Photo-Enhanced Singlet Oxygen Generation of Prussian Blue-Based Nanocatalyst for Augmented Photodynamic Therapy
Therapeutic effects of photodynamic therapy (PDT) remain largely limited because of tumor hypoxia. Herein, we report safe and versatile nanocatalysts (NCs) for endogenous oxygen generation and imaging-guided enhanced PDT. The NCs (named as PSP) are prepared by coating Prussian blue (PB) with mesopor...
Saved in:
Published in | iScience Vol. 9; pp. 14 - 26 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier
30.11.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Therapeutic effects of photodynamic therapy (PDT) remain largely limited because of tumor hypoxia. Herein, we report safe and versatile nanocatalysts (NCs) for endogenous oxygen generation and imaging-guided enhanced PDT. The NCs (named as PSP) are prepared by coating Prussian blue (PB) with mesoporous silica to load photosensitizer (zinc phthalocyanine, ZnPc), followed by the modification of polyethylene glycol chains. The inner PB not only acts like a catalase for hydrogen peroxide decomposition but also serves as a photothermal agent to increase the local temperature and then speed up the oxygen supply under near-infrared irradiation. The loaded ZnPc can immediately transform the formed oxygen to generate cytotoxic singlet oxygen upon the same laser irradiation due to the overlapped absorption between PB and ZnPc. Results indicate that the PSP-ZnPc (PSPZP) NCs could realize the photothermally controlled improvement of hypoxic condition in cancer cells and tumor tissues, therefore demonstrating enhanced cancer therapy by the incorporation of PDT and photothermal therapy. |
---|---|
AbstractList | Therapeutic effects of photodynamic therapy (PDT) remain largely limited because of tumor hypoxia. Herein, we report safe and versatile nanocatalysts (NCs) for endogenous oxygen generation and imaging-guided enhanced PDT. The NCs (named as PSP) are prepared by coating Prussian blue (PB) with mesoporous silica to load photosensitizer (zinc phthalocyanine, ZnPc), followed by the modification of polyethylene glycol chains. The inner PB not only acts like a catalase for hydrogen peroxide decomposition but also serves as a photothermal agent to increase the local temperature and then speed up the oxygen supply under near-infrared irradiation. The loaded ZnPc can immediately transform the formed oxygen to generate cytotoxic singlet oxygen upon the same laser irradiation due to the overlapped absorption between PB and ZnPc. Results indicate that the PSP-ZnPc (PSPZP) NCs could realize the photothermally controlled improvement of hypoxic condition in cancer cells and tumor tissues, therefore demonstrating enhanced cancer therapy by the incorporation of PDT and photothermal therapy.Therapeutic effects of photodynamic therapy (PDT) remain largely limited because of tumor hypoxia. Herein, we report safe and versatile nanocatalysts (NCs) for endogenous oxygen generation and imaging-guided enhanced PDT. The NCs (named as PSP) are prepared by coating Prussian blue (PB) with mesoporous silica to load photosensitizer (zinc phthalocyanine, ZnPc), followed by the modification of polyethylene glycol chains. The inner PB not only acts like a catalase for hydrogen peroxide decomposition but also serves as a photothermal agent to increase the local temperature and then speed up the oxygen supply under near-infrared irradiation. The loaded ZnPc can immediately transform the formed oxygen to generate cytotoxic singlet oxygen upon the same laser irradiation due to the overlapped absorption between PB and ZnPc. Results indicate that the PSP-ZnPc (PSPZP) NCs could realize the photothermally controlled improvement of hypoxic condition in cancer cells and tumor tissues, therefore demonstrating enhanced cancer therapy by the incorporation of PDT and photothermal therapy. Therapeutic effects of photodynamic therapy (PDT) remain largely limited because of tumor hypoxia. Herein, we report safe and versatile nanocatalysts (NCs) for endogenous oxygen generation and imaging-guided enhanced PDT. The NCs (named as PSP) are prepared by coating Prussian blue (PB) with mesoporous silica to load photosensitizer (zinc phthalocyanine, ZnPc), followed by the modification of polyethylene glycol chains. The inner PB not only acts like a catalase for hydrogen peroxide decomposition but also serves as a photothermal agent to increase the local temperature and then speed up the oxygen supply under near-infrared irradiation. The loaded ZnPc can immediately transform the formed oxygen to generate cytotoxic singlet oxygen upon the same laser irradiation due to the overlapped absorption between PB and ZnPc. Results indicate that the PSP-ZnPc (PSPZP) NCs could realize the photothermally controlled improvement of hypoxic condition in cancer cells and tumor tissues, therefore demonstrating enhanced cancer therapy by the incorporation of PDT and photothermal therapy. : Drug Delivery System; Chemistry; Inorganic Chemistry; Catalysis; Biological Sciences Subject Areas: Drug Delivery System, Chemistry, Inorganic Chemistry, Catalysis, Biological Sciences Therapeutic effects of photodynamic therapy (PDT) remain largely limited because of tumor hypoxia. Herein, we report safe and versatile nanocatalysts (NCs) for endogenous oxygen generation and imaging-guided enhanced PDT. The NCs (named as PSP) are prepared by coating Prussian blue (PB) with mesoporous silica to load photosensitizer (zinc phthalocyanine, ZnPc), followed by the modification of polyethylene glycol chains. The inner PB not only acts like a catalase for hydrogen peroxide decomposition but also serves as a photothermal agent to increase the local temperature and then speed up the oxygen supply under near-infrared irradiation. The loaded ZnPc can immediately transform the formed oxygen to generate cytotoxic singlet oxygen upon the same laser irradiation due to the overlapped absorption between PB and ZnPc. Results indicate that the PSP-ZnPc (PSPZP) NCs could realize the photothermally controlled improvement of hypoxic condition in cancer cells and tumor tissues, therefore demonstrating enhanced cancer therapy by the incorporation of PDT and photothermal therapy. Therapeutic effects of photodynamic therapy (PDT) remain largely limited because of tumor hypoxia. Herein, we report safe and versatile nanocatalysts (NCs) for endogenous oxygen generation and imaging-guided enhanced PDT. The NCs (named as PSP) are prepared by coating Prussian blue (PB) with mesoporous silica to load photosensitizer (zinc phthalocyanine, ZnPc), followed by the modification of polyethylene glycol chains. The inner PB not only acts like a catalase for hydrogen peroxide decomposition but also serves as a photothermal agent to increase the local temperature and then speed up the oxygen supply under near-infrared irradiation. The loaded ZnPc can immediately transform the formed oxygen to generate cytotoxic singlet oxygen upon the same laser irradiation due to the overlapped absorption between PB and ZnPc. Results indicate that the PSP-ZnPc (PSPZP) NCs could realize the photothermally controlled improvement of hypoxic condition in cancer cells and tumor tissues, therefore demonstrating enhanced cancer therapy by the incorporation of PDT and photothermal therapy. • All compositions have been approved by the US Food and Drug Administration • PSP- 89 Zr serves as a dual-modal PET and PAI imaging agent • PSP shows catalase-like activity toward H 2 O 2 decomposition under tumor-microenvironment • Photo-enhanced endogenous O 2 generation of PSPZP for augmented photodynamic therapy Drug Delivery System; Chemistry; Inorganic Chemistry; Catalysis; Biological Sciences |
Author | Wang, Dongdong Cai, Weibo Chen, Qianwang Wu, Huihui Wang, Hui Xia, Guoliang Guo, Zhen Shi, Ruohong Zhou, Jiajia Shi, Sixiang Barnhart, Todd E. Xu, Pengping |
AuthorAffiliation | 1 Hefei National Laboratory for Physical Science at Microscale and Department of Materials Science & Engineering, University of Science & Technology of China, Hefei, Anhui 230026, PR China 4 The Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, PR China 3 Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, WI 53705, USA 2 Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, School of Life Sciences, University of Science & Technology of China, Hefei, Anhui 230026, PR China |
AuthorAffiliation_xml | – name: 2 Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, School of Life Sciences, University of Science & Technology of China, Hefei, Anhui 230026, PR China – name: 3 Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, WI 53705, USA – name: 4 The Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, PR China – name: 1 Hefei National Laboratory for Physical Science at Microscale and Department of Materials Science & Engineering, University of Science & Technology of China, Hefei, Anhui 230026, PR China |
Author_xml | – sequence: 1 givenname: Dongdong orcidid: 0000-0002-6278-0706 surname: Wang fullname: Wang, Dongdong – sequence: 2 givenname: Ruohong surname: Shi fullname: Shi, Ruohong – sequence: 3 givenname: Jiajia surname: Zhou fullname: Zhou, Jiajia – sequence: 4 givenname: Sixiang surname: Shi fullname: Shi, Sixiang – sequence: 5 givenname: Huihui surname: Wu fullname: Wu, Huihui – sequence: 6 givenname: Pengping surname: Xu fullname: Xu, Pengping – sequence: 7 givenname: Hui surname: Wang fullname: Wang, Hui – sequence: 8 givenname: Guoliang surname: Xia fullname: Xia, Guoliang – sequence: 9 givenname: Todd E. surname: Barnhart fullname: Barnhart, Todd E. – sequence: 10 givenname: Weibo surname: Cai fullname: Cai, Weibo – sequence: 11 givenname: Zhen surname: Guo fullname: Guo, Zhen – sequence: 12 givenname: Qianwang surname: Chen fullname: Chen, Qianwang |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30368078$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kk9v1DAQxSNUREvpF-CAcuSSxX9iJ7kgtVUplSpaiXK2JvYk61ViL3aCyLfHu1uqlgOSJVvj935ja97b7Mh5h1n2npIVJVR-2qxs1HbFCK1TYUWIeJWdMFE3BSElO3p2Ps7OYtwQQlhaZSPfZMeccFmTqj7J_P3aT764cmtwGk3-3bp-wCm_-7306PJrdBhgst7lvsvvwxyjBZdfDDMWFxCT4Rs4r2GCYYlT3vmQn8_9iG5KV3u0WRyMVucP6wTaLu-y1x0MEc8e99Psx5erh8uvxe3d9c3l-W2hS1lPhaZVxVmFDTWGcQFNW8sGsBJCCyOE4QKFbAznknelFoK2HTVYg5aGAykJP81uDlzjYaO2wY4QFuXBqn3Bh15BmKweUGGlS-igE5KZsq2qVpOyoRxlhUwTUybW5wNrO7cjGp1-F2B4AX154-xa9f6XkoxwVvIE-PgICP7njHFSYxoeDgM49HNUjDLZUFpXMkk_PO_11OTvxJKAHQQ6-BgDdk8SStQuGWqjdslQu2TsaikZyVT_Y9J22o81vdcO_7P-ARPxwUw |
CitedBy_id | crossref_primary_10_1016_j_jcis_2022_11_031 crossref_primary_10_1021_acsami_8b19172 crossref_primary_10_1016_j_jcis_2020_01_020 crossref_primary_10_1021_acsami_3c09516 crossref_primary_10_3389_fphar_2019_00369 crossref_primary_10_1039_D0DT02152K crossref_primary_10_1021_acsami_3c08404 crossref_primary_10_1002_slct_202302655 crossref_primary_10_1021_acsnano_0c01453 crossref_primary_10_1016_j_ccr_2020_213662 crossref_primary_10_3390_pharmaceutics15102480 crossref_primary_10_3389_fchem_2019_00853 crossref_primary_10_1016_j_drudis_2021_04_012 crossref_primary_10_1007_s12551_025_01287_w crossref_primary_10_1016_j_mtnano_2023_100326 crossref_primary_10_1038_s41467_019_14199_7 crossref_primary_10_1039_C9NH00577C crossref_primary_10_1002_adma_201901893 crossref_primary_10_1016_j_cej_2020_124113 crossref_primary_10_1016_j_ccr_2020_213393 crossref_primary_10_1016_j_ccr_2023_215414 crossref_primary_10_1021_acs_bioconjchem_0c00165 crossref_primary_10_1039_D1TB00888A crossref_primary_10_1016_j_colsurfb_2020_111538 crossref_primary_10_1021_acs_nanolett_9b02112 crossref_primary_10_1039_D0TB01248C crossref_primary_10_3390_ph12040163 crossref_primary_10_1002_smll_202200786 crossref_primary_10_1002_viw2_6 crossref_primary_10_32604_biocell_2022_016934 crossref_primary_10_3389_fonc_2020_524712 crossref_primary_10_1016_j_jconrel_2022_10_007 crossref_primary_10_1016_j_mtbio_2019_100035 crossref_primary_10_1039_C9NR08930F crossref_primary_10_1002_med_21935 crossref_primary_10_1186_s12951_022_01579_3 crossref_primary_10_1021_acsami_9b09296 crossref_primary_10_1039_D4CP04126G crossref_primary_10_30970_sbi_1701_700 crossref_primary_10_1021_acsnano_9b00300 crossref_primary_10_1021_acsbiomaterials_9b00968 crossref_primary_10_3390_s20236905 |
Cites_doi | 10.1002/advs.201700847 10.1139/cjc-2017-0203 10.1016/S1470-2045(00)00166-2 10.1021/acsnano.6b04156 10.1021/nn506757x 10.1007/s12094-008-0172-2 10.1111/j.1751-1097.1984.tb03902.x 10.1021/ja2073824 10.1038/nrc1071 10.1002/advs.201600122 10.1002/adma.201202367 10.1002/adma.201605021 10.1021/acsami.6b01147 10.1021/acsnano.7b08225 10.1038/nrc3064 10.1016/j.addr.2015.01.002 10.1002/anie.201408472 10.1073/pnas.0801349105 10.1016/j.biomaterials.2016.01.009 10.1126/science.1160809 10.1002/advs.201800287 10.1002/smll.201502102 10.3322/caac.21199 10.1002/advs.201600356 10.1021/acs.chemrev.6b00073 10.1021/acsnano.5b00526 10.1016/j.biomaterials.2016.05.027 10.1021/jacs.6b01784 10.1002/adfm.201603212 10.3389/fphar.2017.00606 10.3390/molecules21030342 10.1002/adma.201200650 10.1615/CritRevTherDrugCarrierSyst.v18.i6.30 10.2174/1874471011104020131 10.1021/cr5004198 10.1021/acs.iecr.5b01610 10.1038/nrc2344 10.1016/j.biomaterials.2014.09.004 10.1021/nn3058642 10.1038/ncomms9785 10.1016/S1470-2045(04)01529-3 10.1038/s41551-017-0075 10.1093/jnci/90.12.889 10.1002/advs.201700481 10.3390/cancers9020019 10.1634/theoncologist.11-9-1034 10.1002/adma.201405141 10.1038/ncomms5596 10.1021/nn4011686 10.1038/s41467-017-01050-0 10.1021/nn201560b 10.1021/jacs.5b13458 10.1016/j.biomaterials.2016.04.034 10.1021/ja511420n |
ContentType | Journal Article |
Copyright | Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved. 2018 The Authors 2018 |
Copyright_xml | – notice: Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved. – notice: 2018 The Authors 2018 |
DBID | AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.1016/j.isci.2018.10.005 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2589-0042 |
EndPage | 26 |
ExternalDocumentID | oai_doaj_org_article_e7c4afaf562d4b77bc04913e67e2c0d4 PMC6203243 30368078 10_1016_j_isci_2018_10_005 |
Genre | Journal Article |
GroupedDBID | 0R~ 53G AAEDW AALRI AAMRU AAXUO AAYWO AAYXX ABMAC ACVFH ADBBV ADCNI ADVLN AEUPX AEXQZ AFPUW AFTJW AIGII AITUG AKBMS AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS APXCP BCNDV CITATION EBS EJD FDB GROUPED_DOAJ HYE M41 OK1 ROL RPM SSZ NPM 7X8 5PM |
ID | FETCH-LOGICAL-c468t-c177327e91dd235a9b869ae755c5d55d35e569d3363f4c551bf1de8ac6d3a0403 |
IEDL.DBID | DOA |
ISSN | 2589-0042 |
IngestDate | Wed Aug 27 01:10:30 EDT 2025 Thu Aug 21 13:57:37 EDT 2025 Thu Jul 10 23:05:35 EDT 2025 Mon Jul 21 06:04:29 EDT 2025 Thu Apr 24 23:12:53 EDT 2025 Tue Jul 01 01:03:24 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Biological Sciences Chemistry Catalysis Inorganic Chemistry Drug Delivery System |
Language | English |
License | Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c468t-c177327e91dd235a9b869ae755c5d55d35e569d3363f4c551bf1de8ac6d3a0403 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Lead Contact |
ORCID | 0000-0002-6278-0706 |
OpenAccessLink | https://doaj.org/article/e7c4afaf562d4b77bc04913e67e2c0d4 |
PMID | 30368078 |
PQID | 2126911876 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e7c4afaf562d4b77bc04913e67e2c0d4 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6203243 proquest_miscellaneous_2126911876 pubmed_primary_30368078 crossref_primary_10_1016_j_isci_2018_10_005 crossref_citationtrail_10_1016_j_isci_2018_10_005 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-11-30 |
PublicationDateYYYYMMDD | 2018-11-30 |
PublicationDate_xml | – month: 11 year: 2018 text: 2018-11-30 day: 30 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | iScience |
PublicationTitleAlternate | iScience |
PublicationYear | 2018 |
Publisher | Elsevier |
Publisher_xml | – name: Elsevier |
References | Yang (10.1016/j.isci.2018.10.005_bib51) 2012; 24 Huang (10.1016/j.isci.2018.10.005_bib19) 2016; 138 Straten (10.1016/j.isci.2018.10.005_bib38) 2017; 9 Jia (10.1016/j.isci.2018.10.005_bib20) 2018; 30 Szatrowski (10.1016/j.isci.2018.10.005_bib40) 1991; 51 Liba (10.1016/j.isci.2018.10.005_bib24) 2017; 1 Maeda (10.1016/j.isci.2018.10.005_bib29) 2015; 91 Yin (10.1016/j.isci.2018.10.005_bib54) 2011; 4 Wang (10.1016/j.isci.2018.10.005_bib48) 2018; 5 Zhang (10.1016/j.isci.2018.10.005_bib55) 2008; 105 Chen (10.1016/j.isci.2018.10.005_bib7) 2015; 9 Ge (10.1016/j.isci.2018.10.005_bib15) 2014; 5 Thakor (10.1016/j.isci.2018.10.005_bib41) 2013; 63 Zheng (10.1016/j.isci.2018.10.005_bib57) 2016; 10 Smith (10.1016/j.isci.2018.10.005_bib36) 2017; 117 Bristow (10.1016/j.isci.2018.10.005_bib2) 2008; 8 Cheng (10.1016/j.isci.2018.10.005_bib9) 2014; 35 Cheng (10.1016/j.isci.2018.10.005_bib11) 2016; 26 Yang (10.1016/j.isci.2018.10.005_bib53) 2018; 5 Lin (10.1016/j.isci.2018.10.005_bib25) 2013; 7 Chen (10.1016/j.isci.2018.10.005_bib8) 2017; 11 Triesscheijn (10.1016/j.isci.2018.10.005_bib44) 2006; 11 Chen (10.1016/j.isci.2018.10.005_bib6) 2015; 137 Mitchell (10.1016/j.isci.2018.10.005_bib30) 1985; 45 Brown (10.1016/j.isci.2018.10.005_bib4) 2004; 5 Kuang (10.1016/j.isci.2018.10.005_bib23) 2011; 133 Wilson (10.1016/j.isci.2018.10.005_bib49) 2011; 11 Jin (10.1016/j.isci.2018.10.005_bib21) 2013; 7 Wang (10.1016/j.isci.2018.10.005_bib47) 2016; 100 Romero-Castillo (10.1016/j.isci.2018.10.005_bib34) 2017; 95 Vander Heiden (10.1016/j.isci.2018.10.005_bib45) 2009; 324 Moghimi (10.1016/j.isci.2018.10.005_bib31) 2001; 18 Brohi (10.1016/j.isci.2018.10.005_bib3) 2017; 8 Dougherty (10.1016/j.isci.2018.10.005_bib13) 1998; 90 Noh (10.1016/j.isci.2018.10.005_bib33) 2018; 5 Juarranz (10.1016/j.isci.2018.10.005_bib22) 2008; 10 Goel (10.1016/j.isci.2018.10.005_bib16) 2016; 3 Su (10.1016/j.isci.2018.10.005_bib39) 2016; 8 Calixto (10.1016/j.isci.2018.10.005_bib5) 2016; 21 Liu (10.1016/j.isci.2018.10.005_bib26) 2015; 9 Abbas (10.1016/j.isci.2018.10.005_bib1) 2017; 29 Dolmans (10.1016/j.isci.2018.10.005_bib12) 2003; 3 Huang (10.1016/j.isci.2018.10.005_bib18) 2012; 24 Tian (10.1016/j.isci.2018.10.005_bib43) 2017; 4 Liu (10.1016/j.isci.2018.10.005_bib27) 2016; 97 Lucky (10.1016/j.isci.2018.10.005_bib28) 2015; 115 Tian (10.1016/j.isci.2018.10.005_bib42) 2011; 5 Yang (10.1016/j.isci.2018.10.005_bib52) 2017; 8 Mou (10.1016/j.isci.2018.10.005_bib32) 2016; 84 Xu (10.1016/j.isci.2018.10.005_bib50) 2016; 138 Srivastava (10.1016/j.isci.2018.10.005_bib37) 2015; 54 Hopper (10.1016/j.isci.2018.10.005_bib17) 2000; 1 Zhang (10.1016/j.isci.2018.10.005_bib56) 2015; 54 Fan (10.1016/j.isci.2018.10.005_bib14) 2015; 27 See (10.1016/j.isci.2018.10.005_bib35) 1984; 39 Cheng (10.1016/j.isci.2018.10.005_bib10) 2015; 6 Wang (10.1016/j.isci.2018.10.005_bib46) 2015; 11 |
References_xml | – volume: 5 start-page: 1700847 year: 2018 ident: 10.1016/j.isci.2018.10.005_bib53 article-title: Oxygen-evolving mesoporous organosilica coated prussian blue nanoplatform for highly efficient photodynamic therapy of tumors publication-title: Adv. Sci. (Weinh) doi: 10.1002/advs.201700847 – volume: 95 start-page: 917 year: 2017 ident: 10.1016/j.isci.2018.10.005_bib34 article-title: Exploring the in vivo toxicity of nanoparticles publication-title: Can. J. Chem. doi: 10.1139/cjc-2017-0203 – volume: 1 start-page: 212 year: 2000 ident: 10.1016/j.isci.2018.10.005_bib17 article-title: Photodynamic therapy: a clinical reality in the treatment of cancer publication-title: Lancet Oncol. doi: 10.1016/S1470-2045(00)00166-2 – volume: 10 start-page: 8715 year: 2016 ident: 10.1016/j.isci.2018.10.005_bib57 article-title: Carbon-dot-decorated carbon nitride nanoparticles for enhanced photodynamic therapy against hypoxic tumor via water splitting publication-title: ACS Nano doi: 10.1021/acsnano.6b04156 – volume: 9 start-page: 950 year: 2015 ident: 10.1016/j.isci.2018.10.005_bib26 article-title: Iron oxide decorated MoS2 nanosheets with double PEGylation for chelator-free radiolabeling and multimodal imaging guided photothermal therapy publication-title: ACS Nano doi: 10.1021/nn506757x – volume: 10 start-page: 148 year: 2008 ident: 10.1016/j.isci.2018.10.005_bib22 article-title: Photodynamic therapy of cancer. basic principles and applications publication-title: Clin. Transl. Oncol. doi: 10.1007/s12094-008-0172-2 – volume: 39 start-page: 631 year: 1984 ident: 10.1016/j.isci.2018.10.005_bib35 article-title: Oxygen dependency of photocytotoxicity with haematoporphyrin derivative publication-title: Photochem. Photobiol. doi: 10.1111/j.1751-1097.1984.tb03902.x – volume: 133 start-page: 19278 year: 2011 ident: 10.1016/j.isci.2018.10.005_bib23 article-title: Hydrogen peroxide inducible DNA cross-linking agents: targeted anticancer prodrugs publication-title: J. Am. Chem. Soc. doi: 10.1021/ja2073824 – volume: 3 start-page: 380 year: 2003 ident: 10.1016/j.isci.2018.10.005_bib12 article-title: Photodynamic therapy for cancer publication-title: Nat. Rev. Cancer doi: 10.1038/nrc1071 – volume: 3 start-page: 1600122 year: 2016 ident: 10.1016/j.isci.2018.10.005_bib16 article-title: Engineering intrinsically zirconium-89 radiolabeled self-destructing mesoporous silica nanostructures for in vivo biodistribution and tumor targeting studies publication-title: Adv. Sci. doi: 10.1002/advs.201600122 – volume: 24 start-page: 5205 year: 2012 ident: 10.1016/j.isci.2018.10.005_bib51 article-title: A hydrogen peroxide-responsive O(2) nanogenerator for ultrasound and magnetic-resonance dual modality imaging publication-title: Adv. Mater. doi: 10.1002/adma.201202367 – volume: 29 start-page: 1605021 year: 2017 ident: 10.1016/j.isci.2018.10.005_bib1 article-title: Self-assembled peptide- and protein-based nanomaterials for antitumor photodynamic and photothermal therapy publication-title: Adv. Mater. doi: 10.1002/adma.201605021 – volume: 8 start-page: 17038 year: 2016 ident: 10.1016/j.isci.2018.10.005_bib39 article-title: A multifunctional PB@mSiO2-PEG/DOX nanoplatform for combined photothermal-chemotherapy of tumor publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b01147 – volume: 11 start-page: 12849 year: 2017 ident: 10.1016/j.isci.2018.10.005_bib8 article-title: Oxygen-self-produced nanoplatform for relieving hypoxia and breaking resistance to sonodynamic treatment of pancreatic cancer publication-title: ACS Nano doi: 10.1021/acsnano.7b08225 – volume: 11 start-page: 393 year: 2011 ident: 10.1016/j.isci.2018.10.005_bib49 article-title: Targeting hypoxia in cancer therapy publication-title: Nat. Rev. Cancer doi: 10.1038/nrc3064 – volume: 30 start-page: 6069 year: 2018 ident: 10.1016/j.isci.2018.10.005_bib20 article-title: A Magnetofluorescent carbon dot assembly as an acidic H2O2-driven oxygenerator to regulate tumor hypoxia for simultaneous bimodal imaging and enhanced photodynamic therapy publication-title: Adv. Mater. – volume: 91 start-page: 3 year: 2015 ident: 10.1016/j.isci.2018.10.005_bib29 article-title: Toward a full understanding of the EPR effect in primary and metastatic tumors as well as issues related to its heterogeneity publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2015.01.002 – volume: 54 start-page: 1770 year: 2015 ident: 10.1016/j.isci.2018.10.005_bib56 article-title: Marriage of scintillator and semiconductor for synchronous radiotherapy and deep photodynamic therapy with diminished oxygen dependence publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201408472 – volume: 105 start-page: 14773 year: 2008 ident: 10.1016/j.isci.2018.10.005_bib55 article-title: Fabrication of ZnPc/protein nanohorns for double photodynamic and hyperthermic cancer phototherapy publication-title: Proc. Natl. Acad. Sci. U S A doi: 10.1073/pnas.0801349105 – volume: 84 start-page: 13 year: 2016 ident: 10.1016/j.isci.2018.10.005_bib32 article-title: Black titania-based theranostic nanoplatform for single NIR laser induced dual-modal imaging-guided PTT/PDT publication-title: Biomaterials doi: 10.1016/j.biomaterials.2016.01.009 – volume: 324 start-page: 1029 year: 2009 ident: 10.1016/j.isci.2018.10.005_bib45 article-title: Understanding the Warburg effect: the metabolic requirements of cell proliferation publication-title: Science doi: 10.1126/science.1160809 – volume: 5 start-page: 1800287 year: 2018 ident: 10.1016/j.isci.2018.10.005_bib48 article-title: In situ one-pot synthesis of MOF-polydopamine hybrid nanogels with enhanced photothermal effect for targeted cancer therapy publication-title: Adv. Sci. doi: 10.1002/advs.201800287 – volume: 11 start-page: 5956 year: 2015 ident: 10.1016/j.isci.2018.10.005_bib46 article-title: Novel Mn3[Co(CN)6]2@SiO2@Ag Core-shell nanocube: enhanced two-photon fluorescence and magnetic resonance dual-modal imaging-guided photothermal and chemo-therapy publication-title: Small doi: 10.1002/smll.201502102 – volume: 63 start-page: 395 year: 2013 ident: 10.1016/j.isci.2018.10.005_bib41 article-title: Nanooncology: the future of cancer diagnosis and therapy publication-title: CA Cancer J. Clin. doi: 10.3322/caac.21199 – volume: 4 start-page: 1600356 year: 2017 ident: 10.1016/j.isci.2018.10.005_bib43 article-title: Periodic mesoporous organosilica coated prussian blue for MR/PA dual-modal imaging-guided photothermal-chemotherapy of triple negative breast cancer publication-title: Adv. Sci. doi: 10.1002/advs.201600356 – volume: 117 start-page: 901 year: 2017 ident: 10.1016/j.isci.2018.10.005_bib36 article-title: Nanomaterials for in vivo imaging publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.6b00073 – volume: 9 start-page: 7950 year: 2015 ident: 10.1016/j.isci.2018.10.005_bib7 article-title: In vivo integrity and biological fate of chelator-free zirconium-89-labeled mesoporous silica nanoparticles publication-title: ACS Nano doi: 10.1021/acsnano.5b00526 – volume: 100 start-page: 27 year: 2016 ident: 10.1016/j.isci.2018.10.005_bib47 article-title: Controllable synthesis of dual-MOFs nanostructures for pH-responsive artemisinin delivery, magnetic resonance and optical dual-model imaging-guided chemo/photothermal combinational cancer therapy publication-title: Biomaterials doi: 10.1016/j.biomaterials.2016.05.027 – volume: 138 start-page: 5222 year: 2016 ident: 10.1016/j.isci.2018.10.005_bib19 article-title: An implantable depot that can generate oxygen in situ for overcoming hypoxia-induced resistance to anticancer drugs in chemotherapy publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b01784 – volume: 26 start-page: 7847 year: 2016 ident: 10.1016/j.isci.2018.10.005_bib11 article-title: An O2 self-sufficient biomimetic nanoplatform for highly specific and efficient photodynamic therapy publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201603212 – volume: 8 start-page: 00606 year: 2017 ident: 10.1016/j.isci.2018.10.005_bib3 article-title: Toxicity of nanoparticles on the reproductive system in animal models: a review publication-title: Front. Pharmacol. doi: 10.3389/fphar.2017.00606 – volume: 21 start-page: 342 year: 2016 ident: 10.1016/j.isci.2018.10.005_bib5 article-title: Nanotechnology-based drug delivery systems for photodynamic therapy of cancer: a review publication-title: Molecules doi: 10.3390/molecules21030342 – volume: 24 start-page: 5104 year: 2012 ident: 10.1016/j.isci.2018.10.005_bib18 article-title: Light-triggered theranostics based on photosensitizer-conjugated carbon dots for simultaneous enhanced-fluorescence imaging and photodynamic therapy publication-title: Adv. Mater. doi: 10.1002/adma.201200650 – volume: 18 start-page: 527 year: 2001 ident: 10.1016/j.isci.2018.10.005_bib31 article-title: Capture of stealth nanoparticles by the body's defences publication-title: Crit. Rev. Ther. Drug Carrier Syst. doi: 10.1615/CritRevTherDrugCarrierSyst.v18.i6.30 – volume: 4 start-page: 131 year: 2011 ident: 10.1016/j.isci.2018.10.005_bib54 article-title: PET tracers based on zirconium-89 publication-title: Curr. Radiopharm. doi: 10.2174/1874471011104020131 – volume: 115 start-page: 1990 year: 2015 ident: 10.1016/j.isci.2018.10.005_bib28 article-title: Nanoparticles in photodynamic therapy publication-title: Chem. Rev. doi: 10.1021/cr5004198 – volume: 54 start-page: 6209 year: 2015 ident: 10.1016/j.isci.2018.10.005_bib37 article-title: Critical review on the toxicity of some widely used engineered nanoparticles publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.5b01610 – volume: 8 start-page: 180 year: 2008 ident: 10.1016/j.isci.2018.10.005_bib2 article-title: Hypoxia, DNA repair and genetic instability publication-title: Nat. Rev. Cancer doi: 10.1038/nrc2344 – volume: 35 start-page: 9844 year: 2014 ident: 10.1016/j.isci.2018.10.005_bib9 article-title: PEGylated Prussian blue nanocubes as a theranostic agent for simultaneous cancer imaging and photothermal therapy publication-title: Biomaterials doi: 10.1016/j.biomaterials.2014.09.004 – volume: 7 start-page: 2541 year: 2013 ident: 10.1016/j.isci.2018.10.005_bib21 article-title: Ablation of hypoxic tumors with dose-equivalent photothermal, but not photodynamic, therapy using a nanostructured porphyrin assembly publication-title: ACS Nano doi: 10.1021/nn3058642 – volume: 6 start-page: 8785 year: 2015 ident: 10.1016/j.isci.2018.10.005_bib10 article-title: Perfluorocarbon nanoparticles enhance reactive oxygen levels and tumour growth inhibition in photodynamic therapy publication-title: Nat. Commun. doi: 10.1038/ncomms9785 – volume: 5 start-page: 497 year: 2004 ident: 10.1016/j.isci.2018.10.005_bib4 article-title: The present and future role of photodynamic therapy in cancer treatment publication-title: Lancet Oncol. doi: 10.1016/S1470-2045(04)01529-3 – volume: 1 start-page: 0075 year: 2017 ident: 10.1016/j.isci.2018.10.005_bib24 article-title: Photoacoustic tomography: breathtaking whole-body imaging publication-title: Nat. Biomed. Eng. doi: 10.1038/s41551-017-0075 – volume: 90 start-page: 889 year: 1998 ident: 10.1016/j.isci.2018.10.005_bib13 article-title: Photodynamic therapy publication-title: J. Natl. Cancer Inst. doi: 10.1093/jnci/90.12.889 – volume: 5 start-page: 1700481 year: 2018 ident: 10.1016/j.isci.2018.10.005_bib33 article-title: Enhanced photodynamic cancer treatment by mitochondria-targeting and brominated near-infrared fluorophores publication-title: Adv. Sci. doi: 10.1002/advs.201700481 – volume: 9 start-page: 19 year: 2017 ident: 10.1016/j.isci.2018.10.005_bib38 article-title: Oncologic photodynamic therapy: basic principles, current clinical status and future directions publication-title: Cancers (Basel) doi: 10.3390/cancers9020019 – volume: 11 start-page: 1034 year: 2006 ident: 10.1016/j.isci.2018.10.005_bib44 article-title: Photodynamic therapy in oncology publication-title: Oncologist doi: 10.1634/theoncologist.11-9-1034 – volume: 27 start-page: 4155 year: 2015 ident: 10.1016/j.isci.2018.10.005_bib14 article-title: Intelligent MnO2 nanosheets anchored with upconversion nanoprobes for concurrent pH-/H2O2-responsive UCL imaging and oxygen-elevated synergetic therapy publication-title: Adv. Mater. doi: 10.1002/adma.201405141 – volume: 5 start-page: 4596 year: 2014 ident: 10.1016/j.isci.2018.10.005_bib15 article-title: A graphene quantum dot photodynamic therapy agent with high singlet oxygen generation publication-title: Nat. Commun. doi: 10.1038/ncomms5596 – volume: 7 start-page: 5320 year: 2013 ident: 10.1016/j.isci.2018.10.005_bib25 article-title: Photosensitizer-loaded gold vesicles with strong plasmonic coupling effect for imaging-guided photothermal/photodynamic therapy publication-title: ACS Nano doi: 10.1021/nn4011686 – volume: 8 start-page: 902 year: 2017 ident: 10.1016/j.isci.2018.10.005_bib52 article-title: Hollow MnO2 as a tumor-microenvironment-responsive biodegradable nano-platform for combination therapy favoring antitumor immune responses publication-title: Nat. Commun. doi: 10.1038/s41467-017-01050-0 – volume: 5 start-page: 7000 year: 2011 ident: 10.1016/j.isci.2018.10.005_bib42 article-title: Photothermally enhanced photodynamic therapy delivered by nano-graphene oxide publication-title: ACS Nano doi: 10.1021/nn201560b – volume: 51 start-page: 794 year: 1991 ident: 10.1016/j.isci.2018.10.005_bib40 article-title: Production of large amounts of hydrogen peroxide by human tumor cells publication-title: Cancer Res. – volume: 138 start-page: 2158 year: 2016 ident: 10.1016/j.isci.2018.10.005_bib50 article-title: Nanoscale metal-organic frameworks for ratiometric oxygen sensing in live cells publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b13458 – volume: 97 start-page: 1 year: 2016 ident: 10.1016/j.isci.2018.10.005_bib27 article-title: Nanoscale metal-organic frameworks for combined photodynamic & radiation therapy in cancer treatment publication-title: Biomaterials doi: 10.1016/j.biomaterials.2016.04.034 – volume: 137 start-page: 1539 year: 2015 ident: 10.1016/j.isci.2018.10.005_bib6 article-title: H2O2-activatable and O2-evolving nanoparticles for highly efficient and selective photodynamic therapy against hypoxic tumor cells publication-title: J. Am. Chem. Soc. doi: 10.1021/ja511420n – volume: 45 start-page: 2008 year: 1985 ident: 10.1016/j.isci.2018.10.005_bib30 article-title: Oxygen dependence of hematoporphyrin derivative-induced photoinactivation of Chinese hamster cells publication-title: Cancer Res. |
SSID | ssj0002002496 |
Score | 2.289848 |
Snippet | Therapeutic effects of photodynamic therapy (PDT) remain largely limited because of tumor hypoxia. Herein, we report safe and versatile nanocatalysts (NCs) for... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 14 |
Title | Photo-Enhanced Singlet Oxygen Generation of Prussian Blue-Based Nanocatalyst for Augmented Photodynamic Therapy |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30368078 https://www.proquest.com/docview/2126911876 https://pubmed.ncbi.nlm.nih.gov/PMC6203243 https://doaj.org/article/e7c4afaf562d4b77bc04913e67e2c0d4 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEBUlp1xKS5PWTVtUyC24jVdf9jFbsoRCk4UkkJuRNHI3Idgla0Pz7zsjeZfdUpJLr_6Qhd7I79kavWHsEBzxUlPk1kKFHyhFyG1jZO5ASDDO6TL6dP8412fX8vuNutko9UU5YckeOA3c12C8tI1tkKdBOmOcR01biKBNmPhjiE6gyHkbH1N3cXmNrPBiZTlFOUEYmuOOmZTcRTteKa-r_BJTu9QWK0Xz_n8pzr8TJzeYaPaKvRwlJD9JXX_NXoT2Devmi67v8tN2EZf0-SVSEkLCL34_Yojw5C5NIPCu4fOHYUmbJ_n0fgj5FIkMOL5mu_gv53HZc1Sy_GT4GQ07gcemIZWu51fJhmCPXc9Or76d5WMxhdxLXfa5L4wRExOqAmAilK1cqSsbjFJegVIgVFC6AiG0aKRHHeWaAkJpvQZhcaaLfbbTdm14x3ipjj3KNKeEDxKbLVFlNgZEiehiUzZjxWowaz86jVPBi_t6lVJ2VxMANQFAxxCAjB2t7_mVfDaevHpKGK2vJI_seAAjpx4jp34ucjL2eYVwjXOKFkpsG7phWSOd64rqsOuMvU2Irx9FlE8e_RkzW7Gw1ZftM-3tIvp2a6pWL8X7_9H5A7ZL45FMKD-wnf5hCB9RHvXuU5wJfwCJSQ6o |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Photo-Enhanced+Singlet+Oxygen+Generation+of+Prussian+Blue-Based+Nanocatalyst+for+Augmented+Photodynamic+Therapy&rft.jtitle=iScience&rft.au=Wang%2C+Dongdong&rft.au=Shi%2C+Ruohong&rft.au=Zhou%2C+Jiajia&rft.au=Shi%2C+Sixiang&rft.date=2018-11-30&rft.issn=2589-0042&rft.eissn=2589-0042&rft.volume=9&rft.spage=14&rft.epage=26&rft_id=info:doi/10.1016%2Fj.isci.2018.10.005&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_isci_2018_10_005 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2589-0042&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2589-0042&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2589-0042&client=summon |