Dibenzomethanopentacene‐Based Polymers of Intrinsic Microporosity for Use in Gas‐Separation Membranes

Dibenzomethanopentacene (DBMP) is shown to be a useful structural component for making Polymers of Intrinsic Microporosity (PIMs) with promise for making efficient membranes for gas separations. DBMP‐based monomers for PIMs are readily prepared using a Diels–Alder reaction between 2,3‐dimethoxyanthr...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 62; no. 8; pp. e202215250 - n/a
Main Authors Chen, Jie, Longo, Mariagiulia, Fuoco, Alessio, Esposito, Elisa, Monteleone, Marcello, Comesaña Gándara, Bibiana, Carolus Jansen, Johannes, McKeown, Neil B.
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 13.02.2023
John Wiley and Sons Inc
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Dibenzomethanopentacene (DBMP) is shown to be a useful structural component for making Polymers of Intrinsic Microporosity (PIMs) with promise for making efficient membranes for gas separations. DBMP‐based monomers for PIMs are readily prepared using a Diels–Alder reaction between 2,3‐dimethoxyanthracene and norbornadiene as the key synthetic step. Compared to date for the archetypal PIM‐1, the incorporation of DBMP simultaneously enhances both gas permeability and the ideal selectivity for one gas over another. Hence, both ideal and mixed gas permeability data for DBMP‐rich co‐polymers and an amidoxime modified PIM are close to the current Robeson upper bounds, which define the state‐of‐the‐art for the trade‐off between permeability and selectivity, for several important gas pairs. Furthermore, long‐term studies (over ≈3 years) reveal that the reduction in gas permeabilities on ageing is less for DBMP‐containing PIMs relative to that for other high performing PIMs, which is an attractive property for the fabrication of membranes for efficient gas separations. A series of dibenzomethanopentacene (DBMP) containing polymers of intrinsic microporosity (PIMs) were synthesised showing both high performance for pure and mixed gas permeability/selectivity and reduced ageing. The data for DBMP‐rich PIMs are close to the latest Robeson upper bounds for several important gas pairs indicating their potential for making gas separation membranes.
AbstractList Dibenzomethanopentacene (DBMP) is shown to be a useful structural component for making Polymers of Intrinsic Microporosity (PIMs) with promise for making efficient membranes for gas separations. DBMP‐based monomers for PIMs are readily prepared using a Diels–Alder reaction between 2,3‐dimethoxyanthracene and norbornadiene as the key synthetic step. Compared to date for the archetypal PIM‐1, the incorporation of DBMP simultaneously enhances both gas permeability and the ideal selectivity for one gas over another. Hence, both ideal and mixed gas permeability data for DBMP‐rich co‐polymers and an amidoxime modified PIM are close to the current Robeson upper bounds, which define the state‐of‐the‐art for the trade‐off between permeability and selectivity, for several important gas pairs. Furthermore, long‐term studies (over ≈3 years) reveal that the reduction in gas permeabilities on ageing is less for DBMP‐containing PIMs relative to that for other high performing PIMs, which is an attractive property for the fabrication of membranes for efficient gas separations.
Dibenzomethanopentacene (DBMP) is shown to be a useful structural component for making Polymers of Intrinsic Microporosity (PIMs) with promise for making efficient membranes for gas separations. DBMP‐based monomers for PIMs are readily prepared using a Diels–Alder reaction between 2,3‐dimethoxyanthracene and norbornadiene as the key synthetic step. Compared to date for the archetypal PIM‐1, the incorporation of DBMP simultaneously enhances both gas permeability and the ideal selectivity for one gas over another. Hence, both ideal and mixed gas permeability data for DBMP‐rich co‐polymers and an amidoxime modified PIM are close to the current Robeson upper bounds, which define the state‐of‐the‐art for the trade‐off between permeability and selectivity, for several important gas pairs. Furthermore, long‐term studies (over ≈3 years) reveal that the reduction in gas permeabilities on ageing is less for DBMP‐containing PIMs relative to that for other high performing PIMs, which is an attractive property for the fabrication of membranes for efficient gas separations. A series of dibenzomethanopentacene (DBMP) containing polymers of intrinsic microporosity (PIMs) were synthesised showing both high performance for pure and mixed gas permeability/selectivity and reduced ageing. The data for DBMP‐rich PIMs are close to the latest Robeson upper bounds for several important gas pairs indicating their potential for making gas separation membranes.
Dibenzomethanopentacene (DBMP) is shown to be a useful structural component for making Polymers of Intrinsic Microporosity (PIMs) with promise for making efficient membranes for gas separations. DBMP-based monomers for PIMs are readily prepared using a Diels-Alder reaction between 2,3-dimethoxyanthracene and norbornadiene as the key synthetic step. Compared to date for the archetypal PIM-1, the incorporation of DBMP simultaneously enhances both gas permeability and the ideal selectivity for one gas over another. Hence, both ideal and mixed gas permeability data for DBMP-rich co-polymers and an amidoxime modified PIM are close to the current Robeson upper bounds, which define the state-of-the-art for the trade-off between permeability and selectivity, for several important gas pairs. Furthermore, long-term studies (over ≈3 years) reveal that the reduction in gas permeabilities on ageing is less for DBMP-containing PIMs relative to that for other high performing PIMs, which is an attractive property for the fabrication of membranes for efficient gas separations.Dibenzomethanopentacene (DBMP) is shown to be a useful structural component for making Polymers of Intrinsic Microporosity (PIMs) with promise for making efficient membranes for gas separations. DBMP-based monomers for PIMs are readily prepared using a Diels-Alder reaction between 2,3-dimethoxyanthracene and norbornadiene as the key synthetic step. Compared to date for the archetypal PIM-1, the incorporation of DBMP simultaneously enhances both gas permeability and the ideal selectivity for one gas over another. Hence, both ideal and mixed gas permeability data for DBMP-rich co-polymers and an amidoxime modified PIM are close to the current Robeson upper bounds, which define the state-of-the-art for the trade-off between permeability and selectivity, for several important gas pairs. Furthermore, long-term studies (over ≈3 years) reveal that the reduction in gas permeabilities on ageing is less for DBMP-containing PIMs relative to that for other high performing PIMs, which is an attractive property for the fabrication of membranes for efficient gas separations.
Author Longo, Mariagiulia
Monteleone, Marcello
McKeown, Neil B.
Fuoco, Alessio
Esposito, Elisa
Chen, Jie
Comesaña Gándara, Bibiana
Carolus Jansen, Johannes
AuthorAffiliation 1 EaStCHEM School of Chemistry University of Edinburgh David Brewster Road Edinburgh EH9 3FJ UK
2 Institute on Membrane Technology National Research Council of Italy (CNR-ITM) via P. Bucci 17/C 87036 Rende (CS) Italy
AuthorAffiliation_xml – name: 1 EaStCHEM School of Chemistry University of Edinburgh David Brewster Road Edinburgh EH9 3FJ UK
– name: 2 Institute on Membrane Technology National Research Council of Italy (CNR-ITM) via P. Bucci 17/C 87036 Rende (CS) Italy
Author_xml – sequence: 1
  givenname: Jie
  surname: Chen
  fullname: Chen, Jie
  organization: University of Edinburgh
– sequence: 2
  givenname: Mariagiulia
  surname: Longo
  fullname: Longo, Mariagiulia
  organization: National Research Council of Italy (CNR-ITM)
– sequence: 3
  givenname: Alessio
  surname: Fuoco
  fullname: Fuoco, Alessio
  organization: National Research Council of Italy (CNR-ITM)
– sequence: 4
  givenname: Elisa
  surname: Esposito
  fullname: Esposito, Elisa
  organization: National Research Council of Italy (CNR-ITM)
– sequence: 5
  givenname: Marcello
  surname: Monteleone
  fullname: Monteleone, Marcello
  organization: National Research Council of Italy (CNR-ITM)
– sequence: 6
  givenname: Bibiana
  surname: Comesaña Gándara
  fullname: Comesaña Gándara, Bibiana
  organization: University of Edinburgh
– sequence: 7
  givenname: Johannes
  surname: Carolus Jansen
  fullname: Carolus Jansen, Johannes
  email: johannescarolus.jansen@cnr.it
  organization: National Research Council of Italy (CNR-ITM)
– sequence: 8
  givenname: Neil B.
  orcidid: 0000-0002-6027-261X
  surname: McKeown
  fullname: McKeown, Neil B.
  email: neil.mckeown@ed.ac.uk
  organization: University of Edinburgh
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36511357$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1u1TAQhS1URH9gyxJFYsMmF__EcbxCpZRypRaQoGtrkoypq8QOdi7odtVH4Bl5ElxuuUAlxGpG8nfGc-bskx0fPBLymNEFo5Q_B-9wwSnnTHJJ75G9XFkplBI7ua-EKFUj2S7ZT-ky801D6wdkV9SSMSHVHnGvXIv-Kow4X4APE_oZOvT4_frbS0jYF-_DsB4xpiLYYunn6HxyXXHmuhimEENy87qwIRbnCQvnixNIWfoBJ4gwu-CLMxzbCB7TQ3LfwpDw0W09IOevjz8evSlP350sjw5Py66qNS0RWm1baFirtAYhayuEltDlxRth61ZXWmkqe2G7VikrFEoKHHQHwPveWnFAXmzmTqt2xD6bmSMMZopuhLg2AZz5-8W7C_MpfDGMMqpkLfKEZ7cTYvi8wjSb0aUOhyHbCKtkuJIVrVQ-ekaf3kEvwyr67C9TqqJc8Epn6smfK213-RVDBhYbIF81pYh2izBqbnI2Nzmbbc5ZUN0RdG7-efBsyQ3_lumN7KsbcP2fT8zh2-Xxb-0PDlDBLA
CitedBy_id crossref_primary_10_1016_j_memsci_2023_121917
crossref_primary_10_1021_acs_macromol_4c00255
crossref_primary_10_1002_ange_202400688
crossref_primary_10_1021_acs_iecr_3c03571
crossref_primary_10_1016_j_pmatsci_2024_101285
crossref_primary_10_1016_j_pmatsci_2024_101297
crossref_primary_10_1016_j_memsci_2024_123218
crossref_primary_10_1016_j_memsci_2024_123647
crossref_primary_10_1016_j_seppur_2024_130899
crossref_primary_10_1016_j_memsci_2023_121841
crossref_primary_10_1016_j_memsci_2024_123379
crossref_primary_10_1016_j_memsci_2025_123973
crossref_primary_10_1002_anie_202400688
crossref_primary_10_3390_nano13182514
crossref_primary_10_1177_09540083241297408
crossref_primary_10_6023_cjoc202212026
crossref_primary_10_1039_D4TA04082A
crossref_primary_10_1016_j_seppur_2024_129624
Cites_doi 10.1126/science.1228032
10.3390/polym11020361
10.1002/ange.202207580
10.1021/acsmacrolett.0c00135
10.1039/C8TA00509E
10.1016/j.mtnano.2018.11.003
10.1021/ma300730y
10.1002/anie.202016901
10.1021/ma5009226
10.1016/j.coche.2021.100785
10.1002/ange.201206339
10.1021/acs.iecr.0c03740
10.1039/c1cc11717c
10.1039/c2cc35392j
10.1016/0950-4214(90)80030-O
10.1039/b311764b
10.1016/j.polymer.2020.122736
10.1039/D0TA09703A
10.1016/j.coche.2021.100755
10.1021/ma9814548
10.1002/ange.202016901
10.3390/membranes10040062
10.1021/ma060047q
10.1016/j.memsci.2017.04.069
10.1002/anie.201206339
10.1021/acs.macromol.7b02556
10.1002/adma.201306229
10.1021/acsmacrolett.5b00512
10.1016/j.memsci.2019.117460
10.1002/1521-4095(200104)13:8<601::AID-ADMA601>3.0.CO;2-V
10.1134/S0965544119130139
10.1002/pola.27283
10.1039/b9py00319c
10.1021/acsomega.8b01975
10.1080/00397917508061439
10.1007/s11426-017-9058-x
10.1021/acsami.8b13634
10.1016/j.memsci.2014.01.055
10.1038/532435a
10.1016/0376-7388(91)80060-J
10.1021/acs.macromol.9b02328
10.1039/C6EE00811A
10.1039/C9EE01384A
10.1021/ma300213b
10.1039/C4TA00564C
10.1021/acsmacrolett.5b00439
10.1016/j.ijhydene.2017.04.081
10.1021/acs.macromol.5b01581
10.1016/j.progpolymsci.2014.10.005
10.1039/C8EE02897D
10.1016/S0040-4020(97)00297-4
10.1039/C9TA07159H
10.1002/anie.202207580
10.1002/adma.201202393
10.1016/j.memsci.2008.04.030
10.1073/pnas.2022204118
10.1039/C8TA02601G
10.1002/adfm.202104474
10.1039/D1TA06530K
10.1021/acs.iecr.9b04881
10.1016/j.memsci.2018.04.029
ContentType Journal Article
Copyright 2022 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH
2022 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH.
2022. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH
– notice: 2022 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH.
– notice: 2022. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
NPM
7TM
K9.
7X8
5PM
DOI 10.1002/anie.202215250
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)


CrossRef
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access (Activated by CARLI)
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage n/a
ExternalDocumentID PMC10107563
36511357
10_1002_anie_202215250
ANIE202215250
Genre article
Journal Article
GrantInformation_xml – fundername: Defense Threat Reduction Agency
  funderid: HDTRA1-18-1-0054
– fundername: Defense Threat Reduction Agency
  grantid: HDTRA1-18-1-0054
– fundername: ;
  grantid: HDTRA1-18-1-0054
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
24P
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
NPM
YIN
7TM
K9.
7X8
5PM
ID FETCH-LOGICAL-c4690-eab9fba81b799a356f3395ac80683f6b9497905d3fcb77f37e50a2a9caa2ddff3
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Thu Aug 21 18:37:51 EDT 2025
Fri Jul 11 05:12:42 EDT 2025
Fri Jul 25 10:34:32 EDT 2025
Wed Feb 19 02:04:31 EST 2025
Tue Jul 01 01:47:00 EDT 2025
Thu Apr 24 22:59:35 EDT 2025
Wed Jan 22 16:24:08 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Membranes
Dibenzomethanopentacene
Gas Separation
Ageing
Polymers of Intrinsic Microporosity
Language English
License Attribution-NonCommercial
2022 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH.
This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4690-eab9fba81b799a356f3395ac80683f6b9497905d3fcb77f37e50a2a9caa2ddff3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6027-261X
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202215250
PMID 36511357
PQID 2774023249
PQPubID 946352
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10107563
proquest_miscellaneous_2754047022
proquest_journals_2774023249
pubmed_primary_36511357
crossref_primary_10_1002_anie_202215250
crossref_citationtrail_10_1002_anie_202215250
wiley_primary_10_1002_anie_202215250_ANIE202215250
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 13, 2023
PublicationDateYYYYMMDD 2023-02-13
PublicationDate_xml – month: 02
  year: 2023
  text: February 13, 2023
  day: 13
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
– name: Hoboken
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
John Wiley and Sons Inc
Publisher_xml – name: Wiley Subscription Services, Inc
– name: John Wiley and Sons Inc
References 2017; 42
2014; 457
2018; 561
2019; 11
2019; 12
2006; 39
2019; 59
2014; 26
2020; 59
2020; 202
2020; 10
2013 2013; 52 125
2018; 6
2015; 48
2022 2022; 61 134
2018; 3
2021; 31
2010; 1
2014; 2
2020; 53
1997; 53
2015; 43
2020; 9
2021; 118
2022; 35
2022; 36
2014; 52
2012; 24
2001; 13
1975; 5
2021; 9
2017; 537
2019; 7
2015; 4
2017; 60
2014; 47
2004
2008; 320
2013; 339
2020; 594
2022; 8
1991; 62
2021 2021; 60 133
1999; 32
2018; 51
2016; 532
2011; 47
2012; 48
2012; 45
2018; 10
2016; 9
1990; 4
e_1_2_7_5_2
e_1_2_7_3_2
e_1_2_7_9_2
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_2
e_1_2_7_15_2
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_13_2
e_1_2_7_62_2
e_1_2_7_66_1
e_1_2_7_43_2
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_47_2
e_1_2_7_26_2
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_71_1
e_1_2_7_25_2
e_1_2_7_52_2
e_1_2_7_23_3
e_1_2_7_23_2
e_1_2_7_31_2
e_1_2_7_54_2
e_1_2_7_21_2
e_1_2_7_33_2
e_1_2_7_56_1
(e_1_2_7_59_2) 2022; 134
e_1_2_7_35_2
e_1_2_7_58_1
e_1_2_7_37_2
e_1_2_7_39_2
Longo M. (e_1_2_7_64_1) 2022; 8
e_1_2_7_4_2
e_1_2_7_2_2
e_1_2_7_8_2
e_1_2_7_6_2
e_1_2_7_18_1
e_1_2_7_16_2
e_1_2_7_61_2
e_1_2_7_40_1
e_1_2_7_14_1
e_1_2_7_63_1
e_1_2_7_12_2
e_1_2_7_42_2
e_1_2_7_10_3
e_1_2_7_65_1
e_1_2_7_10_2
e_1_2_7_44_2
e_1_2_7_46_1
e_1_2_7_67_1
e_1_2_7_69_1
e_1_2_7_48_2
e_1_2_7_27_2
e_1_2_7_29_2
e_1_2_7_72_1
e_1_2_7_70_1
e_1_2_7_53_1
e_1_2_7_30_2
e_1_2_7_51_2
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_22_2
e_1_2_7_57_1
e_1_2_7_34_2
e_1_2_7_55_2
e_1_2_7_20_1
e_1_2_7_59_1
e_1_2_7_36_2
e_1_2_7_38_2
References_xml – volume: 59
  start-page: 18640
  year: 2020
  end-page: 18648
  publication-title: Ind. Eng. Chem. Res.
– volume: 48
  start-page: 6553
  year: 2015
  end-page: 6561
  publication-title: Macromolecules
– volume: 53
  start-page: 6377
  year: 1997
  end-page: 6390
  publication-title: Tetrahedron
– volume: 39
  start-page: 3350
  year: 2006
  end-page: 3358
  publication-title: Macromolecules
– volume: 62
  start-page: 165
  year: 1991
  end-page: 185
  publication-title: J. Membr. Sci.
– volume: 59
  start-page: S88
  year: 2019
  end-page: S94
  publication-title: Pet. Chem.
– volume: 10
  start-page: 36475
  year: 2018
  end-page: 36482
  publication-title: ACS Appl. Mater. Interfaces
– volume: 6
  start-page: 5661
  year: 2018
  end-page: 5667
  publication-title: J. Mater. Chem. A
– volume: 42
  start-page: 23915
  year: 2017
  end-page: 23919
  publication-title: Int. J. Hydrogen Energy
– volume: 59
  start-page: 5381
  year: 2020
  end-page: 5391
  publication-title: Ind. Eng. Chem. Res.
– volume: 12
  start-page: 2733
  year: 2019
  end-page: 2740
  publication-title: Energy Environ. Sci.
– volume: 11
  start-page: 361
  year: 2019
  publication-title: Polymer
– volume: 35
  year: 2022
  publication-title: Curr. Opin. Chem. Eng.
– volume: 45
  start-page: 5397
  year: 2012
  end-page: 5402
  publication-title: Macromolecules
– volume: 24
  start-page: 5930
  year: 2012
  end-page: 5933
  publication-title: Adv. Mater.
– volume: 202
  year: 2020
  publication-title: Polymer
– volume: 26
  start-page: 3688
  year: 2014
  end-page: 3692
  publication-title: Adv. Mater.
– volume: 10
  start-page: 62
  year: 2020
  publication-title: Membranes
– volume: 45
  start-page: 3298
  year: 2012
  end-page: 3311
  publication-title: Macromolecules
– volume: 47
  start-page: 5104
  year: 2014
  end-page: 5114
  publication-title: Macromolecules
– volume: 7
  start-page: 20121
  year: 2019
  end-page: 20126
  publication-title: J. Mater. Chem. A
– volume: 60
  start-page: 1023
  year: 2017
  end-page: 1032
  publication-title: Sci. China Chem.
– volume: 61 134
  year: 2022 2022
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 53
  start-page: 1573
  year: 2020
  end-page: 1584
  publication-title: Macromolecules
– volume: 537
  start-page: 362
  year: 2017
  end-page: 371
  publication-title: J. Membr. Sci.
– volume: 48
  start-page: 9989
  year: 2012
  end-page: 9991
  publication-title: Chem. Commun.
– volume: 457
  start-page: 95
  year: 2014
  end-page: 102
  publication-title: J. Membr. Sci.
– volume: 32
  start-page: 375
  year: 1999
  end-page: 380
  publication-title: Macromolecules
– volume: 6
  start-page: 10507
  year: 2018
  end-page: 10514
  publication-title: J. Mater. Chem. A
– volume: 52
  start-page: 2654
  year: 2014
  end-page: 2661
  publication-title: J. Polym. Sci. Part A
– volume: 3
  start-page: 69
  year: 2018
  end-page: 95
  publication-title: Mater. Today Nano
– volume: 51
  start-page: 1069
  year: 2018
  end-page: 1076
  publication-title: Macromolecules
– volume: 320
  start-page: 390
  year: 2008
  end-page: 400
  publication-title: J. Membr. Sci.
– volume: 9
  start-page: 680
  year: 2020
  end-page: 685
  publication-title: ACS Macro Lett.
– volume: 8
  year: 2022
  publication-title: J. Membr. Sci. Res.
– volume: 60 133
  start-page: 17875 18019
  year: 2021 2021
  end-page: 17880 18024
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 339
  start-page: 303
  year: 2013
  end-page: 307
  publication-title: Science
– volume: 4
  start-page: 947
  year: 2015
  end-page: 951
  publication-title: ACS Macro Lett.
– volume: 5
  start-page: 101
  year: 1975
  end-page: 106
  publication-title: Synth. Commun.
– volume: 9
  start-page: 5404
  year: 2021
  end-page: 5414
  publication-title: J. Mater. Chem. A
– volume: 36
  year: 2022
  publication-title: Curr. Opin. Chem. Eng.
– volume: 594
  year: 2020
  publication-title: J. Membr. Sci.
– volume: 2
  start-page: 4874
  year: 2014
  end-page: 4877
  publication-title: J. Mater. Chem. A
– volume: 52 125
  start-page: 1253 1291
  year: 2013 2013
  end-page: 1256 1294
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– start-page: 230
  year: 2004
  end-page: 231
  publication-title: Chem. Commun.
– volume: 13
  start-page: 601
  year: 2001
  end-page: 604
  publication-title: Adv. Mater.
– volume: 9
  start-page: 1863
  year: 2016
  end-page: 1890
  publication-title: Energy Environ. Sci.
– volume: 4
  start-page: 66
  year: 1990
  end-page: 74
  publication-title: Gas Sep. Purif.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 1
  start-page: 63
  year: 2010
  end-page: 68
  publication-title: Polym. Chem.
– volume: 12
  start-page: 281
  year: 2019
  end-page: 289
  publication-title: Energy Environ. Sci.
– volume: 43
  start-page: 1
  year: 2015
  end-page: 32
  publication-title: Prog. Polym. Sci.
– volume: 118
  year: 2021
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 561
  start-page: 39
  year: 2018
  end-page: 58
  publication-title: J. Membr. Sci.
– volume: 3
  start-page: 11874
  year: 2018
  end-page: 11882
  publication-title: ACS Omega
– volume: 4
  start-page: 912
  year: 2015
  end-page: 915
  publication-title: ACS Macro Lett.
– volume: 47
  start-page: 6822
  year: 2011
  end-page: 6824
  publication-title: Chem. Commun.
– volume: 9
  start-page: 23631
  year: 2021
  end-page: 23642
  publication-title: J. Mater. Chem. A
– volume: 532
  start-page: 435
  year: 2016
  end-page: 437
  publication-title: Nature
– ident: e_1_2_7_29_2
  doi: 10.1126/science.1228032
– ident: e_1_2_7_37_2
  doi: 10.3390/polym11020361
– volume: 8
  year: 2022
  ident: e_1_2_7_64_1
  publication-title: J. Membr. Sci. Res.
– ident: e_1_2_7_20_1
– volume: 134
  year: 2022
  ident: e_1_2_7_59_2
  publication-title: Angew. Chem.
  doi: 10.1002/ange.202207580
– ident: e_1_2_7_43_2
  doi: 10.1021/acsmacrolett.0c00135
– ident: e_1_2_7_40_1
  doi: 10.1039/C8TA00509E
– ident: e_1_2_7_4_2
  doi: 10.1016/j.mtnano.2018.11.003
– ident: e_1_2_7_47_2
  doi: 10.1021/ma300730y
– ident: e_1_2_7_23_2
  doi: 10.1002/anie.202016901
– ident: e_1_2_7_34_2
  doi: 10.1021/ma5009226
– ident: e_1_2_7_11_1
– ident: e_1_2_7_21_2
  doi: 10.1016/j.coche.2021.100785
– ident: e_1_2_7_10_3
  doi: 10.1002/ange.201206339
– ident: e_1_2_7_38_2
  doi: 10.1021/acs.iecr.0c03740
– ident: e_1_2_7_56_1
  doi: 10.1039/c1cc11717c
– ident: e_1_2_7_60_1
– ident: e_1_2_7_58_1
  doi: 10.1039/c2cc35392j
– ident: e_1_2_7_41_1
– ident: e_1_2_7_66_1
  doi: 10.1016/0950-4214(90)80030-O
– ident: e_1_2_7_18_1
  doi: 10.1039/b311764b
– ident: e_1_2_7_19_1
  doi: 10.1016/j.polymer.2020.122736
– ident: e_1_2_7_39_2
  doi: 10.1039/D0TA09703A
– ident: e_1_2_7_24_1
– ident: e_1_2_7_22_2
  doi: 10.1016/j.coche.2021.100755
– ident: e_1_2_7_13_2
  doi: 10.1021/ma9814548
– ident: e_1_2_7_23_3
  doi: 10.1002/ange.202016901
– ident: e_1_2_7_32_1
– ident: e_1_2_7_44_2
  doi: 10.3390/membranes10040062
– ident: e_1_2_7_46_1
– ident: e_1_2_7_52_2
  doi: 10.1021/ma060047q
– ident: e_1_2_7_71_1
  doi: 10.1016/j.memsci.2017.04.069
– ident: e_1_2_7_10_2
  doi: 10.1002/anie.201206339
– ident: e_1_2_7_31_2
  doi: 10.1021/acs.macromol.7b02556
– ident: e_1_2_7_33_2
  doi: 10.1002/adma.201306229
– ident: e_1_2_7_17_2
  doi: 10.1021/acsmacrolett.5b00512
– ident: e_1_2_7_70_1
  doi: 10.1016/j.memsci.2019.117460
– ident: e_1_2_7_51_2
  doi: 10.1002/1521-4095(200104)13:8<601::AID-ADMA601>3.0.CO;2-V
– ident: e_1_2_7_49_1
  doi: 10.1134/S0965544119130139
– ident: e_1_2_7_48_2
  doi: 10.1002/pola.27283
– ident: e_1_2_7_8_2
  doi: 10.1039/b9py00319c
– ident: e_1_2_7_36_2
  doi: 10.1021/acsomega.8b01975
– ident: e_1_2_7_45_1
  doi: 10.1080/00397917508061439
– ident: e_1_2_7_57_1
  doi: 10.1007/s11426-017-9058-x
– ident: e_1_2_7_65_1
  doi: 10.1021/acsami.8b13634
– ident: e_1_2_7_63_1
  doi: 10.1016/j.memsci.2014.01.055
– ident: e_1_2_7_14_1
– ident: e_1_2_7_3_2
  doi: 10.1038/532435a
– ident: e_1_2_7_28_1
– ident: e_1_2_7_12_2
  doi: 10.1016/0376-7388(91)80060-J
– ident: e_1_2_7_42_2
  doi: 10.1021/acs.macromol.9b02328
– ident: e_1_2_7_2_2
  doi: 10.1039/C6EE00811A
– ident: e_1_2_7_16_2
  doi: 10.1039/C9EE01384A
– ident: e_1_2_7_5_2
  doi: 10.1021/ma300213b
– ident: e_1_2_7_1_1
– ident: e_1_2_7_7_1
– ident: e_1_2_7_30_2
  doi: 10.1039/C4TA00564C
– ident: e_1_2_7_35_2
  doi: 10.1021/acsmacrolett.5b00439
– ident: e_1_2_7_61_2
  doi: 10.1016/j.ijhydene.2017.04.081
– ident: e_1_2_7_69_1
  doi: 10.1021/acs.macromol.5b01581
– ident: e_1_2_7_9_2
  doi: 10.1016/j.progpolymsci.2014.10.005
– ident: e_1_2_7_6_2
  doi: 10.1039/C8EE02897D
– ident: e_1_2_7_54_2
  doi: 10.1016/S0040-4020(97)00297-4
– ident: e_1_2_7_67_1
  doi: 10.1039/C9TA07159H
– ident: e_1_2_7_59_1
  doi: 10.1002/anie.202207580
– ident: e_1_2_7_26_2
  doi: 10.1002/adma.201202393
– ident: e_1_2_7_15_2
  doi: 10.1016/j.memsci.2008.04.030
– ident: e_1_2_7_55_2
  doi: 10.1073/pnas.2022204118
– ident: e_1_2_7_27_2
  doi: 10.1039/C8TA02601G
– ident: e_1_2_7_53_1
– ident: e_1_2_7_25_2
  doi: 10.1002/adfm.202104474
– ident: e_1_2_7_72_1
  doi: 10.1039/D1TA06530K
– ident: e_1_2_7_50_1
– ident: e_1_2_7_62_2
  doi: 10.1021/acs.iecr.9b04881
– ident: e_1_2_7_68_1
  doi: 10.1016/j.memsci.2018.04.029
SSID ssj0028806
Score 2.5236583
Snippet Dibenzomethanopentacene (DBMP) is shown to be a useful structural component for making Polymers of Intrinsic Microporosity (PIMs) with promise for making...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e202215250
SubjectTerms Ageing
Dibenzomethanopentacene
Diels-Alder reactions
Fabrication
Gas Separation
Membranes
Microporosity
Monomers
Permeability
Polymers
Polymers of Intrinsic Microporosity
Selectivity
Upper bounds
Title Dibenzomethanopentacene‐Based Polymers of Intrinsic Microporosity for Use in Gas‐Separation Membranes
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202215250
https://www.ncbi.nlm.nih.gov/pubmed/36511357
https://www.proquest.com/docview/2774023249
https://www.proquest.com/docview/2754047022
https://pubmed.ncbi.nlm.nih.gov/PMC10107563
Volume 62
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5BL3Dh_ydQKiMhcXKb2Em8PpbS0iJtVQEr9RbZji0iioPY3UN74hF4Rp6EmWQTulQICW6JbCf2eGb8ORl_A_BCuTR1Vua8nuiS595qtDlZcms9ekyVuyKjg8LT4_Jwlr89LU4vneLv-SHGD25kGZ2_JgM3dr7zizSUTmDj_k5QYtZu004BW4SK3o38UQKVsz9eJCWnLPQDa2Mqdtabr69KV6Dm1YjJy0i2W4oOboMZBtFHoHzaXi7strv4jd_xf0Z5B26tcCrb7RXrLlzz8R7c2BvSw92H5nVjfbxoKQW1iZSEa2Gw3_7Ht--vcGWs2Ul7dk4fxVkb2BGOp4moEGxKAYCI-SlW7JwhYmazuWdNZG_MHJu-9z0XeRvZ1H_GjqMnfgCzg_0Pe4d8lbeBO9psc2-sDtYgIFZaG1mUQUpdGIeTMZGhtDrXRAtWy-CsUkEqX6RGGO2MEXUdgnwIG7GN_jGwPFOlQxfhtCXohLtDY2sdQhFQJDZ1CfBh3iq3IjWn3BpnVU_HLCoSYDUKMIGXY_0vPZ3HH2tuDmpQrcx6XgkEyylhUJ3A87EYBU9_WVAi7ZLqIAjOFT4ngUe91oyvQg3NMlmoBCZr-jRWILLv9ZLYfOxIv9F1IrorZQKi05e_dL_aPT7aH--e_Eujp3ATr-kvP8_kJmwsvi79M0RgC7sF10V-stXZ2k-J6i0F
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6h9lAuUP5DCxgJiZPbbJzE62MpLbvQXSHoStwi27FFRHEQu3toT30EnpEnYSbZBJYKIcExG3tjT2bG3zjjbwCeSRvH1oiUl0OV89QZhTYncm6MQ48pU5sN6KDwZJqPZunrD1mXTUhnYVp-iH7DjSyj8ddk4LQhvf-TNZSOYGOAl1BlVoraN6msdxNVvesZpBJUz_aAkRCc6tB3vI1xsr_ef31dugI2r-ZM_oplm8Xo-CaYbhptDsqnveXC7NmL3xge_2ue23BjBVXZQatbt-CaC7dh67CrEHcHqpeVceGipirUOlAdroXGgbvvl99e4OJYsrf12Tnti7PaszFOqAqoE2xCOYAI-yld7JwhaGazuWNVYK_0HLu-dy0deR3YxH3GkaMzvguz46PTwxFflW7gluJt7rRR3mjExFIpLbLcC6EybfFtDIXPjUoVMYOVwlsjpRfSZbFOtLJaJ2XpvbgHG6EO7gGwdCBzi17CKkPoCQNEbUrlfeZRJCa2EfDuxRV2xWtO5TXOipaROSlIgEUvwAie9-2_tIwef2y52-lBsbLseZEgXo4JhqoInva3UfD0oQUlUi-pDeLgVOL_RHC_VZv-UQKVdCAyGcFwTaH6BsT3vX4nVB8b3m_0ngjwchFB0ijMX4ZfHEzHR_3Vw3_p9AS2RqeTk-JkPH2zA9fxd_rozwdiFzYWX5fuEQKyhXncmNwPHqcwSQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6hVgIulN-StoCRkDi5zcaJsz6WbpcusKsKWKm3yHZsEVGSit09tKc-Qp-RJ2Em2YQuFUKCY2I7sccz489_3wC8Sm0YWiNinveV5LEzCm1OSG6MQ4-Zxjbp0UXh8UQeTeN3J8nJtVv8DT9Et-BGllH7azLws9zv_SINpRvYOL-LKDArTdrXYxn2Sa8HHzsCqQi1s7lfJASnMPQtbWMY7a2WXx2WbmDNm0cmr0PZeiwaboBuW9EcQfm6u5ibXXvxG8Hj_zTzPtxbAlW232jWA7jlyodw56CND_cIikFhXHlRUQxqXVIUrrnGersfl1dvcGjM2XF1ek6r4qzybITtKUrUCDamE4AI-umw2DlDyMymM8eKkr3VMyz6yTVk5FXJxu4bVhxd8WOYDg8_HxzxZeAGbmm2zZ02yhuNiDhVSotEeiFUoi12Rl94aVSsiBcsF96aNPUidUmoI62s1lGeey-ewFpZle4psLiXSos-wipD2Amnh9rkyvvEo0hMaAPgbb9ldslqTsE1TrOGjznKSIBZJ8AAXnf5zxo-jz_m3GnVIFva9SyLEC2HBEJVAC-7ZBQ8bbOgRKoF5UEUHKf4nQA2G63pfiUkAlyRpAH0V_Spy0Bs36spZfGlZv1G34nwTooAolpf_lL9bH8yOuyetv6l0Au4fTwYZh9Gk_fbcBdf044_74kdWJt_X7hniMbm5nltcD8BjbEvAQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dibenzomethanopentacene-Based+Polymers+of+Intrinsic+Microporosity+for+Use+in+Gas-Separation+Membranes&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Chen%2C+Jie&rft.au=Longo%2C+Mariagiulia&rft.au=Fuoco%2C+Alessio&rft.au=Esposito%2C+Elisa&rft.date=2023-02-13&rft.eissn=1521-3773&rft.volume=62&rft.issue=8&rft.spage=e202215250&rft_id=info:doi/10.1002%2Fanie.202215250&rft_id=info%3Apmid%2F36511357&rft.externalDocID=36511357
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon