Dibenzomethanopentacene‐Based Polymers of Intrinsic Microporosity for Use in Gas‐Separation Membranes
Dibenzomethanopentacene (DBMP) is shown to be a useful structural component for making Polymers of Intrinsic Microporosity (PIMs) with promise for making efficient membranes for gas separations. DBMP‐based monomers for PIMs are readily prepared using a Diels–Alder reaction between 2,3‐dimethoxyanthr...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 62; no. 8; pp. e202215250 - n/a |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
13.02.2023
John Wiley and Sons Inc |
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Dibenzomethanopentacene (DBMP) is shown to be a useful structural component for making Polymers of Intrinsic Microporosity (PIMs) with promise for making efficient membranes for gas separations. DBMP‐based monomers for PIMs are readily prepared using a Diels–Alder reaction between 2,3‐dimethoxyanthracene and norbornadiene as the key synthetic step. Compared to date for the archetypal PIM‐1, the incorporation of DBMP simultaneously enhances both gas permeability and the ideal selectivity for one gas over another. Hence, both ideal and mixed gas permeability data for DBMP‐rich co‐polymers and an amidoxime modified PIM are close to the current Robeson upper bounds, which define the state‐of‐the‐art for the trade‐off between permeability and selectivity, for several important gas pairs. Furthermore, long‐term studies (over ≈3 years) reveal that the reduction in gas permeabilities on ageing is less for DBMP‐containing PIMs relative to that for other high performing PIMs, which is an attractive property for the fabrication of membranes for efficient gas separations.
A series of dibenzomethanopentacene (DBMP) containing polymers of intrinsic microporosity (PIMs) were synthesised showing both high performance for pure and mixed gas permeability/selectivity and reduced ageing. The data for DBMP‐rich PIMs are close to the latest Robeson upper bounds for several important gas pairs indicating their potential for making gas separation membranes. |
---|---|
AbstractList | Dibenzomethanopentacene (DBMP) is shown to be a useful structural component for making Polymers of Intrinsic Microporosity (PIMs) with promise for making efficient membranes for gas separations. DBMP‐based monomers for PIMs are readily prepared using a Diels–Alder reaction between 2,3‐dimethoxyanthracene and norbornadiene as the key synthetic step. Compared to date for the archetypal PIM‐1, the incorporation of DBMP simultaneously enhances both gas permeability and the ideal selectivity for one gas over another. Hence, both ideal and mixed gas permeability data for DBMP‐rich co‐polymers and an amidoxime modified PIM are close to the current Robeson upper bounds, which define the state‐of‐the‐art for the trade‐off between permeability and selectivity, for several important gas pairs. Furthermore, long‐term studies (over ≈3 years) reveal that the reduction in gas permeabilities on ageing is less for DBMP‐containing PIMs relative to that for other high performing PIMs, which is an attractive property for the fabrication of membranes for efficient gas separations. Dibenzomethanopentacene (DBMP) is shown to be a useful structural component for making Polymers of Intrinsic Microporosity (PIMs) with promise for making efficient membranes for gas separations. DBMP‐based monomers for PIMs are readily prepared using a Diels–Alder reaction between 2,3‐dimethoxyanthracene and norbornadiene as the key synthetic step. Compared to date for the archetypal PIM‐1, the incorporation of DBMP simultaneously enhances both gas permeability and the ideal selectivity for one gas over another. Hence, both ideal and mixed gas permeability data for DBMP‐rich co‐polymers and an amidoxime modified PIM are close to the current Robeson upper bounds, which define the state‐of‐the‐art for the trade‐off between permeability and selectivity, for several important gas pairs. Furthermore, long‐term studies (over ≈3 years) reveal that the reduction in gas permeabilities on ageing is less for DBMP‐containing PIMs relative to that for other high performing PIMs, which is an attractive property for the fabrication of membranes for efficient gas separations. A series of dibenzomethanopentacene (DBMP) containing polymers of intrinsic microporosity (PIMs) were synthesised showing both high performance for pure and mixed gas permeability/selectivity and reduced ageing. The data for DBMP‐rich PIMs are close to the latest Robeson upper bounds for several important gas pairs indicating their potential for making gas separation membranes. Dibenzomethanopentacene (DBMP) is shown to be a useful structural component for making Polymers of Intrinsic Microporosity (PIMs) with promise for making efficient membranes for gas separations. DBMP-based monomers for PIMs are readily prepared using a Diels-Alder reaction between 2,3-dimethoxyanthracene and norbornadiene as the key synthetic step. Compared to date for the archetypal PIM-1, the incorporation of DBMP simultaneously enhances both gas permeability and the ideal selectivity for one gas over another. Hence, both ideal and mixed gas permeability data for DBMP-rich co-polymers and an amidoxime modified PIM are close to the current Robeson upper bounds, which define the state-of-the-art for the trade-off between permeability and selectivity, for several important gas pairs. Furthermore, long-term studies (over ≈3 years) reveal that the reduction in gas permeabilities on ageing is less for DBMP-containing PIMs relative to that for other high performing PIMs, which is an attractive property for the fabrication of membranes for efficient gas separations.Dibenzomethanopentacene (DBMP) is shown to be a useful structural component for making Polymers of Intrinsic Microporosity (PIMs) with promise for making efficient membranes for gas separations. DBMP-based monomers for PIMs are readily prepared using a Diels-Alder reaction between 2,3-dimethoxyanthracene and norbornadiene as the key synthetic step. Compared to date for the archetypal PIM-1, the incorporation of DBMP simultaneously enhances both gas permeability and the ideal selectivity for one gas over another. Hence, both ideal and mixed gas permeability data for DBMP-rich co-polymers and an amidoxime modified PIM are close to the current Robeson upper bounds, which define the state-of-the-art for the trade-off between permeability and selectivity, for several important gas pairs. Furthermore, long-term studies (over ≈3 years) reveal that the reduction in gas permeabilities on ageing is less for DBMP-containing PIMs relative to that for other high performing PIMs, which is an attractive property for the fabrication of membranes for efficient gas separations. |
Author | Longo, Mariagiulia Monteleone, Marcello McKeown, Neil B. Fuoco, Alessio Esposito, Elisa Chen, Jie Comesaña Gándara, Bibiana Carolus Jansen, Johannes |
AuthorAffiliation | 1 EaStCHEM School of Chemistry University of Edinburgh David Brewster Road Edinburgh EH9 3FJ UK 2 Institute on Membrane Technology National Research Council of Italy (CNR-ITM) via P. Bucci 17/C 87036 Rende (CS) Italy |
AuthorAffiliation_xml | – name: 1 EaStCHEM School of Chemistry University of Edinburgh David Brewster Road Edinburgh EH9 3FJ UK – name: 2 Institute on Membrane Technology National Research Council of Italy (CNR-ITM) via P. Bucci 17/C 87036 Rende (CS) Italy |
Author_xml | – sequence: 1 givenname: Jie surname: Chen fullname: Chen, Jie organization: University of Edinburgh – sequence: 2 givenname: Mariagiulia surname: Longo fullname: Longo, Mariagiulia organization: National Research Council of Italy (CNR-ITM) – sequence: 3 givenname: Alessio surname: Fuoco fullname: Fuoco, Alessio organization: National Research Council of Italy (CNR-ITM) – sequence: 4 givenname: Elisa surname: Esposito fullname: Esposito, Elisa organization: National Research Council of Italy (CNR-ITM) – sequence: 5 givenname: Marcello surname: Monteleone fullname: Monteleone, Marcello organization: National Research Council of Italy (CNR-ITM) – sequence: 6 givenname: Bibiana surname: Comesaña Gándara fullname: Comesaña Gándara, Bibiana organization: University of Edinburgh – sequence: 7 givenname: Johannes surname: Carolus Jansen fullname: Carolus Jansen, Johannes email: johannescarolus.jansen@cnr.it organization: National Research Council of Italy (CNR-ITM) – sequence: 8 givenname: Neil B. orcidid: 0000-0002-6027-261X surname: McKeown fullname: McKeown, Neil B. email: neil.mckeown@ed.ac.uk organization: University of Edinburgh |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36511357$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1u1TAQhS1URH9gyxJFYsMmF__EcbxCpZRypRaQoGtrkoypq8QOdi7odtVH4Bl5ElxuuUAlxGpG8nfGc-bskx0fPBLymNEFo5Q_B-9wwSnnTHJJ75G9XFkplBI7ua-EKFUj2S7ZT-ky801D6wdkV9SSMSHVHnGvXIv-Kow4X4APE_oZOvT4_frbS0jYF-_DsB4xpiLYYunn6HxyXXHmuhimEENy87qwIRbnCQvnixNIWfoBJ4gwu-CLMxzbCB7TQ3LfwpDw0W09IOevjz8evSlP350sjw5Py66qNS0RWm1baFirtAYhayuEltDlxRth61ZXWmkqe2G7VikrFEoKHHQHwPveWnFAXmzmTqt2xD6bmSMMZopuhLg2AZz5-8W7C_MpfDGMMqpkLfKEZ7cTYvi8wjSb0aUOhyHbCKtkuJIVrVQ-ekaf3kEvwyr67C9TqqJc8Epn6smfK213-RVDBhYbIF81pYh2izBqbnI2Nzmbbc5ZUN0RdG7-efBsyQ3_lumN7KsbcP2fT8zh2-Xxb-0PDlDBLA |
CitedBy_id | crossref_primary_10_1016_j_memsci_2023_121917 crossref_primary_10_1021_acs_macromol_4c00255 crossref_primary_10_1002_ange_202400688 crossref_primary_10_1021_acs_iecr_3c03571 crossref_primary_10_1016_j_pmatsci_2024_101285 crossref_primary_10_1016_j_pmatsci_2024_101297 crossref_primary_10_1016_j_memsci_2024_123218 crossref_primary_10_1016_j_memsci_2024_123647 crossref_primary_10_1016_j_seppur_2024_130899 crossref_primary_10_1016_j_memsci_2023_121841 crossref_primary_10_1016_j_memsci_2024_123379 crossref_primary_10_1016_j_memsci_2025_123973 crossref_primary_10_1002_anie_202400688 crossref_primary_10_3390_nano13182514 crossref_primary_10_1177_09540083241297408 crossref_primary_10_6023_cjoc202212026 crossref_primary_10_1039_D4TA04082A crossref_primary_10_1016_j_seppur_2024_129624 |
Cites_doi | 10.1126/science.1228032 10.3390/polym11020361 10.1002/ange.202207580 10.1021/acsmacrolett.0c00135 10.1039/C8TA00509E 10.1016/j.mtnano.2018.11.003 10.1021/ma300730y 10.1002/anie.202016901 10.1021/ma5009226 10.1016/j.coche.2021.100785 10.1002/ange.201206339 10.1021/acs.iecr.0c03740 10.1039/c1cc11717c 10.1039/c2cc35392j 10.1016/0950-4214(90)80030-O 10.1039/b311764b 10.1016/j.polymer.2020.122736 10.1039/D0TA09703A 10.1016/j.coche.2021.100755 10.1021/ma9814548 10.1002/ange.202016901 10.3390/membranes10040062 10.1021/ma060047q 10.1016/j.memsci.2017.04.069 10.1002/anie.201206339 10.1021/acs.macromol.7b02556 10.1002/adma.201306229 10.1021/acsmacrolett.5b00512 10.1016/j.memsci.2019.117460 10.1002/1521-4095(200104)13:8<601::AID-ADMA601>3.0.CO;2-V 10.1134/S0965544119130139 10.1002/pola.27283 10.1039/b9py00319c 10.1021/acsomega.8b01975 10.1080/00397917508061439 10.1007/s11426-017-9058-x 10.1021/acsami.8b13634 10.1016/j.memsci.2014.01.055 10.1038/532435a 10.1016/0376-7388(91)80060-J 10.1021/acs.macromol.9b02328 10.1039/C6EE00811A 10.1039/C9EE01384A 10.1021/ma300213b 10.1039/C4TA00564C 10.1021/acsmacrolett.5b00439 10.1016/j.ijhydene.2017.04.081 10.1021/acs.macromol.5b01581 10.1016/j.progpolymsci.2014.10.005 10.1039/C8EE02897D 10.1016/S0040-4020(97)00297-4 10.1039/C9TA07159H 10.1002/anie.202207580 10.1002/adma.201202393 10.1016/j.memsci.2008.04.030 10.1073/pnas.2022204118 10.1039/C8TA02601G 10.1002/adfm.202104474 10.1039/D1TA06530K 10.1021/acs.iecr.9b04881 10.1016/j.memsci.2018.04.029 |
ContentType | Journal Article |
Copyright | 2022 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH 2022 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH. 2022. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH – notice: 2022 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH. – notice: 2022. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION NPM 7TM K9. 7X8 5PM |
DOI | 10.1002/anie.202215250 |
DatabaseName | Wiley Online Library Open Access CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) CrossRef PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access (Activated by CARLI) url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | n/a |
ExternalDocumentID | PMC10107563 36511357 10_1002_anie_202215250 ANIE202215250 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Defense Threat Reduction Agency funderid: HDTRA1-18-1-0054 – fundername: Defense Threat Reduction Agency grantid: HDTRA1-18-1-0054 – fundername: ; grantid: HDTRA1-18-1-0054 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 24P 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION NPM YIN 7TM K9. 7X8 5PM |
ID | FETCH-LOGICAL-c4690-eab9fba81b799a356f3395ac80683f6b9497905d3fcb77f37e50a2a9caa2ddff3 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Thu Aug 21 18:37:51 EDT 2025 Fri Jul 11 05:12:42 EDT 2025 Fri Jul 25 10:34:32 EDT 2025 Wed Feb 19 02:04:31 EST 2025 Tue Jul 01 01:47:00 EDT 2025 Thu Apr 24 22:59:35 EDT 2025 Wed Jan 22 16:24:08 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | Membranes Dibenzomethanopentacene Gas Separation Ageing Polymers of Intrinsic Microporosity |
Language | English |
License | Attribution-NonCommercial 2022 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH. This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4690-eab9fba81b799a356f3395ac80683f6b9497905d3fcb77f37e50a2a9caa2ddff3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-6027-261X |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202215250 |
PMID | 36511357 |
PQID | 2774023249 |
PQPubID | 946352 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_10107563 proquest_miscellaneous_2754047022 proquest_journals_2774023249 pubmed_primary_36511357 crossref_primary_10_1002_anie_202215250 crossref_citationtrail_10_1002_anie_202215250 wiley_primary_10_1002_anie_202215250_ANIE202215250 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 13, 2023 |
PublicationDateYYYYMMDD | 2023-02-13 |
PublicationDate_xml | – month: 02 year: 2023 text: February 13, 2023 day: 13 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim – name: Hoboken |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc John Wiley and Sons Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: John Wiley and Sons Inc |
References | 2017; 42 2014; 457 2018; 561 2019; 11 2019; 12 2006; 39 2019; 59 2014; 26 2020; 59 2020; 202 2020; 10 2013 2013; 52 125 2018; 6 2015; 48 2022 2022; 61 134 2018; 3 2021; 31 2010; 1 2014; 2 2020; 53 1997; 53 2015; 43 2020; 9 2021; 118 2022; 35 2022; 36 2014; 52 2012; 24 2001; 13 1975; 5 2021; 9 2017; 537 2019; 7 2015; 4 2017; 60 2014; 47 2004 2008; 320 2013; 339 2020; 594 2022; 8 1991; 62 2021 2021; 60 133 1999; 32 2018; 51 2016; 532 2011; 47 2012; 48 2012; 45 2018; 10 2016; 9 1990; 4 e_1_2_7_5_2 e_1_2_7_3_2 e_1_2_7_9_2 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_2 e_1_2_7_15_2 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_13_2 e_1_2_7_62_2 e_1_2_7_66_1 e_1_2_7_43_2 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_47_2 e_1_2_7_26_2 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_71_1 e_1_2_7_25_2 e_1_2_7_52_2 e_1_2_7_23_3 e_1_2_7_23_2 e_1_2_7_31_2 e_1_2_7_54_2 e_1_2_7_21_2 e_1_2_7_33_2 e_1_2_7_56_1 (e_1_2_7_59_2) 2022; 134 e_1_2_7_35_2 e_1_2_7_58_1 e_1_2_7_37_2 e_1_2_7_39_2 Longo M. (e_1_2_7_64_1) 2022; 8 e_1_2_7_4_2 e_1_2_7_2_2 e_1_2_7_8_2 e_1_2_7_6_2 e_1_2_7_18_1 e_1_2_7_16_2 e_1_2_7_61_2 e_1_2_7_40_1 e_1_2_7_14_1 e_1_2_7_63_1 e_1_2_7_12_2 e_1_2_7_42_2 e_1_2_7_10_3 e_1_2_7_65_1 e_1_2_7_10_2 e_1_2_7_44_2 e_1_2_7_46_1 e_1_2_7_67_1 e_1_2_7_69_1 e_1_2_7_48_2 e_1_2_7_27_2 e_1_2_7_29_2 e_1_2_7_72_1 e_1_2_7_70_1 e_1_2_7_53_1 e_1_2_7_30_2 e_1_2_7_51_2 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_22_2 e_1_2_7_57_1 e_1_2_7_34_2 e_1_2_7_55_2 e_1_2_7_20_1 e_1_2_7_59_1 e_1_2_7_36_2 e_1_2_7_38_2 |
References_xml | – volume: 59 start-page: 18640 year: 2020 end-page: 18648 publication-title: Ind. Eng. Chem. Res. – volume: 48 start-page: 6553 year: 2015 end-page: 6561 publication-title: Macromolecules – volume: 53 start-page: 6377 year: 1997 end-page: 6390 publication-title: Tetrahedron – volume: 39 start-page: 3350 year: 2006 end-page: 3358 publication-title: Macromolecules – volume: 62 start-page: 165 year: 1991 end-page: 185 publication-title: J. Membr. Sci. – volume: 59 start-page: S88 year: 2019 end-page: S94 publication-title: Pet. Chem. – volume: 10 start-page: 36475 year: 2018 end-page: 36482 publication-title: ACS Appl. Mater. Interfaces – volume: 6 start-page: 5661 year: 2018 end-page: 5667 publication-title: J. Mater. Chem. A – volume: 42 start-page: 23915 year: 2017 end-page: 23919 publication-title: Int. J. Hydrogen Energy – volume: 59 start-page: 5381 year: 2020 end-page: 5391 publication-title: Ind. Eng. Chem. Res. – volume: 12 start-page: 2733 year: 2019 end-page: 2740 publication-title: Energy Environ. Sci. – volume: 11 start-page: 361 year: 2019 publication-title: Polymer – volume: 35 year: 2022 publication-title: Curr. Opin. Chem. Eng. – volume: 45 start-page: 5397 year: 2012 end-page: 5402 publication-title: Macromolecules – volume: 24 start-page: 5930 year: 2012 end-page: 5933 publication-title: Adv. Mater. – volume: 202 year: 2020 publication-title: Polymer – volume: 26 start-page: 3688 year: 2014 end-page: 3692 publication-title: Adv. Mater. – volume: 10 start-page: 62 year: 2020 publication-title: Membranes – volume: 45 start-page: 3298 year: 2012 end-page: 3311 publication-title: Macromolecules – volume: 47 start-page: 5104 year: 2014 end-page: 5114 publication-title: Macromolecules – volume: 7 start-page: 20121 year: 2019 end-page: 20126 publication-title: J. Mater. Chem. A – volume: 60 start-page: 1023 year: 2017 end-page: 1032 publication-title: Sci. China Chem. – volume: 61 134 year: 2022 2022 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 53 start-page: 1573 year: 2020 end-page: 1584 publication-title: Macromolecules – volume: 537 start-page: 362 year: 2017 end-page: 371 publication-title: J. Membr. Sci. – volume: 48 start-page: 9989 year: 2012 end-page: 9991 publication-title: Chem. Commun. – volume: 457 start-page: 95 year: 2014 end-page: 102 publication-title: J. Membr. Sci. – volume: 32 start-page: 375 year: 1999 end-page: 380 publication-title: Macromolecules – volume: 6 start-page: 10507 year: 2018 end-page: 10514 publication-title: J. Mater. Chem. A – volume: 52 start-page: 2654 year: 2014 end-page: 2661 publication-title: J. Polym. Sci. Part A – volume: 3 start-page: 69 year: 2018 end-page: 95 publication-title: Mater. Today Nano – volume: 51 start-page: 1069 year: 2018 end-page: 1076 publication-title: Macromolecules – volume: 320 start-page: 390 year: 2008 end-page: 400 publication-title: J. Membr. Sci. – volume: 9 start-page: 680 year: 2020 end-page: 685 publication-title: ACS Macro Lett. – volume: 8 year: 2022 publication-title: J. Membr. Sci. Res. – volume: 60 133 start-page: 17875 18019 year: 2021 2021 end-page: 17880 18024 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 339 start-page: 303 year: 2013 end-page: 307 publication-title: Science – volume: 4 start-page: 947 year: 2015 end-page: 951 publication-title: ACS Macro Lett. – volume: 5 start-page: 101 year: 1975 end-page: 106 publication-title: Synth. Commun. – volume: 9 start-page: 5404 year: 2021 end-page: 5414 publication-title: J. Mater. Chem. A – volume: 36 year: 2022 publication-title: Curr. Opin. Chem. Eng. – volume: 594 year: 2020 publication-title: J. Membr. Sci. – volume: 2 start-page: 4874 year: 2014 end-page: 4877 publication-title: J. Mater. Chem. A – volume: 52 125 start-page: 1253 1291 year: 2013 2013 end-page: 1256 1294 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – start-page: 230 year: 2004 end-page: 231 publication-title: Chem. Commun. – volume: 13 start-page: 601 year: 2001 end-page: 604 publication-title: Adv. Mater. – volume: 9 start-page: 1863 year: 2016 end-page: 1890 publication-title: Energy Environ. Sci. – volume: 4 start-page: 66 year: 1990 end-page: 74 publication-title: Gas Sep. Purif. – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 1 start-page: 63 year: 2010 end-page: 68 publication-title: Polym. Chem. – volume: 12 start-page: 281 year: 2019 end-page: 289 publication-title: Energy Environ. Sci. – volume: 43 start-page: 1 year: 2015 end-page: 32 publication-title: Prog. Polym. Sci. – volume: 118 year: 2021 publication-title: Proc. Natl. Acad. Sci. USA – volume: 561 start-page: 39 year: 2018 end-page: 58 publication-title: J. Membr. Sci. – volume: 3 start-page: 11874 year: 2018 end-page: 11882 publication-title: ACS Omega – volume: 4 start-page: 912 year: 2015 end-page: 915 publication-title: ACS Macro Lett. – volume: 47 start-page: 6822 year: 2011 end-page: 6824 publication-title: Chem. Commun. – volume: 9 start-page: 23631 year: 2021 end-page: 23642 publication-title: J. Mater. Chem. A – volume: 532 start-page: 435 year: 2016 end-page: 437 publication-title: Nature – ident: e_1_2_7_29_2 doi: 10.1126/science.1228032 – ident: e_1_2_7_37_2 doi: 10.3390/polym11020361 – volume: 8 year: 2022 ident: e_1_2_7_64_1 publication-title: J. Membr. Sci. Res. – ident: e_1_2_7_20_1 – volume: 134 year: 2022 ident: e_1_2_7_59_2 publication-title: Angew. Chem. doi: 10.1002/ange.202207580 – ident: e_1_2_7_43_2 doi: 10.1021/acsmacrolett.0c00135 – ident: e_1_2_7_40_1 doi: 10.1039/C8TA00509E – ident: e_1_2_7_4_2 doi: 10.1016/j.mtnano.2018.11.003 – ident: e_1_2_7_47_2 doi: 10.1021/ma300730y – ident: e_1_2_7_23_2 doi: 10.1002/anie.202016901 – ident: e_1_2_7_34_2 doi: 10.1021/ma5009226 – ident: e_1_2_7_11_1 – ident: e_1_2_7_21_2 doi: 10.1016/j.coche.2021.100785 – ident: e_1_2_7_10_3 doi: 10.1002/ange.201206339 – ident: e_1_2_7_38_2 doi: 10.1021/acs.iecr.0c03740 – ident: e_1_2_7_56_1 doi: 10.1039/c1cc11717c – ident: e_1_2_7_60_1 – ident: e_1_2_7_58_1 doi: 10.1039/c2cc35392j – ident: e_1_2_7_41_1 – ident: e_1_2_7_66_1 doi: 10.1016/0950-4214(90)80030-O – ident: e_1_2_7_18_1 doi: 10.1039/b311764b – ident: e_1_2_7_19_1 doi: 10.1016/j.polymer.2020.122736 – ident: e_1_2_7_39_2 doi: 10.1039/D0TA09703A – ident: e_1_2_7_24_1 – ident: e_1_2_7_22_2 doi: 10.1016/j.coche.2021.100755 – ident: e_1_2_7_13_2 doi: 10.1021/ma9814548 – ident: e_1_2_7_23_3 doi: 10.1002/ange.202016901 – ident: e_1_2_7_32_1 – ident: e_1_2_7_44_2 doi: 10.3390/membranes10040062 – ident: e_1_2_7_46_1 – ident: e_1_2_7_52_2 doi: 10.1021/ma060047q – ident: e_1_2_7_71_1 doi: 10.1016/j.memsci.2017.04.069 – ident: e_1_2_7_10_2 doi: 10.1002/anie.201206339 – ident: e_1_2_7_31_2 doi: 10.1021/acs.macromol.7b02556 – ident: e_1_2_7_33_2 doi: 10.1002/adma.201306229 – ident: e_1_2_7_17_2 doi: 10.1021/acsmacrolett.5b00512 – ident: e_1_2_7_70_1 doi: 10.1016/j.memsci.2019.117460 – ident: e_1_2_7_51_2 doi: 10.1002/1521-4095(200104)13:8<601::AID-ADMA601>3.0.CO;2-V – ident: e_1_2_7_49_1 doi: 10.1134/S0965544119130139 – ident: e_1_2_7_48_2 doi: 10.1002/pola.27283 – ident: e_1_2_7_8_2 doi: 10.1039/b9py00319c – ident: e_1_2_7_36_2 doi: 10.1021/acsomega.8b01975 – ident: e_1_2_7_45_1 doi: 10.1080/00397917508061439 – ident: e_1_2_7_57_1 doi: 10.1007/s11426-017-9058-x – ident: e_1_2_7_65_1 doi: 10.1021/acsami.8b13634 – ident: e_1_2_7_63_1 doi: 10.1016/j.memsci.2014.01.055 – ident: e_1_2_7_14_1 – ident: e_1_2_7_3_2 doi: 10.1038/532435a – ident: e_1_2_7_28_1 – ident: e_1_2_7_12_2 doi: 10.1016/0376-7388(91)80060-J – ident: e_1_2_7_42_2 doi: 10.1021/acs.macromol.9b02328 – ident: e_1_2_7_2_2 doi: 10.1039/C6EE00811A – ident: e_1_2_7_16_2 doi: 10.1039/C9EE01384A – ident: e_1_2_7_5_2 doi: 10.1021/ma300213b – ident: e_1_2_7_1_1 – ident: e_1_2_7_7_1 – ident: e_1_2_7_30_2 doi: 10.1039/C4TA00564C – ident: e_1_2_7_35_2 doi: 10.1021/acsmacrolett.5b00439 – ident: e_1_2_7_61_2 doi: 10.1016/j.ijhydene.2017.04.081 – ident: e_1_2_7_69_1 doi: 10.1021/acs.macromol.5b01581 – ident: e_1_2_7_9_2 doi: 10.1016/j.progpolymsci.2014.10.005 – ident: e_1_2_7_6_2 doi: 10.1039/C8EE02897D – ident: e_1_2_7_54_2 doi: 10.1016/S0040-4020(97)00297-4 – ident: e_1_2_7_67_1 doi: 10.1039/C9TA07159H – ident: e_1_2_7_59_1 doi: 10.1002/anie.202207580 – ident: e_1_2_7_26_2 doi: 10.1002/adma.201202393 – ident: e_1_2_7_15_2 doi: 10.1016/j.memsci.2008.04.030 – ident: e_1_2_7_55_2 doi: 10.1073/pnas.2022204118 – ident: e_1_2_7_27_2 doi: 10.1039/C8TA02601G – ident: e_1_2_7_53_1 – ident: e_1_2_7_25_2 doi: 10.1002/adfm.202104474 – ident: e_1_2_7_72_1 doi: 10.1039/D1TA06530K – ident: e_1_2_7_50_1 – ident: e_1_2_7_62_2 doi: 10.1021/acs.iecr.9b04881 – ident: e_1_2_7_68_1 doi: 10.1016/j.memsci.2018.04.029 |
SSID | ssj0028806 |
Score | 2.5236583 |
Snippet | Dibenzomethanopentacene (DBMP) is shown to be a useful structural component for making Polymers of Intrinsic Microporosity (PIMs) with promise for making... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e202215250 |
SubjectTerms | Ageing Dibenzomethanopentacene Diels-Alder reactions Fabrication Gas Separation Membranes Microporosity Monomers Permeability Polymers Polymers of Intrinsic Microporosity Selectivity Upper bounds |
Title | Dibenzomethanopentacene‐Based Polymers of Intrinsic Microporosity for Use in Gas‐Separation Membranes |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202215250 https://www.ncbi.nlm.nih.gov/pubmed/36511357 https://www.proquest.com/docview/2774023249 https://www.proquest.com/docview/2754047022 https://pubmed.ncbi.nlm.nih.gov/PMC10107563 |
Volume | 62 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5BL3Dh_ydQKiMhcXKb2Em8PpbS0iJtVQEr9RbZji0iioPY3UN74hF4Rp6EmWQTulQICW6JbCf2eGb8ORl_A_BCuTR1Vua8nuiS595qtDlZcms9ekyVuyKjg8LT4_Jwlr89LU4vneLv-SHGD25kGZ2_JgM3dr7zizSUTmDj_k5QYtZu004BW4SK3o38UQKVsz9eJCWnLPQDa2Mqdtabr69KV6Dm1YjJy0i2W4oOboMZBtFHoHzaXi7strv4jd_xf0Z5B26tcCrb7RXrLlzz8R7c2BvSw92H5nVjfbxoKQW1iZSEa2Gw3_7Ht--vcGWs2Ul7dk4fxVkb2BGOp4moEGxKAYCI-SlW7JwhYmazuWdNZG_MHJu-9z0XeRvZ1H_GjqMnfgCzg_0Pe4d8lbeBO9psc2-sDtYgIFZaG1mUQUpdGIeTMZGhtDrXRAtWy-CsUkEqX6RGGO2MEXUdgnwIG7GN_jGwPFOlQxfhtCXohLtDY2sdQhFQJDZ1CfBh3iq3IjWn3BpnVU_HLCoSYDUKMIGXY_0vPZ3HH2tuDmpQrcx6XgkEyylhUJ3A87EYBU9_WVAi7ZLqIAjOFT4ngUe91oyvQg3NMlmoBCZr-jRWILLv9ZLYfOxIv9F1IrorZQKi05e_dL_aPT7aH--e_Eujp3ATr-kvP8_kJmwsvi79M0RgC7sF10V-stXZ2k-J6i0F |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6h9lAuUP5DCxgJiZPbbJzE62MpLbvQXSHoStwi27FFRHEQu3toT30EnpEnYSbZBJYKIcExG3tjT2bG3zjjbwCeSRvH1oiUl0OV89QZhTYncm6MQ48pU5sN6KDwZJqPZunrD1mXTUhnYVp-iH7DjSyj8ddk4LQhvf-TNZSOYGOAl1BlVoraN6msdxNVvesZpBJUz_aAkRCc6tB3vI1xsr_ef31dugI2r-ZM_oplm8Xo-CaYbhptDsqnveXC7NmL3xge_2ue23BjBVXZQatbt-CaC7dh67CrEHcHqpeVceGipirUOlAdroXGgbvvl99e4OJYsrf12Tnti7PaszFOqAqoE2xCOYAI-yld7JwhaGazuWNVYK_0HLu-dy0deR3YxH3GkaMzvguz46PTwxFflW7gluJt7rRR3mjExFIpLbLcC6EybfFtDIXPjUoVMYOVwlsjpRfSZbFOtLJaJ2XpvbgHG6EO7gGwdCBzi17CKkPoCQNEbUrlfeZRJCa2EfDuxRV2xWtO5TXOipaROSlIgEUvwAie9-2_tIwef2y52-lBsbLseZEgXo4JhqoInva3UfD0oQUlUi-pDeLgVOL_RHC_VZv-UQKVdCAyGcFwTaH6BsT3vX4nVB8b3m_0ngjwchFB0ijMX4ZfHEzHR_3Vw3_p9AS2RqeTk-JkPH2zA9fxd_rozwdiFzYWX5fuEQKyhXncmNwPHqcwSQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6hVgIulN-StoCRkDi5zcaJsz6WbpcusKsKWKm3yHZsEVGSit09tKc-Qp-RJ2Em2YQuFUKCY2I7sccz489_3wC8Sm0YWiNinveV5LEzCm1OSG6MQ4-Zxjbp0UXh8UQeTeN3J8nJtVv8DT9Et-BGllH7azLws9zv_SINpRvYOL-LKDArTdrXYxn2Sa8HHzsCqQi1s7lfJASnMPQtbWMY7a2WXx2WbmDNm0cmr0PZeiwaboBuW9EcQfm6u5ibXXvxG8Hj_zTzPtxbAlW232jWA7jlyodw56CND_cIikFhXHlRUQxqXVIUrrnGersfl1dvcGjM2XF1ek6r4qzybITtKUrUCDamE4AI-umw2DlDyMymM8eKkr3VMyz6yTVk5FXJxu4bVhxd8WOYDg8_HxzxZeAGbmm2zZ02yhuNiDhVSotEeiFUoi12Rl94aVSsiBcsF96aNPUidUmoI62s1lGeey-ewFpZle4psLiXSos-wipD2Amnh9rkyvvEo0hMaAPgbb9ldslqTsE1TrOGjznKSIBZJ8AAXnf5zxo-jz_m3GnVIFva9SyLEC2HBEJVAC-7ZBQ8bbOgRKoF5UEUHKf4nQA2G63pfiUkAlyRpAH0V_Spy0Bs36spZfGlZv1G34nwTooAolpf_lL9bH8yOuyetv6l0Au4fTwYZh9Gk_fbcBdf044_74kdWJt_X7hniMbm5nltcD8BjbEvAQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dibenzomethanopentacene-Based+Polymers+of+Intrinsic+Microporosity+for+Use+in+Gas-Separation+Membranes&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Chen%2C+Jie&rft.au=Longo%2C+Mariagiulia&rft.au=Fuoco%2C+Alessio&rft.au=Esposito%2C+Elisa&rft.date=2023-02-13&rft.eissn=1521-3773&rft.volume=62&rft.issue=8&rft.spage=e202215250&rft_id=info:doi/10.1002%2Fanie.202215250&rft_id=info%3Apmid%2F36511357&rft.externalDocID=36511357 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |