Retrieval of sea ice thickness using FY-3E/GNOS-II data
Sea ice, a significant component in polar regions, plays a crucial role in climate change through its varying conditions. In Global Navigation Satellite System-Reflectometry (GNSS-R) studies, the observed surface reflectivity Γ serves as a tool to examine the physical characteristics of sea ice cove...
Saved in:
Published in | Satellite navigation Vol. 5; no. 1; pp. 17 - 13 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Singapore
Springer Nature Singapore
01.12.2024
Springer Nature B.V SpringerOpen |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Sea ice, a significant component in polar regions, plays a crucial role in climate change through its varying conditions. In Global Navigation Satellite System-Reflectometry (GNSS-R) studies, the observed surface reflectivity
Γ
serves as a tool to examine the physical characteristics of sea ice covers. This facilitates the large-scale estimation of first-year ice thickness using a two-layer sea ice-seawater medium model. However, it is important to note that when Sea Ice Thickness (SIT) becomes thicker, the accuracy of SIT retrieval via this two-layer model begins to decline. In this paper, we present a novel application of a spaceborne GNSS-R technique to retrieve SIT based on a three-layer model using the data from Fengyun-3E (FY-3E). Soil Moisture Ocean Salinity (SMOS) data are treated as the reference. The performance of the proposed three-layer model is evaluated against a previously established two-layer model for SIT retrieval. The analysis used the sea ice data from 2022 and 2023 with SITs less than 1.1 m. By comparing the retrieved SITs against reference values, the three-layer model achieved a Root Mean Square Error (RMSE) of 0.149 m and Correlation Coefficient (
r
) of 0.830, while the two-layer model reported the RMSE of 0.162 m and
r
value of 0.789. A scheme incorporating both models yielded superior results than either individual model, with the RMSE of 0.137 m and
r
reaching up to 0.852. This study is the first application of FY-3E for GNSS-R SIT retrieval, combining the advantages of a two-layer model and a three-layer model and extending the precision of GNSS-R retrieval for SIT to within 1.1 m. This provides a good reference for the future studies on GNSS-R SIT retrieval. |
---|---|
AbstractList | Abstract Sea ice, a significant component in polar regions, plays a crucial role in climate change through its varying conditions. In Global Navigation Satellite System-Reflectometry (GNSS-R) studies, the observed surface reflectivity Γ serves as a tool to examine the physical characteristics of sea ice covers. This facilitates the large-scale estimation of first-year ice thickness using a two-layer sea ice-seawater medium model. However, it is important to note that when Sea Ice Thickness (SIT) becomes thicker, the accuracy of SIT retrieval via this two-layer model begins to decline. In this paper, we present a novel application of a spaceborne GNSS-R technique to retrieve SIT based on a three-layer model using the data from Fengyun-3E (FY-3E). Soil Moisture Ocean Salinity (SMOS) data are treated as the reference. The performance of the proposed three-layer model is evaluated against a previously established two-layer model for SIT retrieval. The analysis used the sea ice data from 2022 and 2023 with SITs less than 1.1 m. By comparing the retrieved SITs against reference values, the three-layer model achieved a Root Mean Square Error (RMSE) of 0.149 m and Correlation Coefficient (r) of 0.830, while the two-layer model reported the RMSE of 0.162 m and r value of 0.789. A scheme incorporating both models yielded superior results than either individual model, with the RMSE of 0.137 m and r reaching up to 0.852. This study is the first application of FY-3E for GNSS-R SIT retrieval, combining the advantages of a two-layer model and a three-layer model and extending the precision of GNSS-R retrieval for SIT to within 1.1 m. This provides a good reference for the future studies on GNSS-R SIT retrieval. Sea ice, a significant component in polar regions, plays a crucial role in climate change through its varying conditions. In Global Navigation Satellite System-Reflectometry (GNSS-R) studies, the observed surface reflectivity Γ serves as a tool to examine the physical characteristics of sea ice covers. This facilitates the large-scale estimation of first-year ice thickness using a two-layer sea ice-seawater medium model. However, it is important to note that when Sea Ice Thickness (SIT) becomes thicker, the accuracy of SIT retrieval via this two-layer model begins to decline. In this paper, we present a novel application of a spaceborne GNSS-R technique to retrieve SIT based on a three-layer model using the data from Fengyun-3E (FY-3E). Soil Moisture Ocean Salinity (SMOS) data are treated as the reference. The performance of the proposed three-layer model is evaluated against a previously established two-layer model for SIT retrieval. The analysis used the sea ice data from 2022 and 2023 with SITs less than 1.1 m. By comparing the retrieved SITs against reference values, the three-layer model achieved a Root Mean Square Error (RMSE) of 0.149 m and Correlation Coefficient (r) of 0.830, while the two-layer model reported the RMSE of 0.162 m and r value of 0.789. A scheme incorporating both models yielded superior results than either individual model, with the RMSE of 0.137 m and r reaching up to 0.852. This study is the first application of FY-3E for GNSS-R SIT retrieval, combining the advantages of a two-layer model and a three-layer model and extending the precision of GNSS-R retrieval for SIT to within 1.1 m. This provides a good reference for the future studies on GNSS-R SIT retrieval. Sea ice, a significant component in polar regions, plays a crucial role in climate change through its varying conditions. In Global Navigation Satellite System-Reflectometry (GNSS-R) studies, the observed surface reflectivity Γ serves as a tool to examine the physical characteristics of sea ice covers. This facilitates the large-scale estimation of first-year ice thickness using a two-layer sea ice-seawater medium model. However, it is important to note that when Sea Ice Thickness (SIT) becomes thicker, the accuracy of SIT retrieval via this two-layer model begins to decline. In this paper, we present a novel application of a spaceborne GNSS-R technique to retrieve SIT based on a three-layer model using the data from Fengyun-3E (FY-3E). Soil Moisture Ocean Salinity (SMOS) data are treated as the reference. The performance of the proposed three-layer model is evaluated against a previously established two-layer model for SIT retrieval. The analysis used the sea ice data from 2022 and 2023 with SITs less than 1.1 m. By comparing the retrieved SITs against reference values, the three-layer model achieved a Root Mean Square Error (RMSE) of 0.149 m and Correlation Coefficient ( r ) of 0.830, while the two-layer model reported the RMSE of 0.162 m and r value of 0.789. A scheme incorporating both models yielded superior results than either individual model, with the RMSE of 0.137 m and r reaching up to 0.852. This study is the first application of FY-3E for GNSS-R SIT retrieval, combining the advantages of a two-layer model and a three-layer model and extending the precision of GNSS-R retrieval for SIT to within 1.1 m. This provides a good reference for the future studies on GNSS-R SIT retrieval. |
ArticleNumber | 17 |
Author | Yan, Qingyun Xie, Yunjian |
Author_xml | – sequence: 1 givenname: Yunjian surname: Xie fullname: Xie, Yunjian organization: School of Remote Sensing and Geomatics Engineering, Nanjing University of Information Science and Technology – sequence: 2 givenname: Qingyun surname: Yan fullname: Yan, Qingyun email: 003257@nuist.edu.cn organization: School of Remote Sensing and Geomatics Engineering, Nanjing University of Information Science and Technology |
BookMark | eNp9kE9rGzEQxUVJoambL9DTQs6qRxqtVnsswUkNJoG0PfQkZP1xlbgrR5ID-fZdZx0COeQ0w_De4zfvMzkZ0uAJ-crgG2NKzotA4ECBCwrAUNH2AznlUnLKUOLJce95zz6Rs1LiGlroUAkBp6S79TVH_2i2TQpN8aaJ1jf1b7T3gy-l2Zc4bJrLPxQX86vrm590uWycqeYL-RjMtviz45yR35eLXxc_6OrmannxfUWtkKpSr4IFhJ5xIxl6LztjkTMQEgNH2fbMO4ROouoNdlwYFcZfbGi7wF3oW5yR5ZTrkrnTuxz_mfykk4n6-ZDyRptco916ja5rW9FLq5gQHJwCHtbOqTU6GdY9H7POp6xdTg97X6q-S_s8jPgaQbadVEqoUaUmlc2plOyDtrGaGtNQs4lbzUAfWtdT63psXT-3rg-w_I31BfhdE06mMoqHjc-vVO-4_gPkCpG6 |
CitedBy_id | crossref_primary_10_1016_j_rse_2025_114617 crossref_primary_10_3390_rs16214072 |
Cites_doi | 10.1109/JSTARS.2016.2588467 10.1016/j.rse.2020.111948 10.3390/rs8010063 10.1063/1.325018 10.5194/tc-8-997-2014 10.1109/LGRS.2014.2320852 10.3390/rs15041097 10.1016/j.asr.2014.03.005 10.1016/j.rse.2020.111944 10.1186/s43020-022-00093-z 10.3390/rs11212565 10.5194/tc-12-2051-2018 10.1109/TAP.1977.1141539 10.1109/LGRS.2017.2782728 10.1109/JSTARS.2020.2966880 10.5194/tc-10-2003-2016 10.1007/s11802-021-4380-5 10.1016/j.rse.2005.09.015 10.1029/JC087iC11p09017 10.1109/MGRS.2014.2374220 10.1016/j.rse.2016.03.009 10.1038/nature02050 10.1109/36.981349 10.1017/CBO9781107415324.008 10.1029/2009GL039430 10.1109/IGARSS.1994.399200 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2024 – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
DOI | 10.1186/s43020-024-00138-5 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Directory of Open Access Journals - May need to register for free articles |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2662-1363 |
EndPage | 13 |
ExternalDocumentID | oai_doaj_org_article_3d755496c814420d802fbdd8b3d6fb92 10_1186_s43020_024_00138_5 |
GeographicLocations | Arctic region |
GeographicLocations_xml | – name: Arctic region |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 42001362 funderid: http://dx.doi.org/10.13039/501100001809 |
GroupedDBID | 0R~ AAKKN ABEEZ ACACY ACULB AFGXO AFKRA ALMA_UNASSIGNED_HOLDINGS ARCSS BENPR C24 C6C CCPQU EBS GROUPED_DOAJ IAO IGS ITC OK1 PIMPY RSV SOJ AAYXX CITATION PHGZM PHGZT ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c468t-e8fc030912a613ee67ac3210463f236591ed3076389a3724a8f302cf57f2df953 |
IEDL.DBID | DOA |
ISSN | 2662-9291 |
IngestDate | Wed Aug 27 01:31:33 EDT 2025 Mon Jun 30 05:24:05 EDT 2025 Tue Jul 01 04:39:47 EDT 2025 Thu Apr 24 23:08:23 EDT 2025 Fri Feb 21 02:42:22 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Sea ice thickness Soil moisture ocean salinity Global navigation satellite system-reflectometry Fengyun-3E GNSS occultation sounder II (FY-3E/GNOS-II) |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c468t-e8fc030912a613ee67ac3210463f236591ed3076389a3724a8f302cf57f2df953 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://doaj.org/article/3d755496c814420d802fbdd8b3d6fb92 |
PQID | 3065768848 |
PQPubID | 5642781 |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_3d755496c814420d802fbdd8b3d6fb92 proquest_journals_3065768848 crossref_citationtrail_10_1186_s43020_024_00138_5 crossref_primary_10_1186_s43020_024_00138_5 springer_journals_10_1186_s43020_024_00138_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-12-01 |
PublicationDateYYYYMMDD | 2024-12-01 |
PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Singapore |
PublicationPlace_xml | – name: Singapore |
PublicationTitle | Satellite navigation |
PublicationTitleAbbrev | Satell Navig |
PublicationYear | 2024 |
Publisher | Springer Nature Singapore Springer Nature B.V SpringerOpen |
Publisher_xml | – name: Springer Nature Singapore – name: Springer Nature B.V – name: SpringerOpen |
References | Laxon, Peacock, Smith (CR11) 2003; 425 Kaleschke, Tian-Kunze, Maaß, Beitsch, Wernecke, Miernecki, Müller, Fock, Gierisch, Schlünzen, Pohlmann, Casal (CR7) 2016; 180 Yan, Huang, Foti (CR26) 2017; 15 Xie, Yan (CR23) 2024; 21 Tietsche, Alonso-Balmaseda, Rosnay, Zuo, Tian-Kunze, Kaleschke (CR17) 2018; 12 Yin, Huang, Xia, Bai, Sun, Yang, Zhai, Xu, Hu, Zhang, Wang, Cai (CR28) 2023; 15 CR15 CR10 Tsang, Newton (CR19) 1982; 87 Li, Huang (CR12) 2014; 11 Camps, Park, Pablos, Foti, Gommenginger, Liu, Judge (CR1) 2016; 9 Jin, Najibi (CR5) 2014; 53 Katzberg, Torres, Grant, Masters (CR8) 2006; 100 Tilling, Ridout, Shepherd (CR18) 2016; 10 CR2 Klein, Swift (CR9) 1977; 25 CR4 Li, Guo, Chen, Zhang, Zhang (CR14) 2023; 4 Li, Dou, Xiao (CR13) 2021; 20 Tian-Kunze, Kaleschke, Maaß, Mäkynen, Serra, Drusch, Krumpen (CR16) 2014; 8 Vant, Ramseier, Makios (CR21) 1978; 49 CR20 Zavorotny, Gleason, Cardellach, Camps (CR29) 2014; 2 Yan, Huang (CR25) 2020; 13 Yan, Huang, Jin, Jia (CR27) 2020; 247 Yan, Huang (CR24) 2019; 11 Garrison, Komjathy, Zavorotny, Katzberg (CR3) 2002; 40 Xie, Perrie, Wei, Zhao (CR22) 2020; 247 Jin, Qian, Kutoglu (CR6) 2016; 8 S Li (138_CR13) 2021; 20 VU Zavorotny (138_CR29) 2014; 2 T Xie (138_CR22) 2020; 247 JL Garrison (138_CR3) 2002; 40 L Klein (138_CR9) 1977; 25 MR Vant (138_CR21) 1978; 49 Q Yan (138_CR24) 2019; 11 138_CR20 S Laxon (138_CR11) 2003; 425 SJ Katzberg (138_CR8) 2006; 100 Q Yan (138_CR25) 2020; 13 S Tietsche (138_CR17) 2018; 12 S Jin (138_CR5) 2014; 53 RL Tilling (138_CR18) 2016; 10 C Li (138_CR12) 2014; 11 138_CR2 L Tsang (138_CR19) 1982; 87 138_CR4 Q Yan (138_CR26) 2017; 15 Q Yan (138_CR27) 2020; 247 X Tian-Kunze (138_CR16) 2014; 8 A Camps (138_CR1) 2016; 9 Z Li (138_CR14) 2023; 4 C Yin (138_CR28) 2023; 15 S Jin (138_CR6) 2016; 8 138_CR10 L Kaleschke (138_CR7) 2016; 180 Y Xie (138_CR23) 2024; 21 138_CR15 |
References_xml | – volume: 9 start-page: 4730 issue: 10 year: 2016 end-page: 4742 ident: CR1 article-title: Sensitivity of GNSS-R spaceborne observations to soil moisture and vegetation publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing doi: 10.1109/JSTARS.2016.2588467 – volume: 247 start-page: 111948 year: 2020 ident: CR22 article-title: Discrimination of open water from sea ice in the Labrador Sea using quad-polarized synthetic aperture radar publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2020.111948 – volume: 8 start-page: 63 issue: 1 year: 2016 ident: CR6 article-title: Snow depth variations estimated from GPS-Reflectometry: A case study in Alaska from L2P SNR data publication-title: Remote Sensing doi: 10.3390/rs8010063 – volume: 49 start-page: 1264 issue: 3 year: 1978 end-page: 1280 ident: CR21 article-title: The complex-dielectric constant of sea ice at frequencies in the range 0.1–40 GHz publication-title: Journal of Applied Physics doi: 10.1063/1.325018 – volume: 8 start-page: 997 issue: 3 year: 2014 end-page: 1018 ident: CR16 article-title: SMOS-derived thin sea ice thickness: Algorithm baseline, product specifications and initial verification publication-title: The Cryosphere doi: 10.5194/tc-8-997-2014 – ident: CR4 – ident: CR2 – volume: 11 start-page: 2110 issue: 12 year: 2014 end-page: 2114 ident: CR12 article-title: An algorithm for sea-surface wind field retrieval from GNSS-R delay-Doppler map publication-title: IEEE Geoscience and Remote Sensing Letters doi: 10.1109/LGRS.2014.2320852 – volume: 15 start-page: 1097 issue: 4 year: 2023 ident: CR28 article-title: Soil moisture retrieval from multi-GNSS reflectometry on FY-3E GNOS-II by land cover classification publication-title: Remote Sensing doi: 10.3390/rs15041097 – ident: CR10 – volume: 21 start-page: 1 issue: 5 year: 2024 end-page: 5 ident: CR23 article-title: Stand-alone retrieval of sea ice thickness from FY-3E GNOS-R data publication-title: IEEE Geoscience and Remote Sensing Letters – volume: 53 start-page: 1623 issue: 11 year: 2014 end-page: 1633 ident: CR5 article-title: Sensing snow height and surface temperature variations in Greenland from GPS reflected signals publication-title: Advances in Space Research doi: 10.1016/j.asr.2014.03.005 – volume: 247 start-page: 111944 year: 2020 ident: CR27 article-title: Pan-tropical soil moisture mapping based on a three-layer model from CYGNSS GNSS-R data publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2020.111944 – volume: 4 start-page: 4 issue: 1 year: 2023 ident: CR14 article-title: Wind speed retrieval using GNSS-R technique with geographic partitioning publication-title: Satellite Navigation doi: 10.1186/s43020-022-00093-z – volume: 11 start-page: 2565 issue: 21 year: 2019 ident: CR24 article-title: Sea ice remote sensing using GNSS-R: A review publication-title: Remote Sensing doi: 10.3390/rs11212565 – volume: 12 start-page: 2051 issue: 6 year: 2018 end-page: 2072 ident: CR17 article-title: Thin Arctic sea ice in L-band observations and an ocean reanalysis publication-title: The Cryosphere doi: 10.5194/tc-12-2051-2018 – volume: 25 start-page: 104 issue: 1 year: 1977 end-page: 111 ident: CR9 article-title: An improved model for the dielectric constant of sea water at microwave frequencies publication-title: IEEE Transactions on Antennas and Propagation doi: 10.1109/TAP.1977.1141539 – volume: 15 start-page: 237 issue: 2 year: 2017 end-page: 241 ident: CR26 article-title: Quantification of the relationship between sea surface roughness and the size of the glistening zone for GNSS-R publication-title: IEEE Geoscience and Remote Sensing Letters doi: 10.1109/LGRS.2017.2782728 – ident: CR15 – volume: 13 start-page: 577 year: 2020 end-page: 587 ident: CR25 article-title: Sea ice thickness measurement using spaceborne GNSS-R: First results with TechDemoSat-1 data publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing doi: 10.1109/JSTARS.2020.2966880 – volume: 10 start-page: 2003 issue: 5 year: 2016 end-page: 2012 ident: CR18 article-title: Near-real-time Arctic sea ice thickness and volume from CryoSat-2 publication-title: The Cryosphere doi: 10.5194/tc-10-2003-2016 – volume: 20 start-page: 307 year: 2021 end-page: 314 ident: CR13 article-title: A preliminary investigation of Arctic sea ice negative freeboard from in-situ observations and radar altimetry publication-title: Journal of Ocean University of China doi: 10.1007/s11802-021-4380-5 – volume: 100 start-page: 17 issue: 1 year: 2006 end-page: 28 ident: CR8 article-title: Utilizing calibrated GPS reflected signals to estimate soil reflectivity and dielectric constant: Results from SMEX02 publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2005.09.015 – volume: 87 start-page: 9017 issue: C11 year: 1982 end-page: 9024 ident: CR19 article-title: Microwave emissions from soils with rough surfaces publication-title: Journal of Geophysical Research: Oceans doi: 10.1029/JC087iC11p09017 – volume: 2 start-page: 8 issue: 4 year: 2014 end-page: 45 ident: CR29 article-title: Tutorial on remote sensing using GNSS bistatic radar of opportunity publication-title: IEEE Geoscience and Remote Sensing Magazine doi: 10.1109/MGRS.2014.2374220 – volume: 180 start-page: 264 year: 2016 end-page: 273 ident: CR7 article-title: SMOS sea ice product: Operational application and validation in the Barents Sea marginal ice zone publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2016.03.009 – volume: 425 start-page: 947 issue: 6961 year: 2003 end-page: 950 ident: CR11 article-title: High interannual variability of sea ice thickness in the Arctic region publication-title: Nature doi: 10.1038/nature02050 – volume: 40 start-page: 50 issue: 1 year: 2002 end-page: 65 ident: CR3 article-title: Wind speed measurement using forward scattered GPS signals publication-title: IEEE Transactions on Geoscience and Remote Sensing doi: 10.1109/36.981349 – ident: CR20 – ident: 138_CR4 doi: 10.1017/CBO9781107415324.008 – volume: 53 start-page: 1623 issue: 11 year: 2014 ident: 138_CR5 publication-title: Advances in Space Research doi: 10.1016/j.asr.2014.03.005 – volume: 8 start-page: 997 issue: 3 year: 2014 ident: 138_CR16 publication-title: The Cryosphere doi: 10.5194/tc-8-997-2014 – ident: 138_CR20 – volume: 11 start-page: 2565 issue: 21 year: 2019 ident: 138_CR24 publication-title: Remote Sensing doi: 10.3390/rs11212565 – volume: 21 start-page: 1 issue: 5 year: 2024 ident: 138_CR23 publication-title: IEEE Geoscience and Remote Sensing Letters – volume: 2 start-page: 8 issue: 4 year: 2014 ident: 138_CR29 publication-title: IEEE Geoscience and Remote Sensing Magazine doi: 10.1109/MGRS.2014.2374220 – volume: 180 start-page: 264 year: 2016 ident: 138_CR7 publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2016.03.009 – volume: 40 start-page: 50 issue: 1 year: 2002 ident: 138_CR3 publication-title: IEEE Transactions on Geoscience and Remote Sensing doi: 10.1109/36.981349 – volume: 12 start-page: 2051 issue: 6 year: 2018 ident: 138_CR17 publication-title: The Cryosphere doi: 10.5194/tc-12-2051-2018 – volume: 15 start-page: 1097 issue: 4 year: 2023 ident: 138_CR28 publication-title: Remote Sensing doi: 10.3390/rs15041097 – volume: 11 start-page: 2110 issue: 12 year: 2014 ident: 138_CR12 publication-title: IEEE Geoscience and Remote Sensing Letters doi: 10.1109/LGRS.2014.2320852 – volume: 425 start-page: 947 issue: 6961 year: 2003 ident: 138_CR11 publication-title: Nature doi: 10.1038/nature02050 – volume: 49 start-page: 1264 issue: 3 year: 1978 ident: 138_CR21 publication-title: Journal of Applied Physics doi: 10.1063/1.325018 – volume: 247 start-page: 111948 year: 2020 ident: 138_CR22 publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2020.111948 – ident: 138_CR10 doi: 10.1029/2009GL039430 – volume: 15 start-page: 237 issue: 2 year: 2017 ident: 138_CR26 publication-title: IEEE Geoscience and Remote Sensing Letters doi: 10.1109/LGRS.2017.2782728 – ident: 138_CR2 doi: 10.1109/IGARSS.1994.399200 – volume: 247 start-page: 111944 year: 2020 ident: 138_CR27 publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2020.111944 – volume: 13 start-page: 577 year: 2020 ident: 138_CR25 publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing doi: 10.1109/JSTARS.2020.2966880 – ident: 138_CR15 – volume: 8 start-page: 63 issue: 1 year: 2016 ident: 138_CR6 publication-title: Remote Sensing doi: 10.3390/rs8010063 – volume: 20 start-page: 307 year: 2021 ident: 138_CR13 publication-title: Journal of Ocean University of China doi: 10.1007/s11802-021-4380-5 – volume: 100 start-page: 17 issue: 1 year: 2006 ident: 138_CR8 publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2005.09.015 – volume: 87 start-page: 9017 issue: C11 year: 1982 ident: 138_CR19 publication-title: Journal of Geophysical Research: Oceans doi: 10.1029/JC087iC11p09017 – volume: 4 start-page: 4 issue: 1 year: 2023 ident: 138_CR14 publication-title: Satellite Navigation doi: 10.1186/s43020-022-00093-z – volume: 25 start-page: 104 issue: 1 year: 1977 ident: 138_CR9 publication-title: IEEE Transactions on Antennas and Propagation doi: 10.1109/TAP.1977.1141539 – volume: 9 start-page: 4730 issue: 10 year: 2016 ident: 138_CR1 publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing doi: 10.1109/JSTARS.2016.2588467 – volume: 10 start-page: 2003 issue: 5 year: 2016 ident: 138_CR18 publication-title: The Cryosphere doi: 10.5194/tc-10-2003-2016 |
SSID | ssib050738440 ssj0002771094 |
Score | 2.3434467 |
Snippet | Sea ice, a significant component in polar regions, plays a crucial role in climate change through its varying conditions. In Global Navigation Satellite... Abstract Sea ice, a significant component in polar regions, plays a crucial role in climate change through its varying conditions. In Global Navigation... |
SourceID | doaj proquest crossref springer |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 17 |
SubjectTerms | Climate change Datasets Engineering Fengyun-3E GNSS occultation sounder II (FY-3E/GNOS-II) Global navigation satellite system-reflectometry Global positioning systems GNSS Applications in Geosciences GPS Ice Meteorological satellites Original Article Remote sensing Salinity Sea ice thickness Sensors Soil moisture ocean salinity Weather |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxEB5BeoFDxVOktMgHbmBl16_1nhBFCS0SARUqlZPlZw-gpG3S_4_H8aYtEr3uele743l89oznA3jbBpekLeQuSlARpae6b3vaCwTsTlvn8IDz17k6OhVfzuRZ3XBb1bLKwScWRx2WHvfIJ8hwnqGxFvrDxSVF1ijMrlYKjYewk12w1iPYOZzOv59sd1lYh7WGYjgto9VkJTiumHJooiVLR-WdiFQa999Bm_8kSEvcmT2B3QoYycfNDD-FB3HxDB7faiP4HLqTQouVdYYsE8m6S7L1Eyxk_42OjGBt-zmZ_aJ8Ovk8__aDHh8TrAx9Aaez6c9PR7QSIlAvlF7TqJPHlEjLbI7CMarOejyDIxRPjCvZtzFkm0UQYnnHhNUp_6xPsksspF7ylzBaLBfxFRAvhXA-Wt66DIis0tEr2zTBSd5o18YxtINQjK_dwpG04o8pqwatzEaQJgvSFEEaOYZ322cuNr0y7h19iLLejsQ-1-XC8urcVLMxPHQZ7_TK67zwY03QDUsuBO14UMn1bAz7w0yZanwrc6MqY3g_zN7N7f9_0t79b3sNjxjqTSlm2YfR-uo6HmRIsnZvqt79BQZb2Pg priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxRBEO4gXvRgUDSsgOmDN-3s9HN6jrBhBRMhUTZZT51-koBZjKz_n6reGWCJmnid6ZnMVFV3fZWq-oqQ9zyFon0d7mIUU1lHZjvesU4hYA_Wh4ANzl9OzfFMfZ7reU-Tg70wD_P33JrxjZIY4IAnYTWpxvQT8lRz2eKYhomZDLYDsEZa1fOWXNaEGlYZYlIZXJBggAL40DPzx9eu-aVK37-GOR-lSav3mW6RFz1spAcrPb8kG3nxijx_QCa4TdqvdTgWWA69LhQsmMIZQLGc_QqPM4oV7hd0-p3Jo_Gn07Nv7OSEYn3oazKbHp1Pjlk_FoFFZeySZVsiJka48OCLczatj9iJo4wsQhrd8Zxg5yIU8bIVytsCPxuLbotIpdPyDdlcXC_yDqFRKxVi9pIHgEXe2ByNb5oUtGxs4HlE-CAUF3vOcBxd8cPV2MEatxKkA0G6KkinR-TD3TM_V4wZ_1x9iLK-W4ls1_UCGIHrN4-TqQXU05loIfwTTbKNKCElG2QyJXRiRPYGTbl-C944iIUwlrLKjsjHQXv3t__-SW__b_kueSbQjmqJyx7ZXP76nfcBqCzDu2qht76P1ag priority: 102 providerName: Springer Nature |
Title | Retrieval of sea ice thickness using FY-3E/GNOS-II data |
URI | https://link.springer.com/article/10.1186/s43020-024-00138-5 https://www.proquest.com/docview/3065768848 https://doaj.org/article/3d755496c814420d802fbdd8b3d6fb92 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxEB5BucAB8RSBEvnADazs-rXeI40SWqQGVKhUTpafSIBSRMOV386Md1NSJODCxYddr-Qdf_Z8o3kBPGtTKNrX5i5GcZV15LZve94rIuzB-hAowfl4ZQ5P1eszfbbT6otiwobywIPgZjJ1qPF6Ey1Sf9Ek24gSUrJBJlNCX29f1Hk7xhQiCUmOtGqsYvKputco5pBczKiQBEdO0G4zaKyZXShJVhSqK149d1xf0VK1mP8VBvqb07TqouUduD2SSPZyWPxduJbX9-DWTmnB-9Cd1FZZiCN2XhjimeGNwCi4_TNdbozi3T-y5QcuF7NXqzfv-NERo2jRB3C6XLyfH_KxSQKPytgNz7ZEcpO0wqNmztl0PlJejjKyCGl03-aE55iIiZedUN4W_NlYdFdEKr2WD2Fvfb7Oj4BFrVSI2cs2IEnyxuZofNOkoGVjQ5sn0G6F4uJYQZwaWXxx1ZKwxg2CdChIVwXp9ASeX37zdaif8dfZByTry5lU-7o-QES4ERHuX4iYwP52p9x4IC8cWkZkWVllJ_Biu3u_Xv95SY__x5KewE1B6KphMPuwt_n2PT9FMrMJU7hxsFi9PZnC9blQNJr5tGIZx-Mfi58tHemj |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB5V6QE4IJ4iUMAHOIGVXdvr9R4QopCQ0Dag0krl5PrZAygpTRDiT_Eb8Ti7KUWit153vavV-PM8dh4fwLPS21iZTO4iBRWhclQ1ZUMbgQ67VcZabHDem8rxofhwVB1twO-uFwbLKjudmBW1nzv8Rz5AhvPkGiuhXp9-p8gahdnVjkJjBYud8OtnCtkWrybv0v4-Z2w0PHg7pi2rAHVCqiUNKjrMK5TMJFMWgqyNw0YWIXlkXFZNGXwCPlpyw2smjIq8YC5WdWQ-NsgSkVT-puCyYD3Y3B5OP-2v_-qwGmsbRdedo-RgIThGaMkU0pwVpNUFC5iJAi54t_8kZLOdG92Cm62DSt6sEHUbNsLsDtz4a2zhXaj3Mw1XwiiZR5KEQpK2IVg4_xUVJ8Fa-hMy-kL5cPB--vEznUwIVqLeg8MrEdV96M3ms_AAiKuEsC4YXtrkgBmpgpOmKLyteKFsGfpQdkLRrp1OjiQZ33SOUpTUK0HqJEidBamrPrxYP3O6ms1x6eptlPV6Jc7VzhfmZye6Paaa-zr5V410KgWarPCqYNF6ryz3MtqG9WGr2yndHvaFPodmH152u3d--_-f9PDytz2Fa-ODvV29O5nuPILrDDGUC2m2oLc8-xEeJ3doaZ-0GCRwfNWw_wPdEBPW |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VWwnBoeIpFkrxAU5gbWI7jnNAiNJduhSWqlCpnIyfPRTtlu4ixF_j19XjTbYUid56TZwoGn-eR-bxATwrvY2VyeQuUlARKkdVUza0EeiwW2WsxQbnjxO5eyjeH1VHa_Cn64XBsspOJ2ZF7WcO_5EPkOE8ucZKqEFsyyL2d0avT39QZJDCTGtHp7GEyF74_SuFb_NX4520188ZGw2_vN2lLcMAdUKqBQ0qOswxlMwksxaCrI3DphYheWRcVk0ZfDoEaNUNr5kwKvKCuVjVkfnYIGNEUv_rNUZFPVjfHk72D1Z_eFiNdY6i69RRcjAXHKO1ZBZpzhDS6pI1zKQBlzzdf5Kz2eaNbsNG66ySN0t03YG1ML0Lt_4aYXgP6oNMyZXwSmaRJKGQpHkIFtGfoBIlWFd_TEZfKR8O3k0-fabjMcGq1PtweC2iegC96WwaHgJxlRDWBcNLm5wxI1Vw0hSFtxUvlC1DH8pOKNq1k8qRMOO7zhGLknopSJ0EqbMgddWHF6tnTpdzOq5cvY2yXq3EGdv5wuzsWLdHVnNfJ1-rkU6loJMVXhUsWu-V5V5G27A-bHY7pduDP9cXMO3Dy273Lm7__5MeXf22p3AjwV1_GE_2HsNNhhDKNTWb0Fuc_QxPkme0sFstBAl8u27UnwMByhgL |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Retrieval+of+sea+ice+thickness+using+FY-3E%2FGNOS-II+data&rft.jtitle=Satellite+navigation&rft.au=Yunjian+Xie&rft.au=Qingyun+Yan&rft.date=2024-12-01&rft.pub=SpringerOpen&rft.issn=2662-9291&rft.eissn=2662-1363&rft.volume=5&rft.issue=1&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1186%2Fs43020-024-00138-5&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_3d755496c814420d802fbdd8b3d6fb92 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2662-9291&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2662-9291&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2662-9291&client=summon |