Flow forecasting in multiple sections of a river system

A river system includes the combination of flows occurring simultaneously in the main river and its contributing tributaries. Any change in the flow condition of the river system is caused due to changes in flow of the main river and/or contributing tributaries. An accurate flow forecasting at multi...

Full description

Saved in:
Bibliographic Details
Published inKSCE journal of civil engineering Vol. 21; no. 2; pp. 512 - 522
Main Authors Tripura, Joseph, Roy, Parthajit
Format Journal Article
LanguageEnglish
Published Seoul Korean Society of Civil Engineers 01.02.2017
Springer Nature B.V
대한토목학회
Subjects
Online AccessGet full text
ISSN1226-7988
1976-3808
DOI10.1007/s12205-017-1514-9

Cover

Loading…
Abstract A river system includes the combination of flows occurring simultaneously in the main river and its contributing tributaries. Any change in the flow condition of the river system is caused due to changes in flow of the main river and/or contributing tributaries. An accurate flow forecasting at multiple sections of a river system is worthy for issuing early warning to the imminent floods and in regulating the reservoir outflows. The application of multiple-inputs and multiple-outputs (MIMO) model is an effective way for simultaneous flow forecasting as it provides interrelation among multiple input and multiple output variables simultaneously. In the present study an Artificial Neural Networks (ANN) based MIMO model has been developed for Barak river system in Assam, India using Partially Recurrent Neural Network (PRNN) and Nonlinear Autoregressive with Exogenous Inputs (NARX) approaches. Performance of the model using both NARX and PRNN provide an efficacy with coefficient of efficiency (CE) > 0.87 and Mean Absolute Percentage Error (MAPE) < 7.66% at 12 hour lead time forecasting. This indicates satisfactory model performances for simultaneous flow forecasting at multiple sections of a river system however the results obtained by MIMO using NARX (MIMONARX) perform better than MIMO using PRNN (MIMO-PRNN) in terms of statistical performance criterion.
AbstractList A river system includes the combination of flows occurring simultaneously in the main river and its contributing tributaries. Any change in the flow condition of the river system is caused due to changes in flow of the main river and/or contributing tributaries. An accurate flow forecasting at multiple sections of a river system is worthy for issuing early warning to the imminent floods and in regulating the reservoir outflows. The application of multiple-inputs and multiple-outputs (MIMO) model is an effective way for simultaneous flow forecasting as it provides interrelation among multiple input and multiple output variables simultaneously. In the present study an Artificial Neural Networks (ANN) based MIMO model has been developed for Barak river system in Assam, India using Partially Recurrent Neural Network (PRNN) and Nonlinear Autoregressive with Exogenous Inputs (NARX) approaches. Performance of the model using both NARX and PRNN provide an efficacy with coefficient of efficiency (CE) > 0.87 and Mean Absolute Percentage Error (MAPE) < 7.66% at 12 hour lead time forecasting. This indicates satisfactory model performances for simultaneous flow forecasting at multiple sections of a river system however the results obtained by MIMO using NARX (MIMONARX) perform better than MIMO using PRNN (MIMO-PRNN) in terms of statistical performance criterion.
A river system includes the combination of flows occurring simultaneously in the main river and its contributing tributaries. Any change in the flow condition of the river system is caused due to changes in flow of the main river and/or contributing tributaries. An accurate flow forecasting at multiple sections of a river system is worthy for issuing early warning to the imminent floods and in regulating the reservoir outflows. The application of multiple-inputs and multiple-outputs (MIMO) model is an effective way for simultaneous flow forecasting as it provides interrelation among multiple input and multiple output variables simultaneously. In the present study an Artificial Neural Networks (ANN) based MIMO model has been developed for Barak river system in Assam, India using Partially Recurrent Neural Network (PRNN) and Nonlinear Autoregressive with Exogenous Inputs (NARX) approaches. Performance of the model using both NARX and PRNN provide an efficacy with coefficient of efficiency (CE) > 0.87 and Mean Absolute Percentage Error (MAPE) < 7.66% at 12 hour lead time forecasting. This indicates satisfactory model performances for simultaneous flow forecasting at multiple sections of a river system however the results obtained by MIMO using NARX (MIMONARX) perform better than MIMO using PRNN (MIMO-PRNN) in terms of statistical performance criterion. KCI Citation Count: 3
Author Tripura, Joseph
Roy, Parthajit
Author_xml – sequence: 1
  givenname: Joseph
  surname: Tripura
  fullname: Tripura, Joseph
  email: tripurajoseph89@gmail.com
  organization: Dept. of Civil Engineering, National Institute of Technology
– sequence: 2
  givenname: Parthajit
  surname: Roy
  fullname: Roy, Parthajit
  organization: Dept. of Civil Engineering, National Institute of Technology
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002192480$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNqNkU1LAzEQhoNUsNb-AG8BL3pYzSTZfBxLsVooCNJ7yG6zZdvtpia7iv_e1PUgnpzLO4eHgXeeSzRqfesQugZyD4TIhwiUkjwjIDPIgWf6DI1BS5ExRdQo7ZSKTGqlLtA0xh1Jw6hULB8juWj8B658cKWNXd1ucd3iQ9909bFxOLqyq30bsa-wxaF-dwHHz9i5wxU6r2wT3fQnJ2i9eFzPn7PVy9NyPltlJReqy-yGW2CKUgUSpHScsZLxglENuYCysrooClFsNOVFYa0GR7ngXG04YZJQNkF3w9k2VGZf1sbb-ju33uyDmb2ulwYYKJLaTNDtwB6Df-td7MyhjqVrGts630cDSmqtgbP_oEIxJoCyhN78QXe-D23qnKhcKa4pOVF0oOIxpCe68Isi5iTJDJJMkmROkoxmX95PgpU
CitedBy_id crossref_primary_10_1007_s12083_020_00959_6
crossref_primary_10_1016_j_jnca_2020_102835
Cites_doi 10.1109/78.650098
10.1061/(ASCE)HE.1943-5584.0001107
10.1137/0111030
10.1016/j.jhydrol.2007.04.020
10.1080/09540098908915631
10.1016/j.jenvman.2014.12.014
10.1016/0885-2308(91)90010-N
10.1109/3477.558801
10.1016/j.eswa.2011.07.051
10.1016/j.advengsoft.2005.05.002
10.1142/S0129065797000513
10.1016/S1464-1909(01)85005-X
10.1016/j.enconman.2007.03.018
10.1016/j.pce.2010.07.021
10.1061/(ASCE)1084-0699(2005)10:6(485)
10.1016/j.jhydrol.2005.10.033
ContentType Journal Article
Copyright Korean Society of Civil Engineers and Springer-Verlag Berlin Heidelberg 2017
Korean Society of Civil Engineers and Springer-Verlag Berlin Heidelberg 2017.
Copyright_xml – notice: Korean Society of Civil Engineers and Springer-Verlag Berlin Heidelberg 2017
– notice: Korean Society of Civil Engineers and Springer-Verlag Berlin Heidelberg 2017.
DBID 7QH
7UA
8FD
8FE
8FG
ABJCF
AEUYN
AFKRA
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
H96
HCIFZ
KR7
L.G
L6V
M7S
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ACYCR
DOI 10.1007/s12205-017-1514-9
DatabaseName Aqualine
Water Resources Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central
Technology collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Engineering Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Korean Citation Index
DatabaseTitle Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Aqualine
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional

Aquatic Science & Fisheries Abstracts (ASFA) Professional

Technology Research Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1976-3808
EndPage 522
ExternalDocumentID oai_kci_go_kr_ARTI_1318078
4302662111
10_1007_s12205_017_1514_9
GeographicLocations India, Assam
India
GeographicLocations_xml – name: India, Assam
– name: India
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
203
29L
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
40D
40E
5GY
5VS
67Z
6NX
8FE
8FG
8FH
8TC
8UJ
95-
95.
95~
96X
9ZL
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AALRI
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAXUO
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDZT
ABECU
ABFTD
ABFTV
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACGFO
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADVLN
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
AXYYD
AYJHY
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
CAG
CCPQU
COF
CS3
CSCUP
DBRKI
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FDB
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GW5
H13
HCIFZ
HF~
HG6
HMJXF
HRMNR
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
KOV
KVFHK
L6V
LK5
LLZTM
M41
M4Y
M7R
M7S
MA-
MZR
NPVJJ
NQJWS
NU0
O9-
O9J
P2P
P9P
PCBAR
PF0
PT4
PT5
PTHSS
QOS
R89
R9I
RIG
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S27
S3B
SAP
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TDB
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Y
Z7Z
Z83
ZMTXR
ZY4
ZZE
~A9
7QH
7UA
8FD
AAPKM
AAYWO
ABFSG
ACSTC
ACVFH
ADCNI
AEUPX
AEZWR
AFHIU
AFOHR
AFPUW
AHPBZ
AHWEU
AIGII
AIXLP
AKBMS
AKYEP
ATHPR
C1K
DWQXO
F1W
FR3
H96
KR7
L.G
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ACMFV
ACDTI
ACYCR
ID FETCH-LOGICAL-c468t-ad4a13822817177e433c34b3291561cfa9bbb6bd924bbaa91e246448d4037023
IEDL.DBID 8FG
ISSN 1226-7988
IngestDate Sun Jan 19 03:36:34 EST 2025
Fri Jul 11 09:07:08 EDT 2025
Thu Jul 10 20:34:50 EDT 2025
Fri Jul 25 10:55:37 EDT 2025
Fri Feb 21 02:33:44 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords river systems
short range forecasting
NARX
PRNN
MIMO model
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c468t-ad4a13822817177e433c34b3291561cfa9bbb6bd924bbaa91e246448d4037023
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
G704-000839.2017.21.2.007
OpenAccessLink https://dx.doi.org/10.1007/s12205-017-1514-9
PQID 1858849203
PQPubID 1496355
PageCount 11
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_1318078
proquest_miscellaneous_1879991438
proquest_miscellaneous_1868336123
proquest_journals_1858849203
springer_journals_10_1007_s12205_017_1514_9
PublicationCentury 2000
PublicationDate 20170200
20170201
2017-02
PublicationDateYYYYMMDD 2017-02-01
PublicationDate_xml – month: 2
  year: 2017
  text: 20170200
PublicationDecade 2010
PublicationPlace Seoul
PublicationPlace_xml – name: Seoul
PublicationTitle KSCE journal of civil engineering
PublicationTitleAbbrev KSCE J Civ Eng
PublicationYear 2017
Publisher Korean Society of Civil Engineers
Springer Nature B.V
대한토목학회
Publisher_xml – name: Korean Society of Civil Engineers
– name: Springer Nature B.V
– name: 대한토목학회
References Horne, Giles (CR14) 1995
CR18
Thirumalaiah, Deo (CR29) 1998
Coulibaly, Anctil, Bobée (CR9) 2001
Yiu, Wang (CR35) 2007; 48
Williams, Zipser (CR33) 1995
Weigend, Rumelhart, Keramidas (CR32) 1992
Trajkovic, Todorovic, Stankovic (CR28) 2003
Bontempi, Taieb (CR2) 2010
Dibike, Solomatine (CR11) 2001; 26
Lin, Giles, Horne, Kung (CR19) 1997; 45
Chang, Tsai, Chen, Coynel, Vachaud (CR4) 2015; 151
Chang, Wang, Zhou (CR5) 2012; 39
Marquardt (CR20) 1963; 11
Choudhury, Roy (CR6) 2015; 20
Coulibaly, Evora (CR10) 2007; 341
Diaconescu (CR12) 2008; 3
Mansouri, Mohammad, Akbari (CR22) 2014; 3
Adeloye, Munari (CR1) 2006; 326
Cigizoglu, Alp (CR8) 2006; 37
Wang, Traore, Kerh (CR30) 2008; 7
Kisi (CR17) 2008; 22
Chau, Wu, Li (CR3) 2005; 10
Robinson, Fallside (CR25) 1991; 5
Wang, Seydou (CR31) 2009; 4
Perera, Lahat (CR24) 2014
Maciel, Gomide, Ballini (CR21) 2012
Williams, Zipser (CR34) 1989; 1
Claveria, Monte, Torra (CR7) 2015
Siegelmann, Horne, Giles (CR27) 1997; 27
Karunanithi, Grenney, Whitley, Bovee (CR15) 1994
Kagoda, Ndiritu, Ntuli, Mwaka (CR16) 2010; 35
Navarra, Lessmann, Vob (CR23) 2015
Elizondo, Fiesler, Korczak (CR13) 1997; 8
Rumelhart, Hinton, Williams (CR26) 1986
References_xml – year: 1995
  ident: CR14
  article-title: An experimental comparison of recurrent Neural Networks.
  publication-title: Advances in Neural Information Processing Systems 7
– volume: 45
  start-page: 2719
  issue: 11
  year: 1997
  end-page: 2730
  ident: CR19
  article-title: A delay damage model selection algorithm for NARX Neural Networks.
  publication-title: IEEE Transactions on Signal Processing
  doi: 10.1109/78.650098
– ident: CR18
– start-page: 1108
  year: 2015
  end-page: 1116
  ident: CR23
  article-title: Sales forecasting with partial recurrent neural Networks: Empirical insights and benchmarking results.
  publication-title: 48th Hawaii International Conference on System Sciences
– volume: 3
  start-page: 46
  issue: 9
  year: 2014
  end-page: 54
  ident: CR22
  article-title: Efficient shortterm electricity load forecasting using recurrent Neural Networks.
  publication-title: Journal of Artificial Intelligence in Electrical Engineering
– volume: 3
  start-page: 1991
  issue: 3
  year: 2008
  end-page: 8755
  ident: CR12
  article-title: The use of NARX neural networks to predict chaotic time series.
  publication-title: WSEAS Transactions on Computer Research
– volume: 20
  start-page: 06014012
  issue: 8
  year: 2015
  ident: CR6
  article-title: Forecasting concurrent flows in a river system using ANNs.
  publication-title: Journal of Hydrologic Engineering
  doi: 10.1061/(ASCE)HE.1943-5584.0001107
– volume: 11
  start-page: 431
  issue: 2
  year: 1963
  end-page: 441
  ident: CR20
  article-title: An algorithm for least-squares estimation of nonlinear parameters.
  publication-title: Journal of the Society for Industrial and Applied Mathematics
  doi: 10.1137/0111030
– volume: 341
  start-page: 27
  issue: 1-2
  year: 2007
  end-page: 41
  ident: CR10
  article-title: Comparison of neural network methods for infilling missing daily weather records.
  publication-title: Journal of Hydrology
  doi: 10.1016/j.jhydrol.2007.04.020
– start-page: 433
  year: 1995
  end-page: 486
  ident: CR33
  publication-title: Gradient-Based Learning Algorithms for Recurrent Networks and Their Computational Complexity.
– volume: 1
  start-page: 87
  issue: 1
  year: 1989
  end-page: 111
  ident: CR34
  article-title: Experimental analysis of the real-time recurrent learning algorithm.
  publication-title: Connection Science
  doi: 10.1080/09540098908915631
– volume: 151
  start-page: 87
  year: 2015
  end-page: 96
  ident: CR4
  article-title: Modeling water quality in an urban river using hydrological factors -Data driven approaches.
  publication-title: J. Environ. Manage
  doi: 10.1016/j.jenvman.2014.12.014
– year: 1994
  ident: CR15
  article-title: Neural networks for river flow prediction.
  publication-title: J. Comput. Civ. Eng.
– volume: 5
  start-page: 259
  issue: 3
  year: 1991
  end-page: 274
  ident: CR25
  article-title: A Recurrent error propagation network speech recognition system.
  publication-title: Computer Speech and Language
  doi: 10.1016/0885-2308(91)90010-N
– volume: 27
  start-page: 208
  year: 1997
  ident: CR27
  article-title: Computational capabilities of recurrent NARX Neural Networks.
  publication-title: IEEE Trans. Syst., Man Cybern., pt. B
  doi: 10.1109/3477.558801
– year: 2003
  ident: CR28
  article-title: Forecasting of Reference Evapotranspiration by Artificial Neural Networks.
  publication-title: J. Irrig. Drain Eng.
– year: 1986
  ident: CR26
  publication-title: Learning internal representations by error propagation
– start-page: 1
  year: 2014
  end-page: 12
  ident: CR24
  article-title: Fuzzy logic based flood forecasting model for the Kelantan River basin, Malaysia.
  publication-title: URL: Journal of Hydro-environment Research
– volume: 22
  start-page: 4142
  issue: 20
  year: 2008
  end-page: 4152
  ident: CR17
  publication-title: Stream flow forecasting using neuro-wavelet technique.
– year: 2012
  ident: CR21
  article-title: MIMO Evolving functional fuzzy models for interest rate forecasting.
  publication-title: Computational Intelligence for Financial Engineering & Economics (CIFEr)
– volume: 7
  start-page: 704
  issue: 6
  year: 2008
  end-page: 713
  ident: CR30
  article-title: Neural network approach for estimating reference evapotranspiration from limited climatic data in Burkina Faso.
  publication-title: Journal WSEAS Transactions on Computers
– volume: 39
  start-page: 611
  year: 2012
  end-page: 620
  ident: CR5
  article-title: A novel model by evolving partially connected neural network for stock price trend forecasting.
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2011.07.051
– start-page: 362
  year: 1992
  end-page: 370
  ident: CR32
  article-title: Generalization through minimal networks with application to forecasting
  publication-title: INTERFACE'91 -23rd Symposium on the Interface: Computing Science and Statistics
– year: 2001
  ident: CR9
  article-title: Multivariate reservoir inflow forecasting using temporal Neural Networks.
  publication-title: J. Hydrol. Eng.
– volume: 37
  start-page: 63
  issue: 2
  year: 2006
  end-page: 68
  ident: CR8
  article-title: Generalized regression neural network in modelling river sediment yield.
  publication-title: Advances in Engineering Software
  doi: 10.1016/j.advengsoft.2005.05.002
– volume: 8
  start-page: 535
  issue: 5-6
  year: 1997
  end-page: 558
  ident: CR13
  article-title: A Survey of Partially Connected Neural Networks.
  publication-title: Int J Neural Syst
  doi: 10.1142/S0129065797000513
– volume: 26
  start-page: 1
  issue: 1
  year: 2001
  end-page: 7
  ident: CR11
  article-title: River flow forecasting using artificial Neural Networks.
  publication-title: Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere
  doi: 10.1016/S1464-1909(01)85005-X
– year: 2010
  ident: CR2
  article-title: Conditionally dependent strategies for multiple-step-ahead prediction in local learning.
  publication-title: International Journal of Forecasting
– year: 2015
  ident: CR7
  article-title: Multiple-input multipleoutput vs. single-input single-output neural network forecasting.
  publication-title: Research Institute of Applied Economics
– volume: 4
  start-page: 519
  issue: 9
  year: 2009
  end-page: 528
  ident: CR31
  article-title: Time-lagged recurrent network for forecasting episodic event suspended sediment load in typhoon prone area.
  publication-title: International Journal of Physical Sciences
– year: 1998
  ident: CR29
  article-title: River Stage Forecasting Using Artificial Neural Networks.
  publication-title: J. Hydrol. Eng.
– volume: 48
  start-page: 2276
  year: 2007
  end-page: 2285
  ident: CR35
  article-title: Multiple ARMAX modeling scheme for forecasting air conditioning system performance.
  publication-title: Energy Conversion and Management
  doi: 10.1016/j.enconman.2007.03.018
– volume: 35
  start-page: 571
  issue: 13
  year: 2010
  end-page: 581
  ident: CR16
  article-title: Application of radial basis function neural network to short term stream flow forecasting.
  publication-title: Physics and Chemistry of the Earth Parts A/B/C
  doi: 10.1016/j.pce.2010.07.021
– volume: 10
  start-page: 485
  issue: 6
  year: 2005
  end-page: 491
  ident: CR3
  article-title: Comparison of several flood forecasting models in yangtze river.
  publication-title: J. Hydrol. Eng.
  doi: 10.1061/(ASCE)1084-0699(2005)10:6(485)
– volume: 326
  start-page: 215
  issue: 1-4
  year: 2006
  end-page: 230
  ident: CR1
  article-title: Artificial neural network based generalized storage-yield-reliability models using the Levenberg-Marquardt algorithm.
  publication-title: Journal of Hydrology
  doi: 10.1016/j.jhydrol.2005.10.033
SSID ssj0000327835
Score 2.057502
Snippet A river system includes the combination of flows occurring simultaneously in the main river and its contributing tributaries. Any change in the flow condition...
SourceID nrf
proquest
springer
SourceType Open Website
Aggregation Database
Publisher
StartPage 512
SubjectTerms Artificial neural networks
Civil Engineering
Design Optimization and Applications in Civil Engineering
Economic forecasting
Engineering
Floods
Flow
Forecasting
Freshwater
Geotechnical Engineering & Applied Earth Sciences
Industrial Pollution Prevention
Lead time
Mathematical models
Neural networks
Nonlinearity
Recurrent neural networks
Rivers
Tributaries
토목공학
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA46L3oQf-J0ShRvEmiTtE2OIo4p6GmD3ULStDImLbQb_vu-17VzigieemjaQN5r3vf6vveFkFuvnY5VDs7rRc5kBG7sIq2YTVBdjSe51tjv_PIajybyeRpN2z7uumO7dyXJZqf-anbDnlCGuypEKcn0NtmJIHVHt57w-_WPlUDg4RFIXYQHYoZ6XF0187e3QEwpqvwbvvxREm0izfCA7LcQkd6vbHpItrLiiOxtCAcek2T4Xn5QwJtZamskLtNZQTtuIK0belVR0zKnllbIvKArxeYTMh4-jh9GrD0CgaUyVgtmvbSoEshVCHlXkkkhUiGd4BryrjDNrXbOxc5DFuWctTrMuMSMy8tAJBCOT0mvKIvsjFDuVZBYSEd1IKVLncKW0jDlQWwDz0PfJzewDmaezgwqTuP1rTTzygCufjIhfPoAJvpk0C2TaX29NhDxlZKaB6JPrte3wUux9GCLrFzimFgJgVIvf41JEK1KAdPcdSbYmGatr4wWNGBBgxY0-vxfoy_ILkfrN8TrAektqmV2Cbhi4a4aP_oE14zBwQ
  priority: 102
  providerName: Springer Nature
Title Flow forecasting in multiple sections of a river system
URI https://link.springer.com/article/10.1007/s12205-017-1514-9
https://www.proquest.com/docview/1858849203
https://www.proquest.com/docview/1868336123
https://www.proquest.com/docview/1879991438
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002192480
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX KSCE Journal of Civil Engineering, 2017, 21(2), , pp.512-522
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwEA_qXvRB_MTplCi-SbBNsjZ5kimbU3GIKOhTSJpWhtLqOvHf96628-PBp0AbSOkdd7_L3f2OkEOvnY5UBsrrRcZkF9TYdbViNkZ2NR5nWmO_8_UoGt7Ly4fuQ33hVtZllY1NrAy1LxK8Iz8Gv6KU1DwQJ69vDKdGYXa1HqExT1oheBrUcDU4n92xBALnSGAVYwgogyE1V5PYrLrnsMmUoZkGtycZgMz5fJL9gpp_sqOV0xmskOUaLdLel3hXyVyar5GlHxyC6yQevBQfFKBnmtgSa5jpOKdNmSAtq0qrvKRFRi2dYBEG_SJv3iB3g_7d2ZDV0xBYIiM1ZdZLi4SBXIUQgsWpFCIR0gmuIQQLk8xq51zkPARUzlmrw5RLDL68DEQMnnmTLORFnm4Ryr0KYguRqQ6kdIlT2F0aJjyIbOB56NvkAP6DeU7GBsmncX0qzPPEAMS-MCFYAcAVbdJpfpOp1b4030Jqk_3Za1BYzELYPC3ecU-khEDWl__2xAhcpYBjjhoR_DhmRrWMEjQgQYMSNHr7_4_aIYscxV0VXXfIwnTynu4Cppi6vUpx9kird_541Yf1tD-6uYWn97z3CU6OyWk
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB4BPQCHqrzEUlpMRU_IIrG9iX1AVdV2u1sep63EzbLjBCFQAptFiB_Ff2Qmu1keB26ccogjR57xzDeemc8Ae8F4k-gClTfIgqsuqrHvGs1dSuxqIi2MoX7nk9Ok_1_9O-uezcFD2wtDZZWtTWwMdagyOiM_QL-itTIikj-ubzjdGkXZ1fYKjYlaHOX3dxiy1YeD3yjf70L0_gx_9fn0VgGeqUSPuQvKEfGe0DGGMmmupMyk8lIYDGXirHDGe5_4gIGJ986ZOBeKgpigIpk2PAdo8T_gV4YqCHXv7-xIJ5J0bQUVTcYIajgxgbV51KZZj3paOXkF9LKKI6adL0fFC2T7Khnb-LjeJ_g4Bafs50SbVmAuL1dh-Rll4RqkvavqjiHSzTNXU8k0uyhZW5XI6qawq6xZVTDHRlTzwSZc0eswfI9l2oCFsirzTWAi6Ch1GAibSCmfeU3NrHEmosRFQcShA99wHexldmGJ65qe55W9HFlE9AMbo9FBGNOB7XaZ7HSX1fZJJzqwO3uN-4OSHq7Mq1sak2gpiWTmrTEp4WQlcZr9VgTPppkxO5MELUrQkgSt2Xr7p3ZgsT88ObbHg9Ojz7AkSPRNvfc2LIxHt_kXhDNj_7VRIgb2nZX2EQyl_-4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwEA46QfRB_InTqVF8k7I2ydrkcahj88fwYYO9haRpZUxaWTf8973b1jlFBJ_60KSB3JH7rvfdF0KunbIqlCk4r-OpJxrgxrahpGciVFdjUaoU9js_d8N2XzwMGoPFPadFyXYvS5LzngZUacom9XeX1r8a37A_1MMTFiKW8NQ62YDTOEBOV581lz9ZfI4XSSCNESaEHmpzlZXN374C8SUbp9-w5o_y6CzqtHbJzgIu0ubcvntkLcn2yfaKiOABiVpv-QcF7JnEpkASMx1mtOQJ0mJGtcoKmqfU0DGyMOhcvfmQ9Fr3vdu2t7gOwYtFKCeeccKgYiCTAeRgUSI4j7mwnCnIwYI4NcpaG1oHGZW1xqggYQKzLyd8HkFoPiKVLM-SY0KZk35kIDVVvhA2thLbS4OY-aHxHQtclVzBPuhRPNSoPo3P11yPxhowdkfjPgOwqJJauU164feFhugvpVDM51VyuXwNHotlCJMl-RTHhJJzlH35a0yEyFVwWOamNMHKMkutZbSgBgtqtKBWJ_8afUE2X-5a-qnTfTwlWwwdYcbHrpHKZDxNzgBuTOz5zKU-AeUVyPA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Flow+forecasting+in+multiple+sections+of+a+river+system&rft.jtitle=KSCE+journal+of+civil+engineering&rft.au=Tripura%2C+Joseph&rft.au=Roy%2C+Parthajit&rft.date=2017-02-01&rft.pub=Springer+Nature+B.V&rft.issn=1226-7988&rft.eissn=1976-3808&rft.volume=21&rft.issue=2&rft.spage=512&rft.epage=522&rft_id=info:doi/10.1007%2Fs12205-017-1514-9&rft.externalDocID=4302662111
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1226-7988&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1226-7988&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1226-7988&client=summon