Photo-Enhanced Singlet Oxygen Generation of Prussian Blue-Based Nanocatalyst for Augmented Photodynamic Therapy

Therapeutic effects of photodynamic therapy (PDT) remain largely limited because of tumor hypoxia. Herein, we report safe and versatile nanocatalysts (NCs) for endogenous oxygen generation and imaging-guided enhanced PDT. The NCs (named as PSP) are prepared by coating Prussian blue (PB) with mesopor...

Full description

Saved in:
Bibliographic Details
Published iniScience Vol. 9; pp. 14 - 26
Main Authors Wang, Dongdong, Shi, Ruohong, Zhou, Jiajia, Shi, Sixiang, Wu, Huihui, Xu, Pengping, Wang, Hui, Xia, Guoliang, Barnhart, Todd E., Cai, Weibo, Guo, Zhen, Chen, Qianwang
Format Journal Article
LanguageEnglish
Published United States Elsevier 30.11.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Therapeutic effects of photodynamic therapy (PDT) remain largely limited because of tumor hypoxia. Herein, we report safe and versatile nanocatalysts (NCs) for endogenous oxygen generation and imaging-guided enhanced PDT. The NCs (named as PSP) are prepared by coating Prussian blue (PB) with mesoporous silica to load photosensitizer (zinc phthalocyanine, ZnPc), followed by the modification of polyethylene glycol chains. The inner PB not only acts like a catalase for hydrogen peroxide decomposition but also serves as a photothermal agent to increase the local temperature and then speed up the oxygen supply under near-infrared irradiation. The loaded ZnPc can immediately transform the formed oxygen to generate cytotoxic singlet oxygen upon the same laser irradiation due to the overlapped absorption between PB and ZnPc. Results indicate that the PSP-ZnPc (PSPZP) NCs could realize the photothermally controlled improvement of hypoxic condition in cancer cells and tumor tissues, therefore demonstrating enhanced cancer therapy by the incorporation of PDT and photothermal therapy.
AbstractList Therapeutic effects of photodynamic therapy (PDT) remain largely limited because of tumor hypoxia. Herein, we report safe and versatile nanocatalysts (NCs) for endogenous oxygen generation and imaging-guided enhanced PDT. The NCs (named as PSP) are prepared by coating Prussian blue (PB) with mesoporous silica to load photosensitizer (zinc phthalocyanine, ZnPc), followed by the modification of polyethylene glycol chains. The inner PB not only acts like a catalase for hydrogen peroxide decomposition but also serves as a photothermal agent to increase the local temperature and then speed up the oxygen supply under near-infrared irradiation. The loaded ZnPc can immediately transform the formed oxygen to generate cytotoxic singlet oxygen upon the same laser irradiation due to the overlapped absorption between PB and ZnPc. Results indicate that the PSP-ZnPc (PSPZP) NCs could realize the photothermally controlled improvement of hypoxic condition in cancer cells and tumor tissues, therefore demonstrating enhanced cancer therapy by the incorporation of PDT and photothermal therapy.Therapeutic effects of photodynamic therapy (PDT) remain largely limited because of tumor hypoxia. Herein, we report safe and versatile nanocatalysts (NCs) for endogenous oxygen generation and imaging-guided enhanced PDT. The NCs (named as PSP) are prepared by coating Prussian blue (PB) with mesoporous silica to load photosensitizer (zinc phthalocyanine, ZnPc), followed by the modification of polyethylene glycol chains. The inner PB not only acts like a catalase for hydrogen peroxide decomposition but also serves as a photothermal agent to increase the local temperature and then speed up the oxygen supply under near-infrared irradiation. The loaded ZnPc can immediately transform the formed oxygen to generate cytotoxic singlet oxygen upon the same laser irradiation due to the overlapped absorption between PB and ZnPc. Results indicate that the PSP-ZnPc (PSPZP) NCs could realize the photothermally controlled improvement of hypoxic condition in cancer cells and tumor tissues, therefore demonstrating enhanced cancer therapy by the incorporation of PDT and photothermal therapy.
Therapeutic effects of photodynamic therapy (PDT) remain largely limited because of tumor hypoxia. Herein, we report safe and versatile nanocatalysts (NCs) for endogenous oxygen generation and imaging-guided enhanced PDT. The NCs (named as PSP) are prepared by coating Prussian blue (PB) with mesoporous silica to load photosensitizer (zinc phthalocyanine, ZnPc), followed by the modification of polyethylene glycol chains. The inner PB not only acts like a catalase for hydrogen peroxide decomposition but also serves as a photothermal agent to increase the local temperature and then speed up the oxygen supply under near-infrared irradiation. The loaded ZnPc can immediately transform the formed oxygen to generate cytotoxic singlet oxygen upon the same laser irradiation due to the overlapped absorption between PB and ZnPc. Results indicate that the PSP-ZnPc (PSPZP) NCs could realize the photothermally controlled improvement of hypoxic condition in cancer cells and tumor tissues, therefore demonstrating enhanced cancer therapy by the incorporation of PDT and photothermal therapy. : Drug Delivery System; Chemistry; Inorganic Chemistry; Catalysis; Biological Sciences Subject Areas: Drug Delivery System, Chemistry, Inorganic Chemistry, Catalysis, Biological Sciences
Therapeutic effects of photodynamic therapy (PDT) remain largely limited because of tumor hypoxia. Herein, we report safe and versatile nanocatalysts (NCs) for endogenous oxygen generation and imaging-guided enhanced PDT. The NCs (named as PSP) are prepared by coating Prussian blue (PB) with mesoporous silica to load photosensitizer (zinc phthalocyanine, ZnPc), followed by the modification of polyethylene glycol chains. The inner PB not only acts like a catalase for hydrogen peroxide decomposition but also serves as a photothermal agent to increase the local temperature and then speed up the oxygen supply under near-infrared irradiation. The loaded ZnPc can immediately transform the formed oxygen to generate cytotoxic singlet oxygen upon the same laser irradiation due to the overlapped absorption between PB and ZnPc. Results indicate that the PSP-ZnPc (PSPZP) NCs could realize the photothermally controlled improvement of hypoxic condition in cancer cells and tumor tissues, therefore demonstrating enhanced cancer therapy by the incorporation of PDT and photothermal therapy.
Therapeutic effects of photodynamic therapy (PDT) remain largely limited because of tumor hypoxia. Herein, we report safe and versatile nanocatalysts (NCs) for endogenous oxygen generation and imaging-guided enhanced PDT. The NCs (named as PSP) are prepared by coating Prussian blue (PB) with mesoporous silica to load photosensitizer (zinc phthalocyanine, ZnPc), followed by the modification of polyethylene glycol chains. The inner PB not only acts like a catalase for hydrogen peroxide decomposition but also serves as a photothermal agent to increase the local temperature and then speed up the oxygen supply under near-infrared irradiation. The loaded ZnPc can immediately transform the formed oxygen to generate cytotoxic singlet oxygen upon the same laser irradiation due to the overlapped absorption between PB and ZnPc. Results indicate that the PSP-ZnPc (PSPZP) NCs could realize the photothermally controlled improvement of hypoxic condition in cancer cells and tumor tissues, therefore demonstrating enhanced cancer therapy by the incorporation of PDT and photothermal therapy. • All compositions have been approved by the US Food and Drug Administration • PSP- 89 Zr serves as a dual-modal PET and PAI imaging agent • PSP shows catalase-like activity toward H 2 O 2 decomposition under tumor-microenvironment • Photo-enhanced endogenous O 2 generation of PSPZP for augmented photodynamic therapy Drug Delivery System; Chemistry; Inorganic Chemistry; Catalysis; Biological Sciences
Author Wang, Dongdong
Cai, Weibo
Chen, Qianwang
Wu, Huihui
Wang, Hui
Xia, Guoliang
Guo, Zhen
Shi, Ruohong
Zhou, Jiajia
Shi, Sixiang
Barnhart, Todd E.
Xu, Pengping
AuthorAffiliation 1 Hefei National Laboratory for Physical Science at Microscale and Department of Materials Science & Engineering, University of Science & Technology of China, Hefei, Anhui 230026, PR China
4 The Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, PR China
3 Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, WI 53705, USA
2 Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, School of Life Sciences, University of Science & Technology of China, Hefei, Anhui 230026, PR China
AuthorAffiliation_xml – name: 2 Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, School of Life Sciences, University of Science & Technology of China, Hefei, Anhui 230026, PR China
– name: 3 Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, WI 53705, USA
– name: 4 The Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, PR China
– name: 1 Hefei National Laboratory for Physical Science at Microscale and Department of Materials Science & Engineering, University of Science & Technology of China, Hefei, Anhui 230026, PR China
Author_xml – sequence: 1
  givenname: Dongdong
  orcidid: 0000-0002-6278-0706
  surname: Wang
  fullname: Wang, Dongdong
– sequence: 2
  givenname: Ruohong
  surname: Shi
  fullname: Shi, Ruohong
– sequence: 3
  givenname: Jiajia
  surname: Zhou
  fullname: Zhou, Jiajia
– sequence: 4
  givenname: Sixiang
  surname: Shi
  fullname: Shi, Sixiang
– sequence: 5
  givenname: Huihui
  surname: Wu
  fullname: Wu, Huihui
– sequence: 6
  givenname: Pengping
  surname: Xu
  fullname: Xu, Pengping
– sequence: 7
  givenname: Hui
  surname: Wang
  fullname: Wang, Hui
– sequence: 8
  givenname: Guoliang
  surname: Xia
  fullname: Xia, Guoliang
– sequence: 9
  givenname: Todd E.
  surname: Barnhart
  fullname: Barnhart, Todd E.
– sequence: 10
  givenname: Weibo
  surname: Cai
  fullname: Cai, Weibo
– sequence: 11
  givenname: Zhen
  surname: Guo
  fullname: Guo, Zhen
– sequence: 12
  givenname: Qianwang
  surname: Chen
  fullname: Chen, Qianwang
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30368078$$D View this record in MEDLINE/PubMed
BookMark eNp9kk9v1DAQxSNUREvpF-CAcuSSxX9iJ7kgtVUplSpaiXK2JvYk61ViL3aCyLfHu1uqlgOSJVvj935ja97b7Mh5h1n2npIVJVR-2qxs1HbFCK1TYUWIeJWdMFE3BSElO3p2Ps7OYtwQQlhaZSPfZMeccFmTqj7J_P3aT764cmtwGk3-3bp-wCm_-7306PJrdBhgst7lvsvvwxyjBZdfDDMWFxCT4Rs4r2GCYYlT3vmQn8_9iG5KV3u0WRyMVucP6wTaLu-y1x0MEc8e99Psx5erh8uvxe3d9c3l-W2hS1lPhaZVxVmFDTWGcQFNW8sGsBJCCyOE4QKFbAznknelFoK2HTVYg5aGAykJP81uDlzjYaO2wY4QFuXBqn3Bh15BmKweUGGlS-igE5KZsq2qVpOyoRxlhUwTUybW5wNrO7cjGp1-F2B4AX154-xa9f6XkoxwVvIE-PgICP7njHFSYxoeDgM49HNUjDLZUFpXMkk_PO_11OTvxJKAHQQ6-BgDdk8SStQuGWqjdslQu2TsaikZyVT_Y9J22o81vdcO_7P-ARPxwUw
CitedBy_id crossref_primary_10_1016_j_jcis_2022_11_031
crossref_primary_10_1021_acsami_8b19172
crossref_primary_10_1016_j_jcis_2020_01_020
crossref_primary_10_1021_acsami_3c09516
crossref_primary_10_3389_fphar_2019_00369
crossref_primary_10_1039_D0DT02152K
crossref_primary_10_1021_acsami_3c08404
crossref_primary_10_1002_slct_202302655
crossref_primary_10_1021_acsnano_0c01453
crossref_primary_10_1016_j_ccr_2020_213662
crossref_primary_10_3390_pharmaceutics15102480
crossref_primary_10_3389_fchem_2019_00853
crossref_primary_10_1016_j_drudis_2021_04_012
crossref_primary_10_1007_s12551_025_01287_w
crossref_primary_10_1016_j_mtnano_2023_100326
crossref_primary_10_1038_s41467_019_14199_7
crossref_primary_10_1039_C9NH00577C
crossref_primary_10_1002_adma_201901893
crossref_primary_10_1016_j_cej_2020_124113
crossref_primary_10_1016_j_ccr_2020_213393
crossref_primary_10_1016_j_ccr_2023_215414
crossref_primary_10_1021_acs_bioconjchem_0c00165
crossref_primary_10_1039_D1TB00888A
crossref_primary_10_1016_j_colsurfb_2020_111538
crossref_primary_10_1021_acs_nanolett_9b02112
crossref_primary_10_1039_D0TB01248C
crossref_primary_10_3390_ph12040163
crossref_primary_10_1002_smll_202200786
crossref_primary_10_1002_viw2_6
crossref_primary_10_32604_biocell_2022_016934
crossref_primary_10_3389_fonc_2020_524712
crossref_primary_10_1016_j_jconrel_2022_10_007
crossref_primary_10_1016_j_mtbio_2019_100035
crossref_primary_10_1039_C9NR08930F
crossref_primary_10_1002_med_21935
crossref_primary_10_1186_s12951_022_01579_3
crossref_primary_10_1021_acsami_9b09296
crossref_primary_10_1039_D4CP04126G
crossref_primary_10_30970_sbi_1701_700
crossref_primary_10_1021_acsnano_9b00300
crossref_primary_10_1021_acsbiomaterials_9b00968
crossref_primary_10_3390_s20236905
Cites_doi 10.1002/advs.201700847
10.1139/cjc-2017-0203
10.1016/S1470-2045(00)00166-2
10.1021/acsnano.6b04156
10.1021/nn506757x
10.1007/s12094-008-0172-2
10.1111/j.1751-1097.1984.tb03902.x
10.1021/ja2073824
10.1038/nrc1071
10.1002/advs.201600122
10.1002/adma.201202367
10.1002/adma.201605021
10.1021/acsami.6b01147
10.1021/acsnano.7b08225
10.1038/nrc3064
10.1016/j.addr.2015.01.002
10.1002/anie.201408472
10.1073/pnas.0801349105
10.1016/j.biomaterials.2016.01.009
10.1126/science.1160809
10.1002/advs.201800287
10.1002/smll.201502102
10.3322/caac.21199
10.1002/advs.201600356
10.1021/acs.chemrev.6b00073
10.1021/acsnano.5b00526
10.1016/j.biomaterials.2016.05.027
10.1021/jacs.6b01784
10.1002/adfm.201603212
10.3389/fphar.2017.00606
10.3390/molecules21030342
10.1002/adma.201200650
10.1615/CritRevTherDrugCarrierSyst.v18.i6.30
10.2174/1874471011104020131
10.1021/cr5004198
10.1021/acs.iecr.5b01610
10.1038/nrc2344
10.1016/j.biomaterials.2014.09.004
10.1021/nn3058642
10.1038/ncomms9785
10.1016/S1470-2045(04)01529-3
10.1038/s41551-017-0075
10.1093/jnci/90.12.889
10.1002/advs.201700481
10.3390/cancers9020019
10.1634/theoncologist.11-9-1034
10.1002/adma.201405141
10.1038/ncomms5596
10.1021/nn4011686
10.1038/s41467-017-01050-0
10.1021/nn201560b
10.1021/jacs.5b13458
10.1016/j.biomaterials.2016.04.034
10.1021/ja511420n
ContentType Journal Article
Copyright Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
2018 The Authors 2018
Copyright_xml – notice: Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
– notice: 2018 The Authors 2018
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.1016/j.isci.2018.10.005
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
EISSN 2589-0042
EndPage 26
ExternalDocumentID oai_doaj_org_article_e7c4afaf562d4b77bc04913e67e2c0d4
PMC6203243
30368078
10_1016_j_isci_2018_10_005
Genre Journal Article
GroupedDBID 0R~
53G
AAEDW
AALRI
AAMRU
AAXUO
AAYWO
AAYXX
ABMAC
ACVFH
ADBBV
ADCNI
ADVLN
AEUPX
AEXQZ
AFPUW
AFTJW
AIGII
AITUG
AKBMS
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
APXCP
BCNDV
CITATION
EBS
EJD
FDB
GROUPED_DOAJ
HYE
M41
OK1
ROL
RPM
SSZ
NPM
7X8
5PM
ID FETCH-LOGICAL-c468t-c177327e91dd235a9b869ae755c5d55d35e569d3363f4c551bf1de8ac6d3a0403
IEDL.DBID DOA
ISSN 2589-0042
IngestDate Wed Aug 27 01:10:30 EDT 2025
Thu Aug 21 13:57:37 EDT 2025
Thu Jul 10 23:05:35 EDT 2025
Mon Jul 21 06:04:29 EDT 2025
Thu Apr 24 23:12:53 EDT 2025
Tue Jul 01 01:03:24 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Biological Sciences
Chemistry
Catalysis
Inorganic Chemistry
Drug Delivery System
Language English
License Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c468t-c177327e91dd235a9b869ae755c5d55d35e569d3363f4c551bf1de8ac6d3a0403
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Lead Contact
ORCID 0000-0002-6278-0706
OpenAccessLink https://doaj.org/article/e7c4afaf562d4b77bc04913e67e2c0d4
PMID 30368078
PQID 2126911876
PQPubID 23479
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_e7c4afaf562d4b77bc04913e67e2c0d4
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6203243
proquest_miscellaneous_2126911876
pubmed_primary_30368078
crossref_primary_10_1016_j_isci_2018_10_005
crossref_citationtrail_10_1016_j_isci_2018_10_005
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-11-30
PublicationDateYYYYMMDD 2018-11-30
PublicationDate_xml – month: 11
  year: 2018
  text: 2018-11-30
  day: 30
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle iScience
PublicationTitleAlternate iScience
PublicationYear 2018
Publisher Elsevier
Publisher_xml – name: Elsevier
References Yang (10.1016/j.isci.2018.10.005_bib51) 2012; 24
Huang (10.1016/j.isci.2018.10.005_bib19) 2016; 138
Straten (10.1016/j.isci.2018.10.005_bib38) 2017; 9
Jia (10.1016/j.isci.2018.10.005_bib20) 2018; 30
Szatrowski (10.1016/j.isci.2018.10.005_bib40) 1991; 51
Liba (10.1016/j.isci.2018.10.005_bib24) 2017; 1
Maeda (10.1016/j.isci.2018.10.005_bib29) 2015; 91
Yin (10.1016/j.isci.2018.10.005_bib54) 2011; 4
Wang (10.1016/j.isci.2018.10.005_bib48) 2018; 5
Zhang (10.1016/j.isci.2018.10.005_bib55) 2008; 105
Chen (10.1016/j.isci.2018.10.005_bib7) 2015; 9
Ge (10.1016/j.isci.2018.10.005_bib15) 2014; 5
Thakor (10.1016/j.isci.2018.10.005_bib41) 2013; 63
Zheng (10.1016/j.isci.2018.10.005_bib57) 2016; 10
Smith (10.1016/j.isci.2018.10.005_bib36) 2017; 117
Bristow (10.1016/j.isci.2018.10.005_bib2) 2008; 8
Cheng (10.1016/j.isci.2018.10.005_bib9) 2014; 35
Cheng (10.1016/j.isci.2018.10.005_bib11) 2016; 26
Yang (10.1016/j.isci.2018.10.005_bib53) 2018; 5
Lin (10.1016/j.isci.2018.10.005_bib25) 2013; 7
Chen (10.1016/j.isci.2018.10.005_bib8) 2017; 11
Triesscheijn (10.1016/j.isci.2018.10.005_bib44) 2006; 11
Chen (10.1016/j.isci.2018.10.005_bib6) 2015; 137
Mitchell (10.1016/j.isci.2018.10.005_bib30) 1985; 45
Brown (10.1016/j.isci.2018.10.005_bib4) 2004; 5
Kuang (10.1016/j.isci.2018.10.005_bib23) 2011; 133
Wilson (10.1016/j.isci.2018.10.005_bib49) 2011; 11
Jin (10.1016/j.isci.2018.10.005_bib21) 2013; 7
Wang (10.1016/j.isci.2018.10.005_bib47) 2016; 100
Romero-Castillo (10.1016/j.isci.2018.10.005_bib34) 2017; 95
Vander Heiden (10.1016/j.isci.2018.10.005_bib45) 2009; 324
Moghimi (10.1016/j.isci.2018.10.005_bib31) 2001; 18
Brohi (10.1016/j.isci.2018.10.005_bib3) 2017; 8
Dougherty (10.1016/j.isci.2018.10.005_bib13) 1998; 90
Noh (10.1016/j.isci.2018.10.005_bib33) 2018; 5
Juarranz (10.1016/j.isci.2018.10.005_bib22) 2008; 10
Goel (10.1016/j.isci.2018.10.005_bib16) 2016; 3
Su (10.1016/j.isci.2018.10.005_bib39) 2016; 8
Calixto (10.1016/j.isci.2018.10.005_bib5) 2016; 21
Liu (10.1016/j.isci.2018.10.005_bib26) 2015; 9
Abbas (10.1016/j.isci.2018.10.005_bib1) 2017; 29
Dolmans (10.1016/j.isci.2018.10.005_bib12) 2003; 3
Huang (10.1016/j.isci.2018.10.005_bib18) 2012; 24
Tian (10.1016/j.isci.2018.10.005_bib43) 2017; 4
Liu (10.1016/j.isci.2018.10.005_bib27) 2016; 97
Lucky (10.1016/j.isci.2018.10.005_bib28) 2015; 115
Tian (10.1016/j.isci.2018.10.005_bib42) 2011; 5
Yang (10.1016/j.isci.2018.10.005_bib52) 2017; 8
Mou (10.1016/j.isci.2018.10.005_bib32) 2016; 84
Xu (10.1016/j.isci.2018.10.005_bib50) 2016; 138
Srivastava (10.1016/j.isci.2018.10.005_bib37) 2015; 54
Hopper (10.1016/j.isci.2018.10.005_bib17) 2000; 1
Zhang (10.1016/j.isci.2018.10.005_bib56) 2015; 54
Fan (10.1016/j.isci.2018.10.005_bib14) 2015; 27
See (10.1016/j.isci.2018.10.005_bib35) 1984; 39
Cheng (10.1016/j.isci.2018.10.005_bib10) 2015; 6
Wang (10.1016/j.isci.2018.10.005_bib46) 2015; 11
References_xml – volume: 5
  start-page: 1700847
  year: 2018
  ident: 10.1016/j.isci.2018.10.005_bib53
  article-title: Oxygen-evolving mesoporous organosilica coated prussian blue nanoplatform for highly efficient photodynamic therapy of tumors
  publication-title: Adv. Sci. (Weinh)
  doi: 10.1002/advs.201700847
– volume: 95
  start-page: 917
  year: 2017
  ident: 10.1016/j.isci.2018.10.005_bib34
  article-title: Exploring the in vivo toxicity of nanoparticles
  publication-title: Can. J. Chem.
  doi: 10.1139/cjc-2017-0203
– volume: 1
  start-page: 212
  year: 2000
  ident: 10.1016/j.isci.2018.10.005_bib17
  article-title: Photodynamic therapy: a clinical reality in the treatment of cancer
  publication-title: Lancet Oncol.
  doi: 10.1016/S1470-2045(00)00166-2
– volume: 10
  start-page: 8715
  year: 2016
  ident: 10.1016/j.isci.2018.10.005_bib57
  article-title: Carbon-dot-decorated carbon nitride nanoparticles for enhanced photodynamic therapy against hypoxic tumor via water splitting
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b04156
– volume: 9
  start-page: 950
  year: 2015
  ident: 10.1016/j.isci.2018.10.005_bib26
  article-title: Iron oxide decorated MoS2 nanosheets with double PEGylation for chelator-free radiolabeling and multimodal imaging guided photothermal therapy
  publication-title: ACS Nano
  doi: 10.1021/nn506757x
– volume: 10
  start-page: 148
  year: 2008
  ident: 10.1016/j.isci.2018.10.005_bib22
  article-title: Photodynamic therapy of cancer. basic principles and applications
  publication-title: Clin. Transl. Oncol.
  doi: 10.1007/s12094-008-0172-2
– volume: 39
  start-page: 631
  year: 1984
  ident: 10.1016/j.isci.2018.10.005_bib35
  article-title: Oxygen dependency of photocytotoxicity with haematoporphyrin derivative
  publication-title: Photochem. Photobiol.
  doi: 10.1111/j.1751-1097.1984.tb03902.x
– volume: 133
  start-page: 19278
  year: 2011
  ident: 10.1016/j.isci.2018.10.005_bib23
  article-title: Hydrogen peroxide inducible DNA cross-linking agents: targeted anticancer prodrugs
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja2073824
– volume: 3
  start-page: 380
  year: 2003
  ident: 10.1016/j.isci.2018.10.005_bib12
  article-title: Photodynamic therapy for cancer
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc1071
– volume: 3
  start-page: 1600122
  year: 2016
  ident: 10.1016/j.isci.2018.10.005_bib16
  article-title: Engineering intrinsically zirconium-89 radiolabeled self-destructing mesoporous silica nanostructures for in vivo biodistribution and tumor targeting studies
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201600122
– volume: 24
  start-page: 5205
  year: 2012
  ident: 10.1016/j.isci.2018.10.005_bib51
  article-title: A hydrogen peroxide-responsive O(2) nanogenerator for ultrasound and magnetic-resonance dual modality imaging
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201202367
– volume: 29
  start-page: 1605021
  year: 2017
  ident: 10.1016/j.isci.2018.10.005_bib1
  article-title: Self-assembled peptide- and protein-based nanomaterials for antitumor photodynamic and photothermal therapy
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201605021
– volume: 8
  start-page: 17038
  year: 2016
  ident: 10.1016/j.isci.2018.10.005_bib39
  article-title: A multifunctional PB@mSiO2-PEG/DOX nanoplatform for combined photothermal-chemotherapy of tumor
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b01147
– volume: 11
  start-page: 12849
  year: 2017
  ident: 10.1016/j.isci.2018.10.005_bib8
  article-title: Oxygen-self-produced nanoplatform for relieving hypoxia and breaking resistance to sonodynamic treatment of pancreatic cancer
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b08225
– volume: 11
  start-page: 393
  year: 2011
  ident: 10.1016/j.isci.2018.10.005_bib49
  article-title: Targeting hypoxia in cancer therapy
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc3064
– volume: 30
  start-page: 6069
  year: 2018
  ident: 10.1016/j.isci.2018.10.005_bib20
  article-title: A Magnetofluorescent carbon dot assembly as an acidic H2O2-driven oxygenerator to regulate tumor hypoxia for simultaneous bimodal imaging and enhanced photodynamic therapy
  publication-title: Adv. Mater.
– volume: 91
  start-page: 3
  year: 2015
  ident: 10.1016/j.isci.2018.10.005_bib29
  article-title: Toward a full understanding of the EPR effect in primary and metastatic tumors as well as issues related to its heterogeneity
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2015.01.002
– volume: 54
  start-page: 1770
  year: 2015
  ident: 10.1016/j.isci.2018.10.005_bib56
  article-title: Marriage of scintillator and semiconductor for synchronous radiotherapy and deep photodynamic therapy with diminished oxygen dependence
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201408472
– volume: 105
  start-page: 14773
  year: 2008
  ident: 10.1016/j.isci.2018.10.005_bib55
  article-title: Fabrication of ZnPc/protein nanohorns for double photodynamic and hyperthermic cancer phototherapy
  publication-title: Proc. Natl. Acad. Sci. U S A
  doi: 10.1073/pnas.0801349105
– volume: 84
  start-page: 13
  year: 2016
  ident: 10.1016/j.isci.2018.10.005_bib32
  article-title: Black titania-based theranostic nanoplatform for single NIR laser induced dual-modal imaging-guided PTT/PDT
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2016.01.009
– volume: 324
  start-page: 1029
  year: 2009
  ident: 10.1016/j.isci.2018.10.005_bib45
  article-title: Understanding the Warburg effect: the metabolic requirements of cell proliferation
  publication-title: Science
  doi: 10.1126/science.1160809
– volume: 5
  start-page: 1800287
  year: 2018
  ident: 10.1016/j.isci.2018.10.005_bib48
  article-title: In situ one-pot synthesis of MOF-polydopamine hybrid nanogels with enhanced photothermal effect for targeted cancer therapy
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201800287
– volume: 11
  start-page: 5956
  year: 2015
  ident: 10.1016/j.isci.2018.10.005_bib46
  article-title: Novel Mn3[Co(CN)6]2@SiO2@Ag Core-shell nanocube: enhanced two-photon fluorescence and magnetic resonance dual-modal imaging-guided photothermal and chemo-therapy
  publication-title: Small
  doi: 10.1002/smll.201502102
– volume: 63
  start-page: 395
  year: 2013
  ident: 10.1016/j.isci.2018.10.005_bib41
  article-title: Nanooncology: the future of cancer diagnosis and therapy
  publication-title: CA Cancer J. Clin.
  doi: 10.3322/caac.21199
– volume: 4
  start-page: 1600356
  year: 2017
  ident: 10.1016/j.isci.2018.10.005_bib43
  article-title: Periodic mesoporous organosilica coated prussian blue for MR/PA dual-modal imaging-guided photothermal-chemotherapy of triple negative breast cancer
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201600356
– volume: 117
  start-page: 901
  year: 2017
  ident: 10.1016/j.isci.2018.10.005_bib36
  article-title: Nanomaterials for in vivo imaging
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.6b00073
– volume: 9
  start-page: 7950
  year: 2015
  ident: 10.1016/j.isci.2018.10.005_bib7
  article-title: In vivo integrity and biological fate of chelator-free zirconium-89-labeled mesoporous silica nanoparticles
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b00526
– volume: 100
  start-page: 27
  year: 2016
  ident: 10.1016/j.isci.2018.10.005_bib47
  article-title: Controllable synthesis of dual-MOFs nanostructures for pH-responsive artemisinin delivery, magnetic resonance and optical dual-model imaging-guided chemo/photothermal combinational cancer therapy
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2016.05.027
– volume: 138
  start-page: 5222
  year: 2016
  ident: 10.1016/j.isci.2018.10.005_bib19
  article-title: An implantable depot that can generate oxygen in situ for overcoming hypoxia-induced resistance to anticancer drugs in chemotherapy
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b01784
– volume: 26
  start-page: 7847
  year: 2016
  ident: 10.1016/j.isci.2018.10.005_bib11
  article-title: An O2 self-sufficient biomimetic nanoplatform for highly specific and efficient photodynamic therapy
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201603212
– volume: 8
  start-page: 00606
  year: 2017
  ident: 10.1016/j.isci.2018.10.005_bib3
  article-title: Toxicity of nanoparticles on the reproductive system in animal models: a review
  publication-title: Front. Pharmacol.
  doi: 10.3389/fphar.2017.00606
– volume: 21
  start-page: 342
  year: 2016
  ident: 10.1016/j.isci.2018.10.005_bib5
  article-title: Nanotechnology-based drug delivery systems for photodynamic therapy of cancer: a review
  publication-title: Molecules
  doi: 10.3390/molecules21030342
– volume: 24
  start-page: 5104
  year: 2012
  ident: 10.1016/j.isci.2018.10.005_bib18
  article-title: Light-triggered theranostics based on photosensitizer-conjugated carbon dots for simultaneous enhanced-fluorescence imaging and photodynamic therapy
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201200650
– volume: 18
  start-page: 527
  year: 2001
  ident: 10.1016/j.isci.2018.10.005_bib31
  article-title: Capture of stealth nanoparticles by the body's defences
  publication-title: Crit. Rev. Ther. Drug Carrier Syst.
  doi: 10.1615/CritRevTherDrugCarrierSyst.v18.i6.30
– volume: 4
  start-page: 131
  year: 2011
  ident: 10.1016/j.isci.2018.10.005_bib54
  article-title: PET tracers based on zirconium-89
  publication-title: Curr. Radiopharm.
  doi: 10.2174/1874471011104020131
– volume: 115
  start-page: 1990
  year: 2015
  ident: 10.1016/j.isci.2018.10.005_bib28
  article-title: Nanoparticles in photodynamic therapy
  publication-title: Chem. Rev.
  doi: 10.1021/cr5004198
– volume: 54
  start-page: 6209
  year: 2015
  ident: 10.1016/j.isci.2018.10.005_bib37
  article-title: Critical review on the toxicity of some widely used engineered nanoparticles
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.5b01610
– volume: 8
  start-page: 180
  year: 2008
  ident: 10.1016/j.isci.2018.10.005_bib2
  article-title: Hypoxia, DNA repair and genetic instability
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc2344
– volume: 35
  start-page: 9844
  year: 2014
  ident: 10.1016/j.isci.2018.10.005_bib9
  article-title: PEGylated Prussian blue nanocubes as a theranostic agent for simultaneous cancer imaging and photothermal therapy
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2014.09.004
– volume: 7
  start-page: 2541
  year: 2013
  ident: 10.1016/j.isci.2018.10.005_bib21
  article-title: Ablation of hypoxic tumors with dose-equivalent photothermal, but not photodynamic, therapy using a nanostructured porphyrin assembly
  publication-title: ACS Nano
  doi: 10.1021/nn3058642
– volume: 6
  start-page: 8785
  year: 2015
  ident: 10.1016/j.isci.2018.10.005_bib10
  article-title: Perfluorocarbon nanoparticles enhance reactive oxygen levels and tumour growth inhibition in photodynamic therapy
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9785
– volume: 5
  start-page: 497
  year: 2004
  ident: 10.1016/j.isci.2018.10.005_bib4
  article-title: The present and future role of photodynamic therapy in cancer treatment
  publication-title: Lancet Oncol.
  doi: 10.1016/S1470-2045(04)01529-3
– volume: 1
  start-page: 0075
  year: 2017
  ident: 10.1016/j.isci.2018.10.005_bib24
  article-title: Photoacoustic tomography: breathtaking whole-body imaging
  publication-title: Nat. Biomed. Eng.
  doi: 10.1038/s41551-017-0075
– volume: 90
  start-page: 889
  year: 1998
  ident: 10.1016/j.isci.2018.10.005_bib13
  article-title: Photodynamic therapy
  publication-title: J. Natl. Cancer Inst.
  doi: 10.1093/jnci/90.12.889
– volume: 5
  start-page: 1700481
  year: 2018
  ident: 10.1016/j.isci.2018.10.005_bib33
  article-title: Enhanced photodynamic cancer treatment by mitochondria-targeting and brominated near-infrared fluorophores
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201700481
– volume: 9
  start-page: 19
  year: 2017
  ident: 10.1016/j.isci.2018.10.005_bib38
  article-title: Oncologic photodynamic therapy: basic principles, current clinical status and future directions
  publication-title: Cancers (Basel)
  doi: 10.3390/cancers9020019
– volume: 11
  start-page: 1034
  year: 2006
  ident: 10.1016/j.isci.2018.10.005_bib44
  article-title: Photodynamic therapy in oncology
  publication-title: Oncologist
  doi: 10.1634/theoncologist.11-9-1034
– volume: 27
  start-page: 4155
  year: 2015
  ident: 10.1016/j.isci.2018.10.005_bib14
  article-title: Intelligent MnO2 nanosheets anchored with upconversion nanoprobes for concurrent pH-/H2O2-responsive UCL imaging and oxygen-elevated synergetic therapy
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201405141
– volume: 5
  start-page: 4596
  year: 2014
  ident: 10.1016/j.isci.2018.10.005_bib15
  article-title: A graphene quantum dot photodynamic therapy agent with high singlet oxygen generation
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5596
– volume: 7
  start-page: 5320
  year: 2013
  ident: 10.1016/j.isci.2018.10.005_bib25
  article-title: Photosensitizer-loaded gold vesicles with strong plasmonic coupling effect for imaging-guided photothermal/photodynamic therapy
  publication-title: ACS Nano
  doi: 10.1021/nn4011686
– volume: 8
  start-page: 902
  year: 2017
  ident: 10.1016/j.isci.2018.10.005_bib52
  article-title: Hollow MnO2 as a tumor-microenvironment-responsive biodegradable nano-platform for combination therapy favoring antitumor immune responses
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-01050-0
– volume: 5
  start-page: 7000
  year: 2011
  ident: 10.1016/j.isci.2018.10.005_bib42
  article-title: Photothermally enhanced photodynamic therapy delivered by nano-graphene oxide
  publication-title: ACS Nano
  doi: 10.1021/nn201560b
– volume: 51
  start-page: 794
  year: 1991
  ident: 10.1016/j.isci.2018.10.005_bib40
  article-title: Production of large amounts of hydrogen peroxide by human tumor cells
  publication-title: Cancer Res.
– volume: 138
  start-page: 2158
  year: 2016
  ident: 10.1016/j.isci.2018.10.005_bib50
  article-title: Nanoscale metal-organic frameworks for ratiometric oxygen sensing in live cells
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b13458
– volume: 97
  start-page: 1
  year: 2016
  ident: 10.1016/j.isci.2018.10.005_bib27
  article-title: Nanoscale metal-organic frameworks for combined photodynamic & radiation therapy in cancer treatment
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2016.04.034
– volume: 137
  start-page: 1539
  year: 2015
  ident: 10.1016/j.isci.2018.10.005_bib6
  article-title: H2O2-activatable and O2-evolving nanoparticles for highly efficient and selective photodynamic therapy against hypoxic tumor cells
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja511420n
– volume: 45
  start-page: 2008
  year: 1985
  ident: 10.1016/j.isci.2018.10.005_bib30
  article-title: Oxygen dependence of hematoporphyrin derivative-induced photoinactivation of Chinese hamster cells
  publication-title: Cancer Res.
SSID ssj0002002496
Score 2.289848
Snippet Therapeutic effects of photodynamic therapy (PDT) remain largely limited because of tumor hypoxia. Herein, we report safe and versatile nanocatalysts (NCs) for...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 14
Title Photo-Enhanced Singlet Oxygen Generation of Prussian Blue-Based Nanocatalyst for Augmented Photodynamic Therapy
URI https://www.ncbi.nlm.nih.gov/pubmed/30368078
https://www.proquest.com/docview/2126911876
https://pubmed.ncbi.nlm.nih.gov/PMC6203243
https://doaj.org/article/e7c4afaf562d4b77bc04913e67e2c0d4
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEBUlp1xKS5PWTVtUyC24jVdf9jFbsoRCk4UkkJuRNHI3Idgla0Pz7zsjeZfdUpJLr_6Qhd7I79kavWHsEBzxUlPk1kKFHyhFyG1jZO5ASDDO6TL6dP8412fX8vuNutko9UU5YckeOA3c12C8tI1tkKdBOmOcR01biKBNmPhjiE6gyHkbH1N3cXmNrPBiZTlFOUEYmuOOmZTcRTteKa-r_BJTu9QWK0Xz_n8pzr8TJzeYaPaKvRwlJD9JXX_NXoT2Devmi67v8tN2EZf0-SVSEkLCL34_Yojw5C5NIPCu4fOHYUmbJ_n0fgj5FIkMOL5mu_gv53HZc1Sy_GT4GQ07gcemIZWu51fJhmCPXc9Or76d5WMxhdxLXfa5L4wRExOqAmAilK1cqSsbjFJegVIgVFC6AiG0aKRHHeWaAkJpvQZhcaaLfbbTdm14x3ipjj3KNKeEDxKbLVFlNgZEiehiUzZjxWowaz86jVPBi_t6lVJ2VxMANQFAxxCAjB2t7_mVfDaevHpKGK2vJI_seAAjpx4jp34ucjL2eYVwjXOKFkpsG7phWSOd64rqsOuMvU2Irx9FlE8e_RkzW7Gw1ZftM-3tIvp2a6pWL8X7_9H5A7ZL45FMKD-wnf5hCB9RHvXuU5wJfwCJSQ6o
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Photo-Enhanced+Singlet+Oxygen+Generation+of+Prussian+Blue-Based+Nanocatalyst+for+Augmented+Photodynamic+Therapy&rft.jtitle=iScience&rft.au=Wang%2C+Dongdong&rft.au=Shi%2C+Ruohong&rft.au=Zhou%2C+Jiajia&rft.au=Shi%2C+Sixiang&rft.date=2018-11-30&rft.issn=2589-0042&rft.eissn=2589-0042&rft.volume=9&rft.spage=14&rft.epage=26&rft_id=info:doi/10.1016%2Fj.isci.2018.10.005&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_isci_2018_10_005
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2589-0042&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2589-0042&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2589-0042&client=summon