Evaluation of the landslide susceptibility and its spatial difference in the whole Qinghai-Tibetan Plateau region by five learning algorithms

Landslides are considered as major natural hazards that cause enormous property damages and fatalities in Qinghai-Tibetan Plateau (QTP). In this article, we evaluated the landslide susceptibility, and its spatial differencing in the whole Qinghai-Tibetan Plateau region using five state-of-the-art le...

Full description

Saved in:
Bibliographic Details
Published inGeoscience letters Vol. 9; no. 1; pp. 1 - 25
Main Authors Sajadi, Payam, Sang, Yan-Fang, Gholamnia, Mehdi, Bonafoni, Stefania, Mukherjee, Saumitra
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 14.02.2022
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Landslides are considered as major natural hazards that cause enormous property damages and fatalities in Qinghai-Tibetan Plateau (QTP). In this article, we evaluated the landslide susceptibility, and its spatial differencing in the whole Qinghai-Tibetan Plateau region using five state-of-the-art learning algorithms; deep neural network (DNN), logistic regression (LR), Naïve Bayes (NB), random forest (RF), and support vector machine (SVM), differing from previous studies only in local areas of QTP. The 671 landslide events were considered, and thirteen landslide conditioning factors (LCFs) were derived for database generation, including annual rainfall, distance to drainage ( Ds d ) , distance to faults ( Ds f ) , drainage density ( D d ) , elevation (Elev), fault density ( F d ) , lithology, normalized difference vegetation index (NDVI), plan curvature ( Pl c ) , profile curvature ( Pr c ) , slope ( S ∘ ) , stream power index (SPI), and topographic wetness index (TWI). The multi-collinearity analysis and mean decrease Gini (MDG) were used to assess the suitability and predictability of these factors. Consequently, five landslide susceptibility prediction (LSP) maps were generated and validated using accuracy, area under the receiver operatic characteristic curve, sensitivity, and specificity. The MDG results demonstrated that the rainfall, elevation, and lithology were the most significant landslide conditioning factors ruling the occurrence of landslides in Qinghai-Tibetan Plateau. The LSP maps depicted that the north-northwestern and south-southeastern regions (< 32% of total area) were at a higher risk to landslide compared to the center, west, and northwest of the area (> 45% of total area). Moreover, among the five models with a high goodness-of-fit, RF model was highlighted as the superior one, by which higher accuracy of landslide susceptibility assessment and better prone areas management in QTP can be achieved compared to previous results. Graphical Abstract
AbstractList Landslides are considered as major natural hazards that cause enormous property damages and fatalities in Qinghai-Tibetan Plateau (QTP). In this article, we evaluated the landslide susceptibility, and its spatial differencing in the whole Qinghai-Tibetan Plateau region using five state-of-the-art learning algorithms; deep neural network (DNN), logistic regression (LR), Naïve Bayes (NB), random forest (RF), and support vector machine (SVM), differing from previous studies only in local areas of QTP. The 671 landslide events were considered, and thirteen landslide conditioning factors (LCFs) were derived for database generation, including annual rainfall, distance to drainage ( Ds d ) , distance to faults ( Ds f ) , drainage density ( D d ) , elevation (Elev), fault density ( F d ) , lithology, normalized difference vegetation index (NDVI), plan curvature ( Pl c ) , profile curvature ( Pr c ) , slope ( S ∘ ) , stream power index (SPI), and topographic wetness index (TWI). The multi-collinearity analysis and mean decrease Gini (MDG) were used to assess the suitability and predictability of these factors. Consequently, five landslide susceptibility prediction (LSP) maps were generated and validated using accuracy, area under the receiver operatic characteristic curve, sensitivity, and specificity. The MDG results demonstrated that the rainfall, elevation, and lithology were the most significant landslide conditioning factors ruling the occurrence of landslides in Qinghai-Tibetan Plateau. The LSP maps depicted that the north-northwestern and south-southeastern regions (< 32% of total area) were at a higher risk to landslide compared to the center, west, and northwest of the area (> 45% of total area). Moreover, among the five models with a high goodness-of-fit, RF model was highlighted as the superior one, by which higher accuracy of landslide susceptibility assessment and better prone areas management in QTP can be achieved compared to previous results. Graphical Abstract
Abstract Landslides are considered as major natural hazards that cause enormous property damages and fatalities in Qinghai-Tibetan Plateau (QTP). In this article, we evaluated the landslide susceptibility, and its spatial differencing in the whole Qinghai-Tibetan Plateau region using five state-of-the-art learning algorithms; deep neural network (DNN), logistic regression (LR), Naïve Bayes (NB), random forest (RF), and support vector machine (SVM), differing from previous studies only in local areas of QTP. The 671 landslide events were considered, and thirteen landslide conditioning factors (LCFs) were derived for database generation, including annual rainfall, distance to drainage $${(\mathrm{Ds}}_{\mathrm{d}})$$ ( Ds d ) , distance to faults $${(\mathrm{Ds}}_{\mathrm{f}})$$ ( Ds f ) , drainage density ( $${D}_{d})$$ D d ) , elevation (Elev), fault density $$({F}_{d})$$ ( F d ) , lithology, normalized difference vegetation index (NDVI), plan curvature $${(\mathrm{Pl}}_{\mathrm{c}})$$ ( Pl c ) , profile curvature $${(\mathrm{Pr}}_{\mathrm{c}})$$ ( Pr c ) , slope $${(S}^{^\circ })$$ ( S ∘ ) , stream power index (SPI), and topographic wetness index (TWI). The multi-collinearity analysis and mean decrease Gini (MDG) were used to assess the suitability and predictability of these factors. Consequently, five landslide susceptibility prediction (LSP) maps were generated and validated using accuracy, area under the receiver operatic characteristic curve, sensitivity, and specificity. The MDG results demonstrated that the rainfall, elevation, and lithology were the most significant landslide conditioning factors ruling the occurrence of landslides in Qinghai-Tibetan Plateau. The LSP maps depicted that the north-northwestern and south-southeastern regions (< 32% of total area) were at a higher risk to landslide compared to the center, west, and northwest of the area (> 45% of total area). Moreover, among the five models with a high goodness-of-fit, RF model was highlighted as the superior one, by which higher accuracy of landslide susceptibility assessment and better prone areas management in QTP can be achieved compared to previous results. Graphical Abstract
Landslides are considered as major natural hazards that cause enormous property damages and fatalities in Qinghai-Tibetan Plateau (QTP). In this article, we evaluated the landslide susceptibility, and its spatial differencing in the whole Qinghai-Tibetan Plateau region using five state-of-the-art learning algorithms; deep neural network (DNN), logistic regression (LR), Naïve Bayes (NB), random forest (RF), and support vector machine (SVM), differing from previous studies only in local areas of QTP. The 671 landslide events were considered, and thirteen landslide conditioning factors (LCFs) were derived for database generation, including annual rainfall, distance to drainage (Dsd), distance to faults (Dsf), drainage density (Dd), elevation (Elev), fault density (Fd), lithology, normalized difference vegetation index (NDVI), plan curvature (Plc), profile curvature (Prc), slope (S∘), stream power index (SPI), and topographic wetness index (TWI). The multi-collinearity analysis and mean decrease Gini (MDG) were used to assess the suitability and predictability of these factors. Consequently, five landslide susceptibility prediction (LSP) maps were generated and validated using accuracy, area under the receiver operatic characteristic curve, sensitivity, and specificity. The MDG results demonstrated that the rainfall, elevation, and lithology were the most significant landslide conditioning factors ruling the occurrence of landslides in Qinghai-Tibetan Plateau. The LSP maps depicted that the north-northwestern and south-southeastern regions (< 32% of total area) were at a higher risk to landslide compared to the center, west, and northwest of the area (> 45% of total area). Moreover, among the five models with a high goodness-of-fit, RF model was highlighted as the superior one, by which higher accuracy of landslide susceptibility assessment and better prone areas management in QTP can be achieved compared to previous results.
Landslides are considered as major natural hazards that cause enormous property damages and fatalities in Qinghai-Tibetan Plateau (QTP). In this article, we evaluated the landslide susceptibility, and its spatial differencing in the whole Qinghai-Tibetan Plateau region using five state-of-the-art learning algorithms; deep neural network (DNN), logistic regression (LR), Naïve Bayes (NB), random forest (RF), and support vector machine (SVM), differing from previous studies only in local areas of QTP. The 671 landslide events were considered, and thirteen landslide conditioning factors (LCFs) were derived for database generation, including annual rainfall, distance to drainage $${(\mathrm{Ds}}_{\mathrm{d}})$$ ( Ds d ) , distance to faults $${(\mathrm{Ds}}_{\mathrm{f}})$$ ( Ds f ) , drainage density ( $${D}_{d})$$ D d ) , elevation (Elev), fault density $$({F}_{d})$$ ( F d ) , lithology, normalized difference vegetation index (NDVI), plan curvature $${(\mathrm{Pl}}_{\mathrm{c}})$$ ( Pl c ) , profile curvature $${(\mathrm{Pr}}_{\mathrm{c}})$$ ( Pr c ) , slope $${(S}^{^\circ })$$ ( S ∘ ) , stream power index (SPI), and topographic wetness index (TWI). The multi-collinearity analysis and mean decrease Gini (MDG) were used to assess the suitability and predictability of these factors. Consequently, five landslide susceptibility prediction (LSP) maps were generated and validated using accuracy, area under the receiver operatic characteristic curve, sensitivity, and specificity. The MDG results demonstrated that the rainfall, elevation, and lithology were the most significant landslide conditioning factors ruling the occurrence of landslides in Qinghai-Tibetan Plateau. The LSP maps depicted that the north-northwestern and south-southeastern regions (< 32% of total area) were at a higher risk to landslide compared to the center, west, and northwest of the area (> 45% of total area). Moreover, among the five models with a high goodness-of-fit, RF model was highlighted as the superior one, by which higher accuracy of landslide susceptibility assessment and better prone areas management in QTP can be achieved compared to previous results. Graphical Abstract
ArticleNumber 9
Author Gholamnia, Mehdi
Mukherjee, Saumitra
Bonafoni, Stefania
Sajadi, Payam
Sang, Yan-Fang
Author_xml – sequence: 1
  givenname: Payam
  surname: Sajadi
  fullname: Sajadi, Payam
  organization: Key Laboratory of Water Cycle & Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences
– sequence: 2
  givenname: Yan-Fang
  orcidid: 0000-0001-6770-9311
  surname: Sang
  fullname: Sang, Yan-Fang
  email: sangyf@igsnrr.ac.cn, sunsangyf@gmail.com
  organization: Key Laboratory of Water Cycle & Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Key Laboratory of Compound and Chained Natural Hazards Dynamics, Ministry of Emergency Management of China
– sequence: 3
  givenname: Mehdi
  surname: Gholamnia
  fullname: Gholamnia, Mehdi
  organization: Department of Civil Engineering, Sanandaj Branch
– sequence: 4
  givenname: Stefania
  surname: Bonafoni
  fullname: Bonafoni, Stefania
  organization: Department of Engineering, University of Perugia
– sequence: 5
  givenname: Saumitra
  surname: Mukherjee
  fullname: Mukherjee, Saumitra
  organization: School of Environmental Sciences, Jawaharlal Nehru University
BookMark eNp9kUFvFSEUhSemJtbaP-CKxPUoMMBjlqap2qSJNalrchlgHi8UnsDUvh_hf5a-0Wi66IJAbs537gnndXcSU7Rd95bg94RI8aEwzAXtMW0HUyL7hxfdKSWj6Bke6cl_71fdeSk7jDGRfCCSnHa_Lu8hLFB9iig5VLcWBYimBG8sKkuZ7L567YOvB9TmyNeCyr7pISDjnbPZxskiH4_oz20KFn3zcd6C72-9thUiuglQLSwo2_lxjT4g5-_bHgs5NimCMKfs6_auvOleOgjFnv-5z7rvny5vL770118_X118vO4nJmTt9aQ3mwn0ZAl1RFopiOaYgTFABzwIw2E0joAGDkY4ig1w4iSXhBPOsRjOuqvV1yTYqX32d5APKoFXx0HKs4Jc_RSs0sDMhm4o4JEzCoMEoJSPbBw1jJOVzevd6rXP6cdiS1W7tOTY4isqqGSYCUabSq6qKadSsnVq8vX47TWDD4pg9dilWrtUrUt17FI9NJQ-Qf8GfhYaVqg0cZxt_pfqGeo3mr22kw
CitedBy_id crossref_primary_10_1007_s11042_024_19454_8
crossref_primary_10_1007_s11069_023_05836_y
crossref_primary_10_1007_s11069_024_07031_z
crossref_primary_10_1016_j_envc_2024_101029
crossref_primary_10_3390_atmos14020214
crossref_primary_10_1007_s12145_025_01700_8
crossref_primary_10_1016_j_heliyon_2023_e23424
crossref_primary_10_1186_s40562_023_00307_5
crossref_primary_10_1016_j_jhydrol_2025_133015
crossref_primary_10_3389_fenvs_2023_1177891
crossref_primary_10_3390_geosciences14060168
crossref_primary_10_1016_j_ige_2024_10_003
crossref_primary_10_3799_dqkx_2022_309
crossref_primary_10_3390_rs15123200
crossref_primary_10_1007_s40098_024_00957_y
crossref_primary_10_1016_j_ecolind_2024_112460
crossref_primary_10_1038_s41597_024_04362_1
crossref_primary_10_1007_s43538_024_00305_x
crossref_primary_10_1080_02723646_2023_2250174
crossref_primary_10_1016_j_trgeo_2024_101473
crossref_primary_10_3390_app13127276
crossref_primary_10_1007_s11629_022_7685_y
crossref_primary_10_1016_j_jafrearsci_2024_105237
crossref_primary_10_1016_j_qsa_2024_100187
crossref_primary_10_1007_s11042_023_15049_x
crossref_primary_10_1007_s11629_023_8029_2
crossref_primary_10_1016_j_envc_2024_101057
crossref_primary_10_1109_TGRS_2024_3504241
Cites_doi 10.1007/s11069-019-03795-x
10.1016/j.asr.2020.05.015
10.1007/s11750-010-0152-x
10.1007/s10668-020-00783-1
10.1007/s11069-016-2725-y
10.1016/j.gsf.2019.10.001
10.3390/rs12030502
10.1007/s10346-016-0756-9
10.1130/GES00217.1
10.1007/s12665-012-1842-5
10.1016/b978-0-12-814899-0.00014-6
10.1002/rra.1332
10.1016/j.catena.2020.104458
10.3390/su11164386
10.1016/j.cageo.2020.104470
10.3390/ijerph17124206
10.1007/s10346-014-0550-5
10.1111/j.1365-246X.2010.04754.x
10.1016/j.catena.2019.104150
10.1016/j.catena.2017.01.010
10.1201/9781420089653
10.1016/j.isprsjprs.2016.01.011
10.5194/nhess-5-979-2005
10.1016/j.catena.2020.104751
10.1007/s10346-015-0565-6
10.1016/j.geomorph.2020.107201
10.1007/978-1-4419-9890-3
10.1007/s12665-016-5919-4
10.1007/s10346-015-0557-6
10.1016/j.gsf.2020.05.010
10.1016/j.enggeo.2020.105972
10.3133/ofr97470F
10.1093/oso/9780198538493.001.0001
10.1016/j.catena.2019.104425
10.1186/s40677-020-00155-x
10.1016/j.scitotenv.2021.145935
10.3390/s18124436
10.1007/s10346-013-0415-3
10.1038/npre.2008.2278.2
10.1016/j.cageo.2015.04.007
10.1016/j.geomorph.2017.06.013
10.1111/j.1600-0587.2012.07348.x
10.1016/j.catena.2020.104580
10.1007/s12665-013-2863-4
10.1016/j.enggeo.2011.09.006
10.1016/j.scitotenv.2020.142928
10.1016/j.catena.2020.104851
10.3390/sym12061047
10.1371/journal.pone.0133262
10.1016/j.envpol.2008.02.014
10.1016/j.jseaes.2012.10.005
10.1007/s12517-012-0610-x
10.1080/01431160903252327
10.1016/j.gloplacha.2004.01.010
10.1080/10106049.2018.1516248
10.1016/j.catena.2018.04.003
10.1016/j.geomorph.2004.06.010
10.1016/j.envsoft.2016.07.005
10.2352/ISSN.2470-1173.2019.7.IRIACV-466
10.1002/joc.3512
10.1007/s11004-011-9379-9
10.1007/s11069-009-9401-4
10.5194/nhess-17-1411-2017
10.1016/j.enggeo.2011.09.011
10.1016/j.enggeo.2019.105147
10.5194/nhess-3-523-2003
10.1016/j.gsf.2020.10.007
10.1175/BAMS-D-17-0057.1
10.1016/j.geomorph.2021.107592
10.1007/s12665-017-6558-0
10.1007/978-3-030-35798-6_31
10.1155/2012/974638
10.1007/s42452-020-2563-0
10.3390/geosciences10110430
10.1016/j.envsoft.2009.10.016
10.1016/j.geomorph.2019.106975
10.1109/JSTARS.2020.3014143
10.1016/j.gsf.2020.09.002
10.1007/s10346-020-01392-9
10.1016/j.jseaes.2009.01.002
10.1016/j.earscirev.2018.03.001
10.1890/07-0539.1
10.1016/j.geomorph.2014.02.003
10.1016/j.catena.2020.104630
10.1016/j.geomorph.2015.07.012
10.1016/j.scitotenv.2020.138595
10.1098/rsos.180844
10.1007/s10346-017-0861-4
10.1016/j.rse.2020.111899
10.1080/10106049.2020.1750060
10.1016/j.enggeo.2005.02.002
10.1007/s40808-016-0243-2
10.1007/s11629-013-2814-2
10.1016/j.catena.2019.104225
10.1016/j.gsf.2020.02.012
10.1016/j.catena.2019.104249
10.3390/ijgi9090553
10.1080/10106049.2019.1611948
10.1002/2017EF000715
10.1016/j.aei.2018.06.004
10.1126/science.189.4201.419
10.3390/rs11030274
10.1016/j.catena.2019.104426
10.1016/j.catena.2020.104805
10.1007/s10064-021-02114-8
10.1111/1755-6724.14555
10.1007/s11069-005-5182-6
10.1080/0143116031000114851
10.1016/j.jag.2009.06.002
10.21203/rs.3.rs-15731/v2
10.1016/j.scitotenv.2018.06.389
10.1109/IWDRL.2018.8358209
10.1007/s12517-018-3770-5
10.1016/j.isprsjprs.2011.11.002
10.1016/j.catena.2016.09.007
10.1016/j.rse.2014.05.013
10.1016/j.gsf.2020.04.014
10.1201/9780429469275-8
10.1080/10106049.2019.1687594
10.1007/s12665-017-6689-3
10.3390/app9050942
10.1080/19475705.2017.1289250
10.3390/F11040421
10.1016/j.scitotenv.2019.01.221
10.1016/S0013-7952(01)00093-X
10.3390/ijgi7110438
10.1016/j.jag.2013.05.017
10.1016/j.gsf.2021.101203
10.1016/j.geomorph.2011.02.001
10.3390/app10010029
10.1016/j.geomorph.2005.06.002
10.1016/j.geomorph.2008.02.011
10.3390/app10155047
10.1007/s10064-018-1393-4
10.1016/j.geomorph.2016.02.012
10.1080/15230430.2019.1650541
10.3390/su13084543
10.1016/j.gsf.2020.06.013
10.1016/j.cageo.2008.08.007
10.3390/ijerph17082749
ContentType Journal Article
Copyright The Author(s) 2022
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
7UA
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
H96
HCIFZ
L.G
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
DOA
DOI 10.1186/s40562-022-00218-x
DatabaseName Springer Nature OA Free Journals
CrossRef
Water Resources Abstracts
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Sustainability
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList

Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Oceanography
EISSN 2196-4092
EndPage 25
ExternalDocumentID oai_doaj_org_article_ba4d7272a09542a38aa2259499ba9ce8
10_1186_s40562_022_00218_x
GeographicLocations Tibetan Plateau
GeographicLocations_xml – name: Tibetan Plateau
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 41971040
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: CAS Interdisciplinary Innovation Team
  grantid: JCTD-2019-04
– fundername: Second Tibetan Plateau Scientific Expedition and Research Program (STEP)
  grantid: 2019QZKK0903
GroupedDBID -A0
0R~
2XV
5VS
8FE
8FH
AAFWJ
AAJSJ
AAKKN
ABEEZ
ACACY
ACGFS
ACULB
ADBBV
ADINQ
AEUYN
AFGXO
AFKRA
AFPKN
AHBYD
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
ASPBG
BCNDV
BENPR
BHPHI
BKSAR
C24
C6C
CCPQU
EBLON
EBS
GROUPED_DOAJ
HCIFZ
IAO
IEP
ITC
KQ8
LK5
M7R
M~E
OK1
PCBAR
PIMPY
PROAC
RSV
SOJ
AASML
AAYXX
CITATION
PHGZM
PHGZT
7UA
ABUWG
AZQEC
C1K
DWQXO
F1W
H96
L.G
PKEHL
PQEST
PQQKQ
PQUKI
PUEGO
ID FETCH-LOGICAL-c468t-bcb77cabce12f18e861b504adda23036d5a9df1aba5ad6f20da51f85815155063
IEDL.DBID DOA
ISSN 2196-4092
IngestDate Wed Aug 27 01:24:04 EDT 2025
Fri Jul 25 22:51:19 EDT 2025
Thu Apr 24 22:57:25 EDT 2025
Tue Jul 01 02:58:47 EDT 2025
Fri Feb 21 02:47:38 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Landslide susceptibility
Feature selection technique
Spatial differencing
Machine learning algorithm
Qinghai-Tibetan Plateau
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c468t-bcb77cabce12f18e861b504adda23036d5a9df1aba5ad6f20da51f85815155063
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6770-9311
OpenAccessLink https://doaj.org/article/ba4d7272a09542a38aa2259499ba9ce8
PQID 2628404642
PQPubID 2034757
PageCount 25
ParticipantIDs doaj_primary_oai_doaj_org_article_ba4d7272a09542a38aa2259499ba9ce8
proquest_journals_2628404642
crossref_citationtrail_10_1186_s40562_022_00218_x
crossref_primary_10_1186_s40562_022_00218_x
springer_journals_10_1186_s40562_022_00218_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-02-14
PublicationDateYYYYMMDD 2022-02-14
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-14
  day: 14
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Heidelberg
PublicationSubtitle Official Journal of the Asia Oceania Geosciences Society (AOGS)
PublicationTitle Geoscience letters
PublicationTitleAbbrev Geosci. Lett
PublicationYear 2022
Publisher Springer International Publishing
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
– name: SpringerOpen
References Guzzetti F (2006) Landslide hazard and risk assessment. Doctoral dissertation, Rheinische Friedrich Wilhelms-Universität Bonn
QiTMengXQingFDistribution and characteristics of large landslides in a fault zone: a case study of the NE Qinghai-Tibet PlateauGeomorphology202137910.1016/j.geomorph.2021.107592
RosiATofaniVTanteriLThe new landslide inventory of Tuscany (Italy) updated with PS-InSAR: geomorphological features and landslide distributionLandslides20181551910.1007/s10346-017-0861-4
Ullah M, Aslam M, Ullah MDMI, LazyData T (2019) Package ‘mctest’. https://doi.org/10.2352/ISSN.2470-1173.2019.7.IRIACV-466
ArabameriASahaSRoyJA novel ensemble computational intelligence approach for the spatial prediction of land subsidence susceptibilitySci Total Environ202072610.1016/j.scitotenv.2020.138595
DouJYunusAPTien BuiDAssessment of advanced random forest and decision tree algorithms for modeling rainfall-induced landslide susceptibility in the Izu-Oshima Volcanic Island, JapanSci Total Environ201966233234610.1016/j.scitotenv.2019.01.221
PawluszekKBorkowskiAImpact of DEM-derived factors and analytical hierarchy process on landslide susceptibility mapping in the region of Rożnów Lake, PolandNat Hazards20178691995210.1007/s11069-016-2725-y
PeethambaranBAnbalaganRKanungoDPA comparative evaluation of supervised machine learning algorithms for township level landslide susceptibility zonation in parts of Indian HimalayasCATENA202019510.1016/j.catena.2020.104751
YiYZhangZZhangWLandslide susceptibility mapping using multiscale sampling strategy and convolutional neural network: a case study in Jiuzhaigou regionCATENA202019510.1016/j.catena.2020.104851
WangYFengLLiSA hybrid model considering spatial heterogeneity for landslide susceptibility mapping in Zhejiang ProvinceChina Catena202018810.1016/j.catena.2019.104425
PhamBTNguyen-ThoiTQiCCoupling RBF neural network with ensemble learning techniques for landslide susceptibility mappingCATENA202019510.1016/j.catena.2020.104805
DengHWuLZHuangRQFormation of the Siwanli ancient landslide in the Dadu River, ChinaLandslides20171438539410.1007/s10346-016-0756-9
ReichenbachPRossiMMalamudBDA review of statistically-based landslide susceptibility modelsEarth-Science Rev2018180609110.1016/j.earscirev.2018.03.001
SahaSArabameriASahaAPrediction of landslide susceptibility in Rudraprayag, India using novel ensemble of conditional probability and boosted regression tree-based on cross-validation methodSci Total Environ202176410.1016/j.scitotenv.2020.142928
Carranza-GarcíaMGarcía-GutiérrezJRiquelmeJCA framework for evaluating land use and land cover classification using convolutional neural networksRemote Sens201910.3390/rs11030274
Thi NgoPTPanahiMKhosraviKEvaluation of deep learning algorithms for national scale landslide susceptibility mapping of IranGeosci Front20211250551910.1016/j.gsf.2020.06.013
WangHZhangLYinKLandslide identification using machine learningGeosci Front20211235136410.1016/j.gsf.2020.02.012
YaoTXueYChenDRecent third pole’s rapid warming accompanies cryospheric melt and water cycle intensification and interactions between monsoon and environment: multidisciplinary approach with observations, modeling, and analysisBull Am Meteorol Soc201910042344410.1175/BAMS-D-17-0057.1
WilliamsGData mining with Rattle and R: the art of excavating data for knowledge discovery2011ChamSpringer Science & Business Media10.1007/978-1-4419-9890-3
Wubalem A (2020) Landslide susceptibility mapping using statistical methods in Uatzau Catchment Area, Northwestern Ethiopia. 1–21. https://doi.org/10.21203/rs.3.rs-15731/v2
NhuVHZandiDShahabiHComparison of support vector machine, bayesian logistic regression, and alternating decision tree algorithms for shallow landslide susceptibility mapping along a mountainous road in the west of IranAppl Sci202010.3390/app10155047
PhamBTBuiDPrakashIDholakiaMEvaluation of predictive ability of support vector machines and naive Bayes trees methods for spatial prediction of landslides in Uttarakhand state (India) using GISJ Geomat2016107179
BudimirMEAAtkinsonPMLewisHGA systematic review of landslide probability mapping using logistic regressionLandslides20151241943610.1007/s10346-014-0550-5
de OliveiraGGRuizLFCGuasselliLAHaetingerCRandom forest and artificial neural networks in landslide susceptibility modeling: a case study of the Fão River Basin, Southern BrazilNat Hazards2019991049107310.1007/s11069-019-03795-x
AtkinsonPMMassariRAutologistic modelling of susceptibility to landsliding in the Central Apennines, ItalyGeomorphology2011130556410.1016/j.geomorph.2011.02.001
Tien BuiDPradhanBLofmanORevhaugILandslide susceptibility assessment in Vietnam using support vector machines, decision tree, and nave Bayes modelsMath Probl Eng201210.1155/2012/974638
ParkSKimJLandslide susceptibility mapping based on random forest and boosted regression tree models, and a comparison of their performanceAppl Sci201910.3390/app9050942
HuangXSillanpääMDuoBGjessingETWater quality in the Tibetan Plateau: Metal contents of four selected riversEnviron Pollut200815627027710.1016/j.envpol.2008.02.014
MandalKSahaSMandalSApplying deep learning and benchmark machine learning algorithms for landslide susceptibility modelling in Rorachu river basin of Sikkim HimalayaIndia Geosci Front20211210.1016/j.gsf.2021.101203
YouQFraedrichKRenGVariability of temperature in the Tibetan Plateau based on homogenized surface stations and reanalysis dataInt J Climatol2013331337134710.1002/joc.3512
NhuVHShirzadiAShahabiHShallow landslide susceptibility mapping: a comparison between logistic model tree, logistic regression, naïve bayes tree, artificial neural network, and support vector machine algorithmsInt J Environ Res Public Health202010.3390/ijerph17082749
CountySBostjanˇIRegional-scale landslide susceptibility mapping using limited LiDAR-based landslide inventories for Sisak-Moslavina County, CroatiaSustainability202110.3390/su13084543
Hutchinson JN (1995) Keynote paper: Landslide hazard assessment. In: International Symposium on Landslides. pp 1805–1841
TsangaratosPIliaILandslide susceptibility mapping using a modified decision tree classifier in the Xanthi Perfection, GreeceLandslides20161330532010.1007/s10346-015-0565-6
KirschbaumDBAdlerRHongYA global landslide catalog for hazard applications: Method, results, and limitationsNat Hazards20105256157510.1007/s11069-009-9401-4
ThakurMKDesamsettiSRajeshANExploring the rainfall data from satellites to monitor rainfall induced landslides–a case studyAdv Sp Res20206688789410.1016/j.asr.2020.05.015
MahdadiFBoumezbeurAHadjiRGIS-based landslide susceptibility assessment using statistical models: a case study from Souk Ahras provinceN-E Algeria Arab J Geosci201810.1007/s12517-018-3770-5
SunDWenHWangDXuJA random forest model of landslide susceptibility mapping based on hyperparameter optimization using Bayes algorithmGeomorphology202036210.1016/j.geomorph.2020.107201
BallabioCSterlacchiniSSupport vector machines for landslide susceptibility mapping: the Staffora River basin case study, ItalyMath Geosci201244477010.1007/s11004-011-9379-9
KirschbaumDStanleyTSatellite-based assessment of rainfall-triggered landslide hazard for situational awarenessEarth’s Futur2018650552310.1002/2017EF000715
StegerSMairVKoflerCCorrelation does not imply geomorphic causation in data-driven landslide susceptibility modeling—benefits of exploring landslide data collection effectsSci Total Environ202110.1016/j.scitotenv.2021.145935
GuzzettiFReichenbachPCardinaliMProbabilistic landslide hazard assessment at the basin scaleGeomorphology20057227229910.1016/j.geomorph.2005.06.002
SajadiPSinghAMukherjeeSMultivariate statistical analysis of relationship between tectonic activity and drainage behavior in Qorveh-Dehgolan basin Kurdistan, IranGeocarto Int20213654056210.1080/10106049.2019.1611948
HuangXSillanpääMGjessingETWater quality in the southern Tibetan Plateau: chemical evaluation of the Yarlung Tsangpo (Brahmaputra)River Res Appl20112711312110.1002/rra.1332
ChenWFanLLiCPhamBTSpatial prediction of landslides using hybrid integration of artificial intelligence algorithms with frequency ratio and index of entropy in Nanzheng county, ChinaAppl Sci20201012110.3390/app10010029
SingaravelSSuykensJGeyerPDeep-learning neural-network architectures and methods: Using component-based models in building-design energy predictionAdv Eng Informatics201838819010.1016/j.aei.2018.06.004
CostanzoDChacónJConoscentiCForward logistic regression for earth-flow landslide susceptibility assessment in the Platani river basin (southern Sicily, Italy)Landslides20141163965310.1007/s10346-013-0415-3
DormannCFElithJBacherSCollinearity: a review of methods to deal with it and a simulation study evaluating their performanceEcography (cop)201336274610.1111/j.1600-0587.2012.07348.x
BreimanLRandom forestsMach Learn20014553210.1201/9780429469275-8
GuzzettiFCarraraACardinaliMReichenbachPLandslide hazard evaluation: a review of current techniques and their application in a multi-scale studyCentral Italy Geomorphol 1999131995
ChangZDuZZhangFLandslide susceptibility prediction based on remote sensing images and GIS: Comparisons of supervised and unsupervised machine learning modelsRemote Sens202010.3390/rs12030502
LiawAWienerMClassification and regression by randomForestR News200221822
PhamBTShirzadiAShahabiHLandslide susceptibility assessment by novel hybrid machine learning algorithmsSustain20191112510.3390/su11164386
ParkSChoiCKimBKimJLandslide susceptibility mapping using frequency ratio, analytic hierarchy process, logistic regression, and artificial neural network methods at the Inje area, KoreaEnviron Earth Sci2013681443146410.1007/s12665-012-1842-5
Meyer D, Dimitriadou E, Hornik K, et al (2019) Libsvm e1071: Misc Functions of the Department of Statistics, Probability Theory Group (Formerly: E1071), TU Wien. https://CRAN.R-project.org/package=e1071. Accessed 1 Jan 2021
PhamBTTien BuiDPrakashIA comparative study of sequential minimal optimization-based support vector machines, vote feat
J Dou (218_CR39) 2015
MN Jebur (218_CR63) 2014; 152
H Wang (218_CR134) 2021; 12
VH Nhu (218_CR84) 2020
218_CR53
B Pradhan (218_CR99) 2010; 25
D Tien Bui (218_CR128) 2016; 13
A Kornejady (218_CR69) 2017; 152
D Kirschbaum (218_CR67) 2018; 6
AM Youssef (218_CR147) 2021; 12
M Mohammady (218_CR80) 2012; 61
M Belgiu (218_CR15) 2016; 114
H Jia (218_CR64) 2020; 247
T Stanley (218_CR114) 2020; 69
MH Tangestani (218_CR121) 2009; 35
C Yu (218_CR148) 2020; 12
BT Pham (218_CR95) 2017
VH Nhu (218_CR83) 2020; 188
BT Pham (218_CR96) 2017; 149
R Damaševičius (218_CR34) 2010; 18
M Bordoni (218_CR17) 2020; 193
L Breiman (218_CR19) 2001; 45
S Park (218_CR88) 2019
P Tsangaratos (218_CR129) 2016; 13
Y Achour (218_CR3) 2020; 11
SK Bartarya (218_CR13) 1996; 17
FC Dai (218_CR33) 2002; 64
JN Goetz (218_CR49) 2015; 81
F Mahdadi (218_CR74) 2018
M Zare (218_CR149) 2013; 6
F Guzzetti (218_CR51) 1999; 13
TW Gillespie (218_CR48) 2019; 51
F Huang (218_CR59) 2020; 191
A Wubalem (218_CR138) 2020; 2
I Yilmaz (218_CR145) 2009; 35
M Carranza-García (218_CR22) 2019
J Song (218_CR113) 2020; 13
P Sajadi (218_CR109) 2021; 36
C Ballabio (218_CR12) 2012; 44
P Molnar (218_CR81) 1975; 189
P Sajadi (218_CR108) 2020
EK Sahin (218_CR107) 2020; 35
P Reichenbach (218_CR101) 2018; 180
Y Zhao (218_CR152) 2019; 259
PM Atkinson (218_CR10) 2011; 130
Z Liu (218_CR73) 2021; 12
BT Pham (218_CR94) 2016; 84
C Cortes (218_CR28) 1995; 20
E Yesilnacar (218_CR143) 2005; 79
L Ayalew (218_CR11) 2005; 65
J Choi (218_CR27) 2012; 124
K Pawluszek (218_CR91) 2017; 86
VK Pandey (218_CR87) 2019; 182
MK Thakur (218_CR123) 2020; 66
J Dou (218_CR40) 2019; 662
A Rosi (218_CR104) 2018; 15
DB Kirschbaum (218_CR68) 2010; 52
Z Chang (218_CR23) 2020
VH Nhu (218_CR85) 2020
D Sun (218_CR119) 2021; 281
Q You (218_CR146) 2013; 33
218_CR131
218_CR130
J Zhang (218_CR150) 2020; 94
B Ghimire (218_CR46) 2010; 1
H Akinci (218_CR6) 2020
218_CR139
HAH Al-Najjar (218_CR7) 2021; 12
S Singaravel (218_CR112) 2018; 38
218_CR137
S Steger (218_CR115) 2021
W Chen (218_CR25) 2018; 644
VF Rodriguez-Galiano (218_CR103) 2012; 67
CF Dormann (218_CR38) 2013; 36
L Xiao (218_CR140) 2018
L Lin (218_CR72) 2017; 17
PT Thi Ngo (218_CR124) 2021; 12
X Robin (218_CR102) 2011; 12
VH Nhu (218_CR86) 2020
CM Bishop (218_CR16) 1995
S Pasang (218_CR90) 2020; 10
G Du (218_CR42) 2019; 78
M Marjanović (218_CR77) 2011; 123
S Mukherjee (218_CR82) 2008
AX Zhu (218_CR154) 2014; 214
MEA Budimir (218_CR20) 2015; 12
A Abbaszadeh Shahri (218_CR2) 2019; 183
BT Pham (218_CR93) 2016; 10
T Kavzoglu (218_CR66) 2003; 24
M Borga (218_CR18) 2019
T Mersha (218_CR78) 2020
H Hong (218_CR54) 2016; 259
X Yao (218_CR141) 2008; 101
M Du (218_CR41) 2004; 41
S County (218_CR30) 2021
M Ercanoglu (218_CR44) 2005; 5
A Ghosh (218_CR47) 2014; 26
Q Hu (218_CR55) 2020; 351
D Costanzo (218_CR29) 2014; 11
B Peethambaran (218_CR92) 2020; 195
X Sun (218_CR117) 2018; 7
T Qi (218_CR100) 2021; 379
218_CR116
M Taylor (218_CR122) 2009; 5
G Williams (218_CR135) 2011
Y Yi (218_CR144) 2020; 195
AX Zhu (218_CR155) 2018; 166
JR Elliott (218_CR43) 2010; 183
DR Cutler (218_CR32) 2007; 88
W Chen (218_CR26) 2020; 10
A Saha (218_CR105) 2021
218_CR125
D Sun (218_CR118) 2020; 362
218_CR120
C Guo (218_CR50) 2015; 248
218_CR79
X Huang (218_CR56) 2008; 156
M Di Napoli (218_CR37) 2020; 17
218_CR75
F Guzzetti (218_CR52) 2005; 72
D Tien Bui (218_CR127) 2016
B Zhao (218_CR151) 2019
A Arabameri (218_CR8) 2020; 726
BT Pham (218_CR97) 2019; 11
T Yao (218_CR142) 2019; 100
S Saha (218_CR106) 2021; 764
X Wu (218_CR136) 2014; 71
GG de Oliveira (218_CR35) 2019; 99
M Jamal (218_CR62) 2016; 2
H Shahabi (218_CR111) 2021
W Chen (218_CR24) 2017; 8
Y Wang (218_CR132) 2020; 188
D Tien Bui (218_CR126) 2012
B Zhao (218_CR153) 2021; 80
SJ Aiken (218_CR5) 2013; 10
DT Bui (218_CR21) 2020; 188
A Liaw (218_CR71) 2002; 2
X Huang (218_CR57) 2011; 27
218_CR61
T Kavzoglu (218_CR65) 2009; 11
H Deng (218_CR36) 2017; 14
218_CR1
A Arora (218_CR9) 2019
S Beguería (218_CR14) 2006; 37
GB Crosta (218_CR31) 2003; 3
Y Wang (218_CR133) 2020; 17
Z Fang (218_CR45) 2020; 139
S Park (218_CR89) 2013; 68
IN Aghdam (218_CR4) 2017
MI Sameen (218_CR110) 2020; 186
BT Pham (218_CR98) 2020; 195
F Huang (218_CR58) 2019; 44
218_CR60
D Kumar (218_CR70) 2017; 295
K Mandal (218_CR76) 2021; 12
References_xml – reference: Meyer D, Dimitriadou E, Hornik K, et al (2019) Libsvm e1071: Misc Functions of the Department of Statistics, Probability Theory Group (Formerly: E1071), TU Wien. https://CRAN.R-project.org/package=e1071. Accessed 1 Jan 2021
– reference: StanleyTKirschbaumDBPascaleSKapnickSExtreme precipitation in the Himalayan landslide hotspotAdv Glob Chang Res2020691087111110.1007/978-3-030-35798-6_31
– reference: CutlerDREdwardsTCBeardKHRandom forests for classification in ecology published by: Ecological Society of AmericaEcology2007882783279210.1890/07-0539.1
– reference: Varnes DJ (1984) Landslide hazard zonation: a review of principles and practice. Series: commission on landslides of the IAEG, UNESCO. Nat Hazard 3:61
– reference: RobinXTurckNHainardApROC: an open-source package for R and S+ to analyze and compare ROC curvesBMC Bioinformatics2011127710.1016/j.earscirev.2018.03.001
– reference: KornejadyAOwneghMBahremandALandslide susceptibility assessment using maximum entropy model with two different data sampling methodsCATENA201715214416210.1016/j.catena.2017.01.010
– reference: KavzogluTMatherPMThe use of backpropagating artificial neural networks in land cover classificationInt J Remote Sens2003244907493810.1080/0143116031000114851
– reference: PawluszekKBorkowskiAImpact of DEM-derived factors and analytical hierarchy process on landslide susceptibility mapping in the region of Rożnów Lake, PolandNat Hazards20178691995210.1007/s11069-016-2725-y
– reference: GhoshAFassnachtFEJoshiPKKochbBA framework for mapping tree species combining hyperspectral and LiDAR data: role of selected classifiers and sensor across three spatial scalesInt J Appl Earth Obs Geoinf201426496310.1016/j.jag.2013.05.017
– reference: TsangaratosPIliaILandslide susceptibility mapping using a modified decision tree classifier in the Xanthi Perfection, GreeceLandslides20161330532010.1007/s10346-015-0565-6
– reference: QiTMengXQingFDistribution and characteristics of large landslides in a fault zone: a case study of the NE Qinghai-Tibet PlateauGeomorphology202137910.1016/j.geomorph.2021.107592
– reference: PhamBTTien BuiDPrakashIDholakiaMBHybrid integration of Multilayer Perceptron Neural Networks and machine learning ensembles for landslide susceptibility assessment at Himalayan area (India) using GISCATENA2017149526310.1016/j.catena.2016.09.007
– reference: BuiDTTsangaratosPNguyenVTComparing the prediction performance of a Deep Learning Neural Network model with conventional machine learning models in landslide susceptibility assessmentCATENA202018810.1016/j.catena.2019.104426
– reference: PhamBTNguyen-ThoiTQiCCoupling RBF neural network with ensemble learning techniques for landslide susceptibility mappingCATENA202019510.1016/j.catena.2020.104805
– reference: ChenWXieXPengJGIS-based landslide susceptibility modelling: a comparative assessment of kernel logistic regression, Naïve-Bayes tree, and alternating decision tree modelsGeomatics Nat Hazards Risk2017895097310.1080/19475705.2017.1289250
– reference: WangHZhangLYinKLandslide identification using machine learningGeosci Front20211235136410.1016/j.gsf.2020.02.012
– reference: MolnarPTapponnierPCenozoic tectonics of Asia: effects of a continental collisionScience197518941942610.1126/science.189.4201.419
– reference: BegueríaSValidation and evaluation of predictive models in hazard assessment and risk managementNat Hazards20063731532910.1007/s11069-005-5182-6
– reference: BordoniMGalantiYBartellettiCThe influence of the inventory on the determination of the rainfall-induced shallow landslides susceptibility using generalized additive modelsCATENA202019310.1016/j.catena.2020.104630
– reference: ZhangJYunLZhangBDeformation at the Easternmost Altyn Tagh Fault: constraints on the growth of the Northern Qinghai-Tibetan PlateauActa Geol Sin202094988100610.1111/1755-6724.14555
– reference: TangestaniMHA comparative study of Dempster-Shafer and fuzzy models for landslide susceptibility mapping using a GIS: an experience from Zagros Mountains, SW IranJ Asian Earth Sci200935667310.1016/j.jseaes.2009.01.002
– reference: Wu X, Kumar V, Ross QJ, et al (2008) Top 10 algorithms in data mining. https://doi.org/10.1201/9781420089653
– reference: BorgaMHazard assessment and forecasting of landslides and debris flows: a case study in Northern ItalyExtrem Hydroclimatic Events Multivar Hazards Chang Environ201910.1016/b978-0-12-814899-0.00014-6
– reference: StegerSMairVKoflerCCorrelation does not imply geomorphic causation in data-driven landslide susceptibility modeling—benefits of exploring landslide data collection effectsSci Total Environ202110.1016/j.scitotenv.2021.145935
– reference: GoetzJNBrenningAPetschkoHLeopoldPEvaluating machine learning and statistical prediction techniques for landslide susceptibility modelingComput Geosci20158111110.1016/j.cageo.2015.04.007
– reference: SajadiPSinghAMukherjeeSMultivariate statistical analysis of relationship between tectonic activity and drainage behavior in Qorveh-Dehgolan basin Kurdistan, IranGeocarto Int20213654056210.1080/10106049.2019.1611948
– reference: Al-NajjarHAHPradhanBSpatial landslide susceptibility assessment using machine learning techniques assisted by additional data created with generative adversarial networksGeosci Front20211262563710.1016/j.gsf.2020.09.002
– reference: TaylorMYinAActive structures of the Himalayan-Tibetan orogen and their relationships to earthquake distribution, contemporary strain field, and Cenozoic volcanismGeosphere2009519921410.1130/GES00217.1
– reference: AyalewLYamagishiHThe application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central JapanGeomorphology200565153110.1016/j.geomorph.2004.06.010
– reference: de OliveiraGGRuizLFCGuasselliLAHaetingerCRandom forest and artificial neural networks in landslide susceptibility modeling: a case study of the Fão River Basin, Southern BrazilNat Hazards2019991049107310.1007/s11069-019-03795-x
– reference: HuangXSillanpääMGjessingETWater quality in the southern Tibetan Plateau: chemical evaluation of the Yarlung Tsangpo (Brahmaputra)River Res Appl20112711312110.1002/rra.1332
– reference: MohammadyMPourghasemiHRPradhanBLandslide susceptibility mapping at Golestan Province, Iran: a comparison between frequency ratio, Dempster-Shafer, and weights-of-evidence modelsJ Asian Earth Sci20126122123610.1016/j.jseaes.2012.10.005
– reference: Di NapoliMCarotenutoFCevascoAMachine learning ensemble modelling as a tool to improve landslide susceptibility mapping reliabilityLandslides2020171897191410.1007/s10346-020-01392-9
– reference: SameenMIPradhanBLeeSApplication of convolutional neural networks featuring Bayesian optimization for landslide susceptibility assessmentCATENA202018610.1016/j.catena.2019.104249
– reference: SunXChenJBaoYLandslide susceptibility mapping using logistic regression analysis along the Jinsha river and its tributaries close to Derong and Deqin County, southwestern ChinaISPRS Int J Geo-Information2018712910.3390/ijgi7110438
– reference: DormannCFElithJBacherSCollinearity: a review of methods to deal with it and a simulation study evaluating their performanceEcography (cop)201336274610.1111/j.1600-0587.2012.07348.x
– reference: PandeyVKSharmaKKPourghasemiHRBandooniSKSedimentological characteristics and application of machine learning techniques for landslide susceptibility modelling along the highway corridor Nahan to Rajgarh (Himachal Pradesh)India Catena201918210.1016/j.catena.2019.104150
– reference: KavzogluTColkesenIA kernel functions analysis for support vector machines for land cover classificationInt J Appl Earth Obs Geoinf20091135235910.1016/j.jag.2009.06.002
– reference: MershaTMetenMGIS-based landslide susceptibility mapping and assessment using bivariate statistical methods in Simada area, northwestern EthiopiaGeoenviron Disasters202010.1186/s40677-020-00155-x
– reference: PhamBTPradhanBTien BuiDA comparative study of different machine learning methods for landslide susceptibility assessment: a case study of Uttarakhand area (India)Environ Model Softw20168424025010.1016/j.envsoft.2016.07.005
– reference: Guzzetti F (2006) Landslide hazard and risk assessment. Doctoral dissertation, Rheinische Friedrich Wilhelms-Universität Bonn
– reference: NhuVHShirzadiAShahabiHShallow landslide susceptibility mapping: a comparison between logistic model tree, logistic regression, naïve bayes tree, artificial neural network, and support vector machine algorithmsInt J Environ Res Public Health202010.3390/ijerph17082749
– reference: Tien BuiDPradhanBLofmanORevhaugILandslide susceptibility assessment in Vietnam using support vector machines, decision tree, and nave Bayes modelsMath Probl Eng201210.1155/2012/974638
– reference: Carranza-GarcíaMGarcía-GutiérrezJRiquelmeJCA framework for evaluating land use and land cover classification using convolutional neural networksRemote Sens201910.3390/rs11030274
– reference: JeburMNPradhanBTehranyMSOptimization of landslide conditioning factors using very high-resolution airborne laser scanning (LiDAR) data at catchment scaleRemote Sens Environ201415215016510.1016/j.rse.2014.05.013
– reference: YuCChenJLandslide susceptibility mapping using the slope unit for southeastern Helong city, Jilin province, China: A comparison of ANN and SVMSymmetry (basel)20201212310.3390/sym12061047
– reference: Rodriguez-GalianoVFGhimireBRoganJAn assessment of the effectiveness of a random forest classifier for land-cover classificationISPRS J Photogramm Remote Sens2012679310410.1016/j.isprsjprs.2011.11.002
– reference: ZareMPourghasemiHRVafakhahMPradhanBLandslide susceptibility mapping at Vaz Watershed (Iran) using an artificial neural network model: a comparison between multilayer perceptron (MLP) and radial basic function (RBF) algorithmsArab J Geosci201362873288810.1007/s12517-012-0610-x
– reference: KirschbaumDBAdlerRHongYA global landslide catalog for hazard applications: Method, results, and limitationsNat Hazards20105256157510.1007/s11069-009-9401-4
– reference: MandalKSahaSMandalSApplying deep learning and benchmark machine learning algorithms for landslide susceptibility modelling in Rorachu river basin of Sikkim HimalayaIndia Geosci Front20211210.1016/j.gsf.2021.101203
– reference: YiYZhangZZhangWLandslide susceptibility mapping using multiscale sampling strategy and convolutional neural network: a case study in Jiuzhaigou regionCATENA202019510.1016/j.catena.2020.104851
– reference: DouJYunusAPTien BuiDAssessment of advanced random forest and decision tree algorithms for modeling rainfall-induced landslide susceptibility in the Izu-Oshima Volcanic Island, JapanSci Total Environ201966233234610.1016/j.scitotenv.2019.01.221
– reference: ChenWZhangSLiRShahabiHPerformance evaluation of the GIS-based data mining techniques of best-first decision tree, random forest, and naïve Bayes tree for landslide susceptibility modelingSci Total Environ20186441006101810.1016/j.scitotenv.2018.06.389
– reference: YoussefAMPourghasemiHRLandslide susceptibility mapping using machine learning algorithms and comparison of their performance at Abha Basin, Asir Region, Saudi ArabiaGeosci Front20211263965510.1016/j.gsf.2020.05.010
– reference: GillespieTWMadsonACusackCFXueYChanges in NDVI and human population in protected areas on the Tibetan PlateauArctic, Antarct Alp Res20195142843910.1080/15230430.2019.1650541
– reference: YilmazILandslide susceptibility mapping using frequency ratio, logistic regression, artificial neural networks and their comparison: a case study from Kat landslides (Tokat-Turkey)Comput Geosci2009351125113810.1016/j.cageo.2008.08.007
– reference: SunDXuJWenHWangDAssessment of landslide susceptibility mapping based on Bayesian hyperparameter optimization: a comparison between logistic regression and random forestEng Geol202128110.1016/j.enggeo.2020.105972
– reference: ParkSChoiCKimBKimJLandslide susceptibility mapping using frequency ratio, analytic hierarchy process, logistic regression, and artificial neural network methods at the Inje area, KoreaEnviron Earth Sci2013681443146410.1007/s12665-012-1842-5
– reference: CortesCVapnikVSupport-vector networksMach Learn199520273297
– reference: BreimanLRandom forestsMach Learn20014553210.1201/9780429469275-8
– reference: ShahabiHShirzadiARonoudSFlash flood susceptibility mapping using a novel deep learning model based on deep belief network, back propagation and genetic algorithmGeosci Front202110.1016/j.gsf.2020.10.007
– reference: Abbas MA (2018) Improving deep learning performance using random forest HTM cortical learning algorithm. https://doi.org/10.1109/IWDRL.2018.8358209
– reference: AikenSJBrierleyGJAnalysis of longitudinal profiles along the eastern margin of the Qinghai-Tibetan PlateauJ Mt Sci20131064365710.1007/s11629-013-2814-2
– reference: ReichenbachPRossiMMalamudBDA review of statistically-based landslide susceptibility modelsEarth-Science Rev2018180609110.1016/j.earscirev.2018.03.001
– reference: KirschbaumDStanleyTSatellite-based assessment of rainfall-triggered landslide hazard for situational awarenessEarth’s Futur2018650552310.1002/2017EF000715
– reference: HuangFWangYDongZRegional landslide susceptibility mapping based on grey relational degree modelEarth Sci201944664676
– reference: YaoTXueYChenDRecent third pole’s rapid warming accompanies cryospheric melt and water cycle intensification and interactions between monsoon and environment: multidisciplinary approach with observations, modeling, and analysisBull Am Meteorol Soc201910042344410.1175/BAMS-D-17-0057.1
– reference: NhuVHZandiDShahabiHComparison of support vector machine, bayesian logistic regression, and alternating decision tree algorithms for shallow landslide susceptibility mapping along a mountainous road in the west of IranAppl Sci202010.3390/app10155047
– reference: ZhaoBZhaoXZengLThe mechanisms of complex morphological features of a prehistorical landslide on the eastern margin of the Qinghai-Tibetan PlateauBull Eng Geol Environ2021803423343710.1007/s10064-021-02114-8
– reference: Hutchinson JN (1995) Keynote paper: Landslide hazard assessment. In: International Symposium on Landslides. pp 1805–1841
– reference: GuzzettiFCarraraACardinaliMReichenbachPLandslide hazard evaluation: a review of current techniques and their application in a multi-scale studyCentral Italy Geomorphol 1999131995
– reference: WangYSunDWenHComparison of random forest model and frequency ratio model for landslide susceptibility mapping (LSM) in Yunyang county (Chongqing, China)Int J Environ Res Public Health20201713910.3390/ijerph17124206
– reference: Steinshouer DW, Qiang J, McCabe PJ, Ryder RT (1999) Maps showing geology, oil and gas fields, and geologic provinces of the Asia Pacific region. US Geol Surv Open-File Rep 97:470F. https://doi.org/10.3133/ofr97470F
– reference: ArabameriASahaSRoyJA novel ensemble computational intelligence approach for the spatial prediction of land subsidence susceptibilitySci Total Environ202072610.1016/j.scitotenv.2020.138595
– reference: CostanzoDChacónJConoscentiCForward logistic regression for earth-flow landslide susceptibility assessment in the Platani river basin (southern Sicily, Italy)Landslides20141163965310.1007/s10346-013-0415-3
– reference: SahaASahaSApplication of statistical probabilistic methods in landslide susceptibility assessment in Kurseong and its surrounding area of Darjeeling Himalayan, India: RS-GIS approach2021NetherlandsSpringer10.1007/s10668-020-00783-1
– reference: MukherjeeSReturn of Kosi river induced by Tibet earthquakeNat Preced200810.1038/npre.2008.2278.2
– reference: SunDWenHWangDXuJA random forest model of landslide susceptibility mapping based on hyperparameter optimization using Bayes algorithmGeomorphology202036210.1016/j.geomorph.2020.107201
– reference: SongJWangYFangZPotential of ensemble learning to improve tree-based classifiers for landslide susceptibility mappingIEEE J Sel Top Appl Earth Obs Remote Sens2020134642466210.1109/JSTARS.2020.3014143
– reference: ChangZDuZZhangFLandslide susceptibility prediction based on remote sensing images and GIS: Comparisons of supervised and unsupervised machine learning modelsRemote Sens202010.3390/rs12030502
– reference: PhamBTTien BuiDPrakashIA comparative study of sequential minimal optimization-based support vector machines, vote feature intervals, and logistic regression in landslide susceptibility assessment using GISEnviron Earth Sci201710.1007/s12665-017-6689-3
– reference: Tien BuiDHoTCPradhanBGIS-based modeling of rainfall-induced landslides using data mining-based functional trees classifier with AdaBoost, Bagging, and MultiBoost ensemble frameworksEnviron Earth Sci201610.1007/s12665-016-5919-4
– reference: WilliamsGData mining with Rattle and R: the art of excavating data for knowledge discovery2011ChamSpringer Science & Business Media10.1007/978-1-4419-9890-3
– reference: MahdadiFBoumezbeurAHadjiRGIS-based landslide susceptibility assessment using statistical models: a case study from Souk Ahras provinceN-E Algeria Arab J Geosci201810.1007/s12517-018-3770-5
– reference: PasangSKubíčekPLandslide susceptibility mapping using statistical methods along the Asian highway, BhutanGeosci20201012610.3390/geosciences10110430
– reference: PradhanBLeeSLandslide susceptibility assessment and factor effect analysis: backpropagation artificial neural networks and their comparison with frequency ratio and bivariate logistic regression modellingEnviron Model Softw20102574775910.1016/j.envsoft.2009.10.016
– reference: RosiATofaniVTanteriLThe new landslide inventory of Tuscany (Italy) updated with PS-InSAR: geomorphological features and landslide distributionLandslides20181551910.1007/s10346-017-0861-4
– reference: BishopCMNeural networks for pattern recognition1995OxfordOxford University Press
– reference: Ioffe S, Szegedy C (2015) Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. PMLR, pp 448–456
– reference: Thi NgoPTPanahiMKhosraviKEvaluation of deep learning algorithms for national scale landslide susceptibility mapping of IranGeosci Front20211250551910.1016/j.gsf.2020.06.013
– reference: AkinciHKilicogluCDoganSRandom forest-based landslide susceptibility mapping in coastal regions of Artvin, Turkey ISPRS Int J Geo-Information202010.3390/ijgi9090553
– reference: Abbaszadeh ShahriASprossJJohanssonFLarssonSLandslide susceptibility hazard map in southwest Sweden using artificial neural networkCATENA201918310.1016/j.catena.2019.104225
– reference: BudimirMEAAtkinsonPMLewisHGA systematic review of landslide probability mapping using logistic regressionLandslides20151241943610.1007/s10346-014-0550-5
– reference: JamalMMandalSMonitoring forest dynamics and landslide susceptibility in Mechi-Balason interfluves of Darjiling Himalaya, West Bengal using forest canopy density model (FCDM) and Landslide Susceptibility Index model (LSIM)Model Earth Syst Environ2016211710.1007/s40808-016-0243-2
– reference: BelgiuMDrăguLRandom forest in remote sensing: a review of applications and future directionsISPRS J Photogramm Remote Sens2016114243110.1016/j.isprsjprs.2016.01.011
– reference: CrostaGBImposimatoSRoddemanDGNumerical modelling of large landslides stability and runoutNat Hazards Earth Syst Sci2003352353810.5194/nhess-3-523-2003
– reference: AroraAPandeyMSiddiquiMASpatial flood susceptibility prediction in Middle Ganga Plain: comparison of frequency ratio and Shannon’s entropy modelsGeocarto Int201910.1080/10106049.2019.1687594
– reference: DaiFCLeeCFNgaiYYLandslide risk assessment and management: an overviewEng Geol200264658710.1016/S0013-7952(01)00093-X
– reference: WangYFengLLiSA hybrid model considering spatial heterogeneity for landslide susceptibility mapping in Zhejiang ProvinceChina Catena202018810.1016/j.catena.2019.104425
– reference: NhuVHHoangNDNguyenHEffectiveness assessment of Keras based deep learning with different robust optimization algorithms for shallow landslide susceptibility mapping at tropical areaCATENA202018810.1016/j.catena.2020.104458
– reference: Tien BuiDTuanTAKlempeHSpatial prediction models for shallow landslide hazards: a comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model treeLandslides20161336137810.1007/s10346-015-0557-6
– reference: YaoXThamLGDaiFCLandslide susceptibility mapping based on support vector machine: a case study on natural slopes of Hong Kong, ChinaGeomorphology200810157258210.1016/j.geomorph.2008.02.011
– reference: DengHWuLZHuangRQFormation of the Siwanli ancient landslide in the Dadu River, ChinaLandslides20171438539410.1007/s10346-016-0756-9
– reference: KumarDThakurMDubeyCSShuklaDPLandslide susceptibility mapping & prediction using Support Vector Machine for Mandakini River Basin, Garhwal Himalaya, IndiaGeomorphology201729511512510.1016/j.geomorph.2017.06.013
– reference: ErcanogluMLandslide susceptibility assessment of SE Bartin (West Black Sea region, Turkey) by artificial neural networksNat Hazards Earth Syst Sci2005597999210.5194/nhess-5-979-2005
– reference: Wubalem A (2020) Landslide susceptibility mapping using statistical methods in Uatzau Catchment Area, Northwestern Ethiopia. 1–21. https://doi.org/10.21203/rs.3.rs-15731/v2
– reference: CountySBostjanˇIRegional-scale landslide susceptibility mapping using limited LiDAR-based landslide inventories for Sisak-Moslavina County, CroatiaSustainability202110.3390/su13084543
– reference: SajadiPSinghAMukherjeeSDrainage network extraction and morphometric analysis in an Iranian basin using integrating factor analysis and geospatial techniquesGeocarto Int202010.1080/10106049.2020.1750060
– reference: ThakurMKDesamsettiSRajeshANExploring the rainfall data from satellites to monitor rainfall induced landslides–a case studyAdv Sp Res20206688789410.1016/j.asr.2020.05.015
– reference: ZhaoYWangRJiangYGIS-based logistic regression for rainfall-induced landslide susceptibility mapping under different grid sizes in YueqingSoutheastern China Eng Geol201925910.1016/j.enggeo.2019.105147
– reference: AghdamINPradhanBPanahiMLandslide susceptibility assessment using a novel hybrid model of statistical bivariate methods (FR and WOE) and adaptive neuro-fuzzy inference system (ANFIS) at southern Zagros Mountains in IranEnviron Earth Sci201710.1007/s12665-017-6558-0
– reference: DuGZhangYYangZLandslide susceptibility mapping in the region of eastern Himalayan syntaxis, Tibetan Plateau, China: a comparison between analytical hierarchy process information value and logistic regression-information value methodsBull Eng Geol Environ2019784201421510.1007/s10064-018-1393-4
– reference: DamaševičiusROptimization of SVM parameters for recognition of regulatory DNA sequencesTOP20101833935310.1007/s11750-010-0152-x
– reference: DouJBuiDTYunusAPOptimization of causative factors for landslide susceptibility evaluation using remote sensing and GIS data in parts of Niigata, JapanPLoS ONE201510.1371/journal.pone.0133262
– reference: PeethambaranBAnbalaganRKanungoDPA comparative evaluation of supervised machine learning algorithms for township level landslide susceptibility zonation in parts of Indian HimalayasCATENA202019510.1016/j.catena.2020.104751
– reference: HuangFCaoZGuoJComparisons of heuristic, general statistical and machine learning models for landslide susceptibility prediction and mappingCATENA202019110.1016/j.catena.2020.104580
– reference: GhimireBRoganJMillerJContextual land-cover classification: incorporating spatial dependence in land-cover classification models using random forests and the Getis statisticRemote Sens Lett20101455410.1080/01431160903252327
– reference: PhamBTShirzadiAShahabiHLandslide susceptibility assessment by novel hybrid machine learning algorithmsSustain20191112510.3390/su11164386
– reference: ChoiJOhHJLeeHJCombining landslide susceptibility maps obtained from frequency ratio, logistic regression, and artificial neural network models using ASTER images and GISEng Geol2012124122310.1016/j.enggeo.2011.09.011
– reference: LiuZGilbertGCepedaJMModelling of shallow landslides with machine learning algorithmsGeosci Front20211238539310.1016/j.gsf.2020.04.014
– reference: XiaoLZhangYPengGLandslide susceptibility assessment using integrated deep learning algorithm along the china-nepal highwaySensors (switzerland)201810.3390/s18124436
– reference: BallabioCSterlacchiniSSupport vector machines for landslide susceptibility mapping: the Staffora River basin case study, ItalyMath Geosci201244477010.1007/s11004-011-9379-9
– reference: GuoCMontgomeryDRZhangYQuantitative assessment of landslide susceptibility along the Xianshuihe fault zone, Tibetan Plateau, ChinaGeomorphology20152489311010.1016/j.geomorph.2015.07.012
– reference: LinLLinQWangYLandslide susceptibility mapping on a global scale using the method of logistic regressionNat Hazards Earth Syst Sci2017171411142410.5194/nhess-17-1411-2017
– reference: Ullah M, Aslam M, Ullah MDMI, LazyData T (2019) Package ‘mctest’. https://doi.org/10.2352/ISSN.2470-1173.2019.7.IRIACV-466
– reference: ElliottJRWaltersRJEnglandPCExtension on the Tibetan plateau: recent normal faulting measured by InSAR and body wave seismologyGeophys J Int201018350353510.1111/j.1365-246X.2010.04754.x
– reference: AchourYPourghasemiHRHow do machine learning techniques help in increasing accuracy of landslide susceptibility maps?Geosci Front20201187188310.1016/j.gsf.2019.10.001
– reference: YesilnacarETopalTLandslide susceptibility mapping: a comparison of logistic regression and neural networks methods in a medium scale study, Hendek region (Turkey)Eng Geol20057925126610.1016/j.enggeo.2005.02.002
– reference: MarjanovićMKovačevićMBajatBVoženílekVLandslide susceptibility assessment using SVM machine learning algorithmEng Geol201112322523410.1016/j.enggeo.2011.09.006
– reference: ZhaoBWangYLuoYLarge landslides at the northeastern margin of the Bayan Har Block, Tibetan PlateauChina R Soc Open Sci201910.1098/rsos.180844
– reference: Majka M (2019) naivebayes: High Performance Implementation of the Naive Bayes Algorithm. R package version 0.9.7. https://CRAN.R-project.org/package=naivebayes. Accessed 1 Jan 2021
– reference: WuXRenFNiuRLandslide susceptibility assessment using object mapping units, decision tree, and support vector machine models in the Three Gorges of ChinaEnviron Earth Sci2014714725473810.1007/s12665-013-2863-4
– reference: GuzzettiFReichenbachPCardinaliMProbabilistic landslide hazard assessment at the basin scaleGeomorphology20057227229910.1016/j.geomorph.2005.06.002
– reference: SahaSArabameriASahaAPrediction of landslide susceptibility in Rudraprayag, India using novel ensemble of conditional probability and boosted regression tree-based on cross-validation methodSci Total Environ202176410.1016/j.scitotenv.2020.142928
– reference: HuangXSillanpääMDuoBGjessingETWater quality in the Tibetan Plateau: Metal contents of four selected riversEnviron Pollut200815627027710.1016/j.envpol.2008.02.014
– reference: LiawAWienerMClassification and regression by randomForestR News200221822
– reference: WubalemAMetenMLandslide susceptibility mapping using information value and logistic regression models in Goncha Siso Eneses area, northwestern EthiopiaSN Appl Sci2020211910.1007/s42452-020-2563-0
– reference: YouQFraedrichKRenGVariability of temperature in the Tibetan Plateau based on homogenized surface stations and reanalysis dataInt J Climatol2013331337134710.1002/joc.3512
– reference: ZhuAXMiaoYWangRA comparative study of an expert knowledge-based model and two data-driven models for landslide susceptibility mappingCATENA201816631732710.1016/j.catena.2018.04.003
– reference: AtkinsonPMMassariRAutologistic modelling of susceptibility to landsliding in the Central Apennines, ItalyGeomorphology2011130556410.1016/j.geomorph.2011.02.001
– reference: ChenWFanLLiCPhamBTSpatial prediction of landslides using hybrid integration of artificial intelligence algorithms with frequency ratio and index of entropy in Nanzheng county, ChinaAppl Sci20201012110.3390/app10010029
– reference: HongHPourghasemiHRPourtaghiZSLandslide susceptibility assessment in Lianhua County (China): a comparison between a random forest data mining technique and bivariate and multivariate statistical modelsGeomorphology201625910511810.1016/j.geomorph.2016.02.012
– reference: FangZWangYPengLHongHIntegration of convolutional neural network and conventional machine learning classifiers for landslide susceptibility mappingComput Geosci202013910.1016/j.cageo.2020.104470
– reference: NhuVHShirzadiAShahabiHShallow landslide susceptibility mapping by Random Forest base classifier and its ensembles in a Semi-Arid region of IranForests202010.3390/F11040421
– reference: SingaravelSSuykensJGeyerPDeep-learning neural-network architectures and methods: Using component-based models in building-design energy predictionAdv Eng Informatics201838819010.1016/j.aei.2018.06.004
– reference: DuMKawashimaSYonemuraSMutual influence between human activities and climate change in the Tibetan Plateau during recent yearsGlob Planet Change20044124124910.1016/j.gloplacha.2004.01.010
– reference: Tibshirani R (1996) Bias, variance and prediction error for classification rules. Technical Report, Statistics Department, University of Toronto
– reference: JiaHWangYGeDImproved offset tracking for predisaster deformation monitoring of the 2018 Jinsha River landslide (Tibet, China)Remote Sens Environ202024710.1016/j.rse.2020.111899
– reference: BartaryaSKVirdiNSSahMPLandslide hazards: some case studies from the Satluj Valley, Himachal PradeshJ Him Geol199617193207
– reference: HuQZhouYWangSWangFMachine learning and fractal theory models for landslide susceptibility mapping: case study from the Jinsha River BasinGeomorphology202035110.1016/j.geomorph.2019.106975
– reference: SahinEKColkesenIKavzogluTA comparative assessment of canonical correlation forest, random forest, rotation forest and logistic regression methods for landslide susceptibility mappingGeocarto Int20203534136310.1080/10106049.2018.1516248
– reference: PhamBTBuiDPrakashIDholakiaMEvaluation of predictive ability of support vector machines and naive Bayes trees methods for spatial prediction of landslides in Uttarakhand state (India) using GISJ Geomat2016107179
– reference: Süzen ML (2002) Data driven landslide hazard assessment using geographical information systems and remote sensing. Doctoral dissertation, Middle East Technical University
– reference: ZhuAXWangRQiaoJAn expert knowledge-based approach to landslide susceptibility mapping using GIS and fuzzy logicGeomorphology201421412813810.1016/j.geomorph.2014.02.003
– reference: ParkSKimJLandslide susceptibility mapping based on random forest and boosted regression tree models, and a comparison of their performanceAppl Sci201910.3390/app9050942
– volume: 99
  start-page: 1049
  year: 2019
  ident: 218_CR35
  publication-title: Nat Hazards
  doi: 10.1007/s11069-019-03795-x
– volume: 66
  start-page: 887
  year: 2020
  ident: 218_CR123
  publication-title: Adv Sp Res
  doi: 10.1016/j.asr.2020.05.015
– ident: 218_CR125
– volume: 18
  start-page: 339
  year: 2010
  ident: 218_CR34
  publication-title: TOP
  doi: 10.1007/s11750-010-0152-x
– volume-title: Application of statistical probabilistic methods in landslide susceptibility assessment in Kurseong and its surrounding area of Darjeeling Himalayan, India: RS-GIS approach
  year: 2021
  ident: 218_CR105
  doi: 10.1007/s10668-020-00783-1
– volume: 86
  start-page: 919
  year: 2017
  ident: 218_CR91
  publication-title: Nat Hazards
  doi: 10.1007/s11069-016-2725-y
– volume: 11
  start-page: 871
  year: 2020
  ident: 218_CR3
  publication-title: Geosci Front
  doi: 10.1016/j.gsf.2019.10.001
– year: 2020
  ident: 218_CR23
  publication-title: Remote Sens
  doi: 10.3390/rs12030502
– volume: 14
  start-page: 385
  year: 2017
  ident: 218_CR36
  publication-title: Landslides
  doi: 10.1007/s10346-016-0756-9
– volume: 5
  start-page: 199
  year: 2009
  ident: 218_CR122
  publication-title: Geosphere
  doi: 10.1130/GES00217.1
– volume: 68
  start-page: 1443
  year: 2013
  ident: 218_CR89
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-012-1842-5
– year: 2019
  ident: 218_CR18
  publication-title: Extrem Hydroclimatic Events Multivar Hazards Chang Environ
  doi: 10.1016/b978-0-12-814899-0.00014-6
– volume: 27
  start-page: 113
  year: 2011
  ident: 218_CR57
  publication-title: River Res Appl
  doi: 10.1002/rra.1332
– volume: 188
  year: 2020
  ident: 218_CR83
  publication-title: CATENA
  doi: 10.1016/j.catena.2020.104458
– volume: 11
  start-page: 1
  year: 2019
  ident: 218_CR97
  publication-title: Sustain
  doi: 10.3390/su11164386
– volume: 139
  year: 2020
  ident: 218_CR45
  publication-title: Comput Geosci
  doi: 10.1016/j.cageo.2020.104470
– volume: 17
  start-page: 1
  year: 2020
  ident: 218_CR133
  publication-title: Int J Environ Res Public Health
  doi: 10.3390/ijerph17124206
– volume: 12
  start-page: 419
  year: 2015
  ident: 218_CR20
  publication-title: Landslides
  doi: 10.1007/s10346-014-0550-5
– volume: 183
  start-page: 503
  year: 2010
  ident: 218_CR43
  publication-title: Geophys J Int
  doi: 10.1111/j.1365-246X.2010.04754.x
– volume: 182
  year: 2019
  ident: 218_CR87
  publication-title: India Catena
  doi: 10.1016/j.catena.2019.104150
– volume: 152
  start-page: 144
  year: 2017
  ident: 218_CR69
  publication-title: CATENA
  doi: 10.1016/j.catena.2017.01.010
– ident: 218_CR137
  doi: 10.1201/9781420089653
– volume: 114
  start-page: 24
  year: 2016
  ident: 218_CR15
  publication-title: ISPRS J Photogramm Remote Sens
  doi: 10.1016/j.isprsjprs.2016.01.011
– volume: 5
  start-page: 979
  year: 2005
  ident: 218_CR44
  publication-title: Nat Hazards Earth Syst Sci
  doi: 10.5194/nhess-5-979-2005
– volume: 195
  year: 2020
  ident: 218_CR92
  publication-title: CATENA
  doi: 10.1016/j.catena.2020.104751
– volume: 13
  start-page: 305
  year: 2016
  ident: 218_CR129
  publication-title: Landslides
  doi: 10.1007/s10346-015-0565-6
– volume: 17
  start-page: 193
  year: 1996
  ident: 218_CR13
  publication-title: J Him Geol
– ident: 218_CR120
– volume: 362
  year: 2020
  ident: 218_CR118
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2020.107201
– volume-title: Data mining with Rattle and R: the art of excavating data for knowledge discovery
  year: 2011
  ident: 218_CR135
  doi: 10.1007/978-1-4419-9890-3
– year: 2016
  ident: 218_CR127
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-016-5919-4
– volume: 13
  start-page: 361
  year: 2016
  ident: 218_CR128
  publication-title: Landslides
  doi: 10.1007/s10346-015-0557-6
– volume: 12
  start-page: 639
  year: 2021
  ident: 218_CR147
  publication-title: Geosci Front
  doi: 10.1016/j.gsf.2020.05.010
– volume: 281
  year: 2021
  ident: 218_CR119
  publication-title: Eng Geol
  doi: 10.1016/j.enggeo.2020.105972
– ident: 218_CR116
  doi: 10.3133/ofr97470F
– volume-title: Neural networks for pattern recognition
  year: 1995
  ident: 218_CR16
  doi: 10.1093/oso/9780198538493.001.0001
– volume: 188
  year: 2020
  ident: 218_CR132
  publication-title: China Catena
  doi: 10.1016/j.catena.2019.104425
– year: 2020
  ident: 218_CR78
  publication-title: Geoenviron Disasters
  doi: 10.1186/s40677-020-00155-x
– year: 2021
  ident: 218_CR115
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2021.145935
– ident: 218_CR131
– ident: 218_CR75
– year: 2018
  ident: 218_CR140
  publication-title: Sensors (switzerland)
  doi: 10.3390/s18124436
– volume: 11
  start-page: 639
  year: 2014
  ident: 218_CR29
  publication-title: Landslides
  doi: 10.1007/s10346-013-0415-3
– year: 2008
  ident: 218_CR82
  publication-title: Nat Preced
  doi: 10.1038/npre.2008.2278.2
– volume: 81
  start-page: 1
  year: 2015
  ident: 218_CR49
  publication-title: Comput Geosci
  doi: 10.1016/j.cageo.2015.04.007
– volume: 295
  start-page: 115
  year: 2017
  ident: 218_CR70
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2017.06.013
– volume: 36
  start-page: 27
  year: 2013
  ident: 218_CR38
  publication-title: Ecography (cop)
  doi: 10.1111/j.1600-0587.2012.07348.x
– volume: 191
  year: 2020
  ident: 218_CR59
  publication-title: CATENA
  doi: 10.1016/j.catena.2020.104580
– volume: 71
  start-page: 4725
  year: 2014
  ident: 218_CR136
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-013-2863-4
– volume: 123
  start-page: 225
  year: 2011
  ident: 218_CR77
  publication-title: Eng Geol
  doi: 10.1016/j.enggeo.2011.09.006
– volume: 764
  year: 2021
  ident: 218_CR106
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2020.142928
– volume: 195
  year: 2020
  ident: 218_CR144
  publication-title: CATENA
  doi: 10.1016/j.catena.2020.104851
– volume: 12
  start-page: 1
  year: 2020
  ident: 218_CR148
  publication-title: Symmetry (basel)
  doi: 10.3390/sym12061047
– year: 2015
  ident: 218_CR39
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0133262
– volume: 156
  start-page: 270
  year: 2008
  ident: 218_CR56
  publication-title: Environ Pollut
  doi: 10.1016/j.envpol.2008.02.014
– ident: 218_CR61
– volume: 61
  start-page: 221
  year: 2012
  ident: 218_CR80
  publication-title: J Asian Earth Sci
  doi: 10.1016/j.jseaes.2012.10.005
– volume: 6
  start-page: 2873
  year: 2013
  ident: 218_CR149
  publication-title: Arab J Geosci
  doi: 10.1007/s12517-012-0610-x
– volume: 1
  start-page: 45
  year: 2010
  ident: 218_CR46
  publication-title: Remote Sens Lett
  doi: 10.1080/01431160903252327
– volume: 41
  start-page: 241
  year: 2004
  ident: 218_CR41
  publication-title: Glob Planet Change
  doi: 10.1016/j.gloplacha.2004.01.010
– volume: 35
  start-page: 341
  year: 2020
  ident: 218_CR107
  publication-title: Geocarto Int
  doi: 10.1080/10106049.2018.1516248
– volume: 166
  start-page: 317
  year: 2018
  ident: 218_CR155
  publication-title: CATENA
  doi: 10.1016/j.catena.2018.04.003
– volume: 65
  start-page: 15
  year: 2005
  ident: 218_CR11
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2004.06.010
– volume: 84
  start-page: 240
  year: 2016
  ident: 218_CR94
  publication-title: Environ Model Softw
  doi: 10.1016/j.envsoft.2016.07.005
– ident: 218_CR130
  doi: 10.2352/ISSN.2470-1173.2019.7.IRIACV-466
– volume: 33
  start-page: 1337
  year: 2013
  ident: 218_CR146
  publication-title: Int J Climatol
  doi: 10.1002/joc.3512
– ident: 218_CR53
– volume: 44
  start-page: 47
  year: 2012
  ident: 218_CR12
  publication-title: Math Geosci
  doi: 10.1007/s11004-011-9379-9
– volume: 44
  start-page: 664
  year: 2019
  ident: 218_CR58
  publication-title: Earth Sci
– volume: 52
  start-page: 561
  year: 2010
  ident: 218_CR68
  publication-title: Nat Hazards
  doi: 10.1007/s11069-009-9401-4
– volume: 17
  start-page: 1411
  year: 2017
  ident: 218_CR72
  publication-title: Nat Hazards Earth Syst Sci
  doi: 10.5194/nhess-17-1411-2017
– volume: 124
  start-page: 12
  year: 2012
  ident: 218_CR27
  publication-title: Eng Geol
  doi: 10.1016/j.enggeo.2011.09.011
– volume: 259
  year: 2019
  ident: 218_CR152
  publication-title: Southeastern China Eng Geol
  doi: 10.1016/j.enggeo.2019.105147
– volume: 3
  start-page: 523
  year: 2003
  ident: 218_CR31
  publication-title: Nat Hazards Earth Syst Sci
  doi: 10.5194/nhess-3-523-2003
– year: 2021
  ident: 218_CR111
  publication-title: Geosci Front
  doi: 10.1016/j.gsf.2020.10.007
– volume: 100
  start-page: 423
  year: 2019
  ident: 218_CR142
  publication-title: Bull Am Meteorol Soc
  doi: 10.1175/BAMS-D-17-0057.1
– volume: 379
  year: 2021
  ident: 218_CR100
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2021.107592
– year: 2017
  ident: 218_CR4
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-017-6558-0
– volume: 69
  start-page: 1087
  year: 2020
  ident: 218_CR114
  publication-title: Adv Glob Chang Res
  doi: 10.1007/978-3-030-35798-6_31
– year: 2012
  ident: 218_CR126
  publication-title: Math Probl Eng
  doi: 10.1155/2012/974638
– volume: 2
  start-page: 1
  year: 2020
  ident: 218_CR138
  publication-title: SN Appl Sci
  doi: 10.1007/s42452-020-2563-0
– volume: 10
  start-page: 1
  year: 2020
  ident: 218_CR90
  publication-title: Geosci
  doi: 10.3390/geosciences10110430
– volume: 25
  start-page: 747
  year: 2010
  ident: 218_CR99
  publication-title: Environ Model Softw
  doi: 10.1016/j.envsoft.2009.10.016
– volume: 351
  year: 2020
  ident: 218_CR55
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2019.106975
– volume: 13
  start-page: 4642
  year: 2020
  ident: 218_CR113
  publication-title: IEEE J Sel Top Appl Earth Obs Remote Sens
  doi: 10.1109/JSTARS.2020.3014143
– volume: 12
  start-page: 625
  year: 2021
  ident: 218_CR7
  publication-title: Geosci Front
  doi: 10.1016/j.gsf.2020.09.002
– volume: 17
  start-page: 1897
  year: 2020
  ident: 218_CR37
  publication-title: Landslides
  doi: 10.1007/s10346-020-01392-9
– volume: 35
  start-page: 66
  year: 2009
  ident: 218_CR121
  publication-title: J Asian Earth Sci
  doi: 10.1016/j.jseaes.2009.01.002
– volume: 180
  start-page: 60
  year: 2018
  ident: 218_CR101
  publication-title: Earth-Science Rev
  doi: 10.1016/j.earscirev.2018.03.001
– volume: 12
  start-page: 77
  year: 2011
  ident: 218_CR102
  publication-title: BMC Bioinformatics
  doi: 10.1016/j.earscirev.2018.03.001
– volume: 88
  start-page: 2783
  year: 2007
  ident: 218_CR32
  publication-title: Ecology
  doi: 10.1890/07-0539.1
– volume: 214
  start-page: 128
  year: 2014
  ident: 218_CR154
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2014.02.003
– volume: 193
  year: 2020
  ident: 218_CR17
  publication-title: CATENA
  doi: 10.1016/j.catena.2020.104630
– volume: 248
  start-page: 93
  year: 2015
  ident: 218_CR50
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2015.07.012
– volume: 726
  year: 2020
  ident: 218_CR8
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2020.138595
– year: 2019
  ident: 218_CR151
  publication-title: China R Soc Open Sci
  doi: 10.1098/rsos.180844
– volume: 15
  start-page: 5
  year: 2018
  ident: 218_CR104
  publication-title: Landslides
  doi: 10.1007/s10346-017-0861-4
– volume: 247
  year: 2020
  ident: 218_CR64
  publication-title: Remote Sens Environ
  doi: 10.1016/j.rse.2020.111899
– year: 2020
  ident: 218_CR108
  publication-title: Geocarto Int
  doi: 10.1080/10106049.2020.1750060
– volume: 79
  start-page: 251
  year: 2005
  ident: 218_CR143
  publication-title: Eng Geol
  doi: 10.1016/j.enggeo.2005.02.002
– volume: 20
  start-page: 273
  year: 1995
  ident: 218_CR28
  publication-title: Mach Learn
– volume: 2
  start-page: 1
  year: 2016
  ident: 218_CR62
  publication-title: Model Earth Syst Environ
  doi: 10.1007/s40808-016-0243-2
– volume: 10
  start-page: 643
  year: 2013
  ident: 218_CR5
  publication-title: J Mt Sci
  doi: 10.1007/s11629-013-2814-2
– volume: 183
  year: 2019
  ident: 218_CR2
  publication-title: CATENA
  doi: 10.1016/j.catena.2019.104225
– volume: 10
  start-page: 71
  year: 2016
  ident: 218_CR93
  publication-title: J Geomat
– volume: 12
  start-page: 351
  year: 2021
  ident: 218_CR134
  publication-title: Geosci Front
  doi: 10.1016/j.gsf.2020.02.012
– volume: 186
  year: 2020
  ident: 218_CR110
  publication-title: CATENA
  doi: 10.1016/j.catena.2019.104249
– year: 2020
  ident: 218_CR6
  publication-title: ISPRS Int J Geo-Information
  doi: 10.3390/ijgi9090553
– volume: 36
  start-page: 540
  year: 2021
  ident: 218_CR109
  publication-title: Geocarto Int
  doi: 10.1080/10106049.2019.1611948
– volume: 6
  start-page: 505
  year: 2018
  ident: 218_CR67
  publication-title: Earth’s Futur
  doi: 10.1002/2017EF000715
– volume: 38
  start-page: 81
  year: 2018
  ident: 218_CR112
  publication-title: Adv Eng Informatics
  doi: 10.1016/j.aei.2018.06.004
– volume: 189
  start-page: 419
  year: 1975
  ident: 218_CR81
  publication-title: Science
  doi: 10.1126/science.189.4201.419
– year: 2019
  ident: 218_CR22
  publication-title: Remote Sens
  doi: 10.3390/rs11030274
– volume: 188
  year: 2020
  ident: 218_CR21
  publication-title: CATENA
  doi: 10.1016/j.catena.2019.104426
– volume: 195
  year: 2020
  ident: 218_CR98
  publication-title: CATENA
  doi: 10.1016/j.catena.2020.104805
– volume: 80
  start-page: 3423
  year: 2021
  ident: 218_CR153
  publication-title: Bull Eng Geol Environ
  doi: 10.1007/s10064-021-02114-8
– volume: 94
  start-page: 988
  year: 2020
  ident: 218_CR150
  publication-title: Acta Geol Sin
  doi: 10.1111/1755-6724.14555
– volume: 37
  start-page: 315
  year: 2006
  ident: 218_CR14
  publication-title: Nat Hazards
  doi: 10.1007/s11069-005-5182-6
– volume: 2
  start-page: 18
  year: 2002
  ident: 218_CR71
  publication-title: R News
– volume: 24
  start-page: 4907
  year: 2003
  ident: 218_CR66
  publication-title: Int J Remote Sens
  doi: 10.1080/0143116031000114851
– volume: 11
  start-page: 352
  year: 2009
  ident: 218_CR65
  publication-title: Int J Appl Earth Obs Geoinf
  doi: 10.1016/j.jag.2009.06.002
– ident: 218_CR139
  doi: 10.21203/rs.3.rs-15731/v2
– volume: 644
  start-page: 1006
  year: 2018
  ident: 218_CR25
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2018.06.389
– ident: 218_CR1
  doi: 10.1109/IWDRL.2018.8358209
– ident: 218_CR79
– year: 2018
  ident: 218_CR74
  publication-title: N-E Algeria Arab J Geosci
  doi: 10.1007/s12517-018-3770-5
– volume: 67
  start-page: 93
  year: 2012
  ident: 218_CR103
  publication-title: ISPRS J Photogramm Remote Sens
  doi: 10.1016/j.isprsjprs.2011.11.002
– volume: 149
  start-page: 52
  year: 2017
  ident: 218_CR96
  publication-title: CATENA
  doi: 10.1016/j.catena.2016.09.007
– volume: 152
  start-page: 150
  year: 2014
  ident: 218_CR63
  publication-title: Remote Sens Environ
  doi: 10.1016/j.rse.2014.05.013
– volume: 12
  start-page: 385
  year: 2021
  ident: 218_CR73
  publication-title: Geosci Front
  doi: 10.1016/j.gsf.2020.04.014
– volume: 45
  start-page: 5
  year: 2001
  ident: 218_CR19
  publication-title: Mach Learn
  doi: 10.1201/9780429469275-8
– year: 2019
  ident: 218_CR9
  publication-title: Geocarto Int
  doi: 10.1080/10106049.2019.1687594
– year: 2017
  ident: 218_CR95
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-017-6689-3
– year: 2019
  ident: 218_CR88
  publication-title: Appl Sci
  doi: 10.3390/app9050942
– volume: 8
  start-page: 950
  year: 2017
  ident: 218_CR24
  publication-title: Geomatics Nat Hazards Risk
  doi: 10.1080/19475705.2017.1289250
– year: 2020
  ident: 218_CR84
  publication-title: Forests
  doi: 10.3390/F11040421
– volume: 662
  start-page: 332
  year: 2019
  ident: 218_CR40
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2019.01.221
– volume: 64
  start-page: 65
  year: 2002
  ident: 218_CR33
  publication-title: Eng Geol
  doi: 10.1016/S0013-7952(01)00093-X
– volume: 7
  start-page: 1
  year: 2018
  ident: 218_CR117
  publication-title: ISPRS Int J Geo-Information
  doi: 10.3390/ijgi7110438
– volume: 26
  start-page: 49
  year: 2014
  ident: 218_CR47
  publication-title: Int J Appl Earth Obs Geoinf
  doi: 10.1016/j.jag.2013.05.017
– volume: 12
  year: 2021
  ident: 218_CR76
  publication-title: India Geosci Front
  doi: 10.1016/j.gsf.2021.101203
– volume: 130
  start-page: 55
  year: 2011
  ident: 218_CR10
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2011.02.001
– volume: 10
  start-page: 1
  year: 2020
  ident: 218_CR26
  publication-title: Appl Sci
  doi: 10.3390/app10010029
– volume: 72
  start-page: 272
  year: 2005
  ident: 218_CR52
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2005.06.002
– ident: 218_CR60
– volume: 101
  start-page: 572
  year: 2008
  ident: 218_CR141
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2008.02.011
– volume: 13
  start-page: 1995
  year: 1999
  ident: 218_CR51
  publication-title: Central Italy Geomorphol
– year: 2020
  ident: 218_CR86
  publication-title: Appl Sci
  doi: 10.3390/app10155047
– volume: 78
  start-page: 4201
  year: 2019
  ident: 218_CR42
  publication-title: Bull Eng Geol Environ
  doi: 10.1007/s10064-018-1393-4
– volume: 259
  start-page: 105
  year: 2016
  ident: 218_CR54
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2016.02.012
– volume: 51
  start-page: 428
  year: 2019
  ident: 218_CR48
  publication-title: Arctic, Antarct Alp Res
  doi: 10.1080/15230430.2019.1650541
– year: 2021
  ident: 218_CR30
  publication-title: Sustainability
  doi: 10.3390/su13084543
– volume: 12
  start-page: 505
  year: 2021
  ident: 218_CR124
  publication-title: Geosci Front
  doi: 10.1016/j.gsf.2020.06.013
– volume: 35
  start-page: 1125
  year: 2009
  ident: 218_CR145
  publication-title: Comput Geosci
  doi: 10.1016/j.cageo.2008.08.007
– year: 2020
  ident: 218_CR85
  publication-title: Int J Environ Res Public Health
  doi: 10.3390/ijerph17082749
SSID ssj0001853181
Score 2.3460283
Snippet Landslides are considered as major natural hazards that cause enormous property damages and fatalities in Qinghai-Tibetan Plateau (QTP). In this article, we...
Abstract Landslides are considered as major natural hazards that cause enormous property damages and fatalities in Qinghai-Tibetan Plateau (QTP). In this...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Accuracy
Algorithms
Annual rainfall
Artificial neural networks
Atmospheric Sciences
Bayesian analysis
Biogeosciences
Collinearity
Curvature
Distance
Drainage
Drainage density
Earth and Environmental Science
Earth Sciences
Elevation
Evaluation
Feature selection technique
Geophysics/Geodesy
Goodness of fit
Landslide susceptibility
Landslides
Landslides & mudslides
Learning algorithms
Lithology
Machine learning
Machine learning algorithm
Neural networks
Normalized difference vegetative index
Oceanography
Planetology
Plateaus
Property damage
Qinghai-Tibetan Plateau
Rain
Research Letter
Spatial differencing
Specificity
Support vector machines
Susceptibility
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LaxsxEBatQ6GX0id1mxQdemtFdreSVj6VJjgJgYS0JJCb0NNZcOw0u6bxj-h_7oystUkhuWpXWqEZzXw7Gs1HyGfPozdROhaUsowr65ipbWC-wEooovQji6GBk1N5dMGPL8VlDri1Oa2yt4nJUPu5wxj5biXBkOI5XPX95jdD1ig8Xc0UGk_JFphgpQZka298evZrE2UBbwQ-rL8to-Ruy9HlM0xiT_6N3d3zSKlw_z20-d8BafI7By_JiwwY6Y-VhF-RJ2H2mjw7TIS8yzfk73hdrpvOIwU4R9Pt3WnjA20XbcpaSQmwSwrttOla2mIWNYzZk6O4QJtZ6voH2XLpT5jIlWnYeWMDYEd6NgVAahYUSRzgM3ZJI9hImgknJtRMJ7BS3dV1-5ZcHIzP949YplhgjkvVMetsXTtjXSirWKqgZGlFwcHomQqdmxdm5GNprBHGy1gV3ogyKqEQBwmAN-_IYDafhfeE1rWR1YhHx0XkRRAWgIKrrcNMc-uLOCRlv8za5frjSIMx1ek_REm9Eo0G0egkGn03JF_WfW5W1TcefXsPpbd-Eytnp4b57UTnjQjggHs8fDaALXllviljwKShYlozckENyXYve523c6s3yjckX3t92Dx-eEofHh_tI3leJU2sWMm3yaC7XYQdADmd_ZQ1-R8B0_zY
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1daxQxFA3SIoggtSquVsmDbxqcpEkm-6hLaxH8ghb6Fm6-2oHtrHRm0f0R_c-9yc5srajg60xCwtyb3DO5N-cQ8irIFCBpz6IxjknjPIPaRRaqzISieJi6fDTw6bM-OpEfT9XpQJOT78L8mr_nRr_tZI7QLNecl3DEEC9uK75fZ5mGmZ7dnKdg3MFoNd6L-WPXW7GnUPTfwpW_pUJLhDncIQ8GaEjfrW35kNyJ7S65-6FI7652yf0vPkI7MEw_IlcHG55uukgUcRwt13bnTYi0W3alXKVUvq4oPqdN39Eul0_jEKMqio-0aUvXH1kml37DeZ1Dw44bFxE00q9zRKKwpFm9AYdxK5pwc6SD0sQZhfnZ4rLpzy-6x-Tk8OB4dsQGbQXmpTY9c97VtQfnIxeJm2g0d6qSuNuByFEtKJiGxMGBgqCTqAIonowyGQApxDVPyFa7aONTQusatJjK5KVKsorKIULwtfO5xNyFKk0IH7-69QPxeNa_mNvyA2K0XVvKoqVssZT9OSGvN32-r2k3_tn6fTbmpmWmzC4P0JPssAIRFciQs86AoFIK2DcAuJdlj3Qw9dFMyN7oCnZYx50VGsN3zv6KCXkzusfN679P6dn_NX9O7oniqIJxuUe2-stlfIFop3cvi5tfAx5m-cY
  priority: 102
  providerName: Springer Nature
Title Evaluation of the landslide susceptibility and its spatial difference in the whole Qinghai-Tibetan Plateau region by five learning algorithms
URI https://link.springer.com/article/10.1186/s40562-022-00218-x
https://www.proquest.com/docview/2628404642
https://doaj.org/article/ba4d7272a09542a38aa2259499ba9ce8
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxELagCIkL4ilCS-QDN7CaNbbXOaZRShWJqkAr9WaNX-1KIUHdjdr8CP4zY-9uaJGAC5ddyWt7Lc_Y32d7PEPIWy-ih6gcC1pbJrR1DEobmB8lTyiy8GObtgY-HaujMzE_l-e3Qn0lm7DWPXDbcfsWhE-HhYBcQHD4oAFQBVNFFsYu5Gu-iHm3FlN5dwVRCLGrvyWj1X4tEtSzZLyecY3d3EGi7LD_Dsv87WA0483hE_K4I4p00jbwKbkXls_Iw485EO_mOfkx27rppqtIkcbRfGt3UflA63WdrVWy4euGYjqtmprWyXoa6-yDorhAq2Uuep2i5NLP2JBLqNhpZQNyRnqyQCIKa5qCN-Bv7IZGnBtpF2jigsLiYnVVNZff6hfk7HB2Oj1iXWgF5oTSDbPOlqUD60LBY6GDVoWVI4GTHfAEal7C2McCLEjwKvKRB1lELXXiPxJpzUuys1wtwytCyxIUH4vohIxiFKRFguBK65KFufWjOCBF383GdX7HU_iLhcnrD61MKxqDojFZNOZmQN5ty3xvvW78NfdBkt42Z_KYnRNQj0ynR-ZfejQge73sTTeMa8MVonc6_OUD8r7Xh1-f_9yk1_-jSbvkEc_6ylkh9shOc7UOb5ACNXZIHkwm869zfB_Mjk--DMn9KRfpqabDPBJ-Ar6hCJI
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbhMxELZKKgQXxK9IKeADnMDqrmt7nQNCFFJS2kYFpVJvxr_pSiFpu4naPASvwjMydnYTFYneevXaXssznvlsj-dD6I1jwekgLPFSGsKksUQXxhOXxUwoPHcdE48GDvuid8y-nfCTNfSneQsTwyobm5gMtZvYeEa-RQUY0ngPRz-enZPIGhVvVxsKjYVa7Pv5JWzZqg97X0C-bynd7Q4-90jNKkAsE3JKjDVFYbWxPqchl16K3PCMwTrXNNpzx3XHhVwbzbUTgWZO8zxILqPr5-DRod87aJ1ti4y20PpOt3_0Y3WqA94PfGbzOkeKrYpFiEFi0Hzyp-TqmgdMRAHX0O0_F7LJz-0-RA9qgIo_LTTqEVrz48fo7tdEADx_gn53l-nB8SRggI84vRYelc7jalalKJkUcDvHUI7LaYWrGLUNfTZkLNbjcpyaXkZ2XvwdBnKqSzIojQesio9GAID1DEfSCPiNmeMANhnXBBdDrEdDkMz09Ff1FB3fyuQ_Q63xZOyfI1wUWtAOC5bxwDLPDQATWxgbI9uNy0Ib5c00K1vnO4-0GyOV9j1SqIVoFIhGJdGoqzZ6t2xztsj2cWPtnSi9Zc2YqTsVTC6Gql74AEaYi5fdGrAso3pbag0mNC4EozvWyzbabGSvavNRqZWyt9H7Rh9Wn_8_pI2be3uN7vUGhwfqYK-__wLdp0krKcnZJmpNL2b-JQCsqXlVazVGP297If0FesY60g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbhMxELZKKhAXxK9IKeADnMBK1nh3nQNClCa0FKKAWqk34990pTQp3Y3aPAQvxNMx4-wmKhK99eq1vZZnPPPZHs9HyCsngtMhs8xLaZiQxjKdG89cFzOhpInrGTwa-DbM9o7El-P0eIP8ad7CYFhlYxOjoXYzi2fkHZ6BIcV7ON4JdVjEaHfw4ewXQwYpvGlt6DSWKnLgFxewfSvf7--CrF9zPugfftpjNcMAsyKTFTPW5LnVxvqEh0R6mSUm7QpY85qjbXep7rmQaKNT7bLAu06nSZCpRBiQgneHfm-RzRx3RS2yudMfjn6sT3jAE4L_bF7qyKxTCoQbDAPoo29ll1e8YSQNuIJ0_7mcjT5vcJ_cq8Eq_bjUrgdkw08fktufIxnw4hH53V-lCqezQAFK0vhyeFI4T8t5GSNmYvDtgkI5LaqSlhjBDX02xCzW02Iam14gUy_9DgM50QU7LIwH3EpHEwDDek6RQAJ-YxY0gH2mNdnFmOrJGCRTnZyWj8nRjUz-E9Kazqb-KaF5rjPeE8GKNIiuTw2AFJsbi1HuxnVDmyTNNCtb5z5HCo6JinsgmamlaBSIRkXRqMs2ebNqc7bM_HFt7R2U3qomZu2OBbPzsaqNAAAT4fDiWwOuFVy_k1qDOcVFYXTPetkm243sVW1KSrVW_DZ52-jD-vP_h7R1fW8vyR1YQOrr_vDgGbnLo1Jyloht0qrO5_45YK3KvKiVmpKfN72O_gL52T8H
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+of+the+landslide+susceptibility+and+its+spatial+difference+in+the+whole+Qinghai-Tibetan+Plateau+region+by+five+learning+algorithms&rft.jtitle=Geoscience+letters&rft.au=Payam+Sajadi&rft.au=Yan-Fang+Sang&rft.au=Mehdi+Gholamnia&rft.au=Stefania+Bonafoni&rft.date=2022-02-14&rft.pub=SpringerOpen&rft.eissn=2196-4092&rft.volume=9&rft.issue=1&rft.spage=1&rft.epage=25&rft_id=info:doi/10.1186%2Fs40562-022-00218-x&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_ba4d7272a09542a38aa2259499ba9ce8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2196-4092&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2196-4092&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2196-4092&client=summon