Flow forecasting in multiple sections of a river system
A river system includes the combination of flows occurring simultaneously in the main river and its contributing tributaries. Any change in the flow condition of the river system is caused due to changes in flow of the main river and/or contributing tributaries. An accurate flow forecasting at multi...
Saved in:
Published in | KSCE journal of civil engineering Vol. 21; no. 2; pp. 512 - 522 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Seoul
Korean Society of Civil Engineers
01.02.2017
Springer Nature B.V 대한토목학회 |
Subjects | |
Online Access | Get full text |
ISSN | 1226-7988 1976-3808 |
DOI | 10.1007/s12205-017-1514-9 |
Cover
Loading…
Abstract | A river system includes the combination of flows occurring simultaneously in the main river and its contributing tributaries. Any change in the flow condition of the river system is caused due to changes in flow of the main river and/or contributing tributaries. An accurate flow forecasting at multiple sections of a river system is worthy for issuing early warning to the imminent floods and in regulating the reservoir outflows. The application of multiple-inputs and multiple-outputs (MIMO) model is an effective way for simultaneous flow forecasting as it provides interrelation among multiple input and multiple output variables simultaneously. In the present study an Artificial Neural Networks (ANN) based MIMO model has been developed for Barak river system in Assam, India using Partially Recurrent Neural Network (PRNN) and Nonlinear Autoregressive with Exogenous Inputs (NARX) approaches. Performance of the model using both NARX and PRNN provide an efficacy with coefficient of efficiency (CE) > 0.87 and Mean Absolute Percentage Error (MAPE) < 7.66% at 12 hour lead time forecasting. This indicates satisfactory model performances for simultaneous flow forecasting at multiple sections of a river system however the results obtained by MIMO using NARX (MIMONARX) perform better than MIMO using PRNN (MIMO-PRNN) in terms of statistical performance criterion. |
---|---|
AbstractList | A river system includes the combination of flows occurring simultaneously in the main river and its contributing tributaries. Any change in the flow condition of the river system is caused due to changes in flow of the main river and/or contributing tributaries. An accurate flow forecasting at multiple sections of a river system is worthy for issuing early warning to the imminent floods and in regulating the reservoir outflows. The application of multiple-inputs and multiple-outputs (MIMO) model is an effective way for simultaneous flow forecasting as it provides interrelation among multiple input and multiple output variables simultaneously. In the present study an Artificial Neural Networks (ANN) based MIMO model has been developed for Barak river system in Assam, India using Partially Recurrent Neural Network (PRNN) and Nonlinear Autoregressive with Exogenous Inputs (NARX) approaches. Performance of the model using both NARX and PRNN provide an efficacy with coefficient of efficiency (CE) > 0.87 and Mean Absolute Percentage Error (MAPE) < 7.66% at 12 hour lead time forecasting. This indicates satisfactory model performances for simultaneous flow forecasting at multiple sections of a river system however the results obtained by MIMO using NARX (MIMONARX) perform better than MIMO using PRNN (MIMO-PRNN) in terms of statistical performance criterion. A river system includes the combination of flows occurring simultaneously in the main river and its contributing tributaries. Any change in the flow condition of the river system is caused due to changes in flow of the main river and/or contributing tributaries. An accurate flow forecasting at multiple sections of a river system is worthy for issuing early warning to the imminent floods and in regulating the reservoir outflows. The application of multiple-inputs and multiple-outputs (MIMO) model is an effective way for simultaneous flow forecasting as it provides interrelation among multiple input and multiple output variables simultaneously. In the present study an Artificial Neural Networks (ANN) based MIMO model has been developed for Barak river system in Assam, India using Partially Recurrent Neural Network (PRNN) and Nonlinear Autoregressive with Exogenous Inputs (NARX) approaches. Performance of the model using both NARX and PRNN provide an efficacy with coefficient of efficiency (CE) > 0.87 and Mean Absolute Percentage Error (MAPE) < 7.66% at 12 hour lead time forecasting. This indicates satisfactory model performances for simultaneous flow forecasting at multiple sections of a river system however the results obtained by MIMO using NARX (MIMONARX) perform better than MIMO using PRNN (MIMO-PRNN) in terms of statistical performance criterion. KCI Citation Count: 3 |
Author | Tripura, Joseph Roy, Parthajit |
Author_xml | – sequence: 1 givenname: Joseph surname: Tripura fullname: Tripura, Joseph email: tripurajoseph89@gmail.com organization: Dept. of Civil Engineering, National Institute of Technology – sequence: 2 givenname: Parthajit surname: Roy fullname: Roy, Parthajit organization: Dept. of Civil Engineering, National Institute of Technology |
BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002192480$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNqNkU1LAzEQhoNUsNb-AG8BL3pYzSTZfBxLsVooCNJ7yG6zZdvtpia7iv_e1PUgnpzLO4eHgXeeSzRqfesQugZyD4TIhwiUkjwjIDPIgWf6DI1BS5ExRdQo7ZSKTGqlLtA0xh1Jw6hULB8juWj8B658cKWNXd1ucd3iQ9909bFxOLqyq30bsa-wxaF-dwHHz9i5wxU6r2wT3fQnJ2i9eFzPn7PVy9NyPltlJReqy-yGW2CKUgUSpHScsZLxglENuYCysrooClFsNOVFYa0GR7ngXG04YZJQNkF3w9k2VGZf1sbb-ju33uyDmb2ulwYYKJLaTNDtwB6Df-td7MyhjqVrGts630cDSmqtgbP_oEIxJoCyhN78QXe-D23qnKhcKa4pOVF0oOIxpCe68Isi5iTJDJJMkmROkoxmX95PgpU |
CitedBy_id | crossref_primary_10_1007_s12083_020_00959_6 crossref_primary_10_1016_j_jnca_2020_102835 |
Cites_doi | 10.1109/78.650098 10.1061/(ASCE)HE.1943-5584.0001107 10.1137/0111030 10.1016/j.jhydrol.2007.04.020 10.1080/09540098908915631 10.1016/j.jenvman.2014.12.014 10.1016/0885-2308(91)90010-N 10.1109/3477.558801 10.1016/j.eswa.2011.07.051 10.1016/j.advengsoft.2005.05.002 10.1142/S0129065797000513 10.1016/S1464-1909(01)85005-X 10.1016/j.enconman.2007.03.018 10.1016/j.pce.2010.07.021 10.1061/(ASCE)1084-0699(2005)10:6(485) 10.1016/j.jhydrol.2005.10.033 |
ContentType | Journal Article |
Copyright | Korean Society of Civil Engineers and Springer-Verlag Berlin Heidelberg 2017 Korean Society of Civil Engineers and Springer-Verlag Berlin Heidelberg 2017. |
Copyright_xml | – notice: Korean Society of Civil Engineers and Springer-Verlag Berlin Heidelberg 2017 – notice: Korean Society of Civil Engineers and Springer-Verlag Berlin Heidelberg 2017. |
DBID | 7QH 7UA 8FD 8FE 8FG ABJCF AEUYN AFKRA BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 H96 HCIFZ KR7 L.G L6V M7S PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS ACYCR |
DOI | 10.1007/s12205-017-1514-9 |
DatabaseName | Aqualine Water Resources Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Technology collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Engineering Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Korean Citation Index |
DatabaseTitle | Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database ProQuest One Academic Middle East (New) SciTech Premium Collection ProQuest One Community College ProQuest Central China Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Aqualine Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1976-3808 |
EndPage | 522 |
ExternalDocumentID | oai_kci_go_kr_ARTI_1318078 4302662111 10_1007_s12205_017_1514_9 |
GeographicLocations | India, Assam India |
GeographicLocations_xml | – name: India, Assam – name: India |
GroupedDBID | -5B -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 203 29L 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 40D 40E 5GY 5VS 67Z 6NX 8FE 8FG 8FH 8TC 8UJ 95- 95. 95~ 96X 9ZL AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AALRI AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAXUO AAYIU AAYQN AAYTO AAYZH ABAKF ABDZT ABECU ABFTD ABFTV ABHQN ABJCF ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACGFO ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADVLN ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ AXYYD AYJHY B-. BA0 BDATZ BENPR BGLVJ BGNMA BHPHI BKSAR CAG CCPQU COF CS3 CSCUP DBRKI DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FDB FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GW5 H13 HCIFZ HF~ HG6 HMJXF HRMNR HZ~ IJ- IKXTQ IWAJR IXC IXD I~X I~Z J-C J0Z JBSCW JZLTJ KOV KVFHK L6V LK5 LLZTM M41 M4Y M7R M7S MA- MZR NPVJJ NQJWS NU0 O9- O9J P2P P9P PCBAR PF0 PT4 PT5 PTHSS QOS R89 R9I RIG RNI ROL RPX RSV RZK S16 S1Z S27 S3B SAP SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TDB TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 YLTOR Z45 Z5O Z7R Z7X Z7Y Z7Z Z83 ZMTXR ZY4 ZZE ~A9 7QH 7UA 8FD AAPKM AAYWO ABFSG ACSTC ACVFH ADCNI AEUPX AEZWR AFHIU AFOHR AFPUW AHPBZ AHWEU AIGII AIXLP AKBMS AKYEP ATHPR C1K DWQXO F1W FR3 H96 KR7 L.G PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS ACMFV ACDTI ACYCR |
ID | FETCH-LOGICAL-c468t-ad4a13822817177e433c34b3291561cfa9bbb6bd924bbaa91e246448d4037023 |
IEDL.DBID | 8FG |
ISSN | 1226-7988 |
IngestDate | Sun Jan 19 03:36:34 EST 2025 Fri Jul 11 09:07:08 EDT 2025 Thu Jul 10 20:34:50 EDT 2025 Fri Jul 25 10:55:37 EDT 2025 Fri Feb 21 02:33:44 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | river systems short range forecasting NARX PRNN MIMO model |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c468t-ad4a13822817177e433c34b3291561cfa9bbb6bd924bbaa91e246448d4037023 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 G704-000839.2017.21.2.007 |
OpenAccessLink | https://dx.doi.org/10.1007/s12205-017-1514-9 |
PQID | 1858849203 |
PQPubID | 1496355 |
PageCount | 11 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_1318078 proquest_miscellaneous_1879991438 proquest_miscellaneous_1868336123 proquest_journals_1858849203 springer_journals_10_1007_s12205_017_1514_9 |
PublicationCentury | 2000 |
PublicationDate | 20170200 20170201 2017-02 |
PublicationDateYYYYMMDD | 2017-02-01 |
PublicationDate_xml | – month: 2 year: 2017 text: 20170200 |
PublicationDecade | 2010 |
PublicationPlace | Seoul |
PublicationPlace_xml | – name: Seoul |
PublicationTitle | KSCE journal of civil engineering |
PublicationTitleAbbrev | KSCE J Civ Eng |
PublicationYear | 2017 |
Publisher | Korean Society of Civil Engineers Springer Nature B.V 대한토목학회 |
Publisher_xml | – name: Korean Society of Civil Engineers – name: Springer Nature B.V – name: 대한토목학회 |
References | Horne, Giles (CR14) 1995 CR18 Thirumalaiah, Deo (CR29) 1998 Coulibaly, Anctil, Bobée (CR9) 2001 Yiu, Wang (CR35) 2007; 48 Williams, Zipser (CR33) 1995 Weigend, Rumelhart, Keramidas (CR32) 1992 Trajkovic, Todorovic, Stankovic (CR28) 2003 Bontempi, Taieb (CR2) 2010 Dibike, Solomatine (CR11) 2001; 26 Lin, Giles, Horne, Kung (CR19) 1997; 45 Chang, Tsai, Chen, Coynel, Vachaud (CR4) 2015; 151 Chang, Wang, Zhou (CR5) 2012; 39 Marquardt (CR20) 1963; 11 Choudhury, Roy (CR6) 2015; 20 Coulibaly, Evora (CR10) 2007; 341 Diaconescu (CR12) 2008; 3 Mansouri, Mohammad, Akbari (CR22) 2014; 3 Adeloye, Munari (CR1) 2006; 326 Cigizoglu, Alp (CR8) 2006; 37 Wang, Traore, Kerh (CR30) 2008; 7 Kisi (CR17) 2008; 22 Chau, Wu, Li (CR3) 2005; 10 Robinson, Fallside (CR25) 1991; 5 Wang, Seydou (CR31) 2009; 4 Perera, Lahat (CR24) 2014 Maciel, Gomide, Ballini (CR21) 2012 Williams, Zipser (CR34) 1989; 1 Claveria, Monte, Torra (CR7) 2015 Siegelmann, Horne, Giles (CR27) 1997; 27 Karunanithi, Grenney, Whitley, Bovee (CR15) 1994 Kagoda, Ndiritu, Ntuli, Mwaka (CR16) 2010; 35 Navarra, Lessmann, Vob (CR23) 2015 Elizondo, Fiesler, Korczak (CR13) 1997; 8 Rumelhart, Hinton, Williams (CR26) 1986 |
References_xml | – year: 1995 ident: CR14 article-title: An experimental comparison of recurrent Neural Networks. publication-title: Advances in Neural Information Processing Systems 7 – volume: 45 start-page: 2719 issue: 11 year: 1997 end-page: 2730 ident: CR19 article-title: A delay damage model selection algorithm for NARX Neural Networks. publication-title: IEEE Transactions on Signal Processing doi: 10.1109/78.650098 – ident: CR18 – start-page: 1108 year: 2015 end-page: 1116 ident: CR23 article-title: Sales forecasting with partial recurrent neural Networks: Empirical insights and benchmarking results. publication-title: 48th Hawaii International Conference on System Sciences – volume: 3 start-page: 46 issue: 9 year: 2014 end-page: 54 ident: CR22 article-title: Efficient shortterm electricity load forecasting using recurrent Neural Networks. publication-title: Journal of Artificial Intelligence in Electrical Engineering – volume: 3 start-page: 1991 issue: 3 year: 2008 end-page: 8755 ident: CR12 article-title: The use of NARX neural networks to predict chaotic time series. publication-title: WSEAS Transactions on Computer Research – volume: 20 start-page: 06014012 issue: 8 year: 2015 ident: CR6 article-title: Forecasting concurrent flows in a river system using ANNs. publication-title: Journal of Hydrologic Engineering doi: 10.1061/(ASCE)HE.1943-5584.0001107 – volume: 11 start-page: 431 issue: 2 year: 1963 end-page: 441 ident: CR20 article-title: An algorithm for least-squares estimation of nonlinear parameters. publication-title: Journal of the Society for Industrial and Applied Mathematics doi: 10.1137/0111030 – volume: 341 start-page: 27 issue: 1-2 year: 2007 end-page: 41 ident: CR10 article-title: Comparison of neural network methods for infilling missing daily weather records. publication-title: Journal of Hydrology doi: 10.1016/j.jhydrol.2007.04.020 – start-page: 433 year: 1995 end-page: 486 ident: CR33 publication-title: Gradient-Based Learning Algorithms for Recurrent Networks and Their Computational Complexity. – volume: 1 start-page: 87 issue: 1 year: 1989 end-page: 111 ident: CR34 article-title: Experimental analysis of the real-time recurrent learning algorithm. publication-title: Connection Science doi: 10.1080/09540098908915631 – volume: 151 start-page: 87 year: 2015 end-page: 96 ident: CR4 article-title: Modeling water quality in an urban river using hydrological factors -Data driven approaches. publication-title: J. Environ. Manage doi: 10.1016/j.jenvman.2014.12.014 – year: 1994 ident: CR15 article-title: Neural networks for river flow prediction. publication-title: J. Comput. Civ. Eng. – volume: 5 start-page: 259 issue: 3 year: 1991 end-page: 274 ident: CR25 article-title: A Recurrent error propagation network speech recognition system. publication-title: Computer Speech and Language doi: 10.1016/0885-2308(91)90010-N – volume: 27 start-page: 208 year: 1997 ident: CR27 article-title: Computational capabilities of recurrent NARX Neural Networks. publication-title: IEEE Trans. Syst., Man Cybern., pt. B doi: 10.1109/3477.558801 – year: 2003 ident: CR28 article-title: Forecasting of Reference Evapotranspiration by Artificial Neural Networks. publication-title: J. Irrig. Drain Eng. – year: 1986 ident: CR26 publication-title: Learning internal representations by error propagation – start-page: 1 year: 2014 end-page: 12 ident: CR24 article-title: Fuzzy logic based flood forecasting model for the Kelantan River basin, Malaysia. publication-title: URL: Journal of Hydro-environment Research – volume: 22 start-page: 4142 issue: 20 year: 2008 end-page: 4152 ident: CR17 publication-title: Stream flow forecasting using neuro-wavelet technique. – year: 2012 ident: CR21 article-title: MIMO Evolving functional fuzzy models for interest rate forecasting. publication-title: Computational Intelligence for Financial Engineering & Economics (CIFEr) – volume: 7 start-page: 704 issue: 6 year: 2008 end-page: 713 ident: CR30 article-title: Neural network approach for estimating reference evapotranspiration from limited climatic data in Burkina Faso. publication-title: Journal WSEAS Transactions on Computers – volume: 39 start-page: 611 year: 2012 end-page: 620 ident: CR5 article-title: A novel model by evolving partially connected neural network for stock price trend forecasting. publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2011.07.051 – start-page: 362 year: 1992 end-page: 370 ident: CR32 article-title: Generalization through minimal networks with application to forecasting publication-title: INTERFACE'91 -23rd Symposium on the Interface: Computing Science and Statistics – year: 2001 ident: CR9 article-title: Multivariate reservoir inflow forecasting using temporal Neural Networks. publication-title: J. Hydrol. Eng. – volume: 37 start-page: 63 issue: 2 year: 2006 end-page: 68 ident: CR8 article-title: Generalized regression neural network in modelling river sediment yield. publication-title: Advances in Engineering Software doi: 10.1016/j.advengsoft.2005.05.002 – volume: 8 start-page: 535 issue: 5-6 year: 1997 end-page: 558 ident: CR13 article-title: A Survey of Partially Connected Neural Networks. publication-title: Int J Neural Syst doi: 10.1142/S0129065797000513 – volume: 26 start-page: 1 issue: 1 year: 2001 end-page: 7 ident: CR11 article-title: River flow forecasting using artificial Neural Networks. publication-title: Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere doi: 10.1016/S1464-1909(01)85005-X – year: 2010 ident: CR2 article-title: Conditionally dependent strategies for multiple-step-ahead prediction in local learning. publication-title: International Journal of Forecasting – year: 2015 ident: CR7 article-title: Multiple-input multipleoutput vs. single-input single-output neural network forecasting. publication-title: Research Institute of Applied Economics – volume: 4 start-page: 519 issue: 9 year: 2009 end-page: 528 ident: CR31 article-title: Time-lagged recurrent network for forecasting episodic event suspended sediment load in typhoon prone area. publication-title: International Journal of Physical Sciences – year: 1998 ident: CR29 article-title: River Stage Forecasting Using Artificial Neural Networks. publication-title: J. Hydrol. Eng. – volume: 48 start-page: 2276 year: 2007 end-page: 2285 ident: CR35 article-title: Multiple ARMAX modeling scheme for forecasting air conditioning system performance. publication-title: Energy Conversion and Management doi: 10.1016/j.enconman.2007.03.018 – volume: 35 start-page: 571 issue: 13 year: 2010 end-page: 581 ident: CR16 article-title: Application of radial basis function neural network to short term stream flow forecasting. publication-title: Physics and Chemistry of the Earth Parts A/B/C doi: 10.1016/j.pce.2010.07.021 – volume: 10 start-page: 485 issue: 6 year: 2005 end-page: 491 ident: CR3 article-title: Comparison of several flood forecasting models in yangtze river. publication-title: J. Hydrol. Eng. doi: 10.1061/(ASCE)1084-0699(2005)10:6(485) – volume: 326 start-page: 215 issue: 1-4 year: 2006 end-page: 230 ident: CR1 article-title: Artificial neural network based generalized storage-yield-reliability models using the Levenberg-Marquardt algorithm. publication-title: Journal of Hydrology doi: 10.1016/j.jhydrol.2005.10.033 |
SSID | ssj0000327835 |
Score | 2.057502 |
Snippet | A river system includes the combination of flows occurring simultaneously in the main river and its contributing tributaries. Any change in the flow condition... |
SourceID | nrf proquest springer |
SourceType | Open Website Aggregation Database Publisher |
StartPage | 512 |
SubjectTerms | Artificial neural networks Civil Engineering Design Optimization and Applications in Civil Engineering Economic forecasting Engineering Floods Flow Forecasting Freshwater Geotechnical Engineering & Applied Earth Sciences Industrial Pollution Prevention Lead time Mathematical models Neural networks Nonlinearity Recurrent neural networks Rivers Tributaries 토목공학 |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA46L3oQf-J0ShRvEmiTtE2OIo4p6GmD3ULStDImLbQb_vu-17VzigieemjaQN5r3vf6vveFkFuvnY5VDs7rRc5kBG7sIq2YTVBdjSe51tjv_PIajybyeRpN2z7uumO7dyXJZqf-anbDnlCGuypEKcn0NtmJIHVHt57w-_WPlUDg4RFIXYQHYoZ6XF0187e3QEwpqvwbvvxREm0izfCA7LcQkd6vbHpItrLiiOxtCAcek2T4Xn5QwJtZamskLtNZQTtuIK0belVR0zKnllbIvKArxeYTMh4-jh9GrD0CgaUyVgtmvbSoEshVCHlXkkkhUiGd4BryrjDNrXbOxc5DFuWctTrMuMSMy8tAJBCOT0mvKIvsjFDuVZBYSEd1IKVLncKW0jDlQWwDz0PfJzewDmaezgwqTuP1rTTzygCufjIhfPoAJvpk0C2TaX29NhDxlZKaB6JPrte3wUux9GCLrFzimFgJgVIvf41JEK1KAdPcdSbYmGatr4wWNGBBgxY0-vxfoy_ILkfrN8TrAektqmV2Cbhi4a4aP_oE14zBwQ priority: 102 providerName: Springer Nature |
Title | Flow forecasting in multiple sections of a river system |
URI | https://link.springer.com/article/10.1007/s12205-017-1514-9 https://www.proquest.com/docview/1858849203 https://www.proquest.com/docview/1868336123 https://www.proquest.com/docview/1879991438 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002192480 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | KSCE Journal of Civil Engineering, 2017, 21(2), , pp.512-522 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwEA_qXvRB_MTplCi-SbBNsjZ5kimbU3GIKOhTSJpWhtLqOvHf96628-PBp0AbSOkdd7_L3f2OkEOvnY5UBsrrRcZkF9TYdbViNkZ2NR5nWmO_8_UoGt7Ly4fuQ33hVtZllY1NrAy1LxK8Iz8Gv6KU1DwQJ69vDKdGYXa1HqExT1oheBrUcDU4n92xBALnSGAVYwgogyE1V5PYrLrnsMmUoZkGtycZgMz5fJL9gpp_sqOV0xmskOUaLdLel3hXyVyar5GlHxyC6yQevBQfFKBnmtgSa5jpOKdNmSAtq0qrvKRFRi2dYBEG_SJv3iB3g_7d2ZDV0xBYIiM1ZdZLi4SBXIUQgsWpFCIR0gmuIQQLk8xq51zkPARUzlmrw5RLDL68DEQMnnmTLORFnm4Ryr0KYguRqQ6kdIlT2F0aJjyIbOB56NvkAP6DeU7GBsmncX0qzPPEAMS-MCFYAcAVbdJpfpOp1b4030Jqk_3Za1BYzELYPC3ecU-khEDWl__2xAhcpYBjjhoR_DhmRrWMEjQgQYMSNHr7_4_aIYscxV0VXXfIwnTynu4Cppi6vUpx9kird_541Yf1tD-6uYWn97z3CU6OyWk |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB4BPQCHqrzEUlpMRU_IIrG9iX1AVdV2u1sep63EzbLjBCFQAptFiB_Ff2Qmu1keB26ccogjR57xzDeemc8Ae8F4k-gClTfIgqsuqrHvGs1dSuxqIi2MoX7nk9Ok_1_9O-uezcFD2wtDZZWtTWwMdagyOiM_QL-itTIikj-ubzjdGkXZ1fYKjYlaHOX3dxiy1YeD3yjf70L0_gx_9fn0VgGeqUSPuQvKEfGe0DGGMmmupMyk8lIYDGXirHDGe5_4gIGJ986ZOBeKgpigIpk2PAdo8T_gV4YqCHXv7-xIJ5J0bQUVTcYIajgxgbV51KZZj3paOXkF9LKKI6adL0fFC2T7Khnb-LjeJ_g4Bafs50SbVmAuL1dh-Rll4RqkvavqjiHSzTNXU8k0uyhZW5XI6qawq6xZVTDHRlTzwSZc0eswfI9l2oCFsirzTWAi6Ch1GAibSCmfeU3NrHEmosRFQcShA99wHexldmGJ65qe55W9HFlE9AMbo9FBGNOB7XaZ7HSX1fZJJzqwO3uN-4OSHq7Mq1sak2gpiWTmrTEp4WQlcZr9VgTPppkxO5MELUrQkgSt2Xr7p3ZgsT88ObbHg9Ojz7AkSPRNvfc2LIxHt_kXhDNj_7VRIgb2nZX2EQyl_-4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwEA46QfRB_InTqVF8k7I2ydrkcahj88fwYYO9haRpZUxaWTf8973b1jlFBJ_60KSB3JH7rvfdF0KunbIqlCk4r-OpJxrgxrahpGciVFdjUaoU9js_d8N2XzwMGoPFPadFyXYvS5LzngZUacom9XeX1r8a37A_1MMTFiKW8NQ62YDTOEBOV581lz9ZfI4XSSCNESaEHmpzlZXN374C8SUbp9-w5o_y6CzqtHbJzgIu0ubcvntkLcn2yfaKiOABiVpv-QcF7JnEpkASMx1mtOQJ0mJGtcoKmqfU0DGyMOhcvfmQ9Fr3vdu2t7gOwYtFKCeeccKgYiCTAeRgUSI4j7mwnCnIwYI4NcpaG1oHGZW1xqggYQKzLyd8HkFoPiKVLM-SY0KZk35kIDVVvhA2thLbS4OY-aHxHQtclVzBPuhRPNSoPo3P11yPxhowdkfjPgOwqJJauU164feFhugvpVDM51VyuXwNHotlCJMl-RTHhJJzlH35a0yEyFVwWOamNMHKMkutZbSgBgtqtKBWJ_8afUE2X-5a-qnTfTwlWwwdYcbHrpHKZDxNzgBuTOz5zKU-AeUVyPA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Flow+forecasting+in+multiple+sections+of+a+river+system&rft.jtitle=KSCE+journal+of+civil+engineering&rft.au=Tripura%2C+Joseph&rft.au=Roy%2C+Parthajit&rft.date=2017-02-01&rft.pub=Springer+Nature+B.V&rft.issn=1226-7988&rft.eissn=1976-3808&rft.volume=21&rft.issue=2&rft.spage=512&rft.epage=522&rft_id=info:doi/10.1007%2Fs12205-017-1514-9&rft.externalDocID=4302662111 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1226-7988&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1226-7988&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1226-7988&client=summon |