Characterizing the human hippocampus in aging and Alzheimer’s disease using a computational atlas derived from ex vivo MRI and histology

Although the hippocampus is one of the most studied structures in the human brain, limited quantitative data exist on its 3D organization, anatomical variability, and effects of disease on its subregions. Histological studies provide restricted reference information due to their 2D nature. In this p...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 115; no. 16; pp. 4252 - 4257
Main Authors Adler, Daniel H., Wisse, Laura E. M., Ittyerah, Ranjit, Pluta, John B., Ding, Song-Lin, Xie, Long, Wang, Jiancong, Kadivar, Salmon, Robinson, John L., Schuck, Theresa, Trojanowski, John Q., Grossman, Murray, Detre, John A., Elliott, Mark A., Toledo, Jon B., Liu, Weixia, Pickup, Stephen, Miller, Michael I., Das, Sandhitsu R., Wolk, David A., Yushkevich, Paul A.
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 17.04.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Although the hippocampus is one of the most studied structures in the human brain, limited quantitative data exist on its 3D organization, anatomical variability, and effects of disease on its subregions. Histological studies provide restricted reference information due to their 2D nature. In this paper, high-resolution (∼200 × 200 × 200 μm³) ex vivo MRI scans of 31 human hippocampal specimens are combined using a groupwise diffeomorphic registration approach into a 3D probabilistic atlas that captures average anatomy and anatomic variability of hippocampal subfields. Serial histological imaging in 9 of the 31 specimens was used to label hippocampal subfields in the atlas based on cytoarchitecture. Specimens were obtained from autopsies in patients with a clinical diagnosis of Alzheimer’s disease (AD; 9 subjects, 13 hemispheres), of other dementia (nine subjects, nine hemispheres), and in subjects without dementia (seven subjects, nine hemispheres), and morphometric analysis was performed in atlas space to measure effects of age and AD on hippocampal subfields. Disproportional involvement of the cornu ammonis (CA) 1 subfield and stratum radiatum lacunosum moleculare was found in AD, with lesser involvement of the dentate gyrus and CA2/3 subfields. An association with age was found for the dentate gyrus and, to a lesser extent, for CA1. Three-dimensional patterns of variability and disease and aging effects discovered via the ex vivo hippocampus atlas provide information highly relevant to the active field of in vivo hippocampal subfield imaging.
AbstractList Although the hippocampus is one of the most studied structures in the human brain, limited quantitative data exist on its 3D organization, anatomical variability, and effects of disease on its subregions. Histological studies provide restricted reference information due to their 2D nature. In this paper, high-resolution (∼200 × 200 × 200 μm ) ex vivo MRI scans of 31 human hippocampal specimens are combined using a groupwise diffeomorphic registration approach into a 3D probabilistic atlas that captures average anatomy and anatomic variability of hippocampal subfields. Serial histological imaging in 9 of the 31 specimens was used to label hippocampal subfields in the atlas based on cytoarchitecture. Specimens were obtained from autopsies in patients with a clinical diagnosis of Alzheimer's disease (AD; 9 subjects, 13 hemispheres), of other dementia (nine subjects, nine hemispheres), and in subjects without dementia (seven subjects, nine hemispheres), and morphometric analysis was performed in atlas space to measure effects of age and AD on hippocampal subfields. Disproportional involvement of the cornu ammonis (CA) 1 subfield and stratum radiatum lacunosum moleculare was found in AD, with lesser involvement of the dentate gyrus and CA2/3 subfields. An association with age was found for the dentate gyrus and, to a lesser extent, for CA1. Three-dimensional patterns of variability and disease and aging effects discovered via the ex vivo hippocampus atlas provide information highly relevant to the active field of in vivo hippocampal subfield imaging.
There has been increasing interest in hippocampal subfield morphometry in aging and disease using in vivo MRI. However, research on in vivo morphometry is hampered by the lack of a definitive reference model describing regional effects of aging and disease pathology on the hippocampus. To address this limitation, we built a 3D probabilistic atlas of the hippocampus combining postmortem MRI with histology, allowing us to investigate Alzheimer’s disease (AD)-related effects on hippocampal subfield morphometry, derived from histology. Our results support the hypothesis of differential involvement of hippocampal subfields in AD, providing further impetus for more granular study of the hippocampus in aging and disease during life. Furthermore, this atlas provides an important anatomical reference for hippocampal subfield research. Although the hippocampus is one of the most studied structures in the human brain, limited quantitative data exist on its 3D organization, anatomical variability, and effects of disease on its subregions. Histological studies provide restricted reference information due to their 2D nature. In this paper, high-resolution (∼200 × 200 × 200 μm 3 ) ex vivo MRI scans of 31 human hippocampal specimens are combined using a groupwise diffeomorphic registration approach into a 3D probabilistic atlas that captures average anatomy and anatomic variability of hippocampal subfields. Serial histological imaging in 9 of the 31 specimens was used to label hippocampal subfields in the atlas based on cytoarchitecture. Specimens were obtained from autopsies in patients with a clinical diagnosis of Alzheimer's disease (AD; 9 subjects, 13 hemispheres), of other dementia (nine subjects, nine hemispheres), and in subjects without dementia (seven subjects, nine hemispheres), and morphometric analysis was performed in atlas space to measure effects of age and AD on hippocampal subfields. Disproportional involvement of the cornu ammonis (CA) 1 subfield and stratum radiatum lacunosum moleculare was found in AD, with lesser involvement of the dentate gyrus and CA2/3 subfields. An association with age was found for the dentate gyrus and, to a lesser extent, for CA1. Three-dimensional patterns of variability and disease and aging effects discovered via the ex vivo hippocampus atlas provide information highly relevant to the active field of in vivo hippocampal subfield imaging.
Although the hippocampus is one of the most studied structures in the human brain, limited quantitative data exist on its 3D organization, anatomical variability, and effects of disease on its subregions. Histological studies provide restricted reference information due to their 2D nature. In this paper, high-resolution (∼200 × 200 × 200 μm3) ex vivo MRI scans of 31 human hippocampal specimens are combined using a groupwise diffeomorphic registration approach into a 3D probabilistic atlas that captures average anatomy and anatomic variability of hippocampal subfields. Serial histological imaging in 9 of the 31 specimens was used to label hippocampal subfields in the atlas based on cytoarchitecture. Specimens were obtained from autopsies in patients with a clinical diagnosis of Alzheimer's disease (AD; 9 subjects, 13 hemispheres), of other dementia (nine subjects, nine hemispheres), and in subjects without dementia (seven subjects, nine hemispheres), and morphometric analysis was performed in atlas space to measure effects of age and AD on hippocampal subfields. Disproportional involvement of the cornu ammonis (CA) 1 subfield and stratum radiatum lacunosum moleculare was found in AD, with lesser involvement of the dentate gyrus and CA2/3 subfields. An association with age was found for the dentate gyrus and, to a lesser extent, for CA1. Three-dimensional patterns of variability and disease and aging effects discovered via the ex vivo hippocampus atlas provide information highly relevant to the active field of in vivo hippocampal subfield imaging.Although the hippocampus is one of the most studied structures in the human brain, limited quantitative data exist on its 3D organization, anatomical variability, and effects of disease on its subregions. Histological studies provide restricted reference information due to their 2D nature. In this paper, high-resolution (∼200 × 200 × 200 μm3) ex vivo MRI scans of 31 human hippocampal specimens are combined using a groupwise diffeomorphic registration approach into a 3D probabilistic atlas that captures average anatomy and anatomic variability of hippocampal subfields. Serial histological imaging in 9 of the 31 specimens was used to label hippocampal subfields in the atlas based on cytoarchitecture. Specimens were obtained from autopsies in patients with a clinical diagnosis of Alzheimer's disease (AD; 9 subjects, 13 hemispheres), of other dementia (nine subjects, nine hemispheres), and in subjects without dementia (seven subjects, nine hemispheres), and morphometric analysis was performed in atlas space to measure effects of age and AD on hippocampal subfields. Disproportional involvement of the cornu ammonis (CA) 1 subfield and stratum radiatum lacunosum moleculare was found in AD, with lesser involvement of the dentate gyrus and CA2/3 subfields. An association with age was found for the dentate gyrus and, to a lesser extent, for CA1. Three-dimensional patterns of variability and disease and aging effects discovered via the ex vivo hippocampus atlas provide information highly relevant to the active field of in vivo hippocampal subfield imaging.
Although the hippocampus is one of the most studied structures in the human brain, limited quantitative data exist on its 3D organization, anatomical variability, and effects of disease on its subregions. Histological studies provide restricted reference information due to their 2D nature. In this paper, high-resolution (∼200 × 200 × 200 μm³) ex vivo MRI scans of 31 human hippocampal specimens are combined using a groupwise diffeomorphic registration approach into a 3D probabilistic atlas that captures average anatomy and anatomic variability of hippocampal subfields. Serial histological imaging in 9 of the 31 specimens was used to label hippocampal subfields in the atlas based on cytoarchitecture. Specimens were obtained from autopsies in patients with a clinical diagnosis of Alzheimer’s disease (AD; 9 subjects, 13 hemispheres), of other dementia (nine subjects, nine hemispheres), and in subjects without dementia (seven subjects, nine hemispheres), and morphometric analysis was performed in atlas space to measure effects of age and AD on hippocampal subfields. Disproportional involvement of the cornu ammonis (CA) 1 subfield and stratum radiatum lacunosum moleculare was found in AD, with lesser involvement of the dentate gyrus and CA2/3 subfields. An association with age was found for the dentate gyrus and, to a lesser extent, for CA1. Three-dimensional patterns of variability and disease and aging effects discovered via the ex vivo hippocampus atlas provide information highly relevant to the active field of in vivo hippocampal subfield imaging.
Although the hippocampus is one of the most studied structures in the human brain, limited quantitative data exist on its 3D organization, anatomical variability, and effects of disease on its subregions. Histological studies provide restricted reference information due to their 2D nature. In this paper, high-resolution (∼200 × 200 × 200 μm3) ex vivo MRI scans of 31 human hippocampal specimens are combined using a groupwise diffeomorphic registration approach into a 3D probabilistic atlas that captures average anatomy and anatomic variability of hippocampal subfields. Serial histological imaging in 9 of the 31 specimens was used to label hippocampal subfields in the atlas based on cytoarchitecture. Specimens were obtained from autopsies in patients with a clinical diagnosis of Alzheimer's disease (AD; 9 subjects, 13 hemispheres), of other dementia (nine subjects, nine hemispheres), and in subjects without dementia (seven subjects, nine hemispheres), and morphometric analysis was performed in atlas space to measure effects of age and AD on hippocampal subfields. Disproportional involvement of the cornu ammonis (CA) 1 subfield and stratum radiatum lacunosum moleculare was found in AD, with lesser involvement of the dentate gyrus and CA2/3 subfields. An association with age was found for the dentate gyrus and, to a lesser extent, for CA1. Three-dimensional patterns of variability and disease and aging effects discovered via the ex vivo hippocampus atlas provide information highly relevant to the active field of in vivo hippocampal subfield imaging.
Author Pluta, John B.
Trojanowski, John Q.
Elliott, Mark A.
Wolk, David A.
Robinson, John L.
Adler, Daniel H.
Pickup, Stephen
Wisse, Laura E. M.
Miller, Michael I.
Ding, Song-Lin
Kadivar, Salmon
Grossman, Murray
Yushkevich, Paul A.
Das, Sandhitsu R.
Xie, Long
Toledo, Jon B.
Wang, Jiancong
Ittyerah, Ranjit
Liu, Weixia
Schuck, Theresa
Detre, John A.
Author_xml – sequence: 1
  givenname: Daniel H.
  surname: Adler
  fullname: Adler, Daniel H.
  organization: Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104
– sequence: 2
  givenname: Laura E. M.
  surname: Wisse
  fullname: Wisse, Laura E. M.
  organization: Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104
– sequence: 3
  givenname: Ranjit
  surname: Ittyerah
  fullname: Ittyerah, Ranjit
  organization: Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104
– sequence: 4
  givenname: John B.
  surname: Pluta
  fullname: Pluta, John B.
  organization: Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104
– sequence: 5
  givenname: Song-Lin
  surname: Ding
  fullname: Ding, Song-Lin
  organization: Allen Institute for Brain Science, Seattle, WA 98109
– sequence: 6
  givenname: Long
  surname: Xie
  fullname: Xie, Long
  organization: Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104
– sequence: 7
  givenname: Jiancong
  surname: Wang
  fullname: Wang, Jiancong
  organization: Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104
– sequence: 8
  givenname: Salmon
  surname: Kadivar
  fullname: Kadivar, Salmon
  organization: Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104
– sequence: 9
  givenname: John L.
  surname: Robinson
  fullname: Robinson, John L.
  organization: Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, PA 19104
– sequence: 10
  givenname: Theresa
  surname: Schuck
  fullname: Schuck, Theresa
  organization: Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, PA 19104
– sequence: 11
  givenname: John Q.
  surname: Trojanowski
  fullname: Trojanowski, John Q.
  organization: Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, PA 19104
– sequence: 12
  givenname: Murray
  surname: Grossman
  fullname: Grossman, Murray
  organization: Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104
– sequence: 13
  givenname: John A.
  surname: Detre
  fullname: Detre, John A.
  organization: Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104
– sequence: 14
  givenname: Mark A.
  surname: Elliott
  fullname: Elliott, Mark A.
  organization: Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104
– sequence: 15
  givenname: Jon B.
  surname: Toledo
  fullname: Toledo, Jon B.
  organization: Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, PA 19104
– sequence: 16
  givenname: Weixia
  surname: Liu
  fullname: Liu, Weixia
  organization: Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104
– sequence: 17
  givenname: Stephen
  surname: Pickup
  fullname: Pickup, Stephen
  organization: Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104
– sequence: 18
  givenname: Michael I.
  surname: Miller
  fullname: Miller, Michael I.
  organization: Center for Imaging Science, Johns Hopkins University, Baltimore, MD 21218
– sequence: 19
  givenname: Sandhitsu R.
  surname: Das
  fullname: Das, Sandhitsu R.
  organization: Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104
– sequence: 20
  givenname: David A.
  surname: Wolk
  fullname: Wolk, David A.
  organization: Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104
– sequence: 21
  givenname: Paul A.
  surname: Yushkevich
  fullname: Yushkevich, Paul A.
  organization: Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29592955$$D View this record in MEDLINE/PubMed
BookMark eNp1ks1u1DAUhS1URKeFNSuQJTZsprXj_NgbpGrET6UiJARr68a5mXiU2MFORm1XrHkDXo8nwdNpKVRiYdnS_c7R8b33iBw475CQ55ydcFaJ09FBPOGScaYE58UjskgvvixzxQ7IgrGsWso8yw_JUYwbxpgqJHtCDjNVqHSKBfmx6iCAmTDYa-vWdOqQdvMAjnZ2HL2BYZwjtY7CelcG19Cz_rpDO2D49f1npI2NCBHpHG_q1PikmGCy3kFPYeohMcl9iw1tgx8oXtKt3Xr68fP5jV1n4-R7v756Sh630Ed8dnsfk6_v3n5ZfVhefHp_vjq7WJq8lNOyYXUtWcsAm5KrvBa1kSarJOR5o0rJBeaCN00LJUKZpy-3gguT-iOyTBaI4pi82fuOcz1gY9BNAXo9BjtAuNIerP634myn136rC8WZLFUyeH1rEPy3GeOkBxsN9j049HPUGeNK8kzwKqGvHqAbP4fUmR2llKpkIUSiXv6d6E-UuzEloNgDJvgYA7ba2H2PU0Dba870bh30bh30_Tok3ekD3Z31_xUv9opNmkq4T1IWTMqCid_dRMT6
CitedBy_id crossref_primary_10_1038_s41598_020_69163_z
crossref_primary_10_1016_j_physbeh_2024_114583
crossref_primary_10_1016_j_dadm_2019_04_001
crossref_primary_10_1053_j_sult_2021_07_002
crossref_primary_10_1007_s12565_022_00673_8
crossref_primary_10_3389_fnagi_2022_832828
crossref_primary_10_3390_app11041892
crossref_primary_10_1093_brain_awab262
crossref_primary_10_1111_cns_14539
crossref_primary_10_1186_s40478_022_01342_7
crossref_primary_10_3389_fnana_2023_1114757
crossref_primary_10_1016_j_nicl_2019_101698
crossref_primary_10_1016_j_nicl_2024_103623
crossref_primary_10_1093_brain_awaa447
crossref_primary_10_1097_PRS_0000000000010526
crossref_primary_10_1016_j_media_2021_102265
crossref_primary_10_1002_hbm_25139
crossref_primary_10_1002_hbm_25414
crossref_primary_10_1016_j_tins_2021_06_005
crossref_primary_10_3389_fnagi_2022_901140
crossref_primary_10_3389_fnagi_2024_1466328
crossref_primary_10_1002_alz_14179
crossref_primary_10_1016_j_jalz_2019_02_007
crossref_primary_10_3233_JAD_200804
crossref_primary_10_1177_09727531221117633
crossref_primary_10_1016_j_neurobiolaging_2020_11_012
crossref_primary_10_1039_D3FO04665F
crossref_primary_10_1111_jon_12809
crossref_primary_10_1159_000495754
crossref_primary_10_1016_j_neuroimage_2021_118011
crossref_primary_10_3233_JAD_230034
crossref_primary_10_1016_j_neuroimage_2023_120406
crossref_primary_10_1093_brain_awac298
crossref_primary_10_1016_j_biopsych_2024_12_009
crossref_primary_10_1093_braincomms_fcae296
crossref_primary_10_1007_s12031_023_02131_0
crossref_primary_10_1523_JNEUROSCI_2857_18_2019
crossref_primary_10_1016_j_scib_2020_04_003
crossref_primary_10_1016_j_seizure_2021_03_007
crossref_primary_10_1002_hipo_23637
crossref_primary_10_1016_j_neurobiolaging_2020_11_002
crossref_primary_10_1523_JNEUROSCI_0372_24_2024
crossref_primary_10_1016_j_intimp_2023_110649
crossref_primary_10_1038_s41380_018_0262_7
crossref_primary_10_1016_j_neuroimage_2018_08_012
crossref_primary_10_3390_ijms241813668
crossref_primary_10_1016_j_neubiorev_2018_12_014
crossref_primary_10_1186_s13024_023_00632_5
crossref_primary_10_1016_j_neuroimage_2025_121125
crossref_primary_10_70322_ldmh_2025_10005
crossref_primary_10_1002_hbm_25234
crossref_primary_10_1186_s40478_021_01225_3
crossref_primary_10_1016_j_nbd_2023_106127
crossref_primary_10_3389_fnana_2023_1149674
crossref_primary_10_3389_fnana_2022_995286
crossref_primary_10_1002_hbm_26715
crossref_primary_10_3389_fnagi_2019_00173
crossref_primary_10_3389_fnins_2020_00804
crossref_primary_10_1016_j_neuroimage_2019_116328
crossref_primary_10_1093_cercor_bhy336
crossref_primary_10_3390_antiox12111972
crossref_primary_10_3390_ijms251910535
crossref_primary_10_3233_JAD_190779
crossref_primary_10_1002_hipo_23388
crossref_primary_10_1016_j_jneumeth_2024_110359
crossref_primary_10_1007_s00401_022_02472_x
crossref_primary_10_1162_imag_a_00171
crossref_primary_10_1016_j_neuroimage_2020_116563
crossref_primary_10_1109_TMI_2022_3168888
crossref_primary_10_3389_fnins_2021_715749
crossref_primary_10_3390_biomedicines11051383
crossref_primary_10_1007_s12311_024_01670_5
crossref_primary_10_1021_acs_jproteome_2c00143
crossref_primary_10_3390_app10082857
crossref_primary_10_1186_s40478_021_01275_7
crossref_primary_10_1016_j_neurobiolaging_2022_02_004
crossref_primary_10_3389_fnins_2021_762458
crossref_primary_10_1016_j_media_2019_101596
crossref_primary_10_3233_JAD_231114
crossref_primary_10_3389_fnagi_2021_672077
crossref_primary_10_1002_hipo_23172
crossref_primary_10_3389_fneur_2018_00927
crossref_primary_10_1016_j_nicl_2019_101665
crossref_primary_10_1111_pcn_13626
crossref_primary_10_1002_hbm_26460
crossref_primary_10_1002_hipo_23177
crossref_primary_10_1002_hbm_26062
crossref_primary_10_1007_s00259_020_04752_8
crossref_primary_10_1016_j_neuroimage_2020_116798
crossref_primary_10_3389_fnana_2019_00021
crossref_primary_10_1017_thg_2022_20
crossref_primary_10_1007_s11060_022_03947_3
crossref_primary_10_1109_TMI_2021_3070780
crossref_primary_10_1007_s00429_023_02725_9
crossref_primary_10_1016_j_actbio_2023_04_029
crossref_primary_10_1038_s41551_024_01236_0
crossref_primary_10_1016_j_bspc_2020_101903
crossref_primary_10_1016_j_neuroimage_2019_116348
crossref_primary_10_1016_j_compbiomed_2024_108933
crossref_primary_10_1016_j_neuroimage_2022_119616
crossref_primary_10_1016_j_neuroimage_2023_120182
crossref_primary_10_1038_s41467_024_49205_0
crossref_primary_10_1016_j_neuroimage_2021_117931
crossref_primary_10_1523_JNEUROSCI_1010_19_2019
crossref_primary_10_1111_cns_14110
crossref_primary_10_1111_nan_12659
crossref_primary_10_1002_hbm_70004
crossref_primary_10_1002_hbm_25119
crossref_primary_10_1016_j_neuroimage_2021_118584
crossref_primary_10_1073_pnas_2113835118
crossref_primary_10_1016_j_neurobiolaging_2020_06_005
crossref_primary_10_1002_alz_12241
crossref_primary_10_1016_j_neuroimage_2020_117195
Cites_doi 10.1016/j.bandc.2009.11.007
10.1016/j.neurobiolaging.2006.03.007
10.1016/j.neuroimage.2015.01.004
10.1016/j.nicl.2013.08.007
10.1002/cne.23786
10.1016/j.neurobiolaging.2008.08.010
10.1002/hbm.20934
10.1016/S0140-6736(94)92338-8
10.1007/s00401-001-0475-7
10.1002/hbm.22627
10.1212/WNL.0b013e3181f736a1
10.1016/j.nicl.2014.07.011
10.1002/(SICI)1096-9861(19970324)379:4<482::AID-CNE2>3.0.CO;2-Z
10.1214/aos/1013699998
10.1016/j.neurobiolaging.2003.12.005
10.1002/hipo.22153
10.1016/j.neuroimage.2015.04.042
10.1016/j.neuroimage.2008.08.042
10.1016/j.neuroimage.2014.04.054
10.1016/j.neurobiolaging.2008.01.010
10.1038/nrn3085
10.1007/BF00308809
10.1016/j.neuroscience.2015.08.033
10.1038/nature12107
10.1007/b138576
10.1007/s004010050622
10.1002/hbm.23090
10.1016/j.tins.2011.06.006
10.3174/ajnr.A2589
10.1002/hipo.22671
10.1097/WNR.0b013e3282f8b18c
10.1002/cne.24080
10.1006/exnr.2000.7380
10.1097/00005072-195312040-00008
10.1016/j.neuroimage.2013.08.067
10.1212/WNL.0000000000000154
10.18637/jss.v059.i09
ContentType Journal Article
Copyright Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles
Copyright National Academy of Sciences Apr 17, 2018
2018
Copyright_xml – notice: Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles
– notice: Copyright National Academy of Sciences Apr 17, 2018
– notice: 2018
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.1801093115
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic

Virology and AIDS Abstracts
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 4257
ExternalDocumentID PMC5910869
29592955
10_1073_pnas_1801093115
26508850
Genre Video-Audio Media
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIA NIH HHS
  grantid: R01 AG056014
– fundername: NINDS NIH HHS
  grantid: P30 NS045839
– fundername: NIBIB NIH HHS
  grantid: R03 EB016923
– fundername: NIBIB NIH HHS
  grantid: P41 EB015909
– fundername: NIBIB NIH HHS
  grantid: P41 EB015893
– fundername: NIA NIH HHS
  grantid: R01 AG037376
– fundername: NIA NIH HHS
  grantid: P30 AG010124
– fundername: NIBIB NIH HHS
  grantid: R01 EB017255
– fundername: NIA NIH HHS
  grantid: R01 AG038490
– fundername: NIA NIH HHS
  grantid: P01 AG017586
– fundername: HHS | NIH | National Institute on Aging (NIA)
  grantid: R01 AG037376
– fundername: HHS | NIH | National Institute of Biomedical Imaging and Bioengineering (NIBIB)
  grantid: R01 EB014146
– fundername: HHS | NIH | National Institute on Aging (NIA)
  grantid: P01 AG017586
– fundername: HHS | NIH | National Institute of Biomedical Imaging and Bioengineering (NIBIB)
  grantid: R01 EB017255
– fundername: HHS | NIH | National Institute of Biomedical Imaging and Bioengineering (NIBIB)
  grantid: R03 EB16923-01A1
– fundername: BrightFocus Foundation
  grantid: n/a
– fundername: Wyncote Foundation
  grantid: n/a
– fundername: Newhouse Foundation
  grantid: n/a
– fundername: HHS | NIH | National Institute of Biomedical Imaging and Bioengineering (NIBIB)
  grantid: P41 EB015893
– fundername: HHS | NIH | National Institute on Aging (NIA)
  grantid: AG056014
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c468t-d0bb80f0aed6194b3bc8c278a44d96813e431ddfa6ea64009f313c09332285ee3
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 14:00:31 EDT 2025
Fri Jul 11 10:57:21 EDT 2025
Mon Jun 30 08:32:44 EDT 2025
Thu Apr 03 07:03:07 EDT 2025
Thu Apr 24 23:11:04 EDT 2025
Tue Jul 01 03:19:47 EDT 2025
Fri May 30 11:17:25 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 16
Keywords computational anatomy
hippocampal subfields
ex vivo MRI
Alzheimer’s disease
histology
Language English
License Published under the PNAS license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c468t-d0bb80f0aed6194b3bc8c278a44d96813e431ddfa6ea64009f313c09332285ee3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Undefined-3
Edited by Robert Desimone, Massachusetts Institute of Technology, Cambridge, MA, and approved March 5, 2018 (received for review February 9, 2018)
Author contributions: D.H.A., L.E.M.W., J.Q.T., M.G., J.A.D., S.R.D., D.A.W., and P.A.Y. designed research; D.H.A., L.E.M.W., R.I., J.B.P., S.-L.D., S.K., J.L.R., T.S., M.A.E., J.B.T., W.L., S.P., and P.A.Y. performed research; D.H.A., L.X., J.W., M.I.M., and P.A.Y. contributed new reagents/analytic tools; D.H.A., L.E.M.W., and P.A.Y. analyzed data; and D.H.A., L.E.M.W., and P.A.Y. wrote the paper.
1D.H.A. and L.E.M.W. contributed equally to this work.
ORCID 0000-0001-8543-4016
0000-0003-4191-5509
PMID 29592955
PQID 2099978533
PQPubID 42026
PageCount 6
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5910869
proquest_miscellaneous_2019812317
proquest_journals_2099978533
pubmed_primary_29592955
crossref_citationtrail_10_1073_pnas_1801093115
crossref_primary_10_1073_pnas_1801093115
jstor_primary_26508850
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-04-17
PublicationDateYYYYMMDD 2018-04-17
PublicationDate_xml – month: 04
  year: 2018
  text: 2018-04-17
  day: 17
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2018
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References Yassa MA (e_1_3_4_4_2) 2011; 34
Barnes J (e_1_3_4_30_2) 2009; 30
Chung K (e_1_3_4_17_2) 2013; 497
Duvernoy HM (e_1_3_4_1_2) 2005
Kerchner GA (e_1_3_4_27_2) 2014; 82
Ding SL (e_1_3_4_14_2) 2015; 523
West MJ (e_1_3_4_16_2) 2004; 25
Thal DR (e_1_3_4_29_2) 2000; 163
Yushkevich PA (e_1_3_4_9_2) 2015; 111
Chen KH (e_1_3_4_33_2) 2010; 72
Kluver H (e_1_3_4_39_2) 1953; 12
Yushkevich PA (e_1_3_4_12_2) 2015; 36
Adler DH (e_1_3_4_38_2) 2016
Hanseeuw BJ (e_1_3_4_8_2) 2011; 32
Goubran M (e_1_3_4_35_2) 2016; 37
Halekoh U (e_1_3_4_40_2) 2014; 59
Benjamini Y (e_1_3_4_18_2) 2001; 29
Insausti R (e_1_3_4_2_2) 2012
Wisse LEM (e_1_3_4_34_2) 2017; 27
Yushkevich PA (e_1_3_4_36_2) 2009; 44
Simic G (e_1_3_4_15_2) 1997; 379
Mueller SG (e_1_3_4_6_2) 2007; 28
de Flores R (e_1_3_4_19_2) 2015; 309
La Joie R (e_1_3_4_21_2) 2013; 3
Braak H (e_1_3_4_24_2) 1991; 82
Mai JK (e_1_3_4_13_2) 2008
Olsen RK (e_1_3_4_7_2) 2013; 23
Mueller SG (e_1_3_4_20_2) 2010; 31
Kerchner GA (e_1_3_4_25_2) 2010; 75
Rossler M (e_1_3_4_23_2) 2002; 103
Malykhin NV (e_1_3_4_32_2) 2008; 19
Boutet C (e_1_3_4_26_2) 2014; 5
Ding SL (e_1_3_4_3_2) 2016; 524
Martin SB (e_1_3_4_31_2) 2010; 31
Braak E (e_1_3_4_28_2) 1997; 93
Pipitone J (e_1_3_4_11_2) 2014; 101
Small SA (e_1_3_4_5_2) 2011; 12
Adler DH (e_1_3_4_37_2) 2014; 84
Iglesias JE (e_1_3_4_10_2) 2015; 115
West MJ (e_1_3_4_22_2) 1994; 344
References_xml – volume: 72
  start-page: 400
  year: 2010
  ident: e_1_3_4_33_2
  article-title: Hippocampal region-specific contributions to memory performance in normal elderly
  publication-title: Brain Cogn
  doi: 10.1016/j.bandc.2009.11.007
– volume: 28
  start-page: 719
  year: 2007
  ident: e_1_3_4_6_2
  article-title: Measurement of hippocampal subfields and age-related changes with high resolution MRI at 4T
  publication-title: Neurobiol Aging
  doi: 10.1016/j.neurobiolaging.2006.03.007
– volume: 111
  start-page: 526
  year: 2015
  ident: e_1_3_4_9_2
  article-title: Quantitative comparison of 21 protocols for labeling hippocampal subfields and parahippocampal subregions in in vivo MRI: Towards a harmonized segmentation protocol
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.01.004
– volume: 3
  start-page: 155
  year: 2013
  ident: e_1_3_4_21_2
  article-title: Hippocampal subfield volumetry in mild cognitive impairment, Alzheimer’s disease and semantic dementia
  publication-title: Neuroimage Clin
  doi: 10.1016/j.nicl.2013.08.007
– volume: 523
  start-page: 2233
  year: 2015
  ident: e_1_3_4_14_2
  article-title: Organization and detailed parcellation of human hippocampal head and body regions based on a combined analysis of cyto- and chemoarchitecture
  publication-title: J Comp Neurol
  doi: 10.1002/cne.23786
– volume: 31
  start-page: 1099
  year: 2010
  ident: e_1_3_4_31_2
  article-title: Evidence that volume of anterior medial temporal lobe is reduced in seniors destined for mild cognitive impairment
  publication-title: Neurobiol Aging
  doi: 10.1016/j.neurobiolaging.2008.08.010
– volume: 31
  start-page: 1339
  year: 2010
  ident: e_1_3_4_20_2
  article-title: Hippocampal atrophy patterns in mild cognitive impairment and Alzheimer’s disease
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.20934
– volume: 344
  start-page: 769
  year: 1994
  ident: e_1_3_4_22_2
  article-title: Differences in the pattern of hippocampal neuronal loss in normal ageing and Alzheimer’s disease
  publication-title: Lancet
  doi: 10.1016/S0140-6736(94)92338-8
– volume: 103
  start-page: 363
  year: 2002
  ident: e_1_3_4_23_2
  article-title: Stage-dependent and sector-specific neuronal loss in hippocampus during Alzheimer’s disease
  publication-title: Acta Neuropathol
  doi: 10.1007/s00401-001-0475-7
– volume: 36
  start-page: 258
  year: 2015
  ident: e_1_3_4_12_2
  article-title: Automated volumetry and regional thickness analysis of hippocampal subfields and medial temporal cortical structures in mild cognitive impairment
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.22627
– volume: 75
  start-page: 1381
  year: 2010
  ident: e_1_3_4_25_2
  article-title: Hippocampal CA1 apical neuropil atrophy in mild Alzheimer disease visualized with 7-T MRI
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e3181f736a1
– volume: 5
  start-page: 341
  year: 2014
  ident: e_1_3_4_26_2
  article-title: Detection of volume loss in hippocampal layers in Alzheimer’s disease using 7 T MRI: A feasibility study
  publication-title: Neuroimage Clin
  doi: 10.1016/j.nicl.2014.07.011
– volume: 379
  start-page: 482
  year: 1997
  ident: e_1_3_4_15_2
  article-title: Volume and number of neurons of the human hippocampal formation in normal aging and Alzheimer’s disease
  publication-title: J Comp Neurol
  doi: 10.1002/(SICI)1096-9861(19970324)379:4<482::AID-CNE2>3.0.CO;2-Z
– volume: 29
  start-page: 1165
  year: 2001
  ident: e_1_3_4_18_2
  article-title: The control of the false discovery rate in multiple testing under dependency
  publication-title: Ann Stat
  doi: 10.1214/aos/1013699998
– volume: 25
  start-page: 1205
  year: 2004
  ident: e_1_3_4_16_2
  article-title: Hippocampal neurons in pre-clinical Alzheimer’s disease
  publication-title: Neurobiol Aging
  doi: 10.1016/j.neurobiolaging.2003.12.005
– volume: 23
  start-page: 855
  year: 2013
  ident: e_1_3_4_7_2
  article-title: Volumetric analysis of medial temporal lobe subregions in developmental amnesia using high-resolution magnetic resonance imaging
  publication-title: Hippocampus
  doi: 10.1002/hipo.22153
– volume: 115
  start-page: 117
  year: 2015
  ident: e_1_3_4_10_2
  article-title: A computational atlas of the hippocampal formation using ex vivo, ultra-high resolution MRI: Application to adaptive segmentation of in vivo MRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.04.042
– volume: 44
  start-page: 385
  year: 2009
  ident: e_1_3_4_36_2
  article-title: A high-resolution computational atlas of the human hippocampus from postmortem magnetic resonance imaging at 9.4 T
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.08.042
– volume: 101
  start-page: 494
  year: 2014
  ident: e_1_3_4_11_2
  article-title: Multi-atlas segmentation of the whole hippocampus and subfields using multiple automatically generated templates
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.04.054
– volume: 30
  start-page: 1711
  year: 2009
  ident: e_1_3_4_30_2
  article-title: A meta-analysis of hippocampal atrophy rates in Alzheimer’s disease
  publication-title: Neurobiol Aging
  doi: 10.1016/j.neurobiolaging.2008.01.010
– volume: 12
  start-page: 585
  year: 2011
  ident: e_1_3_4_5_2
  article-title: A pathophysiological framework of hippocampal dysfunction in ageing and disease
  publication-title: Nat Rev Neurosci
  doi: 10.1038/nrn3085
– volume: 82
  start-page: 239
  year: 1991
  ident: e_1_3_4_24_2
  article-title: Neuropathological stageing of Alzheimer-related changes
  publication-title: Acta Neuropathol
  doi: 10.1007/BF00308809
– volume: 309
  start-page: 29
  year: 2015
  ident: e_1_3_4_19_2
  article-title: Structural imaging of hippocampal subfields in healthy aging and Alzheimer’s disease
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2015.08.033
– volume: 497
  start-page: 332
  year: 2013
  ident: e_1_3_4_17_2
  article-title: Structural and molecular interrogation of intact biological systems
  publication-title: Nature
  doi: 10.1038/nature12107
– start-page: 1
  volume-title: The Human Hippocampus
  year: 2005
  ident: e_1_3_4_1_2
  doi: 10.1007/b138576
– start-page: 1
  volume-title: Atlas of the Human Brain
  year: 2008
  ident: e_1_3_4_13_2
– volume: 93
  start-page: 323
  year: 1997
  ident: e_1_3_4_28_2
  article-title: Alzheimer’s disease: Transiently developing dendritic changes in pyramidal cells of sector CA1 of the Ammon’s horn
  publication-title: Acta Neuropathol
  doi: 10.1007/s004010050622
– volume: 37
  start-page: 1103
  year: 2016
  ident: e_1_3_4_35_2
  article-title: In vivo MRI signatures of hippocampal subfield pathology in intractable epilepsy
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.23090
– volume-title: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2016. MICCAI 2016. Lecture Notes in Computer Science
  year: 2016
  ident: e_1_3_4_38_2
– volume: 34
  start-page: 515
  year: 2011
  ident: e_1_3_4_4_2
  article-title: Pattern separation in the hippocampus
  publication-title: Trends Neurosci
  doi: 10.1016/j.tins.2011.06.006
– volume: 32
  start-page: 1658
  year: 2011
  ident: e_1_3_4_8_2
  article-title: Mild cognitive impairment: Differential atrophy in the hippocampal subfields
  publication-title: AJNR Am J Neuroradiol
  doi: 10.3174/ajnr.A2589
– volume: 27
  start-page: 3
  year: 2017
  ident: e_1_3_4_34_2
  article-title: A harmonized segmentation protocol for hippocampal and parahippocampal subregions: Why do we need one and what are the key goals?
  publication-title: Hippocampus
  doi: 10.1002/hipo.22671
– volume: 19
  start-page: 543
  year: 2008
  ident: e_1_3_4_32_2
  article-title: Aging hippocampus and amygdala
  publication-title: Neuroreport
  doi: 10.1097/WNR.0b013e3282f8b18c
– volume: 524
  start-page: 3127
  year: 2016
  ident: e_1_3_4_3_2
  article-title: Comprehensive cellular-resolution atlas of the adult human brain
  publication-title: J Comp Neurol
  doi: 10.1002/cne.24080
– volume-title: The Human Nervous System
  year: 2012
  ident: e_1_3_4_2_2
– volume: 163
  start-page: 98
  year: 2000
  ident: e_1_3_4_29_2
  article-title: Alzheimer-related tau-pathology in the perforant path target zone and in the hippocampal stratum oriens and radiatum correlates with onset and degree of dementia
  publication-title: Exp Neurol
  doi: 10.1006/exnr.2000.7380
– volume: 12
  start-page: 400
  year: 1953
  ident: e_1_3_4_39_2
  article-title: A method for the combined staining of cells and fibers in the nervous system
  publication-title: J Neuropathol Exp Neurol
  doi: 10.1097/00005072-195312040-00008
– volume: 84
  start-page: 505
  year: 2014
  ident: e_1_3_4_37_2
  article-title: Histology-derived volumetric annotation of the human hippocampal subfields in postmortem MRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.08.067
– volume: 82
  start-page: 691
  year: 2014
  ident: e_1_3_4_27_2
  article-title: APOE ε4 worsens hippocampal CA1 apical neuropil atrophy and episodic memory
  publication-title: Neurology
  doi: 10.1212/WNL.0000000000000154
– volume: 59
  start-page: 1
  year: 2014
  ident: e_1_3_4_40_2
  article-title: A Kenward-Roger approximation and parametric bootstrap methods for tests in linear mixed models–The R package pbkrtest
  publication-title: J Stat Softw
  doi: 10.18637/jss.v059.i09
SSID ssj0009580
Score 2.5924702
Snippet Although the hippocampus is one of the most studied structures in the human brain, limited quantitative data exist on its 3D organization, anatomical...
There has been increasing interest in hippocampal subfield morphometry in aging and disease using in vivo MRI. However, research on in vivo morphometry is...
SourceID pubmedcentral
proquest
pubmed
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4252
SubjectTerms Age factors
Aged
Aging
Aging - pathology
Alzheimer Disease - pathology
Alzheimer's disease
Atlases as Topic
Atrophy
Autopsies
Biological Sciences
Brain
Brain architecture
Computational neuroscience
Computer applications
Dementia disorders
Dentate gyrus
Dentate Gyrus - pathology
Hemispheres
Hippocampus
Hippocampus - pathology
Histology
Humans
Imaging, Three-Dimensional
Magnetic Resonance Imaging
Medical imaging
Morphometry
Neurodegenerative diseases
Neuroimaging
NMR
Nuclear magnetic resonance
Organ Size
Physical Sciences
Stratum radiatum
Title Characterizing the human hippocampus in aging and Alzheimer’s disease using a computational atlas derived from ex vivo MRI and histology
URI https://www.jstor.org/stable/26508850
https://www.ncbi.nlm.nih.gov/pubmed/29592955
https://www.proquest.com/docview/2099978533
https://www.proquest.com/docview/2019812317
https://pubmed.ncbi.nlm.nih.gov/PMC5910869
Volume 115
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Ra9swEBZd97KXsW7r5q0bGgzWYZzZsmPLj6F0tIOGUlrWNyNbMnFpnVDboeQX7A_t_-0kS7YTUtj2YoIln8H35XQ63X2H0GcucslrQx3w3qgT5DRzUuIFDs3jPIuYgCVdnuieTcOTq-DH9fh6Z-f3IGupqdNRttpaV_I_WoV7oFdZJfsPmu2Ewg34DfqFK2gYrn-l46OObXllqp7annuzYrGARepu0ah017YTkQyRT25XM1GojilRZU5n7EYFDJjKL29qEx5kNXjWNgfpS_BKVR2KeLCXxXJun12cKnGKrbiLy2sf97xbEyuTgTA1Mid9AYu2KpXt2OfTvh2yTBy474vf--KJnzJzwJRyM_u4j-Oe1jVsHJgKEF2w8qboa7rh6zOTcawbTOsQh0flaU1b0TkSrVkGr8YJg7axaGe32zpQA9ChGQZDRLauD2DQZFPjklUjj8pTQV9LGaBlcafgQuIxuI4th_AGJbcZeoKeEtidELUeDLmeqWtYpCL_28bbJP20fn7NF2rTYbdtdDbzdQcO0OUL9FzvXPCkheEe2hHlS7RntIgPNYH511fo1zouMSAAK1ziAS5xUWKFSwxAwh0uv1RYoxIrVGKG11CJFSqxRiWWqMTiAUtUYkClEtah8jW6-n58eXTi6I4fThaEtHa4m6bUzV0muIyupX6a0YxElAUBj0Pq-QL8Xc5zFgoWwuoT577nZzIoRwgdC-Hvo91yXoq3CBM_9AnjJOc0DWLqsyyKPR6ykGaculxYaGS-fZJpOnzZleU2UWkZkZ9IvSW93ix02D2waJlgHp-6r5TZzSNqHzR2LXRgtJtoO1Ilsngd7CXsuyz0qRsGKy-P7lgp5o2c48XgioOzb6E3LRh64RpNForWYNJNkAzy6yNlMVNM8uNYNlqL3z0q8z161v8hD9Bufd-ID-CF1-lHhfk_S1HhQQ
linkProvider ABC ChemistRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Characterizing+the+human+hippocampus+in+aging+and+Alzheimer%27s+disease+using+a+computational+atlas+derived+from+ex+vivo+MRI+and+histology&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Adler%2C+Daniel+H&rft.au=Wisse%2C+Laura+E+M&rft.au=Ittyerah%2C+Ranjit&rft.au=Pluta%2C+John+B&rft.date=2018-04-17&rft.eissn=1091-6490&rft.volume=115&rft.issue=16&rft.spage=4252&rft_id=info:doi/10.1073%2Fpnas.1801093115&rft_id=info%3Apmid%2F29592955&rft.externalDocID=29592955
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon