‘Mother(Nature) knows best’ – hijacking nature-designed transcriptional programs for enhancing stress resistance and protein production in Yarrowia lipolytica; presentation of YaliFunTome database
In the era of rationally designed synthetic biology, heterologous metabolites production, and other counter-nature engineering of cellular metabolism, we took a step back and recalled that 'Mother(-Nature) knows best'. While still aiming at synthetic, non-natural outcomes of generating an...
Saved in:
Published in | Microbial cell factories Vol. 23; no. 1; pp. 1 - 20 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London
BioMed Central Ltd
18.01.2024
BioMed Central BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In the era of rationally designed synthetic biology, heterologous metabolites production, and other counter-nature engineering of cellular metabolism, we took a step back and recalled that 'Mother(-Nature) knows best'. While still aiming at synthetic, non-natural outcomes of generating an 'over-production phenotype' we dug into the pre-designed transcriptional programs evolved in our host organism--Yarrowia lipolytica, hoping that some of these fine-tuned orchestrated programs could be hijacked and used. Having an interest in the practical outcomes of the research, we targeted industrially-relevant functionalities--stress resistance and enhanced synthesis of proteins, and gauged them over extensive experimental design's completion. Technically, the problem was addressed by screening a broad library of over 120 Y. lipolytica strains under 72 combinations of variables through a carefully pre-optimized high-throughput cultivation protocol, which enabled actual phenotype development. The abundance of the transcription program elicitors--transcription factors (TFs), was secured by their overexpression, while challenging the strains with the multitude of conditions was inflicted to impact their activation stratus. The data were subjected to mathematical modeling to increase their informativeness. All potential users are invited to browse YaliFunTome in the search for homologous TFs and the TF-driven phenotypes of interest. |
---|---|
AbstractList | In the era of rationally designed synthetic biology, heterologous metabolites production, and other counter-nature engineering of cellular metabolism, we took a step back and recalled that 'Mother(-Nature) knows best'. While still aiming at synthetic, non-natural outcomes of generating an 'over-production phenotype' we dug into the pre-designed transcriptional programs evolved in our host organism--Yarrowia lipolytica, hoping that some of these fine-tuned orchestrated programs could be hijacked and used. Having an interest in the practical outcomes of the research, we targeted industrially-relevant functionalities--stress resistance and enhanced synthesis of proteins, and gauged them over extensive experimental design's completion. Technically, the problem was addressed by screening a broad library of over 120 Y. lipolytica strains under 72 combinations of variables through a carefully pre-optimized high-throughput cultivation protocol, which enabled actual phenotype development. The abundance of the transcription program elicitors--transcription factors (TFs), was secured by their overexpression, while challenging the strains with the multitude of conditions was inflicted to impact their activation stratus. The data were subjected to mathematical modeling to increase their informativeness. All potential users are invited to browse YaliFunTome in the search for homologous TFs and the TF-driven phenotypes of interest. In the era of rationally designed synthetic biology, heterologous metabolites production, and other counter-nature engineering of cellular metabolism, we took a step back and recalled that ‘Mother(-Nature) knows best’. While still aiming at synthetic, non-natural outcomes of generating an ‘over-production phenotype’ we dug into the pre-designed transcriptional programs evolved in our host organism— Yarrowia lipolytica , hoping that some of these fine-tuned orchestrated programs could be hijacked and used. Having an interest in the practical outcomes of the research, we targeted industrially-relevant functionalities—stress resistance and enhanced synthesis of proteins, and gauged them over extensive experimental design’s completion. Technically, the problem was addressed by screening a broad library of over 120 Y. lipolytica strains under 72 combinations of variables through a carefully pre-optimized high-throughput cultivation protocol, which enabled actual phenotype development. The abundance of the transcription program elicitors—transcription factors (TFs), was secured by their overexpression, while challenging the strains with the multitude of conditions was inflicted to impact their activation stratus. The data were subjected to mathematical modeling to increase their informativeness. The amount of the gathered data prompted us to present them in the form of a searchable catalog – the YaliFunTome database ( https://sparrow.up.poznan.pl/tsdatabase/ )—to facilitate the withdrawal of biological sense from numerical data. We succeeded in the identification of TFs that act as omni-boosters of protein synthesis, enhance resistance to limited oxygen availability, and improve protein synthesis capacity under inorganic nitrogen provision. All potential users are invited to browse YaliFunTome in the search for homologous TFs and the TF-driven phenotypes of interest. BackgroundIn the era of rationally designed synthetic biology, heterologous metabolites production, and other counter-nature engineering of cellular metabolism, we took a step back and recalled that ‘Mother(-Nature) knows best’. While still aiming at synthetic, non-natural outcomes of generating an ‘over-production phenotype’ we dug into the pre-designed transcriptional programs evolved in our host organism—Yarrowia lipolytica, hoping that some of these fine-tuned orchestrated programs could be hijacked and used. Having an interest in the practical outcomes of the research, we targeted industrially-relevant functionalities—stress resistance and enhanced synthesis of proteins, and gauged them over extensive experimental design’s completion.ResultsTechnically, the problem was addressed by screening a broad library of over 120 Y. lipolytica strains under 72 combinations of variables through a carefully pre-optimized high-throughput cultivation protocol, which enabled actual phenotype development. The abundance of the transcription program elicitors—transcription factors (TFs), was secured by their overexpression, while challenging the strains with the multitude of conditions was inflicted to impact their activation stratus. The data were subjected to mathematical modeling to increase their informativeness.The amount of the gathered data prompted us to present them in the form of a searchable catalog – the YaliFunTome database (https://sparrow.up.poznan.pl/tsdatabase/)—to facilitate the withdrawal of biological sense from numerical data. We succeeded in the identification of TFs that act as omni-boosters of protein synthesis, enhance resistance to limited oxygen availability, and improve protein synthesis capacity under inorganic nitrogen provision.ConclusionsAll potential users are invited to browse YaliFunTome in the search for homologous TFs and the TF-driven phenotypes of interest. Background In the era of rationally designed synthetic biology, heterologous metabolites production, and other counter-nature engineering of cellular metabolism, we took a step back and recalled that 'Mother(-Nature) knows best'. While still aiming at synthetic, non-natural outcomes of generating an 'over-production phenotype' we dug into the pre-designed transcriptional programs evolved in our host organism--Yarrowia lipolytica, hoping that some of these fine-tuned orchestrated programs could be hijacked and used. Having an interest in the practical outcomes of the research, we targeted industrially-relevant functionalities--stress resistance and enhanced synthesis of proteins, and gauged them over extensive experimental design's completion. Results Technically, the problem was addressed by screening a broad library of over 120 Y. lipolytica strains under 72 combinations of variables through a carefully pre-optimized high-throughput cultivation protocol, which enabled actual phenotype development. The abundance of the transcription program elicitors--transcription factors (TFs), was secured by their overexpression, while challenging the strains with the multitude of conditions was inflicted to impact their activation stratus. The data were subjected to mathematical modeling to increase their informativeness. The amount of the gathered data prompted us to present them in the form of a searchable catalog - the YaliFunTome database ( Conclusions All potential users are invited to browse YaliFunTome in the search for homologous TFs and the TF-driven phenotypes of interest. Keywords: Yeast, Transcription factors, Stress resistance, Protein production, Global metabolic engineering, Yarrowia cultivation protocol In the era of rationally designed synthetic biology, heterologous metabolites production, and other counter-nature engineering of cellular metabolism, we took a step back and recalled that 'Mother(-Nature) knows best'. While still aiming at synthetic, non-natural outcomes of generating an 'over-production phenotype' we dug into the pre-designed transcriptional programs evolved in our host organism-Yarrowia lipolytica, hoping that some of these fine-tuned orchestrated programs could be hijacked and used. Having an interest in the practical outcomes of the research, we targeted industrially-relevant functionalities-stress resistance and enhanced synthesis of proteins, and gauged them over extensive experimental design's completion.BACKGROUNDIn the era of rationally designed synthetic biology, heterologous metabolites production, and other counter-nature engineering of cellular metabolism, we took a step back and recalled that 'Mother(-Nature) knows best'. While still aiming at synthetic, non-natural outcomes of generating an 'over-production phenotype' we dug into the pre-designed transcriptional programs evolved in our host organism-Yarrowia lipolytica, hoping that some of these fine-tuned orchestrated programs could be hijacked and used. Having an interest in the practical outcomes of the research, we targeted industrially-relevant functionalities-stress resistance and enhanced synthesis of proteins, and gauged them over extensive experimental design's completion.Technically, the problem was addressed by screening a broad library of over 120 Y. lipolytica strains under 72 combinations of variables through a carefully pre-optimized high-throughput cultivation protocol, which enabled actual phenotype development. The abundance of the transcription program elicitors-transcription factors (TFs), was secured by their overexpression, while challenging the strains with the multitude of conditions was inflicted to impact their activation stratus. The data were subjected to mathematical modeling to increase their informativeness. The amount of the gathered data prompted us to present them in the form of a searchable catalog - the YaliFunTome database ( https://sparrow.up.poznan.pl/tsdatabase/ )-to facilitate the withdrawal of biological sense from numerical data. We succeeded in the identification of TFs that act as omni-boosters of protein synthesis, enhance resistance to limited oxygen availability, and improve protein synthesis capacity under inorganic nitrogen provision.RESULTSTechnically, the problem was addressed by screening a broad library of over 120 Y. lipolytica strains under 72 combinations of variables through a carefully pre-optimized high-throughput cultivation protocol, which enabled actual phenotype development. The abundance of the transcription program elicitors-transcription factors (TFs), was secured by their overexpression, while challenging the strains with the multitude of conditions was inflicted to impact their activation stratus. The data were subjected to mathematical modeling to increase their informativeness. The amount of the gathered data prompted us to present them in the form of a searchable catalog - the YaliFunTome database ( https://sparrow.up.poznan.pl/tsdatabase/ )-to facilitate the withdrawal of biological sense from numerical data. We succeeded in the identification of TFs that act as omni-boosters of protein synthesis, enhance resistance to limited oxygen availability, and improve protein synthesis capacity under inorganic nitrogen provision.All potential users are invited to browse YaliFunTome in the search for homologous TFs and the TF-driven phenotypes of interest.CONCLUSIONSAll potential users are invited to browse YaliFunTome in the search for homologous TFs and the TF-driven phenotypes of interest. Abstract Background In the era of rationally designed synthetic biology, heterologous metabolites production, and other counter-nature engineering of cellular metabolism, we took a step back and recalled that ‘Mother(-Nature) knows best’. While still aiming at synthetic, non-natural outcomes of generating an ‘over-production phenotype’ we dug into the pre-designed transcriptional programs evolved in our host organism—Yarrowia lipolytica, hoping that some of these fine-tuned orchestrated programs could be hijacked and used. Having an interest in the practical outcomes of the research, we targeted industrially-relevant functionalities—stress resistance and enhanced synthesis of proteins, and gauged them over extensive experimental design’s completion. Results Technically, the problem was addressed by screening a broad library of over 120 Y. lipolytica strains under 72 combinations of variables through a carefully pre-optimized high-throughput cultivation protocol, which enabled actual phenotype development. The abundance of the transcription program elicitors—transcription factors (TFs), was secured by their overexpression, while challenging the strains with the multitude of conditions was inflicted to impact their activation stratus. The data were subjected to mathematical modeling to increase their informativeness. The amount of the gathered data prompted us to present them in the form of a searchable catalog – the YaliFunTome database ( https://sparrow.up.poznan.pl/tsdatabase/ )—to facilitate the withdrawal of biological sense from numerical data. We succeeded in the identification of TFs that act as omni-boosters of protein synthesis, enhance resistance to limited oxygen availability, and improve protein synthesis capacity under inorganic nitrogen provision. Conclusions All potential users are invited to browse YaliFunTome in the search for homologous TFs and the TF-driven phenotypes of interest. |
ArticleNumber | 26 |
Audience | Academic |
Author | Gorczyca, Maria Białas, Wojciech Celińska, Ewelina Nicaud, Jean-Marc |
Author_xml | – sequence: 1 givenname: Maria orcidid: 0009-0004-7687-3753 surname: Gorczyca fullname: Gorczyca, Maria – sequence: 2 givenname: Wojciech orcidid: 0000-0002-6095-3167 surname: Białas fullname: Białas, Wojciech – sequence: 3 givenname: Jean-Marc orcidid: 0000-0002-6679-972X surname: Nicaud fullname: Nicaud, Jean-Marc – sequence: 4 givenname: Ewelina orcidid: 0000-0001-8372-8459 surname: Celińska fullname: Celińska, Ewelina |
BackLink | https://hal.science/hal-04593392$$DView record in HAL |
BookMark | eNp9ks1u1DAUhSNUVGjhBVhZYtMuUvyT-EesqorSSgUkKAtW1h3HmfE0Yw92Qqe7vgMbeCUeo0-CM4OAqRCKEsdX3zm6uvfsFTs-eFsUzwg-IkTyF4lQxaoSU5ZfKuty9aB4TCpRl_midv76f1TspTTHmAgp2G6xyyRlUlaPix93t9_ehH5m48Fb6IdoD9GVD9cJTWzq726_o7vbr2jm5mCunJ8iv2bKxiY39bZBfQSfTHTL3gUPHVrGMI2wSKgNEVk_A29GWeqjTQnlj0t9rlkEvhnh3jo_ns1gRgeUb58gxnDtAHVuGbqb3hl4mRGbrO9hDYU2Q507HfxlWFjUQA8TSPZJ8bCFLtmnv8794uPpq8uTs_Li3evzk-OL0lRcrsqqUZxLTmRtKwW0YlwwxS0VsmGWC0sbqiTHUDUEk4khUikhmGxJnp7CjLH94nzj2wSY62V0C4g3OoDT60KIUw0xt91ZjUXDiTFYsgmuFKkBq0ZI2QIwLCslstfhxmsG3ZbV2fGFHmu4qhVjin4hmT3YsHlen4e8Hr1wydiuA2_DkDRVRNQ1E1Wd0ef30HkYYl7QSNGac8Ip-UNNIffqfBvyOs1oqo-FpETVvJKZOvoHlZ_GLpzJgWxdrm8JDrcEmentqp_CkJI-__B-m6Ub1sSQUrTt7yEQrMeM603Gdc64Xmdcr7JI3hMZt4lG7sx1_5P-BC1BA9I |
CitedBy_id | crossref_primary_10_1186_s12934_024_02465_3 crossref_primary_10_1021_acssuschemeng_4c10404 crossref_primary_10_1093_femsyr_foae027 crossref_primary_10_3390_ijms25179450 |
Cites_doi | 10.1007/s00253-021-11731-y 10.1093/nar/gkw817 10.1128/JB.181.10.3051-3057.1999 10.1007/s00253-023-12607-z 10.1016/j.btre.2021.e00648 10.1046/j.1365-2672.2002.01577.x 10.1016/j.bbalip.2012.12.010 10.1128/MCB.17.7.3966 10.1016/j.jclepro.2020.120533 10.1128/mSphere.00541-18 10.1080/10826068.2012.656868 10.1007/s00253-015-6624-z 10.1016/j.plipres.2015.12.001 10.1016/j.btre.2021.e00669 10.1007/s00203-002-0478-3 10.1016/j.btre.2023.e00801 10.1016/j.tim.2007.09.004 10.1016/j.bbrc.2010.10.096 10.1093/nar/gkac1041 10.1038/s41467-019-11275-w 10.1073/pnas.0405353101 10.1128/mSphere.00179-21 10.1534/g3.119.400469 10.1099/00221287-148-11-3725 10.1371/journal.pone.0078545 10.1093/genetics/iyad087 10.1038/s41540-017-0024-1 10.1007/s10529-011-0824-0 10.1007/s00253-018-9450-2 10.1186/s12934-017-0647-3 10.1093/genetics/137.1.55 10.1111/j.1574-6968.2002.tb10984.x 10.1007/s00294-019-01018-1 10.1007/s00284-019-01872-9 10.3390/jof7070548 10.1186/gb-2010-11-6-r65 10.1093/femsyr/fov052 10.1128/mSphere.00038-17 10.1016/j.ymben.2006.12.002 10.1146/annurev.ge.22.120188.003215 10.1007/s00253-012-4596-9 10.1128/AEM.03167-13 10.1007/s000180050442 10.1128/MCB.17.11.6283 10.1093/nar/gkz859 10.1371/journal.pone.0231161 10.1038/s41598-020-58683-3 10.1021/acssynbio.7b00034 10.1371/journal.pone.0066790 10.1007/s00284-017-1207-0 10.7554/eLife.47791 10.1016/j.btre.2020.e00521 10.1016/j.biortech.2016.11.016 10.1186/1475-2859-9-49 10.1093/nar/gky941 10.1016/j.btre.2021.e00646 10.1002/bit.26473 10.1016/j.meteno.2016.06.003 10.1186/s12934-023-02072-8 10.1002/yea.3499 10.3390/ijms23073602 10.1038/nature02579 10.1016/j.jbiotec.2019.06.297 10.1186/s12934-019-1231-9 10.1074/jbc.M806864200 10.1016/j.resmic.2012.03.002 10.1002/bit.10817 10.1016/0092-8674(91)90452-5 10.1016/j.nbt.2023.01.001 10.1093/femsyr/foy122 10.1186/1475-2859-10-1 10.1128/EC.00412-06 10.1093/femsyr/foy037 10.1016/j.fgb.2019.103299 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 BioMed Central Ltd. 2024. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2024. The Author(s). Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: COPYRIGHT 2024 BioMed Central Ltd. – notice: 2024. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2024. The Author(s). – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION ISR 3V. 7QL 7T7 7U9 7X7 7XB 88E 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI 7X8 1XC VOOES DOA |
DOI | 10.1186/s12934-023-02285-x |
DatabaseName | CrossRef Gale In Context: Science ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Industrial and Applied Microbiology Abstracts (Microbiology A) Virology and AIDS Abstracts ProQuest Health & Medical Collection (NC LIVE) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection (via ProQuest) ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection Environmental Sciences and Pollution Management ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Health & Medical Research Collection Biological Science Collection AIDS and Cancer Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1475-2859 |
EndPage | 20 |
ExternalDocumentID | oai_doaj_org_article_07d61cc083b04915a09d788faa308497 oai_HAL_hal_04593392v1 A782195648 10_1186_s12934_023_02285_x |
GeographicLocations | France Poland |
GeographicLocations_xml | – name: France – name: Poland |
GroupedDBID | --- 0R~ 123 29M 2WC 53G 5VS 7X7 88E 8FE 8FH 8FI 8FJ A8Z AAFWJ AAJSJ AASML AAYXX ABDBF ABUWG ACGFO ACGFS ACIHN ACPRK ACUHS ADBBV ADRAZ ADUKV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CITATION CS3 DIK DU5 E3Z EBD EBLON EBS ESX F5P FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IGS IHR INH INR ISR ITC KQ8 LK8 M1P M48 M7P MM. M~E O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RBZ RNS ROL RPM RSV SCM SOJ TR2 TUS UKHRP WOQ WOW XSB ~8M PMFND 3V. 7QL 7T7 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI 7X8 1XC 2VQ 4.4 AHSBF C1A EJD H13 IPNFZ RIG VOOES PUEGO |
ID | FETCH-LOGICAL-c468x-4d96686185e49a24367396e278d3e67e2d29860a4d101bc18997738f100190333 |
IEDL.DBID | M48 |
ISSN | 1475-2859 |
IngestDate | Wed Aug 27 01:31:53 EDT 2025 Mon Jul 28 23:40:09 EDT 2025 Fri Jul 11 08:56:04 EDT 2025 Fri Jul 25 19:15:11 EDT 2025 Tue Jun 17 22:14:51 EDT 2025 Tue Jun 10 21:07:51 EDT 2025 Fri Jun 27 05:51:21 EDT 2025 Tue Jul 01 02:30:28 EDT 2025 Thu Apr 24 22:57:22 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Transcription factors Yeast Protein production Stress resistance Global metabolic engineering Yarrowia cultivation protocol |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c468x-4d96686185e49a24367396e278d3e67e2d29860a4d101bc18997738f100190333 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-8372-8459 0000-0002-6095-3167 0000-0002-6679-972X 0009-0004-7687-3753 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12934-023-02285-x |
PMID | 3823884 |
PQID | 2925661621 |
PQPubID | 42699 |
PageCount | 20 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_07d61cc083b04915a09d788faa308497 hal_primary_oai_HAL_hal_04593392v1 proquest_miscellaneous_2917553745 proquest_journals_2925661621 gale_infotracmisc_A782195648 gale_infotracacademiconefile_A782195648 gale_incontextgauss_ISR_A782195648 crossref_primary_10_1186_s12934_023_02285_x crossref_citationtrail_10_1186_s12934_023_02285_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240118 |
PublicationDateYYYYMMDD | 2024-01-18 |
PublicationDate_xml | – month: 01 year: 2024 text: 20240118 day: 18 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Microbial cell factories |
PublicationYear | 2024 |
Publisher | BioMed Central Ltd BioMed Central BMC |
Publisher_xml | – name: BioMed Central Ltd – name: BioMed Central – name: BMC |
References | E Celińska (2285_CR25) 2019; 103 CAR Hurtado (2285_CR29) 2002; 148 RM Marion (2285_CR67) 2004; 101 R Dulermo (2285_CR52) 2017; 16 PT Monteiro (2285_CR57) 2017; 45 E Lamping (2285_CR69) 1994; 137 JC Torres-Guzmán (2285_CR26) 1997; 17 PK Sorger (2285_CR8) 1991; 65 A Tsirigka (2285_CR71) 2023; 22 H Alper (2285_CR1) 2007; 9 N Poopanitpan (2285_CR35) 2010; 402 M Gorczyca (2285_CR44) 2020; 37 AE Masser (2285_CR66) 2019; 8 M Gorczyca (2285_CR65) 2022; 23 M Kubiak-Szymendera (2285_CR56) 2021; 106 C Madzak (2285_CR23) 2015; 99 RJ Zahrl (2285_CR12) 2023; 73 SL Bhave (2285_CR70) 2003; 84 PT Monteiro (2285_CR40) 2020; 48 R Ledesma-Amaro (2285_CR21) 2016; 61 M Mekouar (2285_CR60) 2010; 11 CAR Hurtado (2285_CR27) 1999; 181 Z-P Wang (2285_CR36) 2013; 1831 AT Morales-Vargas (2285_CR30) 2012; 163 M Kubiak (2285_CR49) 2021; 31 CW Theron (2285_CR24) 2020; 10 E Celińska (2285_CR17) 2019; 19 M Guerfal (2285_CR3) 2010; 9 S Lindquist (2285_CR7) 1988; 22 M Gorczyca (2285_CR39) 2023; 107 AM Mirończuk (2285_CR47) 2019; 18 M Rakicka-Pustułka (2285_CR16) 2020; 257 M Herholz (2285_CR62) 2019; 10 G Duan (2285_CR2) 2019 H Sassi (2285_CR48) 2017; 74 JL Martínez (2285_CR11) 2016; 3 O Konzock (2285_CR74) 2020; 15 M Lambert (2285_CR72) 1997 N Gasmi (2285_CR53) 2011; 10 P Korpys-Woźniak (2285_CR6) 2021; 32 M Larroude (2285_CR19) 2018; 115 N Gomes (2285_CR18) 2012; 34 K Hirakawa (2285_CR34) 2009; 284 R Szabo (2285_CR54) 2002; 206 P Hapeta (2285_CR51) 2020; 27 KR Pomraning (2285_CR64) 2017; 2 B Dubreuil (2285_CR59) 2019; 47 P Korpys-Woźniak (2285_CR5) 2023; 38 C Rigouin (2285_CR22) 2017 C Li (2285_CR46) 2017; 225 J Ruiz-Herrera (2285_CR55) 2002; 178 C Madzak (2285_CR14) 2021; 7 C Leplat (2285_CR37) 2018; 18 T Shu (2285_CR73) 2021; 6 L Zhang (2285_CR10) 1999; 56 A Martinez-Vazquez (2285_CR31) 2013; 8 J Hou (2285_CR9) 2013; 97 P Korpys-Woźniak (2285_CR63) 2021; 31 A Rywinska (2285_CR45) 2012; 42 B Brejová (2285_CR58) 2023; 224 P Trébulle (2285_CR38) 2017; 3 Y Zhang (2285_CR68) 2020; 135 KR Pomraning (2285_CR32) 2018; 3 S Endoh-Yamagami (2285_CR33) 2007; 6 MC Teixeira (2285_CR41) 2023; 51 B Dujon (2285_CR13) 2004; 430 S Papanikolaou (2285_CR15) 2002; 92 F Matthäus (2285_CR20) 2014; 80 WA Duetz (2285_CR43) 2007; 15 P Lubuta (2285_CR50) 2019; 9 M Shimanuki (2285_CR61) 2013; 8 H Wu (2285_CR28) 2019 J Liu (2285_CR4) 2020; 77 C Leplat (2285_CR42) 2015; 15 |
References_xml | – volume: 106 start-page: 349 year: 2021 ident: 2285_CR56 publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-021-11731-y – volume: 45 start-page: D597 year: 2017 ident: 2285_CR57 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkw817 – volume: 181 start-page: 3051 year: 1999 ident: 2285_CR27 publication-title: J Bacteriol doi: 10.1128/JB.181.10.3051-3057.1999 – volume: 107 start-page: 4853 issue: 15 year: 2023 ident: 2285_CR39 publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-023-12607-z – volume: 31 year: 2021 ident: 2285_CR49 publication-title: Biotechnol Rep doi: 10.1016/j.btre.2021.e00648 – volume: 92 start-page: 737 year: 2002 ident: 2285_CR15 publication-title: J Appl Microbiol doi: 10.1046/j.1365-2672.2002.01577.x – volume: 1831 start-page: 675 year: 2013 ident: 2285_CR36 publication-title: Biochim Biophys Acta doi: 10.1016/j.bbalip.2012.12.010 – year: 1997 ident: 2285_CR72 publication-title: Mol Cell Biol doi: 10.1128/MCB.17.7.3966 – volume: 257 year: 2020 ident: 2285_CR16 publication-title: J Clean Prod doi: 10.1016/j.jclepro.2020.120533 – volume: 3 start-page: 1 year: 2018 ident: 2285_CR32 publication-title: mSphere. doi: 10.1128/mSphere.00541-18 – volume: 42 start-page: 279 year: 2012 ident: 2285_CR45 publication-title: Prep Biochem Biotechnol doi: 10.1080/10826068.2012.656868 – volume: 99 start-page: 4559 year: 2015 ident: 2285_CR23 publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-015-6624-z – volume: 61 start-page: 40 year: 2016 ident: 2285_CR21 publication-title: Prog Lipid Res doi: 10.1016/j.plipres.2015.12.001 – volume: 32 year: 2021 ident: 2285_CR6 publication-title: Biotechnol Rep doi: 10.1016/j.btre.2021.e00669 – volume: 178 start-page: 477 year: 2002 ident: 2285_CR55 publication-title: Arch Microbiol doi: 10.1007/s00203-002-0478-3 – volume: 38 year: 2023 ident: 2285_CR5 publication-title: Biotechnol Rep doi: 10.1016/j.btre.2023.e00801 – volume: 15 start-page: 469 year: 2007 ident: 2285_CR43 publication-title: Trends Microbiol doi: 10.1016/j.tim.2007.09.004 – volume: 402 start-page: 731 year: 2010 ident: 2285_CR35 publication-title: Biochem Biophys Res Commun doi: 10.1016/j.bbrc.2010.10.096 – volume: 51 start-page: D785 year: 2023 ident: 2285_CR41 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkac1041 – volume: 10 start-page: 3323 year: 2019 ident: 2285_CR62 publication-title: Nat Commun doi: 10.1038/s41467-019-11275-w – volume: 101 start-page: 14315 year: 2004 ident: 2285_CR67 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0405353101 – volume: 6 start-page: 10 year: 2021 ident: 2285_CR73 publication-title: mSphere. doi: 10.1128/mSphere.00179-21 – volume: 9 start-page: 4059 year: 2019 ident: 2285_CR50 publication-title: G3 Genes Genomes Genetics doi: 10.1534/g3.119.400469 – volume: 148 start-page: 3725 year: 2002 ident: 2285_CR29 publication-title: Microbiology (Reading) doi: 10.1099/00221287-148-11-3725 – volume: 8 year: 2013 ident: 2285_CR61 publication-title: PLoS ONE doi: 10.1371/journal.pone.0078545 – volume: 224 start-page: iyad087 year: 2023 ident: 2285_CR58 publication-title: Genetics doi: 10.1093/genetics/iyad087 – volume: 3 start-page: 1 year: 2017 ident: 2285_CR38 publication-title: NPJ Syst Biol Appl doi: 10.1038/s41540-017-0024-1 – volume: 34 start-page: 649 year: 2012 ident: 2285_CR18 publication-title: Biotechnol Lett doi: 10.1007/s10529-011-0824-0 – volume: 103 start-page: 39 year: 2019 ident: 2285_CR25 publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-018-9450-2 – volume: 16 start-page: 1 year: 2017 ident: 2285_CR52 publication-title: Microb Cell Fact doi: 10.1186/s12934-017-0647-3 – volume: 137 start-page: 55 year: 1994 ident: 2285_CR69 publication-title: Genetics doi: 10.1093/genetics/137.1.55 – volume: 206 start-page: 45 year: 2002 ident: 2285_CR54 publication-title: FEMS Microbiol Lett doi: 10.1111/j.1574-6968.2002.tb10984.x – year: 2019 ident: 2285_CR28 publication-title: Curr Genet doi: 10.1007/s00294-019-01018-1 – volume: 77 start-page: 846 year: 2020 ident: 2285_CR4 publication-title: Curr Microbiol doi: 10.1007/s00284-019-01872-9 – volume: 7 start-page: 548 year: 2021 ident: 2285_CR14 publication-title: Journal of Fungi doi: 10.3390/jof7070548 – volume: 11 start-page: R65 year: 2010 ident: 2285_CR60 publication-title: Genome Biol doi: 10.1186/gb-2010-11-6-r65 – volume: 15 start-page: 1 year: 2015 ident: 2285_CR42 publication-title: FEMS Yeast Res doi: 10.1093/femsyr/fov052 – volume: 2 start-page: 1 year: 2017 ident: 2285_CR64 publication-title: mSphere. doi: 10.1128/mSphere.00038-17 – volume: 9 start-page: 258 year: 2007 ident: 2285_CR1 publication-title: Metab Eng doi: 10.1016/j.ymben.2006.12.002 – volume: 22 start-page: 631 year: 1988 ident: 2285_CR7 publication-title: Annu Rev Genet doi: 10.1146/annurev.ge.22.120188.003215 – volume: 97 start-page: 3559 year: 2013 ident: 2285_CR9 publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-012-4596-9 – volume: 80 start-page: 1660 year: 2014 ident: 2285_CR20 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.03167-13 – volume: 56 start-page: 415 year: 1999 ident: 2285_CR10 publication-title: Cell Mol Life Sci doi: 10.1007/s000180050442 – volume: 17 start-page: 6283 year: 1997 ident: 2285_CR26 publication-title: Mol Cell Biol doi: 10.1128/MCB.17.11.6283 – volume: 48 start-page: D642 year: 2020 ident: 2285_CR40 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkz859 – volume: 15 start-page: 1 year: 2020 ident: 2285_CR74 publication-title: PLoS ONE doi: 10.1371/journal.pone.0231161 – volume: 10 start-page: 1 year: 2020 ident: 2285_CR24 publication-title: Sci Rep doi: 10.1038/s41598-020-58683-3 – year: 2017 ident: 2285_CR22 publication-title: ACS Synth Biol doi: 10.1021/acssynbio.7b00034 – volume: 8 year: 2013 ident: 2285_CR31 publication-title: PLoS ONE doi: 10.1371/journal.pone.0066790 – volume: 74 start-page: 413 year: 2017 ident: 2285_CR48 publication-title: Curr Microbiol doi: 10.1007/s00284-017-1207-0 – volume: 8 year: 2019 ident: 2285_CR66 publication-title: Elife doi: 10.7554/eLife.47791 – volume: 27 year: 2020 ident: 2285_CR51 publication-title: Biotechnol Rep doi: 10.1016/j.btre.2020.e00521 – volume: 225 start-page: 9 year: 2017 ident: 2285_CR46 publication-title: Bioresour Technol doi: 10.1016/j.biortech.2016.11.016 – volume: 9 start-page: 1 year: 2010 ident: 2285_CR3 publication-title: Microb Cell Fact doi: 10.1186/1475-2859-9-49 – volume: 47 start-page: D1245 year: 2019 ident: 2285_CR59 publication-title: Nucleic Acids Res doi: 10.1093/nar/gky941 – volume: 31 year: 2021 ident: 2285_CR63 publication-title: Biotechnol Rep doi: 10.1016/j.btre.2021.e00646 – volume: 115 start-page: 464 year: 2018 ident: 2285_CR19 publication-title: Biotechnol Bioeng doi: 10.1002/bit.26473 – volume: 3 start-page: 205 year: 2016 ident: 2285_CR11 publication-title: Metab Eng Commun doi: 10.1016/j.meteno.2016.06.003 – volume: 22 start-page: 1 year: 2023 ident: 2285_CR71 publication-title: Microb Cell Fact doi: 10.1186/s12934-023-02072-8 – volume: 37 start-page: 559 year: 2020 ident: 2285_CR44 publication-title: Yeast doi: 10.1002/yea.3499 – volume: 23 start-page: 3602 year: 2022 ident: 2285_CR65 publication-title: Int J Mol Sci doi: 10.3390/ijms23073602 – volume: 430 start-page: 35 year: 2004 ident: 2285_CR13 publication-title: Nature doi: 10.1038/nature02579 – year: 2019 ident: 2285_CR2 publication-title: J Biotechnol doi: 10.1016/j.jbiotec.2019.06.297 – volume: 18 start-page: 1 year: 2019 ident: 2285_CR47 publication-title: Microb Cell Fact doi: 10.1186/s12934-019-1231-9 – volume: 284 start-page: 7126 year: 2009 ident: 2285_CR34 publication-title: J Biol Chem doi: 10.1074/jbc.M806864200 – volume: 163 start-page: 378 year: 2012 ident: 2285_CR30 publication-title: Res Microbiol doi: 10.1016/j.resmic.2012.03.002 – volume: 84 start-page: 658 year: 2003 ident: 2285_CR70 publication-title: Biotechnol Bioeng doi: 10.1002/bit.10817 – volume: 65 start-page: 363 year: 1991 ident: 2285_CR8 publication-title: Cell doi: 10.1016/0092-8674(91)90452-5 – volume: 73 start-page: 19 year: 2023 ident: 2285_CR12 publication-title: N Biotechnol doi: 10.1016/j.nbt.2023.01.001 – volume: 19 start-page: 1 year: 2019 ident: 2285_CR17 publication-title: FEMS Yeast Res doi: 10.1093/femsyr/foy122 – volume: 10 start-page: 1 year: 2011 ident: 2285_CR53 publication-title: Microb Cell Fact doi: 10.1186/1475-2859-10-1 – volume: 6 start-page: 734 year: 2007 ident: 2285_CR33 publication-title: Eukaryot Cell doi: 10.1128/EC.00412-06 – volume: 18 start-page: 1 year: 2018 ident: 2285_CR37 publication-title: FEMS Yeast Res doi: 10.1093/femsyr/foy037 – volume: 135 start-page: 103299 year: 2020 ident: 2285_CR68 publication-title: Fungal Genet Biol doi: 10.1016/j.fgb.2019.103299 |
SSID | ssj0017873 |
Score | 2.3905745 |
Snippet | In the era of rationally designed synthetic biology, heterologous metabolites production, and other counter-nature engineering of cellular metabolism, we took... Background In the era of rationally designed synthetic biology, heterologous metabolites production, and other counter-nature engineering of cellular... BackgroundIn the era of rationally designed synthetic biology, heterologous metabolites production, and other counter-nature engineering of cellular... Abstract Background In the era of rationally designed synthetic biology, heterologous metabolites production, and other counter-nature engineering of cellular... |
SourceID | doaj hal proquest gale crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 1 |
SubjectTerms | Analysis Carbon Design of experiments DNA binding proteins Engineering Experimental design Genomes Genotype & phenotype Global metabolic engineering Glycerol Health aspects Identification and classification Life Sciences Mathematical models Medicinal plants Metabolism Metabolites Nitrogen Oxidative stress Phenotypes Protein biosynthesis Protein production Protein synthesis Proteins Reporters RNA polymerase Strains (organisms) Stress resistance Transcription factors Yarrow Yarrowia cultivation protocol Yarrowia lipolytica Yeast |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NjtMwELZgT3BA_IrCgswKCRCKNokd2xGngqgKgj3ArrScLCd2tkElqUiLyq3vwAVeicfokzDjJGXDAS5cmiaeuIk99nzjznwm5KFNk0QWeRY4a5KAx_BNxTIJTKQs6FOmsswHyB6J6Ql_fZqcntvqC2PCWnrgtuEOQ2lFlOeAFDIAs1FiwtSC21YYw0LFU59HDjavd6a6_w9ADVmfIqPEYYNWjQdgnwLke0mC9cAMebb-3Zx8cYYhkX_MzN7cTK6SKx1OpOP2-a6RC666Ti6fYw-8QX5uN9_f-gSqx0eenvMJxRWyhmZQ33bzg2433-is_GhyXA6nLYVnYH3IhrN0iVaqnzPgp7pIrYYCjKWumiERB9zWJpNQ-ECkCSpCTWWpp3coKzzaln-WwtkHz-hYGjovF_X8Ky6TP6OL3wlOFa0LEJqXk1V1XH9yFONT0Y7eJCeTl8cvpkG3NUOQc6HWAbfgJikBxt7x1MScCclS4WIJPeyEdLGNUyVCwy0M-SyPwKuTkqkCGZ_SkDF2i-xVdeVuEwr4yzAbSlAlcAVhRgDACS6yUUVWFNKyEYn6ntJ5x1uO22fMtfdflNBt72roXe17V69H5OnunkXL2vFX6eeoADtJZNz2F0APdaeH-l96OCIHqD4aOTUqDNo5M6um0a_ev9NjQGGYlsnViDzqhIoa3iE3XQ4EtATScA0k9weSMOjzQfEBaOngiafjNxqvAUZPGaDeLxHU0Sux7mamRscpgFwRiRiKH-yKsXqMtqtcvUIZAJUJkzy58z-a5i65FAMUxIWrSO2TveXnlbsHUG6Z3fej9hd2Zkf2 priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Health & Medical Collection (NC LIVE) dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NjtMwELbY5QIHxK8oLMiskAChaJPYsR1xQAVRFQR7gF1pOVlO7GyLSlI2LSq3vgMXeCUeo0_CjON2KYe9tE0ycX88nvlmOvOZkMc2zzJZlUXkrMkinsIrlcosMomyoE-FKgpfIHsohsf83Ul2EhJubSirXNtEb6htU2KO_CDNwTmLRKTJy-m3CHeNwn9XwxYaO-QyUpehVsuTTcCVgDKydaOMEgct-jYegZeKkPUlixZbzshz9m8s884ICyP_s8_e6Qyuk2sBLdJ-N703yCVX3yRX_-EQvEX-rJa_Pvg2qqeHnqTzGcU8WUsLGG-1_E1Xy590NP5iSkyK047IM7K-cMNZOkNftbYc8FahXqulAGapq0dIxwG3dS0lFB4Qb4KiUFNb6kkexjU-246FlsLRZ8_rODZ0Mp42kx-YLH9Bp-dtTjVtKhCajAfz-qj56ihWqaI3vU2OB2-OXg-jsEFDVHKhFhG3ECwpAS7f8dyknAnJcuFSCfPshHSpTXMlYsMtLPyiTCC2k5KpCnmf8pgxdofs1k3t7hIKKMwwG0tQKAgIwS4A7IRA2aiqqCppWY8k65nSZWAvx000JtpHMUrobnY1zK72s6sXPfJ8c8-04-64UPoVKsBGEnm3_Ynm7FSHZaxjaUVSloBbCwitkszEuZVKVcawWPFc9sg-qo9GZo0aS3dOzbxt9dtPH3UfsBg2Z3LVI0-CUNXAdyhN6ISAXwLJuLYk97YkYemXW5f3QUu3PvGw_17jOUDqOQPs-z2BMdZKrIN9avX5auqRR5vLODzW3NWumaMMQMuMSZ7du3iI--RKClAPE1OJ2iO7s7O5ewBQbVY89OvxLy_mQHo priority: 102 providerName: ProQuest |
Title | ‘Mother(Nature) knows best’ – hijacking nature-designed transcriptional programs for enhancing stress resistance and protein production in Yarrowia lipolytica; presentation of YaliFunTome database |
URI | https://www.proquest.com/docview/2925661621 https://www.proquest.com/docview/2917553745 https://hal.science/hal-04593392 https://doaj.org/article/07d61cc083b04915a09d788faa308497 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1tb9MwELb28gU-IF5FYVRmQioIBfLi2I4QQh1aNSpWoW2VyifLiZ21qCSlaVH3__hh3DlpR9GE-NK08cVNc-e759zzY0JemCSORZ6lnjU69lgI72QoYk8H0oA9pTJNXYHsgJ8MWX8Uj3bIeruj5gFWN6Z2uJ_UcD59s_px9QEG_Hs34CV_W2HMYh5EHw_ZXGIPMOU-RCaBOxqcsut_FcA4XcE9g5tB4rb1Ipob-9gKVI7Pf-O1d8dYNPmX73YBqXeX3GmQJO3Wqr9Hdmxxn9z-g1_wAfnVOXULrF4OHH3nK4ozaBVNobcO9eh48k1nOFVOa3pPz7hyDmvoAiPY2p_AlzRVXBUFiEttMUaSDrisXmhC4QVRKJgP1YWhjvphUuDR1Ny0FD59dWyPE02nk1k5vcIp9Hd0dr34qaBlDkLTSW9ZXJTfLcXaVYyxD8mwd3zx8cRrtm3wMsblymMGUijJAQhYluiQRVxECbehAO1bLmxowkRyXzMD7iDNAsj4hIhkjmxQiR9F0SOyV5SFfUwoYDMdGV-AmUGaCN4CwCikz1rmaZ4LE7VIsNaRyhpOc9xaY6pcbiO5qvWqQK_K6VWtWuT15ppZzejxT-kjVP1GEtm43Ylyfqmawa18YXiQZYBmU0i4glj7iRFS5lpHvmSJaJFDNByFfBsFFvRc6mVVqU_nZ6oLCA2XbDLZIp1GKC_hN2S6WR8BTwIpurYkD7YkwSFkW82HYJ9bd3zS_azwHOD3JAJE_DOAPtbmq9aDToUJAGAe8BCan2-asXusxCtsuUQZAJxxJFj85D9knpJbIaBAnLMK5AHZW8yX9hmguEXaJrtiJNpkv9vtn_fheHQ8-HLWdnMibTdsfwP5uEds |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEF6VcgAOiF8RKLBUIEDIqn9310IIhZ8qoW0O0ErhtKy96yYo2KFOIL3lHbjAS_AgPEaehJm1nRIOvfUSJ_Z442TG8-eZbwh5qOMo4lmaOEaryAl9eCd8HjnKExrkKRFJYgtke6xzEL7rR_018rvphcGyykYnWkWtixRz5Ft-DMaZecz3Xo6_Ojg1Cp-uNiM0KrHYMcffIWQrX3TfAH8f-f722_3XHaeeKuCkIRMzJ9Tg4QsGdsqEsfLDgPEgZsbncHGGceNrPxbMVaEGaU1SDwISzgORIVhR7AaYAAWVfx4Mr4vBHu8vAzwPhD9oGnME2yrRloYOWEUHUWYiZ7Zi_OyMgKUlODfAQsz_7IE1cttXyOXaO6XtSpyukjWTXyOX_sEsvE7-LOY_92zb1pOeBQV9SjEvV9IE1lvMf9HF_AcdDD-rFJPwtAIOdbQtFDGaTtA2NpoKvqquDyspOM_U5AOE_4DTqhYWCi_o34JgUpVrakElhjludYV6S-HTR4sjOVR0NBwXo2NMzj-n45O2qpwWGRCNhtvTfL_4YihWxaL1vkEOzoR1N8l6XuTmFqHg9alAuxwEGAJQ0EPATgjMlciSLOM6aBGv4ZRMa7R0HNoxkjZqEkxW3JXAXWm5K2ct8mx5zrjCCjmV-hUKwJIScb7tjuLoUNZqQ7pcMy9NwU9OIJTzIuXGmguRKRW4Iox5i2yi-EhE8sixVOhQTctSdj-8l23w_bAZNBQt8rgmygr4DamqOy_gn0DwrxXKjRVKUDXpyuFNkNKVK-60dyXug8ggDsDX_ubBGo0Qy1oflvLk7m2RB8vDuDzW-OWmmCINuLJRwMPo9ulL3CcXOvt7u3K329u5Qy764GZiUswTG2R9cjQ1d8FNnCT37L1JyaezVgZ_AWu3eUc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%27Mother%28Nature%29+knows+best%27+-+hijacking+nature-designed+transcriptional+programs+for+enhancing+stress+resistance+and+protein+production+in+Yarrowia+lipolytica%3B+presentation+of+YaliFunTome+database&rft.jtitle=Microbial+cell+factories&rft.au=Gorczyca%2C+Maria&rft.au=Bia%C5%82as%2C+Wojciech&rft.au=Nicaud%2C+Jean-Marc&rft.au=Celi%C5%84ska%2C+Ewelina&rft.date=2024-01-18&rft.issn=1475-2859&rft.eissn=1475-2859&rft.volume=23&rft.issue=1&rft.spage=26&rft_id=info:doi/10.1186%2Fs12934-023-02285-x&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1475-2859&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1475-2859&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1475-2859&client=summon |