Characterizing the human hippocampus in aging and Alzheimer’s disease using a computational atlas derived from ex vivo MRI and histology
Although the hippocampus is one of the most studied structures in the human brain, limited quantitative data exist on its 3D organization, anatomical variability, and effects of disease on its subregions. Histological studies provide restricted reference information due to their 2D nature. In this p...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 115; no. 16; pp. 4252 - 4257 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
17.04.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Although the hippocampus is one of the most studied structures in the human brain, limited quantitative data exist on its 3D organization, anatomical variability, and effects of disease on its subregions. Histological studies provide restricted reference information due to their 2D nature. In this paper, high-resolution (∼200 × 200 × 200 μm³) ex vivo MRI scans of 31 human hippocampal specimens are combined using a groupwise diffeomorphic registration approach into a 3D probabilistic atlas that captures average anatomy and anatomic variability of hippocampal subfields. Serial histological imaging in 9 of the 31 specimens was used to label hippocampal subfields in the atlas based on cytoarchitecture. Specimens were obtained from autopsies in patients with a clinical diagnosis of Alzheimer’s disease (AD; 9 subjects, 13 hemispheres), of other dementia (nine subjects, nine hemispheres), and in subjects without dementia (seven subjects, nine hemispheres), and morphometric analysis was performed in atlas space to measure effects of age and AD on hippocampal subfields. Disproportional involvement of the cornu ammonis (CA) 1 subfield and stratum radiatum lacunosum moleculare was found in AD, with lesser involvement of the dentate gyrus and CA2/3 subfields. An association with age was found for the dentate gyrus and, to a lesser extent, for CA1. Three-dimensional patterns of variability and disease and aging effects discovered via the ex vivo hippocampus atlas provide information highly relevant to the active field of in vivo hippocampal subfield imaging. |
---|---|
AbstractList | Although the hippocampus is one of the most studied structures in the human brain, limited quantitative data exist on its 3D organization, anatomical variability, and effects of disease on its subregions. Histological studies provide restricted reference information due to their 2D nature. In this paper, high-resolution (∼200 × 200 × 200 μm
) ex vivo MRI scans of 31 human hippocampal specimens are combined using a groupwise diffeomorphic registration approach into a 3D probabilistic atlas that captures average anatomy and anatomic variability of hippocampal subfields. Serial histological imaging in 9 of the 31 specimens was used to label hippocampal subfields in the atlas based on cytoarchitecture. Specimens were obtained from autopsies in patients with a clinical diagnosis of Alzheimer's disease (AD; 9 subjects, 13 hemispheres), of other dementia (nine subjects, nine hemispheres), and in subjects without dementia (seven subjects, nine hemispheres), and morphometric analysis was performed in atlas space to measure effects of age and AD on hippocampal subfields. Disproportional involvement of the cornu ammonis (CA) 1 subfield and stratum radiatum lacunosum moleculare was found in AD, with lesser involvement of the dentate gyrus and CA2/3 subfields. An association with age was found for the dentate gyrus and, to a lesser extent, for CA1. Three-dimensional patterns of variability and disease and aging effects discovered via the ex vivo hippocampus atlas provide information highly relevant to the active field of in vivo hippocampal subfield imaging. There has been increasing interest in hippocampal subfield morphometry in aging and disease using in vivo MRI. However, research on in vivo morphometry is hampered by the lack of a definitive reference model describing regional effects of aging and disease pathology on the hippocampus. To address this limitation, we built a 3D probabilistic atlas of the hippocampus combining postmortem MRI with histology, allowing us to investigate Alzheimer’s disease (AD)-related effects on hippocampal subfield morphometry, derived from histology. Our results support the hypothesis of differential involvement of hippocampal subfields in AD, providing further impetus for more granular study of the hippocampus in aging and disease during life. Furthermore, this atlas provides an important anatomical reference for hippocampal subfield research. Although the hippocampus is one of the most studied structures in the human brain, limited quantitative data exist on its 3D organization, anatomical variability, and effects of disease on its subregions. Histological studies provide restricted reference information due to their 2D nature. In this paper, high-resolution (∼200 × 200 × 200 μm 3 ) ex vivo MRI scans of 31 human hippocampal specimens are combined using a groupwise diffeomorphic registration approach into a 3D probabilistic atlas that captures average anatomy and anatomic variability of hippocampal subfields. Serial histological imaging in 9 of the 31 specimens was used to label hippocampal subfields in the atlas based on cytoarchitecture. Specimens were obtained from autopsies in patients with a clinical diagnosis of Alzheimer's disease (AD; 9 subjects, 13 hemispheres), of other dementia (nine subjects, nine hemispheres), and in subjects without dementia (seven subjects, nine hemispheres), and morphometric analysis was performed in atlas space to measure effects of age and AD on hippocampal subfields. Disproportional involvement of the cornu ammonis (CA) 1 subfield and stratum radiatum lacunosum moleculare was found in AD, with lesser involvement of the dentate gyrus and CA2/3 subfields. An association with age was found for the dentate gyrus and, to a lesser extent, for CA1. Three-dimensional patterns of variability and disease and aging effects discovered via the ex vivo hippocampus atlas provide information highly relevant to the active field of in vivo hippocampal subfield imaging. Although the hippocampus is one of the most studied structures in the human brain, limited quantitative data exist on its 3D organization, anatomical variability, and effects of disease on its subregions. Histological studies provide restricted reference information due to their 2D nature. In this paper, high-resolution (∼200 × 200 × 200 μm3) ex vivo MRI scans of 31 human hippocampal specimens are combined using a groupwise diffeomorphic registration approach into a 3D probabilistic atlas that captures average anatomy and anatomic variability of hippocampal subfields. Serial histological imaging in 9 of the 31 specimens was used to label hippocampal subfields in the atlas based on cytoarchitecture. Specimens were obtained from autopsies in patients with a clinical diagnosis of Alzheimer's disease (AD; 9 subjects, 13 hemispheres), of other dementia (nine subjects, nine hemispheres), and in subjects without dementia (seven subjects, nine hemispheres), and morphometric analysis was performed in atlas space to measure effects of age and AD on hippocampal subfields. Disproportional involvement of the cornu ammonis (CA) 1 subfield and stratum radiatum lacunosum moleculare was found in AD, with lesser involvement of the dentate gyrus and CA2/3 subfields. An association with age was found for the dentate gyrus and, to a lesser extent, for CA1. Three-dimensional patterns of variability and disease and aging effects discovered via the ex vivo hippocampus atlas provide information highly relevant to the active field of in vivo hippocampal subfield imaging.Although the hippocampus is one of the most studied structures in the human brain, limited quantitative data exist on its 3D organization, anatomical variability, and effects of disease on its subregions. Histological studies provide restricted reference information due to their 2D nature. In this paper, high-resolution (∼200 × 200 × 200 μm3) ex vivo MRI scans of 31 human hippocampal specimens are combined using a groupwise diffeomorphic registration approach into a 3D probabilistic atlas that captures average anatomy and anatomic variability of hippocampal subfields. Serial histological imaging in 9 of the 31 specimens was used to label hippocampal subfields in the atlas based on cytoarchitecture. Specimens were obtained from autopsies in patients with a clinical diagnosis of Alzheimer's disease (AD; 9 subjects, 13 hemispheres), of other dementia (nine subjects, nine hemispheres), and in subjects without dementia (seven subjects, nine hemispheres), and morphometric analysis was performed in atlas space to measure effects of age and AD on hippocampal subfields. Disproportional involvement of the cornu ammonis (CA) 1 subfield and stratum radiatum lacunosum moleculare was found in AD, with lesser involvement of the dentate gyrus and CA2/3 subfields. An association with age was found for the dentate gyrus and, to a lesser extent, for CA1. Three-dimensional patterns of variability and disease and aging effects discovered via the ex vivo hippocampus atlas provide information highly relevant to the active field of in vivo hippocampal subfield imaging. Although the hippocampus is one of the most studied structures in the human brain, limited quantitative data exist on its 3D organization, anatomical variability, and effects of disease on its subregions. Histological studies provide restricted reference information due to their 2D nature. In this paper, high-resolution (∼200 × 200 × 200 μm³) ex vivo MRI scans of 31 human hippocampal specimens are combined using a groupwise diffeomorphic registration approach into a 3D probabilistic atlas that captures average anatomy and anatomic variability of hippocampal subfields. Serial histological imaging in 9 of the 31 specimens was used to label hippocampal subfields in the atlas based on cytoarchitecture. Specimens were obtained from autopsies in patients with a clinical diagnosis of Alzheimer’s disease (AD; 9 subjects, 13 hemispheres), of other dementia (nine subjects, nine hemispheres), and in subjects without dementia (seven subjects, nine hemispheres), and morphometric analysis was performed in atlas space to measure effects of age and AD on hippocampal subfields. Disproportional involvement of the cornu ammonis (CA) 1 subfield and stratum radiatum lacunosum moleculare was found in AD, with lesser involvement of the dentate gyrus and CA2/3 subfields. An association with age was found for the dentate gyrus and, to a lesser extent, for CA1. Three-dimensional patterns of variability and disease and aging effects discovered via the ex vivo hippocampus atlas provide information highly relevant to the active field of in vivo hippocampal subfield imaging. Although the hippocampus is one of the most studied structures in the human brain, limited quantitative data exist on its 3D organization, anatomical variability, and effects of disease on its subregions. Histological studies provide restricted reference information due to their 2D nature. In this paper, high-resolution (∼200 × 200 × 200 μm3) ex vivo MRI scans of 31 human hippocampal specimens are combined using a groupwise diffeomorphic registration approach into a 3D probabilistic atlas that captures average anatomy and anatomic variability of hippocampal subfields. Serial histological imaging in 9 of the 31 specimens was used to label hippocampal subfields in the atlas based on cytoarchitecture. Specimens were obtained from autopsies in patients with a clinical diagnosis of Alzheimer's disease (AD; 9 subjects, 13 hemispheres), of other dementia (nine subjects, nine hemispheres), and in subjects without dementia (seven subjects, nine hemispheres), and morphometric analysis was performed in atlas space to measure effects of age and AD on hippocampal subfields. Disproportional involvement of the cornu ammonis (CA) 1 subfield and stratum radiatum lacunosum moleculare was found in AD, with lesser involvement of the dentate gyrus and CA2/3 subfields. An association with age was found for the dentate gyrus and, to a lesser extent, for CA1. Three-dimensional patterns of variability and disease and aging effects discovered via the ex vivo hippocampus atlas provide information highly relevant to the active field of in vivo hippocampal subfield imaging. |
Author | Pluta, John B. Trojanowski, John Q. Elliott, Mark A. Wolk, David A. Robinson, John L. Adler, Daniel H. Pickup, Stephen Wisse, Laura E. M. Miller, Michael I. Ding, Song-Lin Kadivar, Salmon Grossman, Murray Yushkevich, Paul A. Das, Sandhitsu R. Xie, Long Toledo, Jon B. Wang, Jiancong Ittyerah, Ranjit Liu, Weixia Schuck, Theresa Detre, John A. |
Author_xml | – sequence: 1 givenname: Daniel H. surname: Adler fullname: Adler, Daniel H. organization: Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104 – sequence: 2 givenname: Laura E. M. surname: Wisse fullname: Wisse, Laura E. M. organization: Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104 – sequence: 3 givenname: Ranjit surname: Ittyerah fullname: Ittyerah, Ranjit organization: Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104 – sequence: 4 givenname: John B. surname: Pluta fullname: Pluta, John B. organization: Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104 – sequence: 5 givenname: Song-Lin surname: Ding fullname: Ding, Song-Lin organization: Allen Institute for Brain Science, Seattle, WA 98109 – sequence: 6 givenname: Long surname: Xie fullname: Xie, Long organization: Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104 – sequence: 7 givenname: Jiancong surname: Wang fullname: Wang, Jiancong organization: Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104 – sequence: 8 givenname: Salmon surname: Kadivar fullname: Kadivar, Salmon organization: Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104 – sequence: 9 givenname: John L. surname: Robinson fullname: Robinson, John L. organization: Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, PA 19104 – sequence: 10 givenname: Theresa surname: Schuck fullname: Schuck, Theresa organization: Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, PA 19104 – sequence: 11 givenname: John Q. surname: Trojanowski fullname: Trojanowski, John Q. organization: Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, PA 19104 – sequence: 12 givenname: Murray surname: Grossman fullname: Grossman, Murray organization: Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104 – sequence: 13 givenname: John A. surname: Detre fullname: Detre, John A. organization: Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104 – sequence: 14 givenname: Mark A. surname: Elliott fullname: Elliott, Mark A. organization: Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104 – sequence: 15 givenname: Jon B. surname: Toledo fullname: Toledo, Jon B. organization: Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, PA 19104 – sequence: 16 givenname: Weixia surname: Liu fullname: Liu, Weixia organization: Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104 – sequence: 17 givenname: Stephen surname: Pickup fullname: Pickup, Stephen organization: Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104 – sequence: 18 givenname: Michael I. surname: Miller fullname: Miller, Michael I. organization: Center for Imaging Science, Johns Hopkins University, Baltimore, MD 21218 – sequence: 19 givenname: Sandhitsu R. surname: Das fullname: Das, Sandhitsu R. organization: Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104 – sequence: 20 givenname: David A. surname: Wolk fullname: Wolk, David A. organization: Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104 – sequence: 21 givenname: Paul A. surname: Yushkevich fullname: Yushkevich, Paul A. organization: Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104 |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29592955$$D View this record in MEDLINE/PubMed |
BookMark | eNp1ks1u1DAUhS1URKeFNSuQJTZsprXj_NgbpGrET6UiJARr68a5mXiU2MFORm1XrHkDXo8nwdNpKVRiYdnS_c7R8b33iBw475CQ55ydcFaJ09FBPOGScaYE58UjskgvvixzxQ7IgrGsWso8yw_JUYwbxpgqJHtCDjNVqHSKBfmx6iCAmTDYa-vWdOqQdvMAjnZ2HL2BYZwjtY7CelcG19Cz_rpDO2D49f1npI2NCBHpHG_q1PikmGCy3kFPYeohMcl9iw1tgx8oXtKt3Xr68fP5jV1n4-R7v756Sh630Ed8dnsfk6_v3n5ZfVhefHp_vjq7WJq8lNOyYXUtWcsAm5KrvBa1kSarJOR5o0rJBeaCN00LJUKZpy-3gguT-iOyTBaI4pi82fuOcz1gY9BNAXo9BjtAuNIerP634myn136rC8WZLFUyeH1rEPy3GeOkBxsN9j049HPUGeNK8kzwKqGvHqAbP4fUmR2llKpkIUSiXv6d6E-UuzEloNgDJvgYA7ba2H2PU0Dba870bh30bh30_Tok3ekD3Z31_xUv9opNmkq4T1IWTMqCid_dRMT6 |
CitedBy_id | crossref_primary_10_1038_s41598_020_69163_z crossref_primary_10_1016_j_physbeh_2024_114583 crossref_primary_10_1016_j_dadm_2019_04_001 crossref_primary_10_1053_j_sult_2021_07_002 crossref_primary_10_1007_s12565_022_00673_8 crossref_primary_10_3389_fnagi_2022_832828 crossref_primary_10_3390_app11041892 crossref_primary_10_1093_brain_awab262 crossref_primary_10_1111_cns_14539 crossref_primary_10_1186_s40478_022_01342_7 crossref_primary_10_3389_fnana_2023_1114757 crossref_primary_10_1016_j_nicl_2019_101698 crossref_primary_10_1016_j_nicl_2024_103623 crossref_primary_10_1093_brain_awaa447 crossref_primary_10_1097_PRS_0000000000010526 crossref_primary_10_1016_j_media_2021_102265 crossref_primary_10_1002_hbm_25139 crossref_primary_10_1002_hbm_25414 crossref_primary_10_1016_j_tins_2021_06_005 crossref_primary_10_3389_fnagi_2022_901140 crossref_primary_10_3389_fnagi_2024_1466328 crossref_primary_10_1002_alz_14179 crossref_primary_10_1016_j_jalz_2019_02_007 crossref_primary_10_3233_JAD_200804 crossref_primary_10_1177_09727531221117633 crossref_primary_10_1016_j_neurobiolaging_2020_11_012 crossref_primary_10_1039_D3FO04665F crossref_primary_10_1111_jon_12809 crossref_primary_10_1159_000495754 crossref_primary_10_1016_j_neuroimage_2021_118011 crossref_primary_10_3233_JAD_230034 crossref_primary_10_1016_j_neuroimage_2023_120406 crossref_primary_10_1093_brain_awac298 crossref_primary_10_1016_j_biopsych_2024_12_009 crossref_primary_10_1093_braincomms_fcae296 crossref_primary_10_1007_s12031_023_02131_0 crossref_primary_10_1523_JNEUROSCI_2857_18_2019 crossref_primary_10_1016_j_scib_2020_04_003 crossref_primary_10_1016_j_seizure_2021_03_007 crossref_primary_10_1002_hipo_23637 crossref_primary_10_1016_j_neurobiolaging_2020_11_002 crossref_primary_10_1523_JNEUROSCI_0372_24_2024 crossref_primary_10_1016_j_intimp_2023_110649 crossref_primary_10_1038_s41380_018_0262_7 crossref_primary_10_1016_j_neuroimage_2018_08_012 crossref_primary_10_3390_ijms241813668 crossref_primary_10_1016_j_neubiorev_2018_12_014 crossref_primary_10_1186_s13024_023_00632_5 crossref_primary_10_1016_j_neuroimage_2025_121125 crossref_primary_10_70322_ldmh_2025_10005 crossref_primary_10_1002_hbm_25234 crossref_primary_10_1186_s40478_021_01225_3 crossref_primary_10_1016_j_nbd_2023_106127 crossref_primary_10_3389_fnana_2023_1149674 crossref_primary_10_3389_fnana_2022_995286 crossref_primary_10_1002_hbm_26715 crossref_primary_10_3389_fnagi_2019_00173 crossref_primary_10_3389_fnins_2020_00804 crossref_primary_10_1016_j_neuroimage_2019_116328 crossref_primary_10_1093_cercor_bhy336 crossref_primary_10_3390_antiox12111972 crossref_primary_10_3390_ijms251910535 crossref_primary_10_3233_JAD_190779 crossref_primary_10_1002_hipo_23388 crossref_primary_10_1016_j_jneumeth_2024_110359 crossref_primary_10_1007_s00401_022_02472_x crossref_primary_10_1162_imag_a_00171 crossref_primary_10_1016_j_neuroimage_2020_116563 crossref_primary_10_1109_TMI_2022_3168888 crossref_primary_10_3389_fnins_2021_715749 crossref_primary_10_3390_biomedicines11051383 crossref_primary_10_1007_s12311_024_01670_5 crossref_primary_10_1021_acs_jproteome_2c00143 crossref_primary_10_3390_app10082857 crossref_primary_10_1186_s40478_021_01275_7 crossref_primary_10_1016_j_neurobiolaging_2022_02_004 crossref_primary_10_3389_fnins_2021_762458 crossref_primary_10_1016_j_media_2019_101596 crossref_primary_10_3233_JAD_231114 crossref_primary_10_3389_fnagi_2021_672077 crossref_primary_10_1002_hipo_23172 crossref_primary_10_3389_fneur_2018_00927 crossref_primary_10_1016_j_nicl_2019_101665 crossref_primary_10_1111_pcn_13626 crossref_primary_10_1002_hbm_26460 crossref_primary_10_1002_hipo_23177 crossref_primary_10_1002_hbm_26062 crossref_primary_10_1007_s00259_020_04752_8 crossref_primary_10_1016_j_neuroimage_2020_116798 crossref_primary_10_3389_fnana_2019_00021 crossref_primary_10_1017_thg_2022_20 crossref_primary_10_1007_s11060_022_03947_3 crossref_primary_10_1109_TMI_2021_3070780 crossref_primary_10_1007_s00429_023_02725_9 crossref_primary_10_1016_j_actbio_2023_04_029 crossref_primary_10_1038_s41551_024_01236_0 crossref_primary_10_1016_j_bspc_2020_101903 crossref_primary_10_1016_j_neuroimage_2019_116348 crossref_primary_10_1016_j_compbiomed_2024_108933 crossref_primary_10_1016_j_neuroimage_2022_119616 crossref_primary_10_1016_j_neuroimage_2023_120182 crossref_primary_10_1038_s41467_024_49205_0 crossref_primary_10_1016_j_neuroimage_2021_117931 crossref_primary_10_1523_JNEUROSCI_1010_19_2019 crossref_primary_10_1111_cns_14110 crossref_primary_10_1111_nan_12659 crossref_primary_10_1002_hbm_70004 crossref_primary_10_1002_hbm_25119 crossref_primary_10_1016_j_neuroimage_2021_118584 crossref_primary_10_1073_pnas_2113835118 crossref_primary_10_1016_j_neurobiolaging_2020_06_005 crossref_primary_10_1002_alz_12241 crossref_primary_10_1016_j_neuroimage_2020_117195 |
Cites_doi | 10.1016/j.bandc.2009.11.007 10.1016/j.neurobiolaging.2006.03.007 10.1016/j.neuroimage.2015.01.004 10.1016/j.nicl.2013.08.007 10.1002/cne.23786 10.1016/j.neurobiolaging.2008.08.010 10.1002/hbm.20934 10.1016/S0140-6736(94)92338-8 10.1007/s00401-001-0475-7 10.1002/hbm.22627 10.1212/WNL.0b013e3181f736a1 10.1016/j.nicl.2014.07.011 10.1002/(SICI)1096-9861(19970324)379:4<482::AID-CNE2>3.0.CO;2-Z 10.1214/aos/1013699998 10.1016/j.neurobiolaging.2003.12.005 10.1002/hipo.22153 10.1016/j.neuroimage.2015.04.042 10.1016/j.neuroimage.2008.08.042 10.1016/j.neuroimage.2014.04.054 10.1016/j.neurobiolaging.2008.01.010 10.1038/nrn3085 10.1007/BF00308809 10.1016/j.neuroscience.2015.08.033 10.1038/nature12107 10.1007/b138576 10.1007/s004010050622 10.1002/hbm.23090 10.1016/j.tins.2011.06.006 10.3174/ajnr.A2589 10.1002/hipo.22671 10.1097/WNR.0b013e3282f8b18c 10.1002/cne.24080 10.1006/exnr.2000.7380 10.1097/00005072-195312040-00008 10.1016/j.neuroimage.2013.08.067 10.1212/WNL.0000000000000154 10.18637/jss.v059.i09 |
ContentType | Journal Article |
Copyright | Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles Copyright National Academy of Sciences Apr 17, 2018 2018 |
Copyright_xml | – notice: Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles – notice: Copyright National Academy of Sciences Apr 17, 2018 – notice: 2018 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1073/pnas.1801093115 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Virology and AIDS Abstracts CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 4257 |
ExternalDocumentID | PMC5910869 29592955 10_1073_pnas_1801093115 26508850 |
Genre | Video-Audio Media Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIA NIH HHS grantid: R01 AG056014 – fundername: NINDS NIH HHS grantid: P30 NS045839 – fundername: NIBIB NIH HHS grantid: R03 EB016923 – fundername: NIBIB NIH HHS grantid: P41 EB015909 – fundername: NIBIB NIH HHS grantid: P41 EB015893 – fundername: NIA NIH HHS grantid: R01 AG037376 – fundername: NIA NIH HHS grantid: P30 AG010124 – fundername: NIBIB NIH HHS grantid: R01 EB017255 – fundername: NIA NIH HHS grantid: R01 AG038490 – fundername: NIA NIH HHS grantid: P01 AG017586 – fundername: HHS | NIH | National Institute on Aging (NIA) grantid: R01 AG037376 – fundername: HHS | NIH | National Institute of Biomedical Imaging and Bioengineering (NIBIB) grantid: R01 EB014146 – fundername: HHS | NIH | National Institute on Aging (NIA) grantid: P01 AG017586 – fundername: HHS | NIH | National Institute of Biomedical Imaging and Bioengineering (NIBIB) grantid: R01 EB017255 – fundername: HHS | NIH | National Institute of Biomedical Imaging and Bioengineering (NIBIB) grantid: R03 EB16923-01A1 – fundername: BrightFocus Foundation grantid: n/a – fundername: Wyncote Foundation grantid: n/a – fundername: Newhouse Foundation grantid: n/a – fundername: HHS | NIH | National Institute of Biomedical Imaging and Bioengineering (NIBIB) grantid: P41 EB015893 – fundername: HHS | NIH | National Institute on Aging (NIA) grantid: AG056014 |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c468t-d0bb80f0aed6194b3bc8c278a44d96813e431ddfa6ea64009f313c09332285ee3 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 14:00:31 EDT 2025 Fri Jul 11 10:57:21 EDT 2025 Mon Jun 30 08:32:44 EDT 2025 Thu Apr 03 07:03:07 EDT 2025 Thu Apr 24 23:11:04 EDT 2025 Tue Jul 01 03:19:47 EDT 2025 Fri May 30 11:17:25 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Keywords | computational anatomy hippocampal subfields ex vivo MRI Alzheimer’s disease histology |
Language | English |
License | Published under the PNAS license. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c468t-d0bb80f0aed6194b3bc8c278a44d96813e431ddfa6ea64009f313c09332285ee3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Undefined-3 Edited by Robert Desimone, Massachusetts Institute of Technology, Cambridge, MA, and approved March 5, 2018 (received for review February 9, 2018) Author contributions: D.H.A., L.E.M.W., J.Q.T., M.G., J.A.D., S.R.D., D.A.W., and P.A.Y. designed research; D.H.A., L.E.M.W., R.I., J.B.P., S.-L.D., S.K., J.L.R., T.S., M.A.E., J.B.T., W.L., S.P., and P.A.Y. performed research; D.H.A., L.X., J.W., M.I.M., and P.A.Y. contributed new reagents/analytic tools; D.H.A., L.E.M.W., and P.A.Y. analyzed data; and D.H.A., L.E.M.W., and P.A.Y. wrote the paper. 1D.H.A. and L.E.M.W. contributed equally to this work. |
ORCID | 0000-0001-8543-4016 0000-0003-4191-5509 |
PMID | 29592955 |
PQID | 2099978533 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5910869 proquest_miscellaneous_2019812317 proquest_journals_2099978533 pubmed_primary_29592955 crossref_citationtrail_10_1073_pnas_1801093115 crossref_primary_10_1073_pnas_1801093115 jstor_primary_26508850 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-04-17 |
PublicationDateYYYYMMDD | 2018-04-17 |
PublicationDate_xml | – month: 04 year: 2018 text: 2018-04-17 day: 17 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2018 |
Publisher | National Academy of Sciences |
Publisher_xml | – name: National Academy of Sciences |
References | Yassa MA (e_1_3_4_4_2) 2011; 34 Barnes J (e_1_3_4_30_2) 2009; 30 Chung K (e_1_3_4_17_2) 2013; 497 Duvernoy HM (e_1_3_4_1_2) 2005 Kerchner GA (e_1_3_4_27_2) 2014; 82 Ding SL (e_1_3_4_14_2) 2015; 523 West MJ (e_1_3_4_16_2) 2004; 25 Thal DR (e_1_3_4_29_2) 2000; 163 Yushkevich PA (e_1_3_4_9_2) 2015; 111 Chen KH (e_1_3_4_33_2) 2010; 72 Kluver H (e_1_3_4_39_2) 1953; 12 Yushkevich PA (e_1_3_4_12_2) 2015; 36 Adler DH (e_1_3_4_38_2) 2016 Hanseeuw BJ (e_1_3_4_8_2) 2011; 32 Goubran M (e_1_3_4_35_2) 2016; 37 Halekoh U (e_1_3_4_40_2) 2014; 59 Benjamini Y (e_1_3_4_18_2) 2001; 29 Insausti R (e_1_3_4_2_2) 2012 Wisse LEM (e_1_3_4_34_2) 2017; 27 Yushkevich PA (e_1_3_4_36_2) 2009; 44 Simic G (e_1_3_4_15_2) 1997; 379 Mueller SG (e_1_3_4_6_2) 2007; 28 de Flores R (e_1_3_4_19_2) 2015; 309 La Joie R (e_1_3_4_21_2) 2013; 3 Braak H (e_1_3_4_24_2) 1991; 82 Mai JK (e_1_3_4_13_2) 2008 Olsen RK (e_1_3_4_7_2) 2013; 23 Mueller SG (e_1_3_4_20_2) 2010; 31 Kerchner GA (e_1_3_4_25_2) 2010; 75 Rossler M (e_1_3_4_23_2) 2002; 103 Malykhin NV (e_1_3_4_32_2) 2008; 19 Boutet C (e_1_3_4_26_2) 2014; 5 Ding SL (e_1_3_4_3_2) 2016; 524 Martin SB (e_1_3_4_31_2) 2010; 31 Braak E (e_1_3_4_28_2) 1997; 93 Pipitone J (e_1_3_4_11_2) 2014; 101 Small SA (e_1_3_4_5_2) 2011; 12 Adler DH (e_1_3_4_37_2) 2014; 84 Iglesias JE (e_1_3_4_10_2) 2015; 115 West MJ (e_1_3_4_22_2) 1994; 344 |
References_xml | – volume: 72 start-page: 400 year: 2010 ident: e_1_3_4_33_2 article-title: Hippocampal region-specific contributions to memory performance in normal elderly publication-title: Brain Cogn doi: 10.1016/j.bandc.2009.11.007 – volume: 28 start-page: 719 year: 2007 ident: e_1_3_4_6_2 article-title: Measurement of hippocampal subfields and age-related changes with high resolution MRI at 4T publication-title: Neurobiol Aging doi: 10.1016/j.neurobiolaging.2006.03.007 – volume: 111 start-page: 526 year: 2015 ident: e_1_3_4_9_2 article-title: Quantitative comparison of 21 protocols for labeling hippocampal subfields and parahippocampal subregions in in vivo MRI: Towards a harmonized segmentation protocol publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.01.004 – volume: 3 start-page: 155 year: 2013 ident: e_1_3_4_21_2 article-title: Hippocampal subfield volumetry in mild cognitive impairment, Alzheimer’s disease and semantic dementia publication-title: Neuroimage Clin doi: 10.1016/j.nicl.2013.08.007 – volume: 523 start-page: 2233 year: 2015 ident: e_1_3_4_14_2 article-title: Organization and detailed parcellation of human hippocampal head and body regions based on a combined analysis of cyto- and chemoarchitecture publication-title: J Comp Neurol doi: 10.1002/cne.23786 – volume: 31 start-page: 1099 year: 2010 ident: e_1_3_4_31_2 article-title: Evidence that volume of anterior medial temporal lobe is reduced in seniors destined for mild cognitive impairment publication-title: Neurobiol Aging doi: 10.1016/j.neurobiolaging.2008.08.010 – volume: 31 start-page: 1339 year: 2010 ident: e_1_3_4_20_2 article-title: Hippocampal atrophy patterns in mild cognitive impairment and Alzheimer’s disease publication-title: Hum Brain Mapp doi: 10.1002/hbm.20934 – volume: 344 start-page: 769 year: 1994 ident: e_1_3_4_22_2 article-title: Differences in the pattern of hippocampal neuronal loss in normal ageing and Alzheimer’s disease publication-title: Lancet doi: 10.1016/S0140-6736(94)92338-8 – volume: 103 start-page: 363 year: 2002 ident: e_1_3_4_23_2 article-title: Stage-dependent and sector-specific neuronal loss in hippocampus during Alzheimer’s disease publication-title: Acta Neuropathol doi: 10.1007/s00401-001-0475-7 – volume: 36 start-page: 258 year: 2015 ident: e_1_3_4_12_2 article-title: Automated volumetry and regional thickness analysis of hippocampal subfields and medial temporal cortical structures in mild cognitive impairment publication-title: Hum Brain Mapp doi: 10.1002/hbm.22627 – volume: 75 start-page: 1381 year: 2010 ident: e_1_3_4_25_2 article-title: Hippocampal CA1 apical neuropil atrophy in mild Alzheimer disease visualized with 7-T MRI publication-title: Neurology doi: 10.1212/WNL.0b013e3181f736a1 – volume: 5 start-page: 341 year: 2014 ident: e_1_3_4_26_2 article-title: Detection of volume loss in hippocampal layers in Alzheimer’s disease using 7 T MRI: A feasibility study publication-title: Neuroimage Clin doi: 10.1016/j.nicl.2014.07.011 – volume: 379 start-page: 482 year: 1997 ident: e_1_3_4_15_2 article-title: Volume and number of neurons of the human hippocampal formation in normal aging and Alzheimer’s disease publication-title: J Comp Neurol doi: 10.1002/(SICI)1096-9861(19970324)379:4<482::AID-CNE2>3.0.CO;2-Z – volume: 29 start-page: 1165 year: 2001 ident: e_1_3_4_18_2 article-title: The control of the false discovery rate in multiple testing under dependency publication-title: Ann Stat doi: 10.1214/aos/1013699998 – volume: 25 start-page: 1205 year: 2004 ident: e_1_3_4_16_2 article-title: Hippocampal neurons in pre-clinical Alzheimer’s disease publication-title: Neurobiol Aging doi: 10.1016/j.neurobiolaging.2003.12.005 – volume: 23 start-page: 855 year: 2013 ident: e_1_3_4_7_2 article-title: Volumetric analysis of medial temporal lobe subregions in developmental amnesia using high-resolution magnetic resonance imaging publication-title: Hippocampus doi: 10.1002/hipo.22153 – volume: 115 start-page: 117 year: 2015 ident: e_1_3_4_10_2 article-title: A computational atlas of the hippocampal formation using ex vivo, ultra-high resolution MRI: Application to adaptive segmentation of in vivo MRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.04.042 – volume: 44 start-page: 385 year: 2009 ident: e_1_3_4_36_2 article-title: A high-resolution computational atlas of the human hippocampus from postmortem magnetic resonance imaging at 9.4 T publication-title: Neuroimage doi: 10.1016/j.neuroimage.2008.08.042 – volume: 101 start-page: 494 year: 2014 ident: e_1_3_4_11_2 article-title: Multi-atlas segmentation of the whole hippocampus and subfields using multiple automatically generated templates publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.04.054 – volume: 30 start-page: 1711 year: 2009 ident: e_1_3_4_30_2 article-title: A meta-analysis of hippocampal atrophy rates in Alzheimer’s disease publication-title: Neurobiol Aging doi: 10.1016/j.neurobiolaging.2008.01.010 – volume: 12 start-page: 585 year: 2011 ident: e_1_3_4_5_2 article-title: A pathophysiological framework of hippocampal dysfunction in ageing and disease publication-title: Nat Rev Neurosci doi: 10.1038/nrn3085 – volume: 82 start-page: 239 year: 1991 ident: e_1_3_4_24_2 article-title: Neuropathological stageing of Alzheimer-related changes publication-title: Acta Neuropathol doi: 10.1007/BF00308809 – volume: 309 start-page: 29 year: 2015 ident: e_1_3_4_19_2 article-title: Structural imaging of hippocampal subfields in healthy aging and Alzheimer’s disease publication-title: Neuroscience doi: 10.1016/j.neuroscience.2015.08.033 – volume: 497 start-page: 332 year: 2013 ident: e_1_3_4_17_2 article-title: Structural and molecular interrogation of intact biological systems publication-title: Nature doi: 10.1038/nature12107 – start-page: 1 volume-title: The Human Hippocampus year: 2005 ident: e_1_3_4_1_2 doi: 10.1007/b138576 – start-page: 1 volume-title: Atlas of the Human Brain year: 2008 ident: e_1_3_4_13_2 – volume: 93 start-page: 323 year: 1997 ident: e_1_3_4_28_2 article-title: Alzheimer’s disease: Transiently developing dendritic changes in pyramidal cells of sector CA1 of the Ammon’s horn publication-title: Acta Neuropathol doi: 10.1007/s004010050622 – volume: 37 start-page: 1103 year: 2016 ident: e_1_3_4_35_2 article-title: In vivo MRI signatures of hippocampal subfield pathology in intractable epilepsy publication-title: Hum Brain Mapp doi: 10.1002/hbm.23090 – volume-title: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2016. MICCAI 2016. Lecture Notes in Computer Science year: 2016 ident: e_1_3_4_38_2 – volume: 34 start-page: 515 year: 2011 ident: e_1_3_4_4_2 article-title: Pattern separation in the hippocampus publication-title: Trends Neurosci doi: 10.1016/j.tins.2011.06.006 – volume: 32 start-page: 1658 year: 2011 ident: e_1_3_4_8_2 article-title: Mild cognitive impairment: Differential atrophy in the hippocampal subfields publication-title: AJNR Am J Neuroradiol doi: 10.3174/ajnr.A2589 – volume: 27 start-page: 3 year: 2017 ident: e_1_3_4_34_2 article-title: A harmonized segmentation protocol for hippocampal and parahippocampal subregions: Why do we need one and what are the key goals? publication-title: Hippocampus doi: 10.1002/hipo.22671 – volume: 19 start-page: 543 year: 2008 ident: e_1_3_4_32_2 article-title: Aging hippocampus and amygdala publication-title: Neuroreport doi: 10.1097/WNR.0b013e3282f8b18c – volume: 524 start-page: 3127 year: 2016 ident: e_1_3_4_3_2 article-title: Comprehensive cellular-resolution atlas of the adult human brain publication-title: J Comp Neurol doi: 10.1002/cne.24080 – volume-title: The Human Nervous System year: 2012 ident: e_1_3_4_2_2 – volume: 163 start-page: 98 year: 2000 ident: e_1_3_4_29_2 article-title: Alzheimer-related tau-pathology in the perforant path target zone and in the hippocampal stratum oriens and radiatum correlates with onset and degree of dementia publication-title: Exp Neurol doi: 10.1006/exnr.2000.7380 – volume: 12 start-page: 400 year: 1953 ident: e_1_3_4_39_2 article-title: A method for the combined staining of cells and fibers in the nervous system publication-title: J Neuropathol Exp Neurol doi: 10.1097/00005072-195312040-00008 – volume: 84 start-page: 505 year: 2014 ident: e_1_3_4_37_2 article-title: Histology-derived volumetric annotation of the human hippocampal subfields in postmortem MRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.08.067 – volume: 82 start-page: 691 year: 2014 ident: e_1_3_4_27_2 article-title: APOE ε4 worsens hippocampal CA1 apical neuropil atrophy and episodic memory publication-title: Neurology doi: 10.1212/WNL.0000000000000154 – volume: 59 start-page: 1 year: 2014 ident: e_1_3_4_40_2 article-title: A Kenward-Roger approximation and parametric bootstrap methods for tests in linear mixed models–The R package pbkrtest publication-title: J Stat Softw doi: 10.18637/jss.v059.i09 |
SSID | ssj0009580 |
Score | 2.5924702 |
Snippet | Although the hippocampus is one of the most studied structures in the human brain, limited quantitative data exist on its 3D organization, anatomical... There has been increasing interest in hippocampal subfield morphometry in aging and disease using in vivo MRI. However, research on in vivo morphometry is... |
SourceID | pubmedcentral proquest pubmed crossref jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4252 |
SubjectTerms | Age factors Aged Aging Aging - pathology Alzheimer Disease - pathology Alzheimer's disease Atlases as Topic Atrophy Autopsies Biological Sciences Brain Brain architecture Computational neuroscience Computer applications Dementia disorders Dentate gyrus Dentate Gyrus - pathology Hemispheres Hippocampus Hippocampus - pathology Histology Humans Imaging, Three-Dimensional Magnetic Resonance Imaging Medical imaging Morphometry Neurodegenerative diseases Neuroimaging NMR Nuclear magnetic resonance Organ Size Physical Sciences Stratum radiatum |
Title | Characterizing the human hippocampus in aging and Alzheimer’s disease using a computational atlas derived from ex vivo MRI and histology |
URI | https://www.jstor.org/stable/26508850 https://www.ncbi.nlm.nih.gov/pubmed/29592955 https://www.proquest.com/docview/2099978533 https://www.proquest.com/docview/2019812317 https://pubmed.ncbi.nlm.nih.gov/PMC5910869 |
Volume | 115 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Ra9swEBZd97KXsW7r5q0bGgzWYZzZsmPLj6F0tIOGUlrWNyNbMnFpnVDboeQX7A_t_-0kS7YTUtj2YoIln8H35XQ63X2H0GcucslrQx3w3qgT5DRzUuIFDs3jPIuYgCVdnuieTcOTq-DH9fh6Z-f3IGupqdNRttpaV_I_WoV7oFdZJfsPmu2Ewg34DfqFK2gYrn-l46OObXllqp7annuzYrGARepu0ah017YTkQyRT25XM1GojilRZU5n7EYFDJjKL29qEx5kNXjWNgfpS_BKVR2KeLCXxXJun12cKnGKrbiLy2sf97xbEyuTgTA1Mid9AYu2KpXt2OfTvh2yTBy474vf--KJnzJzwJRyM_u4j-Oe1jVsHJgKEF2w8qboa7rh6zOTcawbTOsQh0flaU1b0TkSrVkGr8YJg7axaGe32zpQA9ChGQZDRLauD2DQZFPjklUjj8pTQV9LGaBlcafgQuIxuI4th_AGJbcZeoKeEtidELUeDLmeqWtYpCL_28bbJP20fn7NF2rTYbdtdDbzdQcO0OUL9FzvXPCkheEe2hHlS7RntIgPNYH511fo1zouMSAAK1ziAS5xUWKFSwxAwh0uv1RYoxIrVGKG11CJFSqxRiWWqMTiAUtUYkClEtah8jW6-n58eXTi6I4fThaEtHa4m6bUzV0muIyupX6a0YxElAUBj0Pq-QL8Xc5zFgoWwuoT577nZzIoRwgdC-Hvo91yXoq3CBM_9AnjJOc0DWLqsyyKPR6ykGaculxYaGS-fZJpOnzZleU2UWkZkZ9IvSW93ix02D2waJlgHp-6r5TZzSNqHzR2LXRgtJtoO1Ilsngd7CXsuyz0qRsGKy-P7lgp5o2c48XgioOzb6E3LRh64RpNForWYNJNkAzy6yNlMVNM8uNYNlqL3z0q8z161v8hD9Bufd-ID-CF1-lHhfk_S1HhQQ |
linkProvider | ABC ChemistRy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Characterizing+the+human+hippocampus+in+aging+and+Alzheimer%27s+disease+using+a+computational+atlas+derived+from+ex+vivo+MRI+and+histology&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Adler%2C+Daniel+H&rft.au=Wisse%2C+Laura+E+M&rft.au=Ittyerah%2C+Ranjit&rft.au=Pluta%2C+John+B&rft.date=2018-04-17&rft.eissn=1091-6490&rft.volume=115&rft.issue=16&rft.spage=4252&rft_id=info:doi/10.1073%2Fpnas.1801093115&rft_id=info%3Apmid%2F29592955&rft.externalDocID=29592955 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |