The ZuCo benchmark on cross-subject reading task classification with EEG and eye-tracking data

We present a new machine learning benchmark for reading task classification with the goal of advancing EEG and eye-tracking research at the intersection between computational language processing and cognitive neuroscience. The benchmark task consists of a cross-subject classification to distinguish...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in psychology Vol. 13; p. 1028824
Main Authors Hollenstein, Nora, Tröndle, Marius, Plomecka, Martyna, Kiegeland, Samuel, Özyurt, Yilmazcan, Jäger, Lena A., Langer, Nicolas
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 12.01.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We present a new machine learning benchmark for reading task classification with the goal of advancing EEG and eye-tracking research at the intersection between computational language processing and cognitive neuroscience. The benchmark task consists of a cross-subject classification to distinguish between two reading paradigms: normal reading and task-specific reading. The data for the benchmark is based on the Zurich Cognitive Language Processing Corpus (ZuCo 2.0), which provides simultaneous eye-tracking and EEG signals from natural reading of English sentences. The training dataset is publicly available, and we present a newly recorded hidden testset. We provide multiple solid baseline methods for this task and discuss future improvements. We release our code and provide an easy-to-use interface to evaluate new approaches with an accompanying public leaderboard: www.zuco-benchmark.com .
AbstractList We present a new machine learning benchmark for reading task classification with the goal of advancing EEG and eye-tracking research at the intersection between computational language processing and cognitive neuroscience. The benchmark task consists of a cross-subject classification to distinguish between two reading paradigms: normal reading and task-specific reading. The data for the benchmark is based on the Zurich Cognitive Language Processing Corpus (ZuCo 2.0), which provides simultaneous eye-tracking and EEG signals from natural reading of English sentences. The training dataset is publicly available, and we present a newly recorded hidden testset. We provide multiple solid baseline methods for this task and discuss future improvements. We release our code and provide an easy-to-use interface to evaluate new approaches with an accompanying public leaderboard: www.zuco-benchmark.com.
We present a new machine learning benchmark for reading task classification with the goal of advancing EEG and eye-tracking research at the intersection between computational language processing and cognitive neuroscience. The benchmark task consists of a cross-subject classification to distinguish between two reading paradigms: normal reading and task-specific reading. The data for the benchmark is based on the Zurich Cognitive Language Processing Corpus (ZuCo 2.0), which provides simultaneous eye-tracking and EEG signals from natural reading of English sentences. The training dataset is publicly available, and we present a newly recorded hidden testset. We provide multiple solid baseline methods for this task and discuss future improvements. We release our code and provide an easy-to-use interface to evaluate new approaches with an accompanying public leaderboard: www.zuco-benchmark.com.We present a new machine learning benchmark for reading task classification with the goal of advancing EEG and eye-tracking research at the intersection between computational language processing and cognitive neuroscience. The benchmark task consists of a cross-subject classification to distinguish between two reading paradigms: normal reading and task-specific reading. The data for the benchmark is based on the Zurich Cognitive Language Processing Corpus (ZuCo 2.0), which provides simultaneous eye-tracking and EEG signals from natural reading of English sentences. The training dataset is publicly available, and we present a newly recorded hidden testset. We provide multiple solid baseline methods for this task and discuss future improvements. We release our code and provide an easy-to-use interface to evaluate new approaches with an accompanying public leaderboard: www.zuco-benchmark.com.
We present a new machine learning benchmark for reading task classification with the goal of advancing EEG and eye-tracking research at the intersection between computational language processing and cognitive neuroscience. The benchmark task consists of a cross-subject classification to distinguish between two reading paradigms: normal reading and task-specific reading. The data for the benchmark is based on the Zurich Cognitive Language Processing Corpus (ZuCo 2.0), which provides simultaneous eye-tracking and EEG signals from natural reading of English sentences. The training dataset is publicly available, and we present a newly recorded hidden testset. We provide multiple solid baseline methods for this task and discuss future improvements. We release our code and provide an easy-to-use interface to evaluate new approaches with an accompanying public leaderboard: www.zuco-benchmark.com .
Author Kiegeland, Samuel
Özyurt, Yilmazcan
Tröndle, Marius
Hollenstein, Nora
Langer, Nicolas
Plomecka, Martyna
Jäger, Lena A.
AuthorAffiliation 3 Department of Computer Science, ETH Zurich , Zurich , Switzerland
4 Department of Computational Linguistics, University of Zurich , Zurich , Switzerland
2 Department of Psychology, University of Zurich , Zurich , Switzerland
5 Department of Computer Science, University of Potsdam , Potsdam , Germany
1 Center for Language Technology, University of Copenhagen , Copenhagen , Denmark
AuthorAffiliation_xml – name: 3 Department of Computer Science, ETH Zurich , Zurich , Switzerland
– name: 5 Department of Computer Science, University of Potsdam , Potsdam , Germany
– name: 1 Center for Language Technology, University of Copenhagen , Copenhagen , Denmark
– name: 4 Department of Computational Linguistics, University of Zurich , Zurich , Switzerland
– name: 2 Department of Psychology, University of Zurich , Zurich , Switzerland
Author_xml – sequence: 1
  givenname: Nora
  surname: Hollenstein
  fullname: Hollenstein, Nora
– sequence: 2
  givenname: Marius
  surname: Tröndle
  fullname: Tröndle, Marius
– sequence: 3
  givenname: Martyna
  surname: Plomecka
  fullname: Plomecka, Martyna
– sequence: 4
  givenname: Samuel
  surname: Kiegeland
  fullname: Kiegeland, Samuel
– sequence: 5
  givenname: Yilmazcan
  surname: Özyurt
  fullname: Özyurt, Yilmazcan
– sequence: 6
  givenname: Lena A.
  surname: Jäger
  fullname: Jäger, Lena A.
– sequence: 7
  givenname: Nicolas
  surname: Langer
  fullname: Langer, Nicolas
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36710838$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1v1DAQtVARLaV_gAPykUsWx0kc54KEVkupVIlLuXDAmtjjXe9m7SV2QPvv8X5QtRzwxR77vTcznveaXPjgkZC3JZtVlew-2F3cL2eccT4rGZeS1y_IVSlEXZSslRdPzpfkJsY1y6tmnDH-ilxWoi2ZrOQV-fGwQvp9mgfao9erLYwbGjzVY4ixiFO_Rp3oiGCcX9IEcUP1ADE66zQkl5G_XVrRxeKWgjcU91ikEfTmgDaQ4A15aWGIeHPer8m3z4uH-Zfi_uvt3fzTfaFrIVNhc2Wil5b30BrbGzBd23TCdq1B0aJFa9pO81qaKjesm0rKTragtTUaRddU1-TupGsCrNVudLmRvQrg1PEijEsFY3J6QFX1mlleGqwZ1KIysi_BMm7rElDmIGt9PGntpn6LOYHPLQ3PRJ-_eLdSy_BL5ZKkkHUWeH8WGMPPCWNSWxc1DgN4DFNUvD38ftMImaHvnuZ6TPJ3QBnAT4DjREa0j5CSqYMR1NEI6mAEdTZCJsl_SNql47hyvW74H_UPqze7cA
CitedBy_id crossref_primary_10_1109_TNSRE_2024_3435460
crossref_primary_10_1080_10447318_2023_2275088
Cites_doi 10.1016/j.neuroimage.2019.06.046
10.1016/j.jneumeth.2004.03.002
10.1037/xge0000494
10.1101/2020.12.23.424091
10.1016/j.array.2021.100087
10.1088/1741-2552/abc742
10.1080/23273798.2018.1546882
10.1145/2168556.2168575
10.1037/a0023885
10.1016/j.cub.2018.01.080
10.1038/s41467-018-03068-4
10.48550/arXiv.1902.03570
10.1016/j.neuroimage.2020.116934
10.18653/v1/K18-1030
10.3758/s13428-016-0734-0
10.48550/arXiv.1904.02682
10.1016/j.neuroimage.2019.02.057
10.1016/j.neuroimage.2019.05.026
10.1016/j.neuroimage.2019.116356
10.48550/arXiv.2104.11178
10.24963/ijcai.2020/683
10.1145/3314111.3319916
10.1002/hbm.23814
10.1371/journal.pone.0207741
10.1080/23273798.2019.1584679
10.1016/j.cortex.2021.07.005
10.31234/osf.io/j5fgd
10.1016/j.neuroimage.2020.117254
10.1007/s10548-018-0629-8
10.17605/OSF.IO/DN5HP
10.1017/S0952523810000283
10.1016/j.intcom.2011.04.007
10.48550/arXiv.2112.02690
10.1016/j.tics.2003.09.010
10.18653/v1/2021.cmcl-1.26
10.1080/00461520.2015.1004068
10.1145/2950112.2964585
10.1111/lnc3.12198
10.3758/s13428-011-0146-0
10.1016/j.neuroimage.2017.11.062
10.18653/v1/2021.acl-short.19
10.1016/j.cmpb.2021.105941
10.1371/journal.pone.0146848
10.1080/23273798.2018.1499946
10.1016/j.dib.2018.11.044
10.1016/j.jneumeth.2007.08.010
10.7717/peerj.7838
10.3389/fnhum.2014.01024
10.1007/s00426-011-0376-x
10.3758/s13428-017-0908-4
10.1016/j.cortex.2015.04.011
10.18653/v1/2021.cmcl-1.10
10.1093/scan/nsz037
10.1007/978-3-030-63007-2_61
10.1016/j.neuropsychologia.2019.107307
10.1037/h0057532
10.1111/cogs.12461
10.18653/v1/2021.cmcl-1.7
10.1038/sdata.2018.291
10.1017/CBO9781107323667.011
10.1163/156856897X00357
10.3389/fnhum.2021.659410
ContentType Journal Article
Copyright Copyright © 2023 Hollenstein, Tröndle, Plomecka, Kiegeland, Özyurt, Jäger and Langer.
Copyright © 2023 Hollenstein, Tröndle, Plomecka, Kiegeland, Özyurt, Jäger and Langer. 2023 Hollenstein, Tröndle, Plomecka, Kiegeland, Özyurt, Jäger and Langer
Copyright_xml – notice: Copyright © 2023 Hollenstein, Tröndle, Plomecka, Kiegeland, Özyurt, Jäger and Langer.
– notice: Copyright © 2023 Hollenstein, Tröndle, Plomecka, Kiegeland, Özyurt, Jäger and Langer. 2023 Hollenstein, Tröndle, Plomecka, Kiegeland, Özyurt, Jäger and Langer
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3389/fpsyg.2022.1028824
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Psychology
EISSN 1664-1078
ExternalDocumentID oai_doaj_org_article_3bc0f21de40a463d8b1af02f41ae88b1
PMC9878684
36710838
10_3389_fpsyg_2022_1028824
Genre Journal Article
GroupedDBID 53G
5VS
9T4
AAFWJ
AAKDD
AAYXX
ABIVO
ACGFO
ACGFS
ACHQT
ACXDI
ADBBV
ADRAZ
AEGXH
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CITATION
DIK
EBS
EJD
EMOBN
F5P
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
O5R
O5S
OK1
P2P
PGMZT
RNS
RPM
IPNFZ
NPM
RIG
7X8
5PM
ID FETCH-LOGICAL-c468t-f4026b8f2ba7dfbdad97596f97de67efefd79c248d3022c5388987accfdce6953
IEDL.DBID M48
ISSN 1664-1078
IngestDate Wed Aug 27 01:25:50 EDT 2025
Thu Aug 21 18:38:37 EDT 2025
Fri Jul 11 09:46:54 EDT 2025
Mon Jul 21 05:42:36 EDT 2025
Thu Apr 24 22:59:13 EDT 2025
Tue Jul 01 01:35:43 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords reading research
reading task classification
eye-tracking
machine learning
EEG
cross-subject evaluation
Language English
License Copyright © 2023 Hollenstein, Tröndle, Plomecka, Kiegeland, Özyurt, Jäger and Langer.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c468t-f4026b8f2ba7dfbdad97596f97de67efefd79c248d3022c5388987accfdce6953
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Edited by: Xiaowei Zhao, Emmanuel College, United States
Reviewed by: Michael Wolmetz, Johns Hopkins University, United States; Christoph Aurnhammer, Saarland University, Germany; Nicolas Dirix, Ghent University, Belgium
This article was submitted to Language Sciences, a section of the journal Frontiers in Psychology
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fpsyg.2022.1028824
PMID 36710838
PQID 2771085568
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_3bc0f21de40a463d8b1af02f41ae88b1
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9878684
proquest_miscellaneous_2771085568
pubmed_primary_36710838
crossref_primary_10_3389_fpsyg_2022_1028824
crossref_citationtrail_10_3389_fpsyg_2022_1028824
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-12
PublicationDateYYYYMMDD 2023-01-12
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-12
  day: 12
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in psychology
PublicationTitleAlternate Front Psychol
PublicationYear 2023
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Ceh (B15) 2021; 143
B21
Hollenstein (B36)
Kelton (B45) 2019
Alday (B3) 2019; 34
Ehinger (B28) 2019; 7
McGuire (B54) 2021
Brennan (B11) 2019; 14
Hollenstein (B40)
Rämä (B66) 2010; 27
Pfeiffer (B63) 2020; 218
Abdelrahman (B1) 2019
Bruns (B14) 2004; 137
Kandylaki (B44) 2019; 34
Lobo (B48) 2016
Raatikainen (B65) 2021; 12
Degno (B24) 2019; 148
Frank (B32) 2013
Hollenstein (B37) 2021
Luke (B50) 2018; 50
de Cheveignè (B23) 2020; 207
Michel (B55) 2018; 180
Pereira (B62) 2018
Cop (B19) 2017; 49
Hollenstein (B39)
Akbari (B2) 2021
Notaro (B60) 2018; 21
Jäger (B43) 2020
Pedroni (B61) 2019; 200
[Dataset] Jäger (B22) 2021
Chiang (B16) 2019
Lemhöfer (B47) 2012; 44
Lopopolo (B49) 2018
Nastase (B59) 2021
Sereno (B70) 2003; 7
Finke (B29) 2016; 11
Mathur (B52) 2021
Wang (B76) 2021
Barrett (B4) 2018
Frey (B33) 2018; 31
Sun (B72) 2020
Hollenstein (B38)
Brouwer (B13) 2017; 41
Schalk (B68) 2008; 167
Tomanek (B74) 2010
Mathias (B51) 2020
Dehghani (B25) 2017; 38
Hollenstein (B42) 2020
Tokunaga (B73) 2017
Bautista (B5) 2020
Brennan (B10) 2016; 10
Hasson (B35) 2015
Bestgen (B6) 2021
MathWorks (B53) 2000
Hamilton (B34) 2020; 35
Tor (B75) 2021
Frank (B31) 2022
Choi (B17) 2014; 8
Kliegl (B46) 2012; 76
Rello (B67) 2015
Broderick (B12) 2018; 28
Biedert (B7) 2012
Cole (B18) 2011; 23
Bonhage (B8) 2015; 68
Dimigen (B27) 2011
Yadav (B77) 2019
Scheinost (B69) 2019; 193
Flesch (B30) 1948; 32
Pion-Tonachini (B64) 2019; 198
Nastase (B58) 2020; 222
Miller (B56) 2015; 50
Culotta (B20) 2006
Nastase (B57) 2019; 14
Brainard (B9) 1997; 10
Devlin (B26) 2019
Hollenstein (B41) 2018; 5
Shain (B71) 2020; 138
References_xml – volume: 200
  start-page: 460
  year: 2019
  ident: B61
  article-title: Automagic: standardized preprocessing of big EEG data
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2019.06.046
– volume: 137
  start-page: 321
  year: 2004
  ident: B14
  article-title: Fourier-, hilbert-and wavelet-based signal analysis: are they really different approaches?
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2004.03.002
– start-page: 1
  volume-title: Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
  year: 2019
  ident: B1
  article-title: “Classifying attention types with thermal imaging and eye tracking,”
– volume: 148
  start-page: 453
  year: 2019
  ident: B24
  article-title: Parafoveal previews and lexical frequency in natural reading: evidence from eye movements and fixation-related potentials
  publication-title: J. Exp. Psychol. Gen
  doi: 10.1037/xge0000494
– year: 2021
  ident: B59
  article-title: Narratives: fMRI data for evaluating models of naturalistic language comprehension
  publication-title: bioRxiv
  doi: 10.1101/2020.12.23.424091
– volume: 12
  start-page: 100087
  year: 2021
  ident: B65
  article-title: Detection of developmental dyslexia with machine learning using eye movement data
  publication-title: Array
  doi: 10.1016/j.array.2021.100087
– year: 2020
  ident: B72
  article-title: Brain2Char: a deep architecture for decoding text from brain recordings
  publication-title: J. Neural Eng
  doi: 10.1088/1741-2552/abc742
– volume: 34
  start-page: 457
  year: 2019
  ident: B3
  article-title: M/EEG analysis of naturalistic stories: a review from speech to language processing
  publication-title: Lang. Cogn. Neurosci
  doi: 10.1080/23273798.2018.1546882
– start-page: 123
  volume-title: Proceedings of the Symposium on Eye Tracking Research and Applications
  year: 2012
  ident: B7
  article-title: “A robust realtime reading-skimming classifier,”
  doi: 10.1145/2168556.2168575
– year: 2011
  ident: B27
  article-title: Coregistration of eye movements and EEG in natural reading: analyses and review
  publication-title: J. Exp. Psychol. Gen
  doi: 10.1037/a0023885
– volume: 28
  start-page: 803
  year: 2018
  ident: B12
  article-title: Electrophysiological correlates of semantic dissimilarity reflect the comprehension of natural, narrative speech
  publication-title: Curr. Biol
  doi: 10.1016/j.cub.2018.01.080
– start-page: 138
  year: 2020
  ident: B42
  article-title: “ZuCo 2.0: a dataset of physiological recordings during natural reading and annotation,”
  publication-title: Proceedings of The 12th Language Resources and Evaluation Conference
– year: 2018
  ident: B62
  article-title: Toward a universal decoder of linguistic meaning from brain activation
  publication-title: Nat. Commun
  doi: 10.1038/s41467-018-03068-4
– year: 2019
  ident: B77
  article-title: EvalAI: towards better evaluation systems for AI agents
  publication-title: arXiv
  doi: 10.48550/arXiv.1902.03570
– volume: 218
  start-page: 116934
  year: 2020
  ident: B63
  article-title: Neural dynamics of sentiment processing during naturalistic sentence reading
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2020.116934
– start-page: 302
  volume-title: Proceedings of the 22nd Conference on Computational Natural Language Learning
  year: 2018
  ident: B4
  article-title: “Sequence classification with human attention,”
  doi: 10.18653/v1/K18-1030
– volume: 49
  start-page: 602
  year: 2017
  ident: B19
  article-title: Presenting GECO: an eyetracking corpus of monolingual and bilingual sentence reading
  publication-title: Behav. Res. Methods
  doi: 10.3758/s13428-016-0734-0
– start-page: 538
  volume-title: Proceedings of the 23nd Conference on Computational Natural Language Learning
  ident: B39
  article-title: “CogniVal: a framework for cognitive word embedding evaluation,”
– ident: B21
– ident: B36
  article-title: Advancing NLP with cognitive language processing signals
  publication-title: arXiv [Preprint]
  doi: 10.48550/arXiv.1904.02682
– volume: 193
  start-page: 35
  year: 2019
  ident: B69
  article-title: Ten simple rules for predictive modeling of individual differences in neuroimaging
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2019.02.057
– volume: 198
  start-page: 181
  year: 2019
  ident: B64
  article-title: Iclabel: an automated electroencephalographic independent component classifier, dataset, and website
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2019.05.026
– volume: 207
  start-page: 116356
  year: 2020
  ident: B23
  article-title: Zapline: a simple and effective method to remove power line artifacts
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2019.116356
– year: 2021
  ident: B2
  article-title: VATT: transformers for multimodal self-supervised learning from raw video, audio and text
  publication-title: arXiv
  doi: 10.48550/arXiv.2104.11178
– start-page: 8
  volume-title: LREC 2018 Workshop on Linguistic and Neuro-Cognitive Resources (LiNCR)
  year: 2018
  ident: B49
  article-title: “The Narrative Brain Dataset (NBD), an fMRI dataset for the study of natural language processing in the brain,”
– start-page: 296
  volume-title: Proceedings of the Human Language Technology Conference of the North American Chapter of the Association of Computational Linguistics
  year: 2006
  ident: B20
  article-title: “Integrating probabilistic extraction models and data mining to discover relations and patterns in text,”
– start-page: 4907
  year: 2020
  ident: B51
  article-title: “A survey on using gaze behaviour for natural language processing,”
  publication-title: Proceedings of the 29th International Joint Conference on Artificial Intelligence
  doi: 10.24963/ijcai.2020/683
– start-page: 1
  volume-title: Proceedings of the 11th ACM Symposium on Eye Tracking Research and Applications
  year: 2019
  ident: B45
  article-title: “Reading detection in real-time,”
  doi: 10.1145/3314111.3319916
– volume: 38
  start-page: 6096
  year: 2017
  ident: B25
  article-title: Decoding the neural representation of story meanings across languages
  publication-title: Hum. Brain Mapp
  doi: 10.1002/hbm.23814
– volume: 14
  start-page: e0207741
  year: 2019
  ident: B11
  article-title: Hierarchical structure guides rapid linguistic predictions during naturalistic listening
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0207741
– volume: 34
  start-page: 405
  year: 2019
  ident: B44
  article-title: From story comprehension to the neurobiology of language
  publication-title: Lang. Cogn. Neurosci
  doi: 10.1080/23273798.2019.1584679
– volume: 143
  start-page: 29
  year: 2021
  ident: B15
  article-title: Neurophysiological indicators of internal attention: an fMRI-eye-tracking coregistration study
  publication-title: Cortex
  doi: 10.1016/j.cortex.2021.07.005
– start-page: 4171
  volume-title: 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies
  year: 2019
  ident: B26
  article-title: “BERT: pre-training of deep bidirectional transformers for language understanding,”
– year: 2022
  ident: B31
  article-title: An eye-tracking-with-EEG coregistration corpus of narrative sentences
  publication-title: PsyArXiv
  doi: 10.31234/osf.io/j5fgd
– start-page: 1
  volume-title: Proceedings of the 12th International Web for All Conference
  year: 2015
  ident: B67
  article-title: “Detecting readers with dyslexia using machine learning with eye tracking measures,”
– start-page: 299
  volume-title: in Machine Learning and Knowledge Discovery in Databases. Proceedings of the 2019 European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases
  year: 2020
  ident: B43
  article-title: “Deep eyedentification: biometric identification using micro-movements of the eye,ℍ
– volume: 222
  start-page: 117254
  year: 2020
  ident: B58
  article-title: Keep it real: rethinking the primacy of experimental control in cognitive neuroscience
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2020.117254
– volume: 31
  start-page: 640
  year: 2018
  ident: B33
  article-title: An eye fixation-related potential study in two reading tasks: reading to memorize and reading to make a decision
  publication-title: Brain Topogr
  doi: 10.1007/s10548-018-0629-8
– year: 2021
  ident: B22
  article-title: Potsdam Textbook Corpus (PoTeC): Eye Tracking Data from Experts and Non-experts Reading Scientific Texts
  doi: 10.17605/OSF.IO/DN5HP
– start-page: 1250
  volume-title: IEEE International Conference on Acoustics, Speech and Signal Processing
  year: 2021
  ident: B52
  article-title: “Dynamic graph modeling of simultaneous EEG and eye-tracking data for reading task identification,”
– volume: 27
  start-page: 187
  year: 2010
  ident: B66
  article-title: Eye fixation-related potentials (EFRPs) during object identification
  publication-title: Vis. Neurosci
  doi: 10.1017/S0952523810000283
– volume: 23
  start-page: 346
  year: 2011
  ident: B18
  article-title: Task and user effects on reading patterns in information search
  publication-title: Interact. Comput
  doi: 10.1016/j.intcom.2011.04.007
– year: 2021
  ident: B76
  article-title: Open vocabulary electroencephalography-to-text decoding and zero-shot sentiment classification
  publication-title: arXiv
  doi: 10.48550/arXiv.2112.02690
– volume: 7
  start-page: 489
  year: 2003
  ident: B70
  article-title: Measuring word recognition in reading: eye movements and event-related potentials
  publication-title: Trends Cogn. Sci
  doi: 10.1016/j.tics.2003.09.010
– start-page: 222
  year: 2021
  ident: B54
  article-title: “Relation classification with cognitive attention supervision,”
  publication-title: Proceedings of the Workshop on Cognitive Modeling and Computational Linguistics
  doi: 10.18653/v1/2021.cmcl-1.26
– start-page: 1158
  year: 2010
  ident: B74
  article-title: “A cognitive cost model of annotations based on eye-tracking data,”
  publication-title: Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics
– volume: 50
  start-page: 31
  year: 2015
  ident: B56
  article-title: Using reading times and eye-movements to measure cognitive engagement
  publication-title: Educ. Psychol
  doi: 10.1080/00461520.2015.1004068
– start-page: 1
  volume-title: Proceedings of the International Conference on Human-Computer Interaction in Aerospace
  year: 2016
  ident: B48
  article-title: “Cognitive workload classification using eye-tracking and EEG data,”
  doi: 10.1145/2950112.2964585
– volume: 10
  start-page: 299
  year: 2016
  ident: B10
  article-title: Naturalistic sentence comprehension in the brain
  publication-title: Lang. Linguist. Compass
  doi: 10.1111/lnc3.12198
– volume: 44
  start-page: 325
  year: 2012
  ident: B47
  article-title: Introducing LexTALE: a quick and valid lexical test for advanced learners of English
  publication-title: Behav. Res. Methods
  doi: 10.3758/s13428-011-0146-0
– volume: 180
  start-page: 577
  year: 2018
  ident: B55
  article-title: EEG microstates as a tool for studying the temporal dynamics of whole-brain neuronal networks: a review
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.11.062
– start-page: 758
  volume-title: Proceedings of the International Conference Recent Advances in Natural Language Processing
  year: 2017
  ident: B73
  article-title: An eye-tracking study of named entity annotation
– start-page: 141
  year: 2021
  ident: B37
  article-title: “Relative importance in sentence processing,”
  doi: 10.18653/v1/2021.acl-short.19
– year: 2021
  ident: B75
  article-title: Automated detection of conduct disorder and attention deficit hyperactivity disorder using decomposition and nonlinear techniques with EEG signals
  publication-title: Comput. Methods Programs Biomed
  doi: 10.1016/j.cmpb.2021.105941
– volume: 11
  start-page: e0146848
  year: 2016
  ident: B29
  article-title: Toward FRP-based brain-machine interfaces–single–trial classification of fixation-related potentials
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0146848
– volume: 35
  start-page: 573
  year: 2020
  ident: B34
  article-title: The revolution will not be controlled: natural stimuli in speech neuroscience
  publication-title: Lang. Cogn. Neurosci
  doi: 10.1080/23273798.2018.1499946
– volume: 21
  start-page: 1937
  year: 2018
  ident: B60
  article-title: Simultaneous EEG, eye-tracking, behavioral, and screen-capture data during online German language learning
  publication-title: Data Brief
  doi: 10.1016/j.dib.2018.11.044
– start-page: 878
  volume-title: Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics
  year: 2013
  ident: B32
  article-title: “Word surprisal predicts n400 amplitude during reading,”
– volume: 167
  start-page: 51
  year: 2008
  ident: B68
  article-title: Brain-computer interfaces (BCIS): detection instead of classification
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2007.08.010
– volume: 7
  start-page: e7838
  year: 2019
  ident: B28
  article-title: Unfold: an integrated toolbox for overlap correction, non-linear modeling, and regression-based EEG analysis
  publication-title: PeerJ
  doi: 10.7717/peerj.7838
– volume: 8
  start-page: 1024
  year: 2014
  ident: B17
  article-title: The neural substrates of natural reading: a comparison of normal and nonword text using eyetracking and fmri
  publication-title: Front. Hum. Neurosci
  doi: 10.3389/fnhum.2014.01024
– volume: 76
  start-page: 145
  year: 2012
  ident: B46
  article-title: Eye movements and brain electric potentials during reading
  publication-title: Psychol. Res
  doi: 10.1007/s00426-011-0376-x
– volume: 50
  start-page: 826
  year: 2018
  ident: B50
  article-title: The provo corpus: a large eye-tracking corpus with predictability norms
  publication-title: Behav. Res. Methods
  doi: 10.3758/s13428-017-0908-4
– volume: 68
  start-page: 33
  year: 2015
  ident: B8
  article-title: Combined eye tracking and fMRI reveals neural basis of linguistic predictions during sentence comprehension
  publication-title: Cortex
  doi: 10.1016/j.cortex.2015.04.011
– start-page: 90
  year: 2021
  ident: B6
  article-title: “LAST at CMCL 2021 shared task: predicting gaze data during reading with a gradient boosting decision tree approach,”
  publication-title: Proceedings of the NAACL Workshop on Cognitive Modeling and Computational Linguistics
  doi: 10.18653/v1/2021.cmcl-1.10
– volume: 14
  start-page: 667
  year: 2019
  ident: B57
  article-title: Measuring shared responses across subjects using intersubject correlation
  publication-title: Soc. Cogn. Affect. Neurosci
  doi: 10.1093/scan/nsz037
– start-page: 779
  volume-title: International Conference on Computational Collective Intelligence
  year: 2020
  ident: B5
  article-title: “Towards learning to read like humans,”
  doi: 10.1007/978-3-030-63007-2_61
– volume: 138
  start-page: 107307
  year: 2020
  ident: B71
  article-title: fMRI reveals language-specific predictive coding during naturalistic sentence comprehension
  publication-title: Neuropsychologia
  doi: 10.1016/j.neuropsychologia.2019.107307
– volume: 32
  start-page: 221
  year: 1948
  ident: B30
  article-title: A new readability yardstick
  publication-title: J. Appl. Psychol
  doi: 10.1037/h0057532
– volume: 41
  start-page: 1318
  year: 2017
  ident: B13
  article-title: A neurocomputational model of the N400 and the P600 in language processing
  publication-title: Cogn. Sci
  doi: 10.1111/cogs.12461
– start-page: 72
  ident: B38
  article-title: “CMCL 2021 shared task on eye-tracking prediction,”
  publication-title: Proceedings of the Workshop on Cognitive Modeling and Computational Linguistics
  doi: 10.18653/v1/2021.cmcl-1.7
– volume: 5
  start-page: 180291
  year: 2018
  ident: B41
  article-title: ZuCo, a simultaneous EEG and eye-tracking resource for natural sentence reading
  publication-title: Sci. Data
  doi: 10.1038/sdata.2018.291
– year: 2000
  ident: B53
  publication-title: MATLAB: The Language of Technical Computing. External interfaces
– start-page: 228
  volume-title: Cognitive Neuroscience of Natural Language Use
  year: 2015
  ident: B35
  article-title: “What are naturalistic comprehension paradigms teaching us about language?”
  doi: 10.1017/CBO9781107323667.011
– volume: 10
  start-page: 433
  year: 1997
  ident: B9
  article-title: The psychophysics toolbox
  publication-title: Spat. Vis
  doi: 10.1163/156856897X00357
– start-page: 424
  volume-title: 9th International IEEE/EMBS Conference on Neural Engineering
  year: 2019
  ident: B16
  article-title: “Cross-subject transfer learning improves the practicality of real-world applications of brain-computer interfaces,”
– ident: B40
  article-title: Decoding EEG brain activity for multi-modal natural language processing
  publication-title: Front. Hum. Neurosci
  doi: 10.3389/fnhum.2021.659410
SSID ssj0000402002
Score 2.3815255
Snippet We present a new machine learning benchmark for reading task classification with the goal of advancing EEG and eye-tracking research at the intersection...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1028824
SubjectTerms cross-subject evaluation
EEG
eye-tracking
machine learning
Psychology
reading research
reading task classification
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT-QwDI4QJy6I5-7wUpC4oYo2TfM4AhpASHACCXEgynNZsXTQPA7z77HbMppBaLlwbJOoyWfHsV3HJuRISes1kyGzTvqMO9hzOk-gyIkichu9yiu84HxzK67u-fVD9TBX6gtjwtr0wC1wJ6XzMLYIkeeWizIoV9iUs8QLGxU8oPSFM2_OmGpkMJpFGLqDt2TACtMn6W00_QP2IGOYrQD0Sr5wEjUJ-7_SMj8HS86dPhdrZLVTG-lpO911shTrDbIyk17TTfIEBKePk_MBdcB4z692-EIHNW2-nY0mDv0tdNiGzNOxHb1Qj4ozRgo1xKHokaX9_iW1daBxGjOYh0dHOsUo0i1yf9G_O7_KuuIJmedCjbMECAinEnNWhuSCDVpWWiQtQxQyppiC1J5xFUrAxIPcUxoJ5xOsVOiq3CbL9aCOvwlNlVXeicqXQnI4U7X22hV5KpNgIa_yHik-gDS-yyyOBS7-GbAwEHzTgG8QfNOB3yPHszFvbV6N__Y-Q_rMemJO7OYFcIrpOMV8xyk9cvhBXQN7CH-M2DoOJiPDpMRLGJVQPfKrpfbsU7BmaCuhRS7wwcJcFlvqv89Nnm7AUwnFd35i8rtkBQvdo_OnYHtkeTycxH1Qh8buoOH8d5PMC5o
  priority: 102
  providerName: Directory of Open Access Journals
Title The ZuCo benchmark on cross-subject reading task classification with EEG and eye-tracking data
URI https://www.ncbi.nlm.nih.gov/pubmed/36710838
https://www.proquest.com/docview/2771085568
https://pubmed.ncbi.nlm.nih.gov/PMC9878684
https://doaj.org/article/3bc0f21de40a463d8b1af02f41ae88b1
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKufSCeLMFKiNxQ4HEcfw4IATVlgqpnFip4oDlZ1u1JCXZldh_z4w3u2JR4cAxsS3H34w9j4xnCHmppPWayVBYJ33BHew5XSZQ5EQVuY1elQ1ecD75LI5n_NNpc7pD1uWORgCHG007rCc1669e__yxfAcb_i1anCBv36TrYXkGph5jmIgAVEZ-i9wGySSxosHJqO7nkxmNJQzo2f_70C35lNP436R7_hlC-ZtMOrpL7ozKJH2_ov49shPb-2Rvc6YtH5BvwAb06-Kwow7Y8fy77S9p19I8dzEsHHphaL8KpKdzO1xSj-o0xg9lklH009Lp9CO1baBxGQv4Do_udYqxpQ_J7Gj65fC4GEsqFJ4LNS8SICCcSsxZGZILNmjZaJG0DFHImGIKUnvGVagBEw-nodJITp9gpUI39SOy23ZtfEJoaqzyTjS-FpKDpNXaa1eVqU6ChbIpJ6RaA2n8mG8cy15cGbA7EHyTwTcIvhnBn5BXmzHXq2wb_-z9Aemz6YmZsvOLrj8z48YztfPAe1WIvLRc1EG5yqaSJV7ZqOBhQl6sqWtgZ-HvEtvGbjEYJiVezWiEmpDHK2pvpoI1Q1sNLXKLD7a-ZbulvTjP2bsBTyUU3__vkU_JHta8Rz9QxZ6R3Xm_iM9BM5q7g-xROMhM_wtjeBM8
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+ZuCo+benchmark+on+cross-subject+reading+task+classification+with+EEG+and+eye-tracking+data&rft.jtitle=Frontiers+in+psychology&rft.au=Hollenstein%2C+Nora&rft.au=Tr%C3%B6ndle%2C+Marius&rft.au=Plomecka%2C+Martyna&rft.au=Kiegeland%2C+Samuel&rft.date=2023-01-12&rft.pub=Frontiers+Media+S.A&rft.eissn=1664-1078&rft.volume=13&rft_id=info:doi/10.3389%2Ffpsyg.2022.1028824&rft.externalDocID=PMC9878684
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-1078&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-1078&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-1078&client=summon