Evaluation of the landslide susceptibility and its spatial difference in the whole Qinghai-Tibetan Plateau region by five learning algorithms
Landslides are considered as major natural hazards that cause enormous property damages and fatalities in Qinghai-Tibetan Plateau (QTP). In this article, we evaluated the landslide susceptibility, and its spatial differencing in the whole Qinghai-Tibetan Plateau region using five state-of-the-art le...
Saved in:
Published in | Geoscience letters Vol. 9; no. 1; pp. 1 - 25 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
14.02.2022
Springer Nature B.V SpringerOpen |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Landslides are considered as major natural hazards that cause enormous property damages and fatalities in Qinghai-Tibetan Plateau (QTP). In this article, we evaluated the landslide susceptibility, and its spatial differencing in the whole Qinghai-Tibetan Plateau region using five state-of-the-art learning algorithms; deep neural network (DNN), logistic regression (LR), Naïve Bayes (NB), random forest (RF), and support vector machine (SVM), differing from previous studies only in local areas of QTP. The 671 landslide events were considered, and thirteen landslide conditioning factors (LCFs) were derived for database generation, including annual rainfall, distance to drainage
(
Ds
d
)
, distance to faults
(
Ds
f
)
, drainage density (
D
d
)
, elevation (Elev), fault density
(
F
d
)
, lithology, normalized difference vegetation index (NDVI), plan curvature
(
Pl
c
)
, profile curvature
(
Pr
c
)
, slope
(
S
∘
)
, stream power index (SPI), and topographic wetness index (TWI). The multi-collinearity analysis and mean decrease Gini (MDG) were used to assess the suitability and predictability of these factors. Consequently, five landslide susceptibility prediction (LSP) maps were generated and validated using accuracy, area under the receiver operatic characteristic curve, sensitivity, and specificity. The MDG results demonstrated that the rainfall, elevation, and lithology were the most significant landslide conditioning factors ruling the occurrence of landslides in Qinghai-Tibetan Plateau. The LSP maps depicted that the north-northwestern and south-southeastern regions (< 32% of total area) were at a higher risk to landslide compared to the center, west, and northwest of the area (> 45% of total area). Moreover, among the five models with a high goodness-of-fit, RF model was highlighted as the superior one, by which higher accuracy of landslide susceptibility assessment and better prone areas management in QTP can be achieved compared to previous results.
Graphical Abstract |
---|---|
AbstractList | Landslides are considered as major natural hazards that cause enormous property damages and fatalities in Qinghai-Tibetan Plateau (QTP). In this article, we evaluated the landslide susceptibility, and its spatial differencing in the whole Qinghai-Tibetan Plateau region using five state-of-the-art learning algorithms; deep neural network (DNN), logistic regression (LR), Naïve Bayes (NB), random forest (RF), and support vector machine (SVM), differing from previous studies only in local areas of QTP. The 671 landslide events were considered, and thirteen landslide conditioning factors (LCFs) were derived for database generation, including annual rainfall, distance to drainage
(
Ds
d
)
, distance to faults
(
Ds
f
)
, drainage density (
D
d
)
, elevation (Elev), fault density
(
F
d
)
, lithology, normalized difference vegetation index (NDVI), plan curvature
(
Pl
c
)
, profile curvature
(
Pr
c
)
, slope
(
S
∘
)
, stream power index (SPI), and topographic wetness index (TWI). The multi-collinearity analysis and mean decrease Gini (MDG) were used to assess the suitability and predictability of these factors. Consequently, five landslide susceptibility prediction (LSP) maps were generated and validated using accuracy, area under the receiver operatic characteristic curve, sensitivity, and specificity. The MDG results demonstrated that the rainfall, elevation, and lithology were the most significant landslide conditioning factors ruling the occurrence of landslides in Qinghai-Tibetan Plateau. The LSP maps depicted that the north-northwestern and south-southeastern regions (< 32% of total area) were at a higher risk to landslide compared to the center, west, and northwest of the area (> 45% of total area). Moreover, among the five models with a high goodness-of-fit, RF model was highlighted as the superior one, by which higher accuracy of landslide susceptibility assessment and better prone areas management in QTP can be achieved compared to previous results.
Graphical Abstract Abstract Landslides are considered as major natural hazards that cause enormous property damages and fatalities in Qinghai-Tibetan Plateau (QTP). In this article, we evaluated the landslide susceptibility, and its spatial differencing in the whole Qinghai-Tibetan Plateau region using five state-of-the-art learning algorithms; deep neural network (DNN), logistic regression (LR), Naïve Bayes (NB), random forest (RF), and support vector machine (SVM), differing from previous studies only in local areas of QTP. The 671 landslide events were considered, and thirteen landslide conditioning factors (LCFs) were derived for database generation, including annual rainfall, distance to drainage $${(\mathrm{Ds}}_{\mathrm{d}})$$ ( Ds d ) , distance to faults $${(\mathrm{Ds}}_{\mathrm{f}})$$ ( Ds f ) , drainage density ( $${D}_{d})$$ D d ) , elevation (Elev), fault density $$({F}_{d})$$ ( F d ) , lithology, normalized difference vegetation index (NDVI), plan curvature $${(\mathrm{Pl}}_{\mathrm{c}})$$ ( Pl c ) , profile curvature $${(\mathrm{Pr}}_{\mathrm{c}})$$ ( Pr c ) , slope $${(S}^{^\circ })$$ ( S ∘ ) , stream power index (SPI), and topographic wetness index (TWI). The multi-collinearity analysis and mean decrease Gini (MDG) were used to assess the suitability and predictability of these factors. Consequently, five landslide susceptibility prediction (LSP) maps were generated and validated using accuracy, area under the receiver operatic characteristic curve, sensitivity, and specificity. The MDG results demonstrated that the rainfall, elevation, and lithology were the most significant landslide conditioning factors ruling the occurrence of landslides in Qinghai-Tibetan Plateau. The LSP maps depicted that the north-northwestern and south-southeastern regions (< 32% of total area) were at a higher risk to landslide compared to the center, west, and northwest of the area (> 45% of total area). Moreover, among the five models with a high goodness-of-fit, RF model was highlighted as the superior one, by which higher accuracy of landslide susceptibility assessment and better prone areas management in QTP can be achieved compared to previous results. Graphical Abstract Landslides are considered as major natural hazards that cause enormous property damages and fatalities in Qinghai-Tibetan Plateau (QTP). In this article, we evaluated the landslide susceptibility, and its spatial differencing in the whole Qinghai-Tibetan Plateau region using five state-of-the-art learning algorithms; deep neural network (DNN), logistic regression (LR), Naïve Bayes (NB), random forest (RF), and support vector machine (SVM), differing from previous studies only in local areas of QTP. The 671 landslide events were considered, and thirteen landslide conditioning factors (LCFs) were derived for database generation, including annual rainfall, distance to drainage (Dsd), distance to faults (Dsf), drainage density (Dd), elevation (Elev), fault density (Fd), lithology, normalized difference vegetation index (NDVI), plan curvature (Plc), profile curvature (Prc), slope (S∘), stream power index (SPI), and topographic wetness index (TWI). The multi-collinearity analysis and mean decrease Gini (MDG) were used to assess the suitability and predictability of these factors. Consequently, five landslide susceptibility prediction (LSP) maps were generated and validated using accuracy, area under the receiver operatic characteristic curve, sensitivity, and specificity. The MDG results demonstrated that the rainfall, elevation, and lithology were the most significant landslide conditioning factors ruling the occurrence of landslides in Qinghai-Tibetan Plateau. The LSP maps depicted that the north-northwestern and south-southeastern regions (< 32% of total area) were at a higher risk to landslide compared to the center, west, and northwest of the area (> 45% of total area). Moreover, among the five models with a high goodness-of-fit, RF model was highlighted as the superior one, by which higher accuracy of landslide susceptibility assessment and better prone areas management in QTP can be achieved compared to previous results. Landslides are considered as major natural hazards that cause enormous property damages and fatalities in Qinghai-Tibetan Plateau (QTP). In this article, we evaluated the landslide susceptibility, and its spatial differencing in the whole Qinghai-Tibetan Plateau region using five state-of-the-art learning algorithms; deep neural network (DNN), logistic regression (LR), Naïve Bayes (NB), random forest (RF), and support vector machine (SVM), differing from previous studies only in local areas of QTP. The 671 landslide events were considered, and thirteen landslide conditioning factors (LCFs) were derived for database generation, including annual rainfall, distance to drainage $${(\mathrm{Ds}}_{\mathrm{d}})$$ ( Ds d ) , distance to faults $${(\mathrm{Ds}}_{\mathrm{f}})$$ ( Ds f ) , drainage density ( $${D}_{d})$$ D d ) , elevation (Elev), fault density $$({F}_{d})$$ ( F d ) , lithology, normalized difference vegetation index (NDVI), plan curvature $${(\mathrm{Pl}}_{\mathrm{c}})$$ ( Pl c ) , profile curvature $${(\mathrm{Pr}}_{\mathrm{c}})$$ ( Pr c ) , slope $${(S}^{^\circ })$$ ( S ∘ ) , stream power index (SPI), and topographic wetness index (TWI). The multi-collinearity analysis and mean decrease Gini (MDG) were used to assess the suitability and predictability of these factors. Consequently, five landslide susceptibility prediction (LSP) maps were generated and validated using accuracy, area under the receiver operatic characteristic curve, sensitivity, and specificity. The MDG results demonstrated that the rainfall, elevation, and lithology were the most significant landslide conditioning factors ruling the occurrence of landslides in Qinghai-Tibetan Plateau. The LSP maps depicted that the north-northwestern and south-southeastern regions (< 32% of total area) were at a higher risk to landslide compared to the center, west, and northwest of the area (> 45% of total area). Moreover, among the five models with a high goodness-of-fit, RF model was highlighted as the superior one, by which higher accuracy of landslide susceptibility assessment and better prone areas management in QTP can be achieved compared to previous results. Graphical Abstract |
ArticleNumber | 9 |
Author | Gholamnia, Mehdi Mukherjee, Saumitra Bonafoni, Stefania Sajadi, Payam Sang, Yan-Fang |
Author_xml | – sequence: 1 givenname: Payam surname: Sajadi fullname: Sajadi, Payam organization: Key Laboratory of Water Cycle & Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences – sequence: 2 givenname: Yan-Fang orcidid: 0000-0001-6770-9311 surname: Sang fullname: Sang, Yan-Fang email: sangyf@igsnrr.ac.cn, sunsangyf@gmail.com organization: Key Laboratory of Water Cycle & Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Key Laboratory of Compound and Chained Natural Hazards Dynamics, Ministry of Emergency Management of China – sequence: 3 givenname: Mehdi surname: Gholamnia fullname: Gholamnia, Mehdi organization: Department of Civil Engineering, Sanandaj Branch – sequence: 4 givenname: Stefania surname: Bonafoni fullname: Bonafoni, Stefania organization: Department of Engineering, University of Perugia – sequence: 5 givenname: Saumitra surname: Mukherjee fullname: Mukherjee, Saumitra organization: School of Environmental Sciences, Jawaharlal Nehru University |
BookMark | eNp9kUFvFSEUhSemJtbaP-CKxPUoMMBjlqap2qSJNalrchlgHi8UnsDUvh_hf5a-0Wi66IJAbs537gnndXcSU7Rd95bg94RI8aEwzAXtMW0HUyL7hxfdKSWj6Bke6cl_71fdeSk7jDGRfCCSnHa_Lu8hLFB9iig5VLcWBYimBG8sKkuZ7L567YOvB9TmyNeCyr7pISDjnbPZxskiH4_oz20KFn3zcd6C72-9thUiuglQLSwo2_lxjT4g5-_bHgs5NimCMKfs6_auvOleOgjFnv-5z7rvny5vL770118_X118vO4nJmTt9aQ3mwn0ZAl1RFopiOaYgTFABzwIw2E0joAGDkY4ig1w4iSXhBPOsRjOuqvV1yTYqX32d5APKoFXx0HKs4Jc_RSs0sDMhm4o4JEzCoMEoJSPbBw1jJOVzevd6rXP6cdiS1W7tOTY4isqqGSYCUabSq6qKadSsnVq8vX47TWDD4pg9dilWrtUrUt17FI9NJQ-Qf8GfhYaVqg0cZxt_pfqGeo3mr22kw |
CitedBy_id | crossref_primary_10_1007_s11042_024_19454_8 crossref_primary_10_1007_s11069_023_05836_y crossref_primary_10_1007_s11069_024_07031_z crossref_primary_10_1016_j_envc_2024_101029 crossref_primary_10_3390_atmos14020214 crossref_primary_10_1007_s12145_025_01700_8 crossref_primary_10_1016_j_heliyon_2023_e23424 crossref_primary_10_1186_s40562_023_00307_5 crossref_primary_10_1016_j_jhydrol_2025_133015 crossref_primary_10_3389_fenvs_2023_1177891 crossref_primary_10_3390_geosciences14060168 crossref_primary_10_1016_j_ige_2024_10_003 crossref_primary_10_3799_dqkx_2022_309 crossref_primary_10_3390_rs15123200 crossref_primary_10_1007_s40098_024_00957_y crossref_primary_10_1016_j_ecolind_2024_112460 crossref_primary_10_1038_s41597_024_04362_1 crossref_primary_10_1007_s43538_024_00305_x crossref_primary_10_1080_02723646_2023_2250174 crossref_primary_10_1016_j_trgeo_2024_101473 crossref_primary_10_3390_app13127276 crossref_primary_10_1007_s11629_022_7685_y crossref_primary_10_1016_j_jafrearsci_2024_105237 crossref_primary_10_1016_j_qsa_2024_100187 crossref_primary_10_1007_s11042_023_15049_x crossref_primary_10_1007_s11629_023_8029_2 crossref_primary_10_1016_j_envc_2024_101057 crossref_primary_10_1109_TGRS_2024_3504241 |
Cites_doi | 10.1007/s11069-019-03795-x 10.1016/j.asr.2020.05.015 10.1007/s11750-010-0152-x 10.1007/s10668-020-00783-1 10.1007/s11069-016-2725-y 10.1016/j.gsf.2019.10.001 10.3390/rs12030502 10.1007/s10346-016-0756-9 10.1130/GES00217.1 10.1007/s12665-012-1842-5 10.1016/b978-0-12-814899-0.00014-6 10.1002/rra.1332 10.1016/j.catena.2020.104458 10.3390/su11164386 10.1016/j.cageo.2020.104470 10.3390/ijerph17124206 10.1007/s10346-014-0550-5 10.1111/j.1365-246X.2010.04754.x 10.1016/j.catena.2019.104150 10.1016/j.catena.2017.01.010 10.1201/9781420089653 10.1016/j.isprsjprs.2016.01.011 10.5194/nhess-5-979-2005 10.1016/j.catena.2020.104751 10.1007/s10346-015-0565-6 10.1016/j.geomorph.2020.107201 10.1007/978-1-4419-9890-3 10.1007/s12665-016-5919-4 10.1007/s10346-015-0557-6 10.1016/j.gsf.2020.05.010 10.1016/j.enggeo.2020.105972 10.3133/ofr97470F 10.1093/oso/9780198538493.001.0001 10.1016/j.catena.2019.104425 10.1186/s40677-020-00155-x 10.1016/j.scitotenv.2021.145935 10.3390/s18124436 10.1007/s10346-013-0415-3 10.1038/npre.2008.2278.2 10.1016/j.cageo.2015.04.007 10.1016/j.geomorph.2017.06.013 10.1111/j.1600-0587.2012.07348.x 10.1016/j.catena.2020.104580 10.1007/s12665-013-2863-4 10.1016/j.enggeo.2011.09.006 10.1016/j.scitotenv.2020.142928 10.1016/j.catena.2020.104851 10.3390/sym12061047 10.1371/journal.pone.0133262 10.1016/j.envpol.2008.02.014 10.1016/j.jseaes.2012.10.005 10.1007/s12517-012-0610-x 10.1080/01431160903252327 10.1016/j.gloplacha.2004.01.010 10.1080/10106049.2018.1516248 10.1016/j.catena.2018.04.003 10.1016/j.geomorph.2004.06.010 10.1016/j.envsoft.2016.07.005 10.2352/ISSN.2470-1173.2019.7.IRIACV-466 10.1002/joc.3512 10.1007/s11004-011-9379-9 10.1007/s11069-009-9401-4 10.5194/nhess-17-1411-2017 10.1016/j.enggeo.2011.09.011 10.1016/j.enggeo.2019.105147 10.5194/nhess-3-523-2003 10.1016/j.gsf.2020.10.007 10.1175/BAMS-D-17-0057.1 10.1016/j.geomorph.2021.107592 10.1007/s12665-017-6558-0 10.1007/978-3-030-35798-6_31 10.1155/2012/974638 10.1007/s42452-020-2563-0 10.3390/geosciences10110430 10.1016/j.envsoft.2009.10.016 10.1016/j.geomorph.2019.106975 10.1109/JSTARS.2020.3014143 10.1016/j.gsf.2020.09.002 10.1007/s10346-020-01392-9 10.1016/j.jseaes.2009.01.002 10.1016/j.earscirev.2018.03.001 10.1890/07-0539.1 10.1016/j.geomorph.2014.02.003 10.1016/j.catena.2020.104630 10.1016/j.geomorph.2015.07.012 10.1016/j.scitotenv.2020.138595 10.1098/rsos.180844 10.1007/s10346-017-0861-4 10.1016/j.rse.2020.111899 10.1080/10106049.2020.1750060 10.1016/j.enggeo.2005.02.002 10.1007/s40808-016-0243-2 10.1007/s11629-013-2814-2 10.1016/j.catena.2019.104225 10.1016/j.gsf.2020.02.012 10.1016/j.catena.2019.104249 10.3390/ijgi9090553 10.1080/10106049.2019.1611948 10.1002/2017EF000715 10.1016/j.aei.2018.06.004 10.1126/science.189.4201.419 10.3390/rs11030274 10.1016/j.catena.2019.104426 10.1016/j.catena.2020.104805 10.1007/s10064-021-02114-8 10.1111/1755-6724.14555 10.1007/s11069-005-5182-6 10.1080/0143116031000114851 10.1016/j.jag.2009.06.002 10.21203/rs.3.rs-15731/v2 10.1016/j.scitotenv.2018.06.389 10.1109/IWDRL.2018.8358209 10.1007/s12517-018-3770-5 10.1016/j.isprsjprs.2011.11.002 10.1016/j.catena.2016.09.007 10.1016/j.rse.2014.05.013 10.1016/j.gsf.2020.04.014 10.1201/9780429469275-8 10.1080/10106049.2019.1687594 10.1007/s12665-017-6689-3 10.3390/app9050942 10.1080/19475705.2017.1289250 10.3390/F11040421 10.1016/j.scitotenv.2019.01.221 10.1016/S0013-7952(01)00093-X 10.3390/ijgi7110438 10.1016/j.jag.2013.05.017 10.1016/j.gsf.2021.101203 10.1016/j.geomorph.2011.02.001 10.3390/app10010029 10.1016/j.geomorph.2005.06.002 10.1016/j.geomorph.2008.02.011 10.3390/app10155047 10.1007/s10064-018-1393-4 10.1016/j.geomorph.2016.02.012 10.1080/15230430.2019.1650541 10.3390/su13084543 10.1016/j.gsf.2020.06.013 10.1016/j.cageo.2008.08.007 10.3390/ijerph17082749 |
ContentType | Journal Article |
Copyright | The Author(s) 2022 The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2022 – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 7UA ABUWG AEUYN AFKRA AZQEC BENPR BHPHI BKSAR C1K CCPQU DWQXO F1W H96 HCIFZ L.G PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI DOA |
DOI | 10.1186/s40562-022-00218-x |
DatabaseName | Springer Nature OA Free Journals CrossRef Water Resources Abstracts ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Aquatic Science & Fisheries Abstracts (ASFA) Professional Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Sustainability Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology Oceanography |
EISSN | 2196-4092 |
EndPage | 25 |
ExternalDocumentID | oai_doaj_org_article_ba4d7272a09542a38aa2259499ba9ce8 10_1186_s40562_022_00218_x |
GeographicLocations | Tibetan Plateau |
GeographicLocations_xml | – name: Tibetan Plateau |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 41971040 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: CAS Interdisciplinary Innovation Team grantid: JCTD-2019-04 – fundername: Second Tibetan Plateau Scientific Expedition and Research Program (STEP) grantid: 2019QZKK0903 |
GroupedDBID | -A0 0R~ 2XV 5VS 8FE 8FH AAFWJ AAJSJ AAKKN ABEEZ ACACY ACGFS ACULB ADBBV ADINQ AEUYN AFGXO AFKRA AFPKN AHBYD AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP ASPBG BCNDV BENPR BHPHI BKSAR C24 C6C CCPQU EBLON EBS GROUPED_DOAJ HCIFZ IAO IEP ITC KQ8 LK5 M7R M~E OK1 PCBAR PIMPY PROAC RSV SOJ AASML AAYXX CITATION PHGZM PHGZT 7UA ABUWG AZQEC C1K DWQXO F1W H96 L.G PKEHL PQEST PQQKQ PQUKI PUEGO |
ID | FETCH-LOGICAL-c468t-bcb77cabce12f18e861b504adda23036d5a9df1aba5ad6f20da51f85815155063 |
IEDL.DBID | DOA |
ISSN | 2196-4092 |
IngestDate | Wed Aug 27 01:24:04 EDT 2025 Fri Jul 25 22:51:19 EDT 2025 Thu Apr 24 22:57:25 EDT 2025 Tue Jul 01 02:58:47 EDT 2025 Fri Feb 21 02:47:38 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Landslide susceptibility Feature selection technique Spatial differencing Machine learning algorithm Qinghai-Tibetan Plateau |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c468t-bcb77cabce12f18e861b504adda23036d5a9df1aba5ad6f20da51f85815155063 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-6770-9311 |
OpenAccessLink | https://doaj.org/article/ba4d7272a09542a38aa2259499ba9ce8 |
PQID | 2628404642 |
PQPubID | 2034757 |
PageCount | 25 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_ba4d7272a09542a38aa2259499ba9ce8 proquest_journals_2628404642 crossref_citationtrail_10_1186_s40562_022_00218_x crossref_primary_10_1186_s40562_022_00218_x springer_journals_10_1186_s40562_022_00218_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-02-14 |
PublicationDateYYYYMMDD | 2022-02-14 |
PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-14 day: 14 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Heidelberg |
PublicationSubtitle | Official Journal of the Asia Oceania Geosciences Society (AOGS) |
PublicationTitle | Geoscience letters |
PublicationTitleAbbrev | Geosci. Lett |
PublicationYear | 2022 |
Publisher | Springer International Publishing Springer Nature B.V SpringerOpen |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V – name: SpringerOpen |
References | Guzzetti F (2006) Landslide hazard and risk assessment. Doctoral dissertation, Rheinische Friedrich Wilhelms-Universität Bonn QiTMengXQingFDistribution and characteristics of large landslides in a fault zone: a case study of the NE Qinghai-Tibet PlateauGeomorphology202137910.1016/j.geomorph.2021.107592 RosiATofaniVTanteriLThe new landslide inventory of Tuscany (Italy) updated with PS-InSAR: geomorphological features and landslide distributionLandslides20181551910.1007/s10346-017-0861-4 Ullah M, Aslam M, Ullah MDMI, LazyData T (2019) Package ‘mctest’. https://doi.org/10.2352/ISSN.2470-1173.2019.7.IRIACV-466 ArabameriASahaSRoyJA novel ensemble computational intelligence approach for the spatial prediction of land subsidence susceptibilitySci Total Environ202072610.1016/j.scitotenv.2020.138595 DouJYunusAPTien BuiDAssessment of advanced random forest and decision tree algorithms for modeling rainfall-induced landslide susceptibility in the Izu-Oshima Volcanic Island, JapanSci Total Environ201966233234610.1016/j.scitotenv.2019.01.221 PawluszekKBorkowskiAImpact of DEM-derived factors and analytical hierarchy process on landslide susceptibility mapping in the region of Rożnów Lake, PolandNat Hazards20178691995210.1007/s11069-016-2725-y PeethambaranBAnbalaganRKanungoDPA comparative evaluation of supervised machine learning algorithms for township level landslide susceptibility zonation in parts of Indian HimalayasCATENA202019510.1016/j.catena.2020.104751 YiYZhangZZhangWLandslide susceptibility mapping using multiscale sampling strategy and convolutional neural network: a case study in Jiuzhaigou regionCATENA202019510.1016/j.catena.2020.104851 WangYFengLLiSA hybrid model considering spatial heterogeneity for landslide susceptibility mapping in Zhejiang ProvinceChina Catena202018810.1016/j.catena.2019.104425 PhamBTNguyen-ThoiTQiCCoupling RBF neural network with ensemble learning techniques for landslide susceptibility mappingCATENA202019510.1016/j.catena.2020.104805 DengHWuLZHuangRQFormation of the Siwanli ancient landslide in the Dadu River, ChinaLandslides20171438539410.1007/s10346-016-0756-9 ReichenbachPRossiMMalamudBDA review of statistically-based landslide susceptibility modelsEarth-Science Rev2018180609110.1016/j.earscirev.2018.03.001 SahaSArabameriASahaAPrediction of landslide susceptibility in Rudraprayag, India using novel ensemble of conditional probability and boosted regression tree-based on cross-validation methodSci Total Environ202176410.1016/j.scitotenv.2020.142928 Carranza-GarcíaMGarcía-GutiérrezJRiquelmeJCA framework for evaluating land use and land cover classification using convolutional neural networksRemote Sens201910.3390/rs11030274 Thi NgoPTPanahiMKhosraviKEvaluation of deep learning algorithms for national scale landslide susceptibility mapping of IranGeosci Front20211250551910.1016/j.gsf.2020.06.013 WangHZhangLYinKLandslide identification using machine learningGeosci Front20211235136410.1016/j.gsf.2020.02.012 YaoTXueYChenDRecent third pole’s rapid warming accompanies cryospheric melt and water cycle intensification and interactions between monsoon and environment: multidisciplinary approach with observations, modeling, and analysisBull Am Meteorol Soc201910042344410.1175/BAMS-D-17-0057.1 WilliamsGData mining with Rattle and R: the art of excavating data for knowledge discovery2011ChamSpringer Science & Business Media10.1007/978-1-4419-9890-3 Wubalem A (2020) Landslide susceptibility mapping using statistical methods in Uatzau Catchment Area, Northwestern Ethiopia. 1–21. https://doi.org/10.21203/rs.3.rs-15731/v2 NhuVHZandiDShahabiHComparison of support vector machine, bayesian logistic regression, and alternating decision tree algorithms for shallow landslide susceptibility mapping along a mountainous road in the west of IranAppl Sci202010.3390/app10155047 PhamBTBuiDPrakashIDholakiaMEvaluation of predictive ability of support vector machines and naive Bayes trees methods for spatial prediction of landslides in Uttarakhand state (India) using GISJ Geomat2016107179 BudimirMEAAtkinsonPMLewisHGA systematic review of landslide probability mapping using logistic regressionLandslides20151241943610.1007/s10346-014-0550-5 de OliveiraGGRuizLFCGuasselliLAHaetingerCRandom forest and artificial neural networks in landslide susceptibility modeling: a case study of the Fão River Basin, Southern BrazilNat Hazards2019991049107310.1007/s11069-019-03795-x AtkinsonPMMassariRAutologistic modelling of susceptibility to landsliding in the Central Apennines, ItalyGeomorphology2011130556410.1016/j.geomorph.2011.02.001 Tien BuiDPradhanBLofmanORevhaugILandslide susceptibility assessment in Vietnam using support vector machines, decision tree, and nave Bayes modelsMath Probl Eng201210.1155/2012/974638 ParkSKimJLandslide susceptibility mapping based on random forest and boosted regression tree models, and a comparison of their performanceAppl Sci201910.3390/app9050942 HuangXSillanpääMDuoBGjessingETWater quality in the Tibetan Plateau: Metal contents of four selected riversEnviron Pollut200815627027710.1016/j.envpol.2008.02.014 MandalKSahaSMandalSApplying deep learning and benchmark machine learning algorithms for landslide susceptibility modelling in Rorachu river basin of Sikkim HimalayaIndia Geosci Front20211210.1016/j.gsf.2021.101203 YouQFraedrichKRenGVariability of temperature in the Tibetan Plateau based on homogenized surface stations and reanalysis dataInt J Climatol2013331337134710.1002/joc.3512 NhuVHShirzadiAShahabiHShallow landslide susceptibility mapping: a comparison between logistic model tree, logistic regression, naïve bayes tree, artificial neural network, and support vector machine algorithmsInt J Environ Res Public Health202010.3390/ijerph17082749 CountySBostjanˇIRegional-scale landslide susceptibility mapping using limited LiDAR-based landslide inventories for Sisak-Moslavina County, CroatiaSustainability202110.3390/su13084543 Hutchinson JN (1995) Keynote paper: Landslide hazard assessment. In: International Symposium on Landslides. pp 1805–1841 TsangaratosPIliaILandslide susceptibility mapping using a modified decision tree classifier in the Xanthi Perfection, GreeceLandslides20161330532010.1007/s10346-015-0565-6 KirschbaumDBAdlerRHongYA global landslide catalog for hazard applications: Method, results, and limitationsNat Hazards20105256157510.1007/s11069-009-9401-4 ThakurMKDesamsettiSRajeshANExploring the rainfall data from satellites to monitor rainfall induced landslides–a case studyAdv Sp Res20206688789410.1016/j.asr.2020.05.015 MahdadiFBoumezbeurAHadjiRGIS-based landslide susceptibility assessment using statistical models: a case study from Souk Ahras provinceN-E Algeria Arab J Geosci201810.1007/s12517-018-3770-5 SunDWenHWangDXuJA random forest model of landslide susceptibility mapping based on hyperparameter optimization using Bayes algorithmGeomorphology202036210.1016/j.geomorph.2020.107201 BallabioCSterlacchiniSSupport vector machines for landslide susceptibility mapping: the Staffora River basin case study, ItalyMath Geosci201244477010.1007/s11004-011-9379-9 KirschbaumDStanleyTSatellite-based assessment of rainfall-triggered landslide hazard for situational awarenessEarth’s Futur2018650552310.1002/2017EF000715 StegerSMairVKoflerCCorrelation does not imply geomorphic causation in data-driven landslide susceptibility modeling—benefits of exploring landslide data collection effectsSci Total Environ202110.1016/j.scitotenv.2021.145935 GuzzettiFReichenbachPCardinaliMProbabilistic landslide hazard assessment at the basin scaleGeomorphology20057227229910.1016/j.geomorph.2005.06.002 SajadiPSinghAMukherjeeSMultivariate statistical analysis of relationship between tectonic activity and drainage behavior in Qorveh-Dehgolan basin Kurdistan, IranGeocarto Int20213654056210.1080/10106049.2019.1611948 HuangXSillanpääMGjessingETWater quality in the southern Tibetan Plateau: chemical evaluation of the Yarlung Tsangpo (Brahmaputra)River Res Appl20112711312110.1002/rra.1332 ChenWFanLLiCPhamBTSpatial prediction of landslides using hybrid integration of artificial intelligence algorithms with frequency ratio and index of entropy in Nanzheng county, ChinaAppl Sci20201012110.3390/app10010029 SingaravelSSuykensJGeyerPDeep-learning neural-network architectures and methods: Using component-based models in building-design energy predictionAdv Eng Informatics201838819010.1016/j.aei.2018.06.004 CostanzoDChacónJConoscentiCForward logistic regression for earth-flow landslide susceptibility assessment in the Platani river basin (southern Sicily, Italy)Landslides20141163965310.1007/s10346-013-0415-3 DormannCFElithJBacherSCollinearity: a review of methods to deal with it and a simulation study evaluating their performanceEcography (cop)201336274610.1111/j.1600-0587.2012.07348.x BreimanLRandom forestsMach Learn20014553210.1201/9780429469275-8 GuzzettiFCarraraACardinaliMReichenbachPLandslide hazard evaluation: a review of current techniques and their application in a multi-scale studyCentral Italy Geomorphol 1999131995 ChangZDuZZhangFLandslide susceptibility prediction based on remote sensing images and GIS: Comparisons of supervised and unsupervised machine learning modelsRemote Sens202010.3390/rs12030502 LiawAWienerMClassification and regression by randomForestR News200221822 PhamBTShirzadiAShahabiHLandslide susceptibility assessment by novel hybrid machine learning algorithmsSustain20191112510.3390/su11164386 ParkSChoiCKimBKimJLandslide susceptibility mapping using frequency ratio, analytic hierarchy process, logistic regression, and artificial neural network methods at the Inje area, KoreaEnviron Earth Sci2013681443146410.1007/s12665-012-1842-5 Meyer D, Dimitriadou E, Hornik K, et al (2019) Libsvm e1071: Misc Functions of the Department of Statistics, Probability Theory Group (Formerly: E1071), TU Wien. https://CRAN.R-project.org/package=e1071. Accessed 1 Jan 2021 PhamBTTien BuiDPrakashIA comparative study of sequential minimal optimization-based support vector machines, vote feat J Dou (218_CR39) 2015 MN Jebur (218_CR63) 2014; 152 H Wang (218_CR134) 2021; 12 VH Nhu (218_CR84) 2020 218_CR53 B Pradhan (218_CR99) 2010; 25 D Tien Bui (218_CR128) 2016; 13 A Kornejady (218_CR69) 2017; 152 D Kirschbaum (218_CR67) 2018; 6 AM Youssef (218_CR147) 2021; 12 M Mohammady (218_CR80) 2012; 61 M Belgiu (218_CR15) 2016; 114 H Jia (218_CR64) 2020; 247 T Stanley (218_CR114) 2020; 69 MH Tangestani (218_CR121) 2009; 35 C Yu (218_CR148) 2020; 12 BT Pham (218_CR95) 2017 VH Nhu (218_CR83) 2020; 188 BT Pham (218_CR96) 2017; 149 R Damaševičius (218_CR34) 2010; 18 M Bordoni (218_CR17) 2020; 193 L Breiman (218_CR19) 2001; 45 S Park (218_CR88) 2019 P Tsangaratos (218_CR129) 2016; 13 Y Achour (218_CR3) 2020; 11 SK Bartarya (218_CR13) 1996; 17 FC Dai (218_CR33) 2002; 64 JN Goetz (218_CR49) 2015; 81 F Mahdadi (218_CR74) 2018 M Zare (218_CR149) 2013; 6 F Guzzetti (218_CR51) 1999; 13 TW Gillespie (218_CR48) 2019; 51 F Huang (218_CR59) 2020; 191 A Wubalem (218_CR138) 2020; 2 I Yilmaz (218_CR145) 2009; 35 M Carranza-García (218_CR22) 2019 J Song (218_CR113) 2020; 13 P Sajadi (218_CR109) 2021; 36 C Ballabio (218_CR12) 2012; 44 P Molnar (218_CR81) 1975; 189 P Sajadi (218_CR108) 2020 EK Sahin (218_CR107) 2020; 35 P Reichenbach (218_CR101) 2018; 180 Y Zhao (218_CR152) 2019; 259 PM Atkinson (218_CR10) 2011; 130 Z Liu (218_CR73) 2021; 12 BT Pham (218_CR94) 2016; 84 C Cortes (218_CR28) 1995; 20 E Yesilnacar (218_CR143) 2005; 79 L Ayalew (218_CR11) 2005; 65 J Choi (218_CR27) 2012; 124 K Pawluszek (218_CR91) 2017; 86 VK Pandey (218_CR87) 2019; 182 MK Thakur (218_CR123) 2020; 66 J Dou (218_CR40) 2019; 662 A Rosi (218_CR104) 2018; 15 DB Kirschbaum (218_CR68) 2010; 52 Z Chang (218_CR23) 2020 VH Nhu (218_CR85) 2020 D Sun (218_CR119) 2021; 281 Q You (218_CR146) 2013; 33 218_CR131 218_CR130 J Zhang (218_CR150) 2020; 94 B Ghimire (218_CR46) 2010; 1 H Akinci (218_CR6) 2020 218_CR139 HAH Al-Najjar (218_CR7) 2021; 12 S Singaravel (218_CR112) 2018; 38 218_CR137 S Steger (218_CR115) 2021 W Chen (218_CR25) 2018; 644 VF Rodriguez-Galiano (218_CR103) 2012; 67 CF Dormann (218_CR38) 2013; 36 L Xiao (218_CR140) 2018 L Lin (218_CR72) 2017; 17 PT Thi Ngo (218_CR124) 2021; 12 X Robin (218_CR102) 2011; 12 VH Nhu (218_CR86) 2020 CM Bishop (218_CR16) 1995 S Pasang (218_CR90) 2020; 10 G Du (218_CR42) 2019; 78 M Marjanović (218_CR77) 2011; 123 S Mukherjee (218_CR82) 2008 AX Zhu (218_CR154) 2014; 214 MEA Budimir (218_CR20) 2015; 12 A Abbaszadeh Shahri (218_CR2) 2019; 183 BT Pham (218_CR93) 2016; 10 T Kavzoglu (218_CR66) 2003; 24 M Borga (218_CR18) 2019 T Mersha (218_CR78) 2020 H Hong (218_CR54) 2016; 259 X Yao (218_CR141) 2008; 101 M Du (218_CR41) 2004; 41 S County (218_CR30) 2021 M Ercanoglu (218_CR44) 2005; 5 A Ghosh (218_CR47) 2014; 26 Q Hu (218_CR55) 2020; 351 D Costanzo (218_CR29) 2014; 11 B Peethambaran (218_CR92) 2020; 195 X Sun (218_CR117) 2018; 7 T Qi (218_CR100) 2021; 379 218_CR116 M Taylor (218_CR122) 2009; 5 G Williams (218_CR135) 2011 Y Yi (218_CR144) 2020; 195 AX Zhu (218_CR155) 2018; 166 JR Elliott (218_CR43) 2010; 183 DR Cutler (218_CR32) 2007; 88 W Chen (218_CR26) 2020; 10 A Saha (218_CR105) 2021 218_CR125 D Sun (218_CR118) 2020; 362 218_CR120 C Guo (218_CR50) 2015; 248 218_CR79 X Huang (218_CR56) 2008; 156 M Di Napoli (218_CR37) 2020; 17 218_CR75 F Guzzetti (218_CR52) 2005; 72 D Tien Bui (218_CR127) 2016 B Zhao (218_CR151) 2019 A Arabameri (218_CR8) 2020; 726 BT Pham (218_CR97) 2019; 11 T Yao (218_CR142) 2019; 100 S Saha (218_CR106) 2021; 764 X Wu (218_CR136) 2014; 71 GG de Oliveira (218_CR35) 2019; 99 M Jamal (218_CR62) 2016; 2 H Shahabi (218_CR111) 2021 W Chen (218_CR24) 2017; 8 Y Wang (218_CR132) 2020; 188 D Tien Bui (218_CR126) 2012 B Zhao (218_CR153) 2021; 80 SJ Aiken (218_CR5) 2013; 10 DT Bui (218_CR21) 2020; 188 A Liaw (218_CR71) 2002; 2 X Huang (218_CR57) 2011; 27 218_CR61 T Kavzoglu (218_CR65) 2009; 11 H Deng (218_CR36) 2017; 14 218_CR1 A Arora (218_CR9) 2019 S Beguería (218_CR14) 2006; 37 GB Crosta (218_CR31) 2003; 3 Y Wang (218_CR133) 2020; 17 Z Fang (218_CR45) 2020; 139 S Park (218_CR89) 2013; 68 IN Aghdam (218_CR4) 2017 MI Sameen (218_CR110) 2020; 186 BT Pham (218_CR98) 2020; 195 F Huang (218_CR58) 2019; 44 218_CR60 D Kumar (218_CR70) 2017; 295 K Mandal (218_CR76) 2021; 12 |
References_xml | – reference: Meyer D, Dimitriadou E, Hornik K, et al (2019) Libsvm e1071: Misc Functions of the Department of Statistics, Probability Theory Group (Formerly: E1071), TU Wien. https://CRAN.R-project.org/package=e1071. Accessed 1 Jan 2021 – reference: StanleyTKirschbaumDBPascaleSKapnickSExtreme precipitation in the Himalayan landslide hotspotAdv Glob Chang Res2020691087111110.1007/978-3-030-35798-6_31 – reference: CutlerDREdwardsTCBeardKHRandom forests for classification in ecology published by: Ecological Society of AmericaEcology2007882783279210.1890/07-0539.1 – reference: Varnes DJ (1984) Landslide hazard zonation: a review of principles and practice. Series: commission on landslides of the IAEG, UNESCO. Nat Hazard 3:61 – reference: RobinXTurckNHainardApROC: an open-source package for R and S+ to analyze and compare ROC curvesBMC Bioinformatics2011127710.1016/j.earscirev.2018.03.001 – reference: KornejadyAOwneghMBahremandALandslide susceptibility assessment using maximum entropy model with two different data sampling methodsCATENA201715214416210.1016/j.catena.2017.01.010 – reference: KavzogluTMatherPMThe use of backpropagating artificial neural networks in land cover classificationInt J Remote Sens2003244907493810.1080/0143116031000114851 – reference: PawluszekKBorkowskiAImpact of DEM-derived factors and analytical hierarchy process on landslide susceptibility mapping in the region of Rożnów Lake, PolandNat Hazards20178691995210.1007/s11069-016-2725-y – reference: GhoshAFassnachtFEJoshiPKKochbBA framework for mapping tree species combining hyperspectral and LiDAR data: role of selected classifiers and sensor across three spatial scalesInt J Appl Earth Obs Geoinf201426496310.1016/j.jag.2013.05.017 – reference: TsangaratosPIliaILandslide susceptibility mapping using a modified decision tree classifier in the Xanthi Perfection, GreeceLandslides20161330532010.1007/s10346-015-0565-6 – reference: QiTMengXQingFDistribution and characteristics of large landslides in a fault zone: a case study of the NE Qinghai-Tibet PlateauGeomorphology202137910.1016/j.geomorph.2021.107592 – reference: PhamBTTien BuiDPrakashIDholakiaMBHybrid integration of Multilayer Perceptron Neural Networks and machine learning ensembles for landslide susceptibility assessment at Himalayan area (India) using GISCATENA2017149526310.1016/j.catena.2016.09.007 – reference: BuiDTTsangaratosPNguyenVTComparing the prediction performance of a Deep Learning Neural Network model with conventional machine learning models in landslide susceptibility assessmentCATENA202018810.1016/j.catena.2019.104426 – reference: PhamBTNguyen-ThoiTQiCCoupling RBF neural network with ensemble learning techniques for landslide susceptibility mappingCATENA202019510.1016/j.catena.2020.104805 – reference: ChenWXieXPengJGIS-based landslide susceptibility modelling: a comparative assessment of kernel logistic regression, Naïve-Bayes tree, and alternating decision tree modelsGeomatics Nat Hazards Risk2017895097310.1080/19475705.2017.1289250 – reference: WangHZhangLYinKLandslide identification using machine learningGeosci Front20211235136410.1016/j.gsf.2020.02.012 – reference: MolnarPTapponnierPCenozoic tectonics of Asia: effects of a continental collisionScience197518941942610.1126/science.189.4201.419 – reference: BegueríaSValidation and evaluation of predictive models in hazard assessment and risk managementNat Hazards20063731532910.1007/s11069-005-5182-6 – reference: BordoniMGalantiYBartellettiCThe influence of the inventory on the determination of the rainfall-induced shallow landslides susceptibility using generalized additive modelsCATENA202019310.1016/j.catena.2020.104630 – reference: ZhangJYunLZhangBDeformation at the Easternmost Altyn Tagh Fault: constraints on the growth of the Northern Qinghai-Tibetan PlateauActa Geol Sin202094988100610.1111/1755-6724.14555 – reference: TangestaniMHA comparative study of Dempster-Shafer and fuzzy models for landslide susceptibility mapping using a GIS: an experience from Zagros Mountains, SW IranJ Asian Earth Sci200935667310.1016/j.jseaes.2009.01.002 – reference: Wu X, Kumar V, Ross QJ, et al (2008) Top 10 algorithms in data mining. https://doi.org/10.1201/9781420089653 – reference: BorgaMHazard assessment and forecasting of landslides and debris flows: a case study in Northern ItalyExtrem Hydroclimatic Events Multivar Hazards Chang Environ201910.1016/b978-0-12-814899-0.00014-6 – reference: StegerSMairVKoflerCCorrelation does not imply geomorphic causation in data-driven landslide susceptibility modeling—benefits of exploring landslide data collection effectsSci Total Environ202110.1016/j.scitotenv.2021.145935 – reference: GoetzJNBrenningAPetschkoHLeopoldPEvaluating machine learning and statistical prediction techniques for landslide susceptibility modelingComput Geosci20158111110.1016/j.cageo.2015.04.007 – reference: SajadiPSinghAMukherjeeSMultivariate statistical analysis of relationship between tectonic activity and drainage behavior in Qorveh-Dehgolan basin Kurdistan, IranGeocarto Int20213654056210.1080/10106049.2019.1611948 – reference: Al-NajjarHAHPradhanBSpatial landslide susceptibility assessment using machine learning techniques assisted by additional data created with generative adversarial networksGeosci Front20211262563710.1016/j.gsf.2020.09.002 – reference: TaylorMYinAActive structures of the Himalayan-Tibetan orogen and their relationships to earthquake distribution, contemporary strain field, and Cenozoic volcanismGeosphere2009519921410.1130/GES00217.1 – reference: AyalewLYamagishiHThe application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central JapanGeomorphology200565153110.1016/j.geomorph.2004.06.010 – reference: de OliveiraGGRuizLFCGuasselliLAHaetingerCRandom forest and artificial neural networks in landslide susceptibility modeling: a case study of the Fão River Basin, Southern BrazilNat Hazards2019991049107310.1007/s11069-019-03795-x – reference: HuangXSillanpääMGjessingETWater quality in the southern Tibetan Plateau: chemical evaluation of the Yarlung Tsangpo (Brahmaputra)River Res Appl20112711312110.1002/rra.1332 – reference: MohammadyMPourghasemiHRPradhanBLandslide susceptibility mapping at Golestan Province, Iran: a comparison between frequency ratio, Dempster-Shafer, and weights-of-evidence modelsJ Asian Earth Sci20126122123610.1016/j.jseaes.2012.10.005 – reference: Di NapoliMCarotenutoFCevascoAMachine learning ensemble modelling as a tool to improve landslide susceptibility mapping reliabilityLandslides2020171897191410.1007/s10346-020-01392-9 – reference: SameenMIPradhanBLeeSApplication of convolutional neural networks featuring Bayesian optimization for landslide susceptibility assessmentCATENA202018610.1016/j.catena.2019.104249 – reference: SunXChenJBaoYLandslide susceptibility mapping using logistic regression analysis along the Jinsha river and its tributaries close to Derong and Deqin County, southwestern ChinaISPRS Int J Geo-Information2018712910.3390/ijgi7110438 – reference: DormannCFElithJBacherSCollinearity: a review of methods to deal with it and a simulation study evaluating their performanceEcography (cop)201336274610.1111/j.1600-0587.2012.07348.x – reference: PandeyVKSharmaKKPourghasemiHRBandooniSKSedimentological characteristics and application of machine learning techniques for landslide susceptibility modelling along the highway corridor Nahan to Rajgarh (Himachal Pradesh)India Catena201918210.1016/j.catena.2019.104150 – reference: KavzogluTColkesenIA kernel functions analysis for support vector machines for land cover classificationInt J Appl Earth Obs Geoinf20091135235910.1016/j.jag.2009.06.002 – reference: MershaTMetenMGIS-based landslide susceptibility mapping and assessment using bivariate statistical methods in Simada area, northwestern EthiopiaGeoenviron Disasters202010.1186/s40677-020-00155-x – reference: PhamBTPradhanBTien BuiDA comparative study of different machine learning methods for landslide susceptibility assessment: a case study of Uttarakhand area (India)Environ Model Softw20168424025010.1016/j.envsoft.2016.07.005 – reference: Guzzetti F (2006) Landslide hazard and risk assessment. Doctoral dissertation, Rheinische Friedrich Wilhelms-Universität Bonn – reference: NhuVHShirzadiAShahabiHShallow landslide susceptibility mapping: a comparison between logistic model tree, logistic regression, naïve bayes tree, artificial neural network, and support vector machine algorithmsInt J Environ Res Public Health202010.3390/ijerph17082749 – reference: Tien BuiDPradhanBLofmanORevhaugILandslide susceptibility assessment in Vietnam using support vector machines, decision tree, and nave Bayes modelsMath Probl Eng201210.1155/2012/974638 – reference: Carranza-GarcíaMGarcía-GutiérrezJRiquelmeJCA framework for evaluating land use and land cover classification using convolutional neural networksRemote Sens201910.3390/rs11030274 – reference: JeburMNPradhanBTehranyMSOptimization of landslide conditioning factors using very high-resolution airborne laser scanning (LiDAR) data at catchment scaleRemote Sens Environ201415215016510.1016/j.rse.2014.05.013 – reference: YuCChenJLandslide susceptibility mapping using the slope unit for southeastern Helong city, Jilin province, China: A comparison of ANN and SVMSymmetry (basel)20201212310.3390/sym12061047 – reference: Rodriguez-GalianoVFGhimireBRoganJAn assessment of the effectiveness of a random forest classifier for land-cover classificationISPRS J Photogramm Remote Sens2012679310410.1016/j.isprsjprs.2011.11.002 – reference: ZareMPourghasemiHRVafakhahMPradhanBLandslide susceptibility mapping at Vaz Watershed (Iran) using an artificial neural network model: a comparison between multilayer perceptron (MLP) and radial basic function (RBF) algorithmsArab J Geosci201362873288810.1007/s12517-012-0610-x – reference: KirschbaumDBAdlerRHongYA global landslide catalog for hazard applications: Method, results, and limitationsNat Hazards20105256157510.1007/s11069-009-9401-4 – reference: MandalKSahaSMandalSApplying deep learning and benchmark machine learning algorithms for landslide susceptibility modelling in Rorachu river basin of Sikkim HimalayaIndia Geosci Front20211210.1016/j.gsf.2021.101203 – reference: YiYZhangZZhangWLandslide susceptibility mapping using multiscale sampling strategy and convolutional neural network: a case study in Jiuzhaigou regionCATENA202019510.1016/j.catena.2020.104851 – reference: DouJYunusAPTien BuiDAssessment of advanced random forest and decision tree algorithms for modeling rainfall-induced landslide susceptibility in the Izu-Oshima Volcanic Island, JapanSci Total Environ201966233234610.1016/j.scitotenv.2019.01.221 – reference: ChenWZhangSLiRShahabiHPerformance evaluation of the GIS-based data mining techniques of best-first decision tree, random forest, and naïve Bayes tree for landslide susceptibility modelingSci Total Environ20186441006101810.1016/j.scitotenv.2018.06.389 – reference: YoussefAMPourghasemiHRLandslide susceptibility mapping using machine learning algorithms and comparison of their performance at Abha Basin, Asir Region, Saudi ArabiaGeosci Front20211263965510.1016/j.gsf.2020.05.010 – reference: GillespieTWMadsonACusackCFXueYChanges in NDVI and human population in protected areas on the Tibetan PlateauArctic, Antarct Alp Res20195142843910.1080/15230430.2019.1650541 – reference: YilmazILandslide susceptibility mapping using frequency ratio, logistic regression, artificial neural networks and their comparison: a case study from Kat landslides (Tokat-Turkey)Comput Geosci2009351125113810.1016/j.cageo.2008.08.007 – reference: SunDXuJWenHWangDAssessment of landslide susceptibility mapping based on Bayesian hyperparameter optimization: a comparison between logistic regression and random forestEng Geol202128110.1016/j.enggeo.2020.105972 – reference: ParkSChoiCKimBKimJLandslide susceptibility mapping using frequency ratio, analytic hierarchy process, logistic regression, and artificial neural network methods at the Inje area, KoreaEnviron Earth Sci2013681443146410.1007/s12665-012-1842-5 – reference: CortesCVapnikVSupport-vector networksMach Learn199520273297 – reference: BreimanLRandom forestsMach Learn20014553210.1201/9780429469275-8 – reference: ShahabiHShirzadiARonoudSFlash flood susceptibility mapping using a novel deep learning model based on deep belief network, back propagation and genetic algorithmGeosci Front202110.1016/j.gsf.2020.10.007 – reference: Abbas MA (2018) Improving deep learning performance using random forest HTM cortical learning algorithm. https://doi.org/10.1109/IWDRL.2018.8358209 – reference: AikenSJBrierleyGJAnalysis of longitudinal profiles along the eastern margin of the Qinghai-Tibetan PlateauJ Mt Sci20131064365710.1007/s11629-013-2814-2 – reference: ReichenbachPRossiMMalamudBDA review of statistically-based landslide susceptibility modelsEarth-Science Rev2018180609110.1016/j.earscirev.2018.03.001 – reference: KirschbaumDStanleyTSatellite-based assessment of rainfall-triggered landslide hazard for situational awarenessEarth’s Futur2018650552310.1002/2017EF000715 – reference: HuangFWangYDongZRegional landslide susceptibility mapping based on grey relational degree modelEarth Sci201944664676 – reference: YaoTXueYChenDRecent third pole’s rapid warming accompanies cryospheric melt and water cycle intensification and interactions between monsoon and environment: multidisciplinary approach with observations, modeling, and analysisBull Am Meteorol Soc201910042344410.1175/BAMS-D-17-0057.1 – reference: NhuVHZandiDShahabiHComparison of support vector machine, bayesian logistic regression, and alternating decision tree algorithms for shallow landslide susceptibility mapping along a mountainous road in the west of IranAppl Sci202010.3390/app10155047 – reference: ZhaoBZhaoXZengLThe mechanisms of complex morphological features of a prehistorical landslide on the eastern margin of the Qinghai-Tibetan PlateauBull Eng Geol Environ2021803423343710.1007/s10064-021-02114-8 – reference: Hutchinson JN (1995) Keynote paper: Landslide hazard assessment. In: International Symposium on Landslides. pp 1805–1841 – reference: GuzzettiFCarraraACardinaliMReichenbachPLandslide hazard evaluation: a review of current techniques and their application in a multi-scale studyCentral Italy Geomorphol 1999131995 – reference: WangYSunDWenHComparison of random forest model and frequency ratio model for landslide susceptibility mapping (LSM) in Yunyang county (Chongqing, China)Int J Environ Res Public Health20201713910.3390/ijerph17124206 – reference: Steinshouer DW, Qiang J, McCabe PJ, Ryder RT (1999) Maps showing geology, oil and gas fields, and geologic provinces of the Asia Pacific region. US Geol Surv Open-File Rep 97:470F. https://doi.org/10.3133/ofr97470F – reference: ArabameriASahaSRoyJA novel ensemble computational intelligence approach for the spatial prediction of land subsidence susceptibilitySci Total Environ202072610.1016/j.scitotenv.2020.138595 – reference: CostanzoDChacónJConoscentiCForward logistic regression for earth-flow landslide susceptibility assessment in the Platani river basin (southern Sicily, Italy)Landslides20141163965310.1007/s10346-013-0415-3 – reference: SahaASahaSApplication of statistical probabilistic methods in landslide susceptibility assessment in Kurseong and its surrounding area of Darjeeling Himalayan, India: RS-GIS approach2021NetherlandsSpringer10.1007/s10668-020-00783-1 – reference: MukherjeeSReturn of Kosi river induced by Tibet earthquakeNat Preced200810.1038/npre.2008.2278.2 – reference: SunDWenHWangDXuJA random forest model of landslide susceptibility mapping based on hyperparameter optimization using Bayes algorithmGeomorphology202036210.1016/j.geomorph.2020.107201 – reference: SongJWangYFangZPotential of ensemble learning to improve tree-based classifiers for landslide susceptibility mappingIEEE J Sel Top Appl Earth Obs Remote Sens2020134642466210.1109/JSTARS.2020.3014143 – reference: ChangZDuZZhangFLandslide susceptibility prediction based on remote sensing images and GIS: Comparisons of supervised and unsupervised machine learning modelsRemote Sens202010.3390/rs12030502 – reference: PhamBTTien BuiDPrakashIA comparative study of sequential minimal optimization-based support vector machines, vote feature intervals, and logistic regression in landslide susceptibility assessment using GISEnviron Earth Sci201710.1007/s12665-017-6689-3 – reference: Tien BuiDHoTCPradhanBGIS-based modeling of rainfall-induced landslides using data mining-based functional trees classifier with AdaBoost, Bagging, and MultiBoost ensemble frameworksEnviron Earth Sci201610.1007/s12665-016-5919-4 – reference: WilliamsGData mining with Rattle and R: the art of excavating data for knowledge discovery2011ChamSpringer Science & Business Media10.1007/978-1-4419-9890-3 – reference: MahdadiFBoumezbeurAHadjiRGIS-based landslide susceptibility assessment using statistical models: a case study from Souk Ahras provinceN-E Algeria Arab J Geosci201810.1007/s12517-018-3770-5 – reference: PasangSKubíčekPLandslide susceptibility mapping using statistical methods along the Asian highway, BhutanGeosci20201012610.3390/geosciences10110430 – reference: PradhanBLeeSLandslide susceptibility assessment and factor effect analysis: backpropagation artificial neural networks and their comparison with frequency ratio and bivariate logistic regression modellingEnviron Model Softw20102574775910.1016/j.envsoft.2009.10.016 – reference: RosiATofaniVTanteriLThe new landslide inventory of Tuscany (Italy) updated with PS-InSAR: geomorphological features and landslide distributionLandslides20181551910.1007/s10346-017-0861-4 – reference: BishopCMNeural networks for pattern recognition1995OxfordOxford University Press – reference: Ioffe S, Szegedy C (2015) Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. PMLR, pp 448–456 – reference: Thi NgoPTPanahiMKhosraviKEvaluation of deep learning algorithms for national scale landslide susceptibility mapping of IranGeosci Front20211250551910.1016/j.gsf.2020.06.013 – reference: AkinciHKilicogluCDoganSRandom forest-based landslide susceptibility mapping in coastal regions of Artvin, Turkey ISPRS Int J Geo-Information202010.3390/ijgi9090553 – reference: Abbaszadeh ShahriASprossJJohanssonFLarssonSLandslide susceptibility hazard map in southwest Sweden using artificial neural networkCATENA201918310.1016/j.catena.2019.104225 – reference: BudimirMEAAtkinsonPMLewisHGA systematic review of landslide probability mapping using logistic regressionLandslides20151241943610.1007/s10346-014-0550-5 – reference: JamalMMandalSMonitoring forest dynamics and landslide susceptibility in Mechi-Balason interfluves of Darjiling Himalaya, West Bengal using forest canopy density model (FCDM) and Landslide Susceptibility Index model (LSIM)Model Earth Syst Environ2016211710.1007/s40808-016-0243-2 – reference: BelgiuMDrăguLRandom forest in remote sensing: a review of applications and future directionsISPRS J Photogramm Remote Sens2016114243110.1016/j.isprsjprs.2016.01.011 – reference: CrostaGBImposimatoSRoddemanDGNumerical modelling of large landslides stability and runoutNat Hazards Earth Syst Sci2003352353810.5194/nhess-3-523-2003 – reference: AroraAPandeyMSiddiquiMASpatial flood susceptibility prediction in Middle Ganga Plain: comparison of frequency ratio and Shannon’s entropy modelsGeocarto Int201910.1080/10106049.2019.1687594 – reference: DaiFCLeeCFNgaiYYLandslide risk assessment and management: an overviewEng Geol200264658710.1016/S0013-7952(01)00093-X – reference: WangYFengLLiSA hybrid model considering spatial heterogeneity for landslide susceptibility mapping in Zhejiang ProvinceChina Catena202018810.1016/j.catena.2019.104425 – reference: NhuVHHoangNDNguyenHEffectiveness assessment of Keras based deep learning with different robust optimization algorithms for shallow landslide susceptibility mapping at tropical areaCATENA202018810.1016/j.catena.2020.104458 – reference: Tien BuiDTuanTAKlempeHSpatial prediction models for shallow landslide hazards: a comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model treeLandslides20161336137810.1007/s10346-015-0557-6 – reference: YaoXThamLGDaiFCLandslide susceptibility mapping based on support vector machine: a case study on natural slopes of Hong Kong, ChinaGeomorphology200810157258210.1016/j.geomorph.2008.02.011 – reference: DengHWuLZHuangRQFormation of the Siwanli ancient landslide in the Dadu River, ChinaLandslides20171438539410.1007/s10346-016-0756-9 – reference: KumarDThakurMDubeyCSShuklaDPLandslide susceptibility mapping & prediction using Support Vector Machine for Mandakini River Basin, Garhwal Himalaya, IndiaGeomorphology201729511512510.1016/j.geomorph.2017.06.013 – reference: ErcanogluMLandslide susceptibility assessment of SE Bartin (West Black Sea region, Turkey) by artificial neural networksNat Hazards Earth Syst Sci2005597999210.5194/nhess-5-979-2005 – reference: Wubalem A (2020) Landslide susceptibility mapping using statistical methods in Uatzau Catchment Area, Northwestern Ethiopia. 1–21. https://doi.org/10.21203/rs.3.rs-15731/v2 – reference: CountySBostjanˇIRegional-scale landslide susceptibility mapping using limited LiDAR-based landslide inventories for Sisak-Moslavina County, CroatiaSustainability202110.3390/su13084543 – reference: SajadiPSinghAMukherjeeSDrainage network extraction and morphometric analysis in an Iranian basin using integrating factor analysis and geospatial techniquesGeocarto Int202010.1080/10106049.2020.1750060 – reference: ThakurMKDesamsettiSRajeshANExploring the rainfall data from satellites to monitor rainfall induced landslides–a case studyAdv Sp Res20206688789410.1016/j.asr.2020.05.015 – reference: ZhaoYWangRJiangYGIS-based logistic regression for rainfall-induced landslide susceptibility mapping under different grid sizes in YueqingSoutheastern China Eng Geol201925910.1016/j.enggeo.2019.105147 – reference: AghdamINPradhanBPanahiMLandslide susceptibility assessment using a novel hybrid model of statistical bivariate methods (FR and WOE) and adaptive neuro-fuzzy inference system (ANFIS) at southern Zagros Mountains in IranEnviron Earth Sci201710.1007/s12665-017-6558-0 – reference: DuGZhangYYangZLandslide susceptibility mapping in the region of eastern Himalayan syntaxis, Tibetan Plateau, China: a comparison between analytical hierarchy process information value and logistic regression-information value methodsBull Eng Geol Environ2019784201421510.1007/s10064-018-1393-4 – reference: DamaševičiusROptimization of SVM parameters for recognition of regulatory DNA sequencesTOP20101833935310.1007/s11750-010-0152-x – reference: DouJBuiDTYunusAPOptimization of causative factors for landslide susceptibility evaluation using remote sensing and GIS data in parts of Niigata, JapanPLoS ONE201510.1371/journal.pone.0133262 – reference: PeethambaranBAnbalaganRKanungoDPA comparative evaluation of supervised machine learning algorithms for township level landslide susceptibility zonation in parts of Indian HimalayasCATENA202019510.1016/j.catena.2020.104751 – reference: HuangFCaoZGuoJComparisons of heuristic, general statistical and machine learning models for landslide susceptibility prediction and mappingCATENA202019110.1016/j.catena.2020.104580 – reference: GhimireBRoganJMillerJContextual land-cover classification: incorporating spatial dependence in land-cover classification models using random forests and the Getis statisticRemote Sens Lett20101455410.1080/01431160903252327 – reference: PhamBTShirzadiAShahabiHLandslide susceptibility assessment by novel hybrid machine learning algorithmsSustain20191112510.3390/su11164386 – reference: ChoiJOhHJLeeHJCombining landslide susceptibility maps obtained from frequency ratio, logistic regression, and artificial neural network models using ASTER images and GISEng Geol2012124122310.1016/j.enggeo.2011.09.011 – reference: LiuZGilbertGCepedaJMModelling of shallow landslides with machine learning algorithmsGeosci Front20211238539310.1016/j.gsf.2020.04.014 – reference: XiaoLZhangYPengGLandslide susceptibility assessment using integrated deep learning algorithm along the china-nepal highwaySensors (switzerland)201810.3390/s18124436 – reference: BallabioCSterlacchiniSSupport vector machines for landslide susceptibility mapping: the Staffora River basin case study, ItalyMath Geosci201244477010.1007/s11004-011-9379-9 – reference: GuoCMontgomeryDRZhangYQuantitative assessment of landslide susceptibility along the Xianshuihe fault zone, Tibetan Plateau, ChinaGeomorphology20152489311010.1016/j.geomorph.2015.07.012 – reference: LinLLinQWangYLandslide susceptibility mapping on a global scale using the method of logistic regressionNat Hazards Earth Syst Sci2017171411142410.5194/nhess-17-1411-2017 – reference: Ullah M, Aslam M, Ullah MDMI, LazyData T (2019) Package ‘mctest’. https://doi.org/10.2352/ISSN.2470-1173.2019.7.IRIACV-466 – reference: ElliottJRWaltersRJEnglandPCExtension on the Tibetan plateau: recent normal faulting measured by InSAR and body wave seismologyGeophys J Int201018350353510.1111/j.1365-246X.2010.04754.x – reference: AchourYPourghasemiHRHow do machine learning techniques help in increasing accuracy of landslide susceptibility maps?Geosci Front20201187188310.1016/j.gsf.2019.10.001 – reference: YesilnacarETopalTLandslide susceptibility mapping: a comparison of logistic regression and neural networks methods in a medium scale study, Hendek region (Turkey)Eng Geol20057925126610.1016/j.enggeo.2005.02.002 – reference: MarjanovićMKovačevićMBajatBVoženílekVLandslide susceptibility assessment using SVM machine learning algorithmEng Geol201112322523410.1016/j.enggeo.2011.09.006 – reference: ZhaoBWangYLuoYLarge landslides at the northeastern margin of the Bayan Har Block, Tibetan PlateauChina R Soc Open Sci201910.1098/rsos.180844 – reference: Majka M (2019) naivebayes: High Performance Implementation of the Naive Bayes Algorithm. R package version 0.9.7. https://CRAN.R-project.org/package=naivebayes. Accessed 1 Jan 2021 – reference: WuXRenFNiuRLandslide susceptibility assessment using object mapping units, decision tree, and support vector machine models in the Three Gorges of ChinaEnviron Earth Sci2014714725473810.1007/s12665-013-2863-4 – reference: GuzzettiFReichenbachPCardinaliMProbabilistic landslide hazard assessment at the basin scaleGeomorphology20057227229910.1016/j.geomorph.2005.06.002 – reference: SahaSArabameriASahaAPrediction of landslide susceptibility in Rudraprayag, India using novel ensemble of conditional probability and boosted regression tree-based on cross-validation methodSci Total Environ202176410.1016/j.scitotenv.2020.142928 – reference: HuangXSillanpääMDuoBGjessingETWater quality in the Tibetan Plateau: Metal contents of four selected riversEnviron Pollut200815627027710.1016/j.envpol.2008.02.014 – reference: LiawAWienerMClassification and regression by randomForestR News200221822 – reference: WubalemAMetenMLandslide susceptibility mapping using information value and logistic regression models in Goncha Siso Eneses area, northwestern EthiopiaSN Appl Sci2020211910.1007/s42452-020-2563-0 – reference: YouQFraedrichKRenGVariability of temperature in the Tibetan Plateau based on homogenized surface stations and reanalysis dataInt J Climatol2013331337134710.1002/joc.3512 – reference: ZhuAXMiaoYWangRA comparative study of an expert knowledge-based model and two data-driven models for landslide susceptibility mappingCATENA201816631732710.1016/j.catena.2018.04.003 – reference: AtkinsonPMMassariRAutologistic modelling of susceptibility to landsliding in the Central Apennines, ItalyGeomorphology2011130556410.1016/j.geomorph.2011.02.001 – reference: ChenWFanLLiCPhamBTSpatial prediction of landslides using hybrid integration of artificial intelligence algorithms with frequency ratio and index of entropy in Nanzheng county, ChinaAppl Sci20201012110.3390/app10010029 – reference: HongHPourghasemiHRPourtaghiZSLandslide susceptibility assessment in Lianhua County (China): a comparison between a random forest data mining technique and bivariate and multivariate statistical modelsGeomorphology201625910511810.1016/j.geomorph.2016.02.012 – reference: FangZWangYPengLHongHIntegration of convolutional neural network and conventional machine learning classifiers for landslide susceptibility mappingComput Geosci202013910.1016/j.cageo.2020.104470 – reference: NhuVHShirzadiAShahabiHShallow landslide susceptibility mapping by Random Forest base classifier and its ensembles in a Semi-Arid region of IranForests202010.3390/F11040421 – reference: SingaravelSSuykensJGeyerPDeep-learning neural-network architectures and methods: Using component-based models in building-design energy predictionAdv Eng Informatics201838819010.1016/j.aei.2018.06.004 – reference: DuMKawashimaSYonemuraSMutual influence between human activities and climate change in the Tibetan Plateau during recent yearsGlob Planet Change20044124124910.1016/j.gloplacha.2004.01.010 – reference: Tibshirani R (1996) Bias, variance and prediction error for classification rules. Technical Report, Statistics Department, University of Toronto – reference: JiaHWangYGeDImproved offset tracking for predisaster deformation monitoring of the 2018 Jinsha River landslide (Tibet, China)Remote Sens Environ202024710.1016/j.rse.2020.111899 – reference: BartaryaSKVirdiNSSahMPLandslide hazards: some case studies from the Satluj Valley, Himachal PradeshJ Him Geol199617193207 – reference: HuQZhouYWangSWangFMachine learning and fractal theory models for landslide susceptibility mapping: case study from the Jinsha River BasinGeomorphology202035110.1016/j.geomorph.2019.106975 – reference: SahinEKColkesenIKavzogluTA comparative assessment of canonical correlation forest, random forest, rotation forest and logistic regression methods for landslide susceptibility mappingGeocarto Int20203534136310.1080/10106049.2018.1516248 – reference: PhamBTBuiDPrakashIDholakiaMEvaluation of predictive ability of support vector machines and naive Bayes trees methods for spatial prediction of landslides in Uttarakhand state (India) using GISJ Geomat2016107179 – reference: Süzen ML (2002) Data driven landslide hazard assessment using geographical information systems and remote sensing. Doctoral dissertation, Middle East Technical University – reference: ZhuAXWangRQiaoJAn expert knowledge-based approach to landslide susceptibility mapping using GIS and fuzzy logicGeomorphology201421412813810.1016/j.geomorph.2014.02.003 – reference: ParkSKimJLandslide susceptibility mapping based on random forest and boosted regression tree models, and a comparison of their performanceAppl Sci201910.3390/app9050942 – volume: 99 start-page: 1049 year: 2019 ident: 218_CR35 publication-title: Nat Hazards doi: 10.1007/s11069-019-03795-x – volume: 66 start-page: 887 year: 2020 ident: 218_CR123 publication-title: Adv Sp Res doi: 10.1016/j.asr.2020.05.015 – ident: 218_CR125 – volume: 18 start-page: 339 year: 2010 ident: 218_CR34 publication-title: TOP doi: 10.1007/s11750-010-0152-x – volume-title: Application of statistical probabilistic methods in landslide susceptibility assessment in Kurseong and its surrounding area of Darjeeling Himalayan, India: RS-GIS approach year: 2021 ident: 218_CR105 doi: 10.1007/s10668-020-00783-1 – volume: 86 start-page: 919 year: 2017 ident: 218_CR91 publication-title: Nat Hazards doi: 10.1007/s11069-016-2725-y – volume: 11 start-page: 871 year: 2020 ident: 218_CR3 publication-title: Geosci Front doi: 10.1016/j.gsf.2019.10.001 – year: 2020 ident: 218_CR23 publication-title: Remote Sens doi: 10.3390/rs12030502 – volume: 14 start-page: 385 year: 2017 ident: 218_CR36 publication-title: Landslides doi: 10.1007/s10346-016-0756-9 – volume: 5 start-page: 199 year: 2009 ident: 218_CR122 publication-title: Geosphere doi: 10.1130/GES00217.1 – volume: 68 start-page: 1443 year: 2013 ident: 218_CR89 publication-title: Environ Earth Sci doi: 10.1007/s12665-012-1842-5 – year: 2019 ident: 218_CR18 publication-title: Extrem Hydroclimatic Events Multivar Hazards Chang Environ doi: 10.1016/b978-0-12-814899-0.00014-6 – volume: 27 start-page: 113 year: 2011 ident: 218_CR57 publication-title: River Res Appl doi: 10.1002/rra.1332 – volume: 188 year: 2020 ident: 218_CR83 publication-title: CATENA doi: 10.1016/j.catena.2020.104458 – volume: 11 start-page: 1 year: 2019 ident: 218_CR97 publication-title: Sustain doi: 10.3390/su11164386 – volume: 139 year: 2020 ident: 218_CR45 publication-title: Comput Geosci doi: 10.1016/j.cageo.2020.104470 – volume: 17 start-page: 1 year: 2020 ident: 218_CR133 publication-title: Int J Environ Res Public Health doi: 10.3390/ijerph17124206 – volume: 12 start-page: 419 year: 2015 ident: 218_CR20 publication-title: Landslides doi: 10.1007/s10346-014-0550-5 – volume: 183 start-page: 503 year: 2010 ident: 218_CR43 publication-title: Geophys J Int doi: 10.1111/j.1365-246X.2010.04754.x – volume: 182 year: 2019 ident: 218_CR87 publication-title: India Catena doi: 10.1016/j.catena.2019.104150 – volume: 152 start-page: 144 year: 2017 ident: 218_CR69 publication-title: CATENA doi: 10.1016/j.catena.2017.01.010 – ident: 218_CR137 doi: 10.1201/9781420089653 – volume: 114 start-page: 24 year: 2016 ident: 218_CR15 publication-title: ISPRS J Photogramm Remote Sens doi: 10.1016/j.isprsjprs.2016.01.011 – volume: 5 start-page: 979 year: 2005 ident: 218_CR44 publication-title: Nat Hazards Earth Syst Sci doi: 10.5194/nhess-5-979-2005 – volume: 195 year: 2020 ident: 218_CR92 publication-title: CATENA doi: 10.1016/j.catena.2020.104751 – volume: 13 start-page: 305 year: 2016 ident: 218_CR129 publication-title: Landslides doi: 10.1007/s10346-015-0565-6 – volume: 17 start-page: 193 year: 1996 ident: 218_CR13 publication-title: J Him Geol – ident: 218_CR120 – volume: 362 year: 2020 ident: 218_CR118 publication-title: Geomorphology doi: 10.1016/j.geomorph.2020.107201 – volume-title: Data mining with Rattle and R: the art of excavating data for knowledge discovery year: 2011 ident: 218_CR135 doi: 10.1007/978-1-4419-9890-3 – year: 2016 ident: 218_CR127 publication-title: Environ Earth Sci doi: 10.1007/s12665-016-5919-4 – volume: 13 start-page: 361 year: 2016 ident: 218_CR128 publication-title: Landslides doi: 10.1007/s10346-015-0557-6 – volume: 12 start-page: 639 year: 2021 ident: 218_CR147 publication-title: Geosci Front doi: 10.1016/j.gsf.2020.05.010 – volume: 281 year: 2021 ident: 218_CR119 publication-title: Eng Geol doi: 10.1016/j.enggeo.2020.105972 – ident: 218_CR116 doi: 10.3133/ofr97470F – volume-title: Neural networks for pattern recognition year: 1995 ident: 218_CR16 doi: 10.1093/oso/9780198538493.001.0001 – volume: 188 year: 2020 ident: 218_CR132 publication-title: China Catena doi: 10.1016/j.catena.2019.104425 – year: 2020 ident: 218_CR78 publication-title: Geoenviron Disasters doi: 10.1186/s40677-020-00155-x – year: 2021 ident: 218_CR115 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2021.145935 – ident: 218_CR131 – ident: 218_CR75 – year: 2018 ident: 218_CR140 publication-title: Sensors (switzerland) doi: 10.3390/s18124436 – volume: 11 start-page: 639 year: 2014 ident: 218_CR29 publication-title: Landslides doi: 10.1007/s10346-013-0415-3 – year: 2008 ident: 218_CR82 publication-title: Nat Preced doi: 10.1038/npre.2008.2278.2 – volume: 81 start-page: 1 year: 2015 ident: 218_CR49 publication-title: Comput Geosci doi: 10.1016/j.cageo.2015.04.007 – volume: 295 start-page: 115 year: 2017 ident: 218_CR70 publication-title: Geomorphology doi: 10.1016/j.geomorph.2017.06.013 – volume: 36 start-page: 27 year: 2013 ident: 218_CR38 publication-title: Ecography (cop) doi: 10.1111/j.1600-0587.2012.07348.x – volume: 191 year: 2020 ident: 218_CR59 publication-title: CATENA doi: 10.1016/j.catena.2020.104580 – volume: 71 start-page: 4725 year: 2014 ident: 218_CR136 publication-title: Environ Earth Sci doi: 10.1007/s12665-013-2863-4 – volume: 123 start-page: 225 year: 2011 ident: 218_CR77 publication-title: Eng Geol doi: 10.1016/j.enggeo.2011.09.006 – volume: 764 year: 2021 ident: 218_CR106 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2020.142928 – volume: 195 year: 2020 ident: 218_CR144 publication-title: CATENA doi: 10.1016/j.catena.2020.104851 – volume: 12 start-page: 1 year: 2020 ident: 218_CR148 publication-title: Symmetry (basel) doi: 10.3390/sym12061047 – year: 2015 ident: 218_CR39 publication-title: PLoS ONE doi: 10.1371/journal.pone.0133262 – volume: 156 start-page: 270 year: 2008 ident: 218_CR56 publication-title: Environ Pollut doi: 10.1016/j.envpol.2008.02.014 – ident: 218_CR61 – volume: 61 start-page: 221 year: 2012 ident: 218_CR80 publication-title: J Asian Earth Sci doi: 10.1016/j.jseaes.2012.10.005 – volume: 6 start-page: 2873 year: 2013 ident: 218_CR149 publication-title: Arab J Geosci doi: 10.1007/s12517-012-0610-x – volume: 1 start-page: 45 year: 2010 ident: 218_CR46 publication-title: Remote Sens Lett doi: 10.1080/01431160903252327 – volume: 41 start-page: 241 year: 2004 ident: 218_CR41 publication-title: Glob Planet Change doi: 10.1016/j.gloplacha.2004.01.010 – volume: 35 start-page: 341 year: 2020 ident: 218_CR107 publication-title: Geocarto Int doi: 10.1080/10106049.2018.1516248 – volume: 166 start-page: 317 year: 2018 ident: 218_CR155 publication-title: CATENA doi: 10.1016/j.catena.2018.04.003 – volume: 65 start-page: 15 year: 2005 ident: 218_CR11 publication-title: Geomorphology doi: 10.1016/j.geomorph.2004.06.010 – volume: 84 start-page: 240 year: 2016 ident: 218_CR94 publication-title: Environ Model Softw doi: 10.1016/j.envsoft.2016.07.005 – ident: 218_CR130 doi: 10.2352/ISSN.2470-1173.2019.7.IRIACV-466 – volume: 33 start-page: 1337 year: 2013 ident: 218_CR146 publication-title: Int J Climatol doi: 10.1002/joc.3512 – ident: 218_CR53 – volume: 44 start-page: 47 year: 2012 ident: 218_CR12 publication-title: Math Geosci doi: 10.1007/s11004-011-9379-9 – volume: 44 start-page: 664 year: 2019 ident: 218_CR58 publication-title: Earth Sci – volume: 52 start-page: 561 year: 2010 ident: 218_CR68 publication-title: Nat Hazards doi: 10.1007/s11069-009-9401-4 – volume: 17 start-page: 1411 year: 2017 ident: 218_CR72 publication-title: Nat Hazards Earth Syst Sci doi: 10.5194/nhess-17-1411-2017 – volume: 124 start-page: 12 year: 2012 ident: 218_CR27 publication-title: Eng Geol doi: 10.1016/j.enggeo.2011.09.011 – volume: 259 year: 2019 ident: 218_CR152 publication-title: Southeastern China Eng Geol doi: 10.1016/j.enggeo.2019.105147 – volume: 3 start-page: 523 year: 2003 ident: 218_CR31 publication-title: Nat Hazards Earth Syst Sci doi: 10.5194/nhess-3-523-2003 – year: 2021 ident: 218_CR111 publication-title: Geosci Front doi: 10.1016/j.gsf.2020.10.007 – volume: 100 start-page: 423 year: 2019 ident: 218_CR142 publication-title: Bull Am Meteorol Soc doi: 10.1175/BAMS-D-17-0057.1 – volume: 379 year: 2021 ident: 218_CR100 publication-title: Geomorphology doi: 10.1016/j.geomorph.2021.107592 – year: 2017 ident: 218_CR4 publication-title: Environ Earth Sci doi: 10.1007/s12665-017-6558-0 – volume: 69 start-page: 1087 year: 2020 ident: 218_CR114 publication-title: Adv Glob Chang Res doi: 10.1007/978-3-030-35798-6_31 – year: 2012 ident: 218_CR126 publication-title: Math Probl Eng doi: 10.1155/2012/974638 – volume: 2 start-page: 1 year: 2020 ident: 218_CR138 publication-title: SN Appl Sci doi: 10.1007/s42452-020-2563-0 – volume: 10 start-page: 1 year: 2020 ident: 218_CR90 publication-title: Geosci doi: 10.3390/geosciences10110430 – volume: 25 start-page: 747 year: 2010 ident: 218_CR99 publication-title: Environ Model Softw doi: 10.1016/j.envsoft.2009.10.016 – volume: 351 year: 2020 ident: 218_CR55 publication-title: Geomorphology doi: 10.1016/j.geomorph.2019.106975 – volume: 13 start-page: 4642 year: 2020 ident: 218_CR113 publication-title: IEEE J Sel Top Appl Earth Obs Remote Sens doi: 10.1109/JSTARS.2020.3014143 – volume: 12 start-page: 625 year: 2021 ident: 218_CR7 publication-title: Geosci Front doi: 10.1016/j.gsf.2020.09.002 – volume: 17 start-page: 1897 year: 2020 ident: 218_CR37 publication-title: Landslides doi: 10.1007/s10346-020-01392-9 – volume: 35 start-page: 66 year: 2009 ident: 218_CR121 publication-title: J Asian Earth Sci doi: 10.1016/j.jseaes.2009.01.002 – volume: 180 start-page: 60 year: 2018 ident: 218_CR101 publication-title: Earth-Science Rev doi: 10.1016/j.earscirev.2018.03.001 – volume: 12 start-page: 77 year: 2011 ident: 218_CR102 publication-title: BMC Bioinformatics doi: 10.1016/j.earscirev.2018.03.001 – volume: 88 start-page: 2783 year: 2007 ident: 218_CR32 publication-title: Ecology doi: 10.1890/07-0539.1 – volume: 214 start-page: 128 year: 2014 ident: 218_CR154 publication-title: Geomorphology doi: 10.1016/j.geomorph.2014.02.003 – volume: 193 year: 2020 ident: 218_CR17 publication-title: CATENA doi: 10.1016/j.catena.2020.104630 – volume: 248 start-page: 93 year: 2015 ident: 218_CR50 publication-title: Geomorphology doi: 10.1016/j.geomorph.2015.07.012 – volume: 726 year: 2020 ident: 218_CR8 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2020.138595 – year: 2019 ident: 218_CR151 publication-title: China R Soc Open Sci doi: 10.1098/rsos.180844 – volume: 15 start-page: 5 year: 2018 ident: 218_CR104 publication-title: Landslides doi: 10.1007/s10346-017-0861-4 – volume: 247 year: 2020 ident: 218_CR64 publication-title: Remote Sens Environ doi: 10.1016/j.rse.2020.111899 – year: 2020 ident: 218_CR108 publication-title: Geocarto Int doi: 10.1080/10106049.2020.1750060 – volume: 79 start-page: 251 year: 2005 ident: 218_CR143 publication-title: Eng Geol doi: 10.1016/j.enggeo.2005.02.002 – volume: 20 start-page: 273 year: 1995 ident: 218_CR28 publication-title: Mach Learn – volume: 2 start-page: 1 year: 2016 ident: 218_CR62 publication-title: Model Earth Syst Environ doi: 10.1007/s40808-016-0243-2 – volume: 10 start-page: 643 year: 2013 ident: 218_CR5 publication-title: J Mt Sci doi: 10.1007/s11629-013-2814-2 – volume: 183 year: 2019 ident: 218_CR2 publication-title: CATENA doi: 10.1016/j.catena.2019.104225 – volume: 10 start-page: 71 year: 2016 ident: 218_CR93 publication-title: J Geomat – volume: 12 start-page: 351 year: 2021 ident: 218_CR134 publication-title: Geosci Front doi: 10.1016/j.gsf.2020.02.012 – volume: 186 year: 2020 ident: 218_CR110 publication-title: CATENA doi: 10.1016/j.catena.2019.104249 – year: 2020 ident: 218_CR6 publication-title: ISPRS Int J Geo-Information doi: 10.3390/ijgi9090553 – volume: 36 start-page: 540 year: 2021 ident: 218_CR109 publication-title: Geocarto Int doi: 10.1080/10106049.2019.1611948 – volume: 6 start-page: 505 year: 2018 ident: 218_CR67 publication-title: Earth’s Futur doi: 10.1002/2017EF000715 – volume: 38 start-page: 81 year: 2018 ident: 218_CR112 publication-title: Adv Eng Informatics doi: 10.1016/j.aei.2018.06.004 – volume: 189 start-page: 419 year: 1975 ident: 218_CR81 publication-title: Science doi: 10.1126/science.189.4201.419 – year: 2019 ident: 218_CR22 publication-title: Remote Sens doi: 10.3390/rs11030274 – volume: 188 year: 2020 ident: 218_CR21 publication-title: CATENA doi: 10.1016/j.catena.2019.104426 – volume: 195 year: 2020 ident: 218_CR98 publication-title: CATENA doi: 10.1016/j.catena.2020.104805 – volume: 80 start-page: 3423 year: 2021 ident: 218_CR153 publication-title: Bull Eng Geol Environ doi: 10.1007/s10064-021-02114-8 – volume: 94 start-page: 988 year: 2020 ident: 218_CR150 publication-title: Acta Geol Sin doi: 10.1111/1755-6724.14555 – volume: 37 start-page: 315 year: 2006 ident: 218_CR14 publication-title: Nat Hazards doi: 10.1007/s11069-005-5182-6 – volume: 2 start-page: 18 year: 2002 ident: 218_CR71 publication-title: R News – volume: 24 start-page: 4907 year: 2003 ident: 218_CR66 publication-title: Int J Remote Sens doi: 10.1080/0143116031000114851 – volume: 11 start-page: 352 year: 2009 ident: 218_CR65 publication-title: Int J Appl Earth Obs Geoinf doi: 10.1016/j.jag.2009.06.002 – ident: 218_CR139 doi: 10.21203/rs.3.rs-15731/v2 – volume: 644 start-page: 1006 year: 2018 ident: 218_CR25 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2018.06.389 – ident: 218_CR1 doi: 10.1109/IWDRL.2018.8358209 – ident: 218_CR79 – year: 2018 ident: 218_CR74 publication-title: N-E Algeria Arab J Geosci doi: 10.1007/s12517-018-3770-5 – volume: 67 start-page: 93 year: 2012 ident: 218_CR103 publication-title: ISPRS J Photogramm Remote Sens doi: 10.1016/j.isprsjprs.2011.11.002 – volume: 149 start-page: 52 year: 2017 ident: 218_CR96 publication-title: CATENA doi: 10.1016/j.catena.2016.09.007 – volume: 152 start-page: 150 year: 2014 ident: 218_CR63 publication-title: Remote Sens Environ doi: 10.1016/j.rse.2014.05.013 – volume: 12 start-page: 385 year: 2021 ident: 218_CR73 publication-title: Geosci Front doi: 10.1016/j.gsf.2020.04.014 – volume: 45 start-page: 5 year: 2001 ident: 218_CR19 publication-title: Mach Learn doi: 10.1201/9780429469275-8 – year: 2019 ident: 218_CR9 publication-title: Geocarto Int doi: 10.1080/10106049.2019.1687594 – year: 2017 ident: 218_CR95 publication-title: Environ Earth Sci doi: 10.1007/s12665-017-6689-3 – year: 2019 ident: 218_CR88 publication-title: Appl Sci doi: 10.3390/app9050942 – volume: 8 start-page: 950 year: 2017 ident: 218_CR24 publication-title: Geomatics Nat Hazards Risk doi: 10.1080/19475705.2017.1289250 – year: 2020 ident: 218_CR84 publication-title: Forests doi: 10.3390/F11040421 – volume: 662 start-page: 332 year: 2019 ident: 218_CR40 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2019.01.221 – volume: 64 start-page: 65 year: 2002 ident: 218_CR33 publication-title: Eng Geol doi: 10.1016/S0013-7952(01)00093-X – volume: 7 start-page: 1 year: 2018 ident: 218_CR117 publication-title: ISPRS Int J Geo-Information doi: 10.3390/ijgi7110438 – volume: 26 start-page: 49 year: 2014 ident: 218_CR47 publication-title: Int J Appl Earth Obs Geoinf doi: 10.1016/j.jag.2013.05.017 – volume: 12 year: 2021 ident: 218_CR76 publication-title: India Geosci Front doi: 10.1016/j.gsf.2021.101203 – volume: 130 start-page: 55 year: 2011 ident: 218_CR10 publication-title: Geomorphology doi: 10.1016/j.geomorph.2011.02.001 – volume: 10 start-page: 1 year: 2020 ident: 218_CR26 publication-title: Appl Sci doi: 10.3390/app10010029 – volume: 72 start-page: 272 year: 2005 ident: 218_CR52 publication-title: Geomorphology doi: 10.1016/j.geomorph.2005.06.002 – ident: 218_CR60 – volume: 101 start-page: 572 year: 2008 ident: 218_CR141 publication-title: Geomorphology doi: 10.1016/j.geomorph.2008.02.011 – volume: 13 start-page: 1995 year: 1999 ident: 218_CR51 publication-title: Central Italy Geomorphol – year: 2020 ident: 218_CR86 publication-title: Appl Sci doi: 10.3390/app10155047 – volume: 78 start-page: 4201 year: 2019 ident: 218_CR42 publication-title: Bull Eng Geol Environ doi: 10.1007/s10064-018-1393-4 – volume: 259 start-page: 105 year: 2016 ident: 218_CR54 publication-title: Geomorphology doi: 10.1016/j.geomorph.2016.02.012 – volume: 51 start-page: 428 year: 2019 ident: 218_CR48 publication-title: Arctic, Antarct Alp Res doi: 10.1080/15230430.2019.1650541 – year: 2021 ident: 218_CR30 publication-title: Sustainability doi: 10.3390/su13084543 – volume: 12 start-page: 505 year: 2021 ident: 218_CR124 publication-title: Geosci Front doi: 10.1016/j.gsf.2020.06.013 – volume: 35 start-page: 1125 year: 2009 ident: 218_CR145 publication-title: Comput Geosci doi: 10.1016/j.cageo.2008.08.007 – year: 2020 ident: 218_CR85 publication-title: Int J Environ Res Public Health doi: 10.3390/ijerph17082749 |
SSID | ssj0001853181 |
Score | 2.3460283 |
Snippet | Landslides are considered as major natural hazards that cause enormous property damages and fatalities in Qinghai-Tibetan Plateau (QTP). In this article, we... Abstract Landslides are considered as major natural hazards that cause enormous property damages and fatalities in Qinghai-Tibetan Plateau (QTP). In this... |
SourceID | doaj proquest crossref springer |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Accuracy Algorithms Annual rainfall Artificial neural networks Atmospheric Sciences Bayesian analysis Biogeosciences Collinearity Curvature Distance Drainage Drainage density Earth and Environmental Science Earth Sciences Elevation Evaluation Feature selection technique Geophysics/Geodesy Goodness of fit Landslide susceptibility Landslides Landslides & mudslides Learning algorithms Lithology Machine learning Machine learning algorithm Neural networks Normalized difference vegetative index Oceanography Planetology Plateaus Property damage Qinghai-Tibetan Plateau Rain Research Letter Spatial differencing Specificity Support vector machines Susceptibility |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LaxsxEBatQ6GX0id1mxQdemtFdreSVj6VJjgJgYS0JJCb0NNZcOw0u6bxj-h_7oystUkhuWpXWqEZzXw7Gs1HyGfPozdROhaUsowr65ipbWC-wEooovQji6GBk1N5dMGPL8VlDri1Oa2yt4nJUPu5wxj5biXBkOI5XPX95jdD1ig8Xc0UGk_JFphgpQZka298evZrE2UBbwQ-rL8to-Ruy9HlM0xiT_6N3d3zSKlw_z20-d8BafI7By_JiwwY6Y-VhF-RJ2H2mjw7TIS8yzfk73hdrpvOIwU4R9Pt3WnjA20XbcpaSQmwSwrttOla2mIWNYzZk6O4QJtZ6voH2XLpT5jIlWnYeWMDYEd6NgVAahYUSRzgM3ZJI9hImgknJtRMJ7BS3dV1-5ZcHIzP949YplhgjkvVMetsXTtjXSirWKqgZGlFwcHomQqdmxdm5GNprBHGy1gV3ogyKqEQBwmAN-_IYDafhfeE1rWR1YhHx0XkRRAWgIKrrcNMc-uLOCRlv8za5frjSIMx1ek_REm9Eo0G0egkGn03JF_WfW5W1TcefXsPpbd-Eytnp4b57UTnjQjggHs8fDaALXllviljwKShYlozckENyXYve523c6s3yjckX3t92Dx-eEofHh_tI3leJU2sWMm3yaC7XYQdADmd_ZQ1-R8B0_zY priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1daxQxFA3SIoggtSquVsmDbxqcpEkm-6hLaxH8ghb6Fm6-2oHtrHRm0f0R_c-9yc5srajg60xCwtyb3DO5N-cQ8irIFCBpz6IxjknjPIPaRRaqzISieJi6fDTw6bM-OpEfT9XpQJOT78L8mr_nRr_tZI7QLNecl3DEEC9uK75fZ5mGmZ7dnKdg3MFoNd6L-WPXW7GnUPTfwpW_pUJLhDncIQ8GaEjfrW35kNyJ7S65-6FI7652yf0vPkI7MEw_IlcHG55uukgUcRwt13bnTYi0W3alXKVUvq4oPqdN39Eul0_jEKMqio-0aUvXH1kml37DeZ1Dw44bFxE00q9zRKKwpFm9AYdxK5pwc6SD0sQZhfnZ4rLpzy-6x-Tk8OB4dsQGbQXmpTY9c97VtQfnIxeJm2g0d6qSuNuByFEtKJiGxMGBgqCTqAIonowyGQApxDVPyFa7aONTQusatJjK5KVKsorKIULwtfO5xNyFKk0IH7-69QPxeNa_mNvyA2K0XVvKoqVssZT9OSGvN32-r2k3_tn6fTbmpmWmzC4P0JPssAIRFciQs86AoFIK2DcAuJdlj3Qw9dFMyN7oCnZYx50VGsN3zv6KCXkzusfN679P6dn_NX9O7oniqIJxuUe2-stlfIFop3cvi5tfAx5m-cY priority: 102 providerName: Springer Nature |
Title | Evaluation of the landslide susceptibility and its spatial difference in the whole Qinghai-Tibetan Plateau region by five learning algorithms |
URI | https://link.springer.com/article/10.1186/s40562-022-00218-x https://www.proquest.com/docview/2628404642 https://doaj.org/article/ba4d7272a09542a38aa2259499ba9ce8 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxELagCIkL4ilCS-QDN7CaNbbXOaZRShWJqkAr9WaNX-1KIUHdjdr8CP4zY-9uaJGAC5ddyWt7Lc_Y32d7PEPIWy-ih6gcC1pbJrR1DEobmB8lTyiy8GObtgY-HaujMzE_l-e3Qn0lm7DWPXDbcfsWhE-HhYBcQHD4oAFQBVNFFsYu5Gu-iHm3FlN5dwVRCLGrvyWj1X4tEtSzZLyecY3d3EGi7LD_Dsv87WA0483hE_K4I4p00jbwKbkXls_Iw485EO_mOfkx27rppqtIkcbRfGt3UflA63WdrVWy4euGYjqtmprWyXoa6-yDorhAq2Uuep2i5NLP2JBLqNhpZQNyRnqyQCIKa5qCN-Bv7IZGnBtpF2jigsLiYnVVNZff6hfk7HB2Oj1iXWgF5oTSDbPOlqUD60LBY6GDVoWVI4GTHfAEal7C2McCLEjwKvKRB1lELXXiPxJpzUuys1wtwytCyxIUH4vohIxiFKRFguBK65KFufWjOCBF383GdX7HU_iLhcnrD61MKxqDojFZNOZmQN5ty3xvvW78NfdBkt42Z_KYnRNQj0ynR-ZfejQge73sTTeMa8MVonc6_OUD8r7Xh1-f_9yk1_-jSbvkEc_6ylkh9shOc7UOb5ACNXZIHkwm869zfB_Mjk--DMn9KRfpqabDPBJ-Ar6hCJI |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbhMxELZKKgQXxK9IKeADnMDqrmt7nQNCFFJS2kYFpVJvxr_pSiFpu4naPASvwjMydnYTFYneevXaXssznvlsj-dD6I1jwekgLPFSGsKksUQXxhOXxUwoPHcdE48GDvuid8y-nfCTNfSneQsTwyobm5gMtZvYeEa-RQUY0ngPRz-enZPIGhVvVxsKjYVa7Pv5JWzZqg97X0C-bynd7Q4-90jNKkAsE3JKjDVFYbWxPqchl16K3PCMwTrXNNpzx3XHhVwbzbUTgWZO8zxILqPr5-DRod87aJ1ti4y20PpOt3_0Y3WqA94PfGbzOkeKrYpFiEFi0Hzyp-TqmgdMRAHX0O0_F7LJz-0-RA9qgIo_LTTqEVrz48fo7tdEADx_gn53l-nB8SRggI84vRYelc7jalalKJkUcDvHUI7LaYWrGLUNfTZkLNbjcpyaXkZ2XvwdBnKqSzIojQesio9GAID1DEfSCPiNmeMANhnXBBdDrEdDkMz09Ff1FB3fyuQ_Q63xZOyfI1wUWtAOC5bxwDLPDQATWxgbI9uNy0Ib5c00K1vnO4-0GyOV9j1SqIVoFIhGJdGoqzZ6t2xztsj2cWPtnSi9Zc2YqTsVTC6Gql74AEaYi5fdGrAso3pbag0mNC4EozvWyzbabGSvavNRqZWyt9H7Rh9Wn_8_pI2be3uN7vUGhwfqYK-__wLdp0krKcnZJmpNL2b-JQCsqXlVazVGP297If0FesY60g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbhMxELZKKhAXxK9IKeADnMBK1nh3nQNClCa0FKKAWqk34990pTQp3Y3aPAQvxNMx4-wmKhK99eq1vZZnPPPZHs9HyCsngtMhs8xLaZiQxjKdG89cFzOhpInrGTwa-DbM9o7El-P0eIP8ad7CYFhlYxOjoXYzi2fkHZ6BIcV7ON4JdVjEaHfw4ewXQwYpvGlt6DSWKnLgFxewfSvf7--CrF9zPugfftpjNcMAsyKTFTPW5LnVxvqEh0R6mSUm7QpY85qjbXep7rmQaKNT7bLAu06nSZCpRBiQgneHfm-RzRx3RS2yudMfjn6sT3jAE4L_bF7qyKxTCoQbDAPoo29ll1e8YSQNuIJ0_7mcjT5vcJ_cq8Eq_bjUrgdkw08fktufIxnw4hH53V-lCqezQAFK0vhyeFI4T8t5GSNmYvDtgkI5LaqSlhjBDX02xCzW02Iam14gUy_9DgM50QU7LIwH3EpHEwDDek6RQAJ-YxY0gH2mNdnFmOrJGCRTnZyWj8nRjUz-E9Kazqb-KaF5rjPeE8GKNIiuTw2AFJsbi1HuxnVDmyTNNCtb5z5HCo6JinsgmamlaBSIRkXRqMs2ebNqc7bM_HFt7R2U3qomZu2OBbPzsaqNAAAT4fDiWwOuFVy_k1qDOcVFYXTPetkm243sVW1KSrVW_DZ52-jD-vP_h7R1fW8vyR1YQOrr_vDgGbnLo1Jyloht0qrO5_45YK3KvKiVmpKfN72O_gL52T8H |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+of+the+landslide+susceptibility+and+its+spatial+difference+in+the+whole+Qinghai-Tibetan+Plateau+region+by+five+learning+algorithms&rft.jtitle=Geoscience+letters&rft.au=Payam+Sajadi&rft.au=Yan-Fang+Sang&rft.au=Mehdi+Gholamnia&rft.au=Stefania+Bonafoni&rft.date=2022-02-14&rft.pub=SpringerOpen&rft.eissn=2196-4092&rft.volume=9&rft.issue=1&rft.spage=1&rft.epage=25&rft_id=info:doi/10.1186%2Fs40562-022-00218-x&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_ba4d7272a09542a38aa2259499ba9ce8 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2196-4092&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2196-4092&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2196-4092&client=summon |