-page: 445
  year: 2010
  publication-title: Annu. Rev. Immunol.
– volume: 50
  start-page: 851
  year: 2019
  publication-title: Immunity
– volume: 64
  start-page: 713
  year: 1998
  publication-title: J. Leukocyte Biol.
– volume: 37
  year: 2021
  publication-title: Cell Rep.
– volume: 8
  year: 2018
  publication-title: Sci. Rep.
– volume: 20
  start-page: 97
  year: 2019
  publication-title: Nat. Immunol.
– volume: 13
  year: 2022
  publication-title: Front. Immunol.
– volume: 10
  start-page: 401
  year: 2011
  publication-title: Expert Rev. Vaccines
– volume: 19
  start-page: 239
  year: 2020
  publication-title: Nat. Rev. Drug Discovery
– volume: 131
  year: 2021
  publication-title: J. Clin. Invest.
– volume: 15
  start-page: 379
  year: 2022
  publication-title: Mucosal Immunol.
– volume: 9
  start-page: 359
  year: 2018
  publication-title: Nat. Commun.
– volume: 70
  start-page: 6638
  year: 2002
  publication-title: Infect. Immun.
– volume: 30
  start-page: 421
  year: 2022
  publication-title: Mol. Ther.–Nucleic Acids
– volume: 176
  start-page: 3697
  year: 2006
  publication-title: J. Immunol.
– volume: 4
  start-page: 4953
  year: 2021
  publication-title: ACS Appl. Bio Mater.
– volume: 287
  year: 2022
  publication-title: Biomaterials
– volume: 240
  start-page: 394
  year: 2016
  publication-title: J. Controlled Release
– volume: 4
  start-page: 185
  year: 2013
  publication-title: Front. Immunol.
– volume: 109
  start-page: 2485
  year: 2012
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 53
  start-page: 737
  year: 2021
  publication-title: Exp. Mol. Med.
– volume: 132
  year: 2022
  publication-title: J. Clin. Invest.
– volume: 99
  start-page: 3263
  year: 2002
  publication-title: Blood
– volume: 11
  start-page: 3
  year: 2020
  publication-title: Front. Immunol.
– volume: 261
  start-page: 1
  year: 2017
  publication-title: J. Controlled Release
– volume: 199
  start-page: 9
  year: 2017
  publication-title: J. Immunol.
– volume: 1
  start-page: 145
  year: 2013
  publication-title: Cancer Immunol. Res.
– volume: 367
  year: 2020
  publication-title: Science
– volume: 10
  start-page: R492
  year: 2000
  publication-title: Curr. Biol.
– volume: 40
  year: 2022
  publication-title: Nanomedicine
– volume: 20
  start-page: 454
  year: 2021
  publication-title: Nat. Rev. Drug Discovery
– volume: 12
  year: 2021
  publication-title: Front. Immunol.
– volume: 65
  start-page: 3231
  year: 2008
  publication-title: Cell. Mol. Life Sci.
– volume: 22
  start-page: 266
  year: 2022
  publication-title: Nat. Rev. Immunol.
– volume: 7
  start-page: 71
  year: 2022
  publication-title: NPJ Vaccines
– volume: 193
  start-page: 4914
  year: 2014
  publication-title: J. Immunol.
– volume: 185
  start-page: 2434
  year: 2022
  publication-title: Cell
– volume: 21
  start-page: 946
  year: 2003
  publication-title: Vaccine
– volume: 8
  year: 2017
  publication-title: mBio
– volume: 15
  start-page: 799
  year: 2022
  publication-title: Mucosal Immunol.
– ident: e_1_2_9_32_1
  doi: 10.3389/fimmu.2013.00185
– ident: e_1_2_9_38_1
  doi: 10.3389/fimmu.2021.738955
– ident: e_1_2_9_54_1
  doi: 10.1016/j.jconrel.2016.02.014
– ident: e_1_2_9_19_1
  doi: 10.1038/nri3193
– ident: e_1_2_9_5_1
  doi: 10.1002/adhm.201901176
– ident: e_1_2_9_11_1
  doi: 10.1586/erv.11.25
– ident: e_1_2_9_66_1
  doi: 10.1038/s41385-018-0003-x
– ident: e_1_2_9_70_1
  doi: 10.1038/s41467-021-27063-4
– ident: e_1_2_9_22_1
  doi: 10.1016/j.immuni.2019.03.011
– ident: e_1_2_9_56_1
  doi: 10.1038/s41577-021-00599-8
– ident: e_1_2_9_57_1
  doi: 10.1021/acsabm.1c00240
– ident: e_1_2_9_59_1
  doi: 10.3389/fimmu.2022.953088
– ident: e_1_2_9_1_1
  doi: 10.1038/s12276-021-00603-0
– ident: e_1_2_9_28_1
  doi: 10.1182/blood.V99.9.3263
– ident: e_1_2_9_7_1
  doi: 10.1016/j.biomaterials.2022.121664
– ident: e_1_2_9_14_1
  doi: 10.1016/j.cell.2022.05.022
– ident: e_1_2_9_9_1
  doi: 10.1038/s41573-021-00163-y
– ident: e_1_2_9_36_1
  doi: 10.3389/fmicb.2017.00900
– ident: e_1_2_9_41_1
  doi: 10.3109/21691401.2014.913054
– ident: e_1_2_9_68_1
  doi: 10.1101/2022.03.22.485401
– ident: e_1_2_9_37_1
  doi: 10.1172/JCI141810
– ident: e_1_2_9_44_1
  doi: 10.1016/S0264-410X(02)00545-5
– ident: e_1_2_9_46_1
  doi: 10.1046/j.1365-2249.1998.00650.x
– ident: e_1_2_9_10_1
  doi: 10.1002/jlb.64.6.713
– ident: e_1_2_9_43_1
  doi: 10.1073/pnas.1805713115
– ident: e_1_2_9_52_1
  doi: 10.1128/IAI.70.12.6638-6645.2002
– ident: e_1_2_9_69_1
  doi: 10.1126/science.abo2523
– ident: e_1_2_9_6_1
  doi: 10.1016/j.nano.2021.102479
– ident: e_1_2_9_3_1
  doi: 10.3390/pharmaceutics13010068
– ident: e_1_2_9_51_1
  doi: 10.1038/cmi.2013.59
– ident: e_1_2_9_63_1
  doi: 10.3389/fimmu.2022.1039194
– ident: e_1_2_9_15_1
  doi: 10.1038/s41586-021-03365-x
– ident: e_1_2_9_35_1
  doi: 10.1038/s41385-022-00511-0
– ident: e_1_2_9_26_1
  doi: 10.1093/intimm/13.8.1053
– ident: e_1_2_9_33_1
  doi: 10.1056/NEJMc2209651
– ident: e_1_2_9_42_1
  doi: 10.1016/j.tibtech.2022.03.011
– ident: e_1_2_9_30_1
  doi: 10.1016/S0960-9822(00)00556-X
– ident: e_1_2_9_25_1
  doi: 10.1007/s00018-008-8228-6
– ident: e_1_2_9_31_1
  doi: 10.4049/jimmunol.1601775
– ident: e_1_2_9_71_1
  doi: 10.1038/s41541-022-00485-x
– ident: e_1_2_9_53_1
  doi: 10.1126/science.aau0810
– ident: e_1_2_9_45_1
  doi: 10.1128/CVI.05265-11
– ident: e_1_2_9_47_1
  doi: 10.4049/jimmunol.176.6.3697
– ident: e_1_2_9_21_1
  doi: 10.1016/j.clim.2008.08.018
– ident: e_1_2_9_39_1
  doi: 10.4049/jimmunol.160.10.4688
– ident: e_1_2_9_62_1
  doi: 10.1146/annurev-immunol-042617-053214
– ident: e_1_2_9_72_1
  doi: 10.1016/j.immuni.2015.05.018
– ident: e_1_2_9_64_1
  doi: 10.1073/pnas.1115369109
– ident: e_1_2_9_16_1
  doi: 10.1038/s41565-020-0739-9
– ident: e_1_2_9_17_1
  doi: 10.1002/embj.201488027
– ident: e_1_2_9_23_1
  doi: 10.1038/s41598-018-31995-1
– ident: e_1_2_9_60_1
  doi: 10.1182/blood.2020007890
– ident: e_1_2_9_8_1
  doi: 10.1016/j.nano.2022.102614
– ident: e_1_2_9_18_1
  doi: 10.1158/2326-6066.CIR-13-0102
– ident: e_1_2_9_20_1
  doi: 10.4049/jimmunol.1302929
– ident: e_1_2_9_2_1
  doi: 10.1038/s41573-019-0056-x
– ident: e_1_2_9_12_1
  doi: 10.1172/JCI160898
– ident: e_1_2_9_24_1
  doi: 10.4049/jimmunol.1004114
– ident: e_1_2_9_34_1
  doi: 10.1371/journal.pone.0220196
– ident: e_1_2_9_50_1
  doi: 10.1128/mBio.00492-17
– ident: e_1_2_9_13_1
  doi: 10.1056/NEJMoa2026920
– ident: e_1_2_9_27_1
  doi: 10.1016/j.omtn.2022.10.024
– ident: e_1_2_9_29_1
  doi: 10.1146/annurev-immunol-030409-101212
– ident: e_1_2_9_73_1
  doi: 10.1016/j.jconrel.2017.06.017
– ident: e_1_2_9_40_1
  doi: 10.1371/journal.ppat.1004053
– ident: e_1_2_9_67_1
  doi: 10.1126/sciimmunol.add3075
– ident: e_1_2_9_48_1
  doi: 10.1016/j.isci.2021.103037
– ident: e_1_2_9_65_1
  doi: 10.1038/s41590-018-0260-6
– ident: e_1_2_9_49_1
  doi: 10.1016/j.celrep.2021.110112
– ident: e_1_2_9_61_1
  doi: 10.1126/sciimmunol.abf5314
– ident: e_1_2_9_4_1
  doi: 10.1038/s41467-017-02725-4
– ident: e_1_2_9_55_1
  doi: 10.3389/fimmu.2020.00003
– ident: e_1_2_9_58_1
  doi: 10.1038/s41385-021-00461-z
SSID ssj0031247
Score 2.4884775
Snippet The epidemics caused by the influenza virus are a serious threat to public health and the economy. Adding appropriate adjuvants to improve immunogenicity and...
Abstract The epidemics caused by the influenza virus are a serious threat to public health and the economy. Adding appropriate adjuvants to improve...
SourceID pubmedcentral
proquest
crossref
pubmed
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage e2301801
SubjectTerms adjuvant
Adjuvants
Adjuvants, Immunologic
Animals
Antibodies
Antigen-Antibody Complex
Antigens
Crosslinking
Immunity, Mucosal
Immunization
Influenza
Influenza A Virus, H3N2 Subtype
Influenza Vaccines
influenza virus
intranasal delivery
ISCOMs
Lipids
Macrophages
Mice
Mice, Inbred BALB C
mucosal vaccines
Nanoparticles
Nanotechnology
protein nanoparticles
Proteins
Public health
Vaccines
Viruses
Title ISCOMs/MPLA‐Adjuvanted SDAD Protein Nanoparticles Induce Improved Mucosal Immune Responses and Cross‐Protection in Mice
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202301801
https://www.ncbi.nlm.nih.gov/pubmed/37162451
https://www.proquest.com/docview/2854973551/abstract/
https://www.proquest.com/docview/2811939880/abstract/
https://pubmed.ncbi.nlm.nih.gov/PMC10524461
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELUQJziwL2WTkZA4hTaOY5Jj1VK1qIGKgsQtsh1HrAHRlgNc-AS-kS9hJm5DCwckuLXyOIs9y3M880zInjA8daUQji80c3igEkdKlzk6xD0ywQOWYqFwdCKaF_z40r8cq-K3_BDFBze0jNxfo4FL1St_kYb27u9w6wAgtBvkBVzIpoeo6Kzgj_IgeOWnq0DMcpB4a8TaWGHlye6TUekH1PyZMTmOZPNQ1JgncvQSNgPl9mDQVwf65Ru_43_ecoHMDXEqrVrFWiRTJlsis2PshcvktdWtnUa9ctRpVz_e3qvJzeAZ5ymh3Xq1TjvIAHGdUfDfsDAf5t9RPCpEG2q_ZYBohBnzcKMW1qkYemZTdkFQZgmt4WDBpTuWTAJUiMIFI_BtK-SicXReazrDsxwcDQtw1_GSQyPdVAhujBFcw6pTi1R6BpRIAoRkHJxBJQgBkARCpIELMUQwAHMJiCqdeqtkOnvIzDqhvqu1AhQofZVwFXqhCX2fSeUBmqwIo0pkfzSX8aOl7IgtOTOLcTjjYjhLZGs01fHQdHsxlpSGhwDDoHm3aAajw50UmZmHAcq4AHxD8H0lsmY1o7iVh5xcHHsHEzpTCCCh92RLdn2VE3sD1gW0JaAry3Xil8ePu1G7Xfzb-EunTTKDv21G4xaZ7j8NzDagrL7ayS3pE-STIgg
link.rule.ids 230,315,786,790,891,1382,27957,27958,46329,46753
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQOQAH3pQtBYyExCndjeO4yXG1pdqFpKy6rcQtsh1HlEeKurs9lAs_gd_IL-GbeBO69IAEx8TjPOyZ8Wd75jNjL5WTVaiVCmJlRSATUwZahyKwKe2RKZmIihKF8wM1PpZv3sdtNCHlwnh-iG7BjSyj8ddk4LQg3f_NGjr_8pn2DoChw4QyuK7D5uNmVnXYMUhFGL6a81UwagVEvdXyNg5Ef73--rh0BWxejZm8jGWbwWj_DjPtb_gYlE87y4XZsRd_MDz-13_eZbdXUJUPvW7dY9dcfZ_dukRg-IB9m8xG7_J5P59mw5_ffwzLj8tz6qqSz_aGe3xKJBAnNYcLx9x8FYLH6bQQ67hfzoBoTkHzeNGEUlUcP_RRuxDUdclH1Fp49NTzSUCLOB6Yw709ZMf7r49G42B1nENgMQcPg6jcdTqslJLOOSUtJp5WVTpy0CMNFCkk_MEgSYFJEqWqJMQwogTwXAlRY6voEduoT2v3mPE4tNYACOrYlNKkUerSOBbaRACUA-VMj71qO7P46lk7Cs_PLApqzqJrzh7bbvu6WFnvvKCs0nQXSAzFL7pi2B1tpujanS5JJgT2TeH-emzTq0b3qohouSTVTtaUphMgTu_1kvrkQ8PtDbgLwKVQVTRK8ZfPL2Z5lnVXW_9S6Tm7MT7KsyKbHLx9wm7SfR_guM02FmdL9xSga2GeNWb1CwCiJio
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9owFLYqKlXbw3rbhZa2rlRpTwHiOCZ5RFAEHaEIWqlvke04WndJqwJ7WF_2E_Yb90t2TgwplIdK2yP4OBf7XD7H53wm5EwYnrpSCMcXmjk8UIkjpcscHeIemeABS7FQOBqI7jW_uPFvlqr4LT9E8cENLSP312jg90laeyINnXz_hlsHAKHdAAu4NrnwGOp1e1QQSHkQvfLjVSBoOci8taBtrLPaav_VsLSGNddTJpehbB6LOttELt7CpqB8rc6mqqp_PiN4_J_X3CFv5kCVNq1m7ZINk-2R10v0hfvksTduXUaTWjTsN__8-t1Mvsx-4EQldNxutukQKSBuMwoOHFbm8wQ8imeFaEPtxwwQjTBlHm7Uw0IVQ0c2ZxcEZZbQFg4WXHpo2SRAhyhcMALn9pZcd86vWl1nfpiDo2EF7jpe0jDSTYXgxhjBNSw7tUilZ0CLJGBIxsEb1IMQEEkgRBq4EEQEAzSXgKjSqfeOlLK7zHwg1He1VgADpa8SrkIvNKHvM6k8gJN1YVSZfFzMZXxvOTtiy87MYhzOuBjOMqkspjqe2-4kxprSsAE4DJpPi2awOtxKkZm5m6GMC8g3BOdXJu-tZhS38pCUi2PvYEVnCgFk9F5tyW4_58zeAHYBbgnoynKdeOHx43HU7xe_Dv6l0wnZGrY7cb83-HRIXuHfNruxQkrTh5k5AsQ1Vce5Uf0FdS8k2Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ISCOMs%2FMPLA-Adjuvanted+SDAD+Protein+Nanoparticles+Induce+Improved+Mucosal+Immune+Responses+and+Cross-Protection+in+Mice&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Zhu%2C+Wandi&rft.au=Park%2C+Jaeyoung&rft.au=Pho%2C+Thomas&rft.au=Wei%2C+Lai&rft.date=2023-08-01&rft.issn=1613-6829&rft.eissn=1613-6829&rft.volume=19&rft.issue=34&rft.spage=e2301801&rft_id=info:doi/10.1002%2Fsmll.202301801&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon